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Abstract. In this paper, we study the relationship between bilevel optimiza-
tion and multicriteria optimization. Given a bilevel optimization problem, we
introduce an order relation such that the optimal solutions of the bilevel prob-
lem are the nondominated points with respect to the order relation. In the case
where the lower-level problem of the bilevel optimization problem is convex
and continuously differentiable in the lower-level variables, this order relation
is equivalent to a second, more tractable order relation.

Then, we show how to construct a (nonconvex) cone for which we
can prove that the nondominated points with respect to the order relation
induced by the cone are also nondominated points with respect to any of the
two order relations mentioned before. We comment also on the practical and
computational implications of our approach.
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1. Introduction

In a bilevel optimization problem, some of the variables (lower-level vari-
ables) are constrained to be the solution of a inner or lower-level problem. The
remaining variables are called the upper-level variables and parametrize the lower-
level problem. Similarly, the problem’s objective function is called the upper-level
function. The objective function of the lower-level problem is referred to as the
lower-level function.
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Although several authors have attempted to establish a link between bicriteria
optimization and bilevel optimization in the linear case [Bard (Ref. 1) and Ünlü
(Ref. 2)], none has succeeded thus far in proposing conditions that guarantee that
the optimal solution of a given bilevel program is nondominated for both the
upper-level and lower-level objective functions [counterexamples were reported
by Candler (Ref. 3), Clarke and Westerberg (Ref. 4), Haurie, Savard, and White
(Ref. 5), and Marcotte (Ref. 6)]. Wen and Hsu (Ref. 7) suggested a sufficient
condition for that to happen (d�

1 d2 ≤ 0, where d1 and d2 are the cost vectors
of the upper-level variables for upper-level and lower-level objective functions,
respectively) but a counterexample by Marcotte and Savard (Ref. 8) showed that
that was also false.

An attempt to address this issue was reported by Fülöp (Ref. 9) and described
in a section about the relationships between bilevel and multicriteria optimization
included in the recent book by Dempe (Ref. 10). It is shown that the feasible
set (sometimes called induced region) of a linear bilevel program can be written
as the set of nondominated points of a multicriteria problem with the standard
ordering cone with k criteria, where k is the rank of a given matrix plus 2. In our
work, not only we consider nonlinear bilevel optimization problems, but we also
characterize solutions of the bilevel problem (not just feasible points) as solutions
of a multicriteria problem. Fülöp (Ref. 9) was the first to observe that more than
just two criteria are needed to establish the link between bilevel optimization and
multicriteria optimization.

It should not be seen as a surprise that the optimal solution of a bilevel
problem can be dominated in terms of upper-level and lower-level functions. In the
authors’ view, the hierarchical nature of the two levels is a natural justification for
this occurrence. Our approach differs from the ones mentioned above in the sense
that we build the multicriteria optimization problem not directly from the upper-
level and lower-level objective functions, but by using information from the whole
bilevel optimization problem. In particular, we use the optimality of the lower-level
problem with respect to the lower-level variables.

This paper is divided as follows. We provide the necessary background about
multicriteria and bilevel optimization in Sections 2 and 3 respectively. Our multi-
criteria (more precisely, four-criteria) optimization approach to bilevel optimiza-
tion is explained in Section 4 for unconstrained bilevel optimization. Section 5
covers the practical implications of this approach and considers extensions to
constrained bilevel optimization and three-level optimization. In Section 6, we
summarize our contribution and discuss its potential in applications of bilevel
optimization with expensive function evaluations.

We use

R+ = {x ∈ R : x ≥ 0}, R++ = {x ∈ R : x > 0}.

The norm ‖ · ‖ used in this paper is arbitrary and ‖ · ‖2 denotes the �2 norm.
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2. Multicriteria Optimization

In this section, we provide a brief introduction to the concepts in multicriteria
optimization that are used later in this paper. Readers familiar with multicriteria
optimization may wish to proceed directly to Section 3.

In multicriteria optimization, several functions (say) f1, . . . , fm : R
n −→

R,m > 1, have to be minimized simultaneously. Such a problem can be stated
conveniently in the form

min f : R
n → R

m, (1)

where f = (f1, . . . fm)� and the meaning of min still has to be specified. The
reason for this formulation is that there is no standard total order for the image
space R

m. In contrast to this situation, in the classical single-criterion case, one
always uses the standard total order defined by

x < y :⇐⇒ y − x ∈ R++, x, y ∈ R.

Nevertheless, the idea of specifying an order by using a specific set defining it can
be conveniently employed in multicriteria optimization as the following discussion
will show.

If an arbitrary order relation ≺ on R
m and a set M ⊆ R

m are given, the vector
a ∈ R

m is called minimal or a minimizer w.r.t. ≺ in M if a ∈ M and a � b for all
b ∈ M . Here, � is the reflexive hull of ≺; i.e., a � b if and only if a = b or a � b.
Minimal points usually do not exist, one reason being that it is seldom the case
that � is a total order. A weaker concept, the concept of domination is therefore
needed. A point a dominates a point b, if a ≺ b and a = b holds. A point a is
nondominated in M , if a ∈ M and there does not exist a point c ∈ M with c ≺ a

and c = a. This approach raises the question about which of the many orders in
R

m one should choose when solving multicriteria problems.
Let K ⊆ R

m be an arbitrary set. Define the order

x <K y :⇐⇒ y − x ∈ K. (2)

The next theorem is well known (e.g. Ref. 11).

Theorem 2.1. Let K ⊂ R
m be a set and let <K be the binary relation

defined by K as in (2). The following statements hold:

(i) If 0 ∈ K , then <K is reflexive.
(ii) If K + K ⊆ K , then <K is transitive.
(iii) If K is a cone containing no lines, i.e., K ∩ −K ⊆ {0} (such a cone is

also called pointed), then <K is antisymmetric.
(iv) The order <K is total if and only if K ∪ −K = R

m.
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(v) The set K is closed if and only if the relation <K is continuous at 0 in
the following sense. For all a ∈ R

m and all sequences (a(i))i∈N in R
m

with limi→+∞ a(i) = a and 0 <K a(i) for all i ∈ N, 0 <K a holds.

Note that K + K ⊆ K holds if K is a convex cone. Moreover, suppose that K
is a pointed cone such that the order <K is total. Then, consider S := Sm−1 ⊂ R

m,
the ‖ · ‖2−sphere. Since <K is total,

(K ∩ S) ∪ (−K ∩ S) = S.

But K is pointed, so for x ∈ K we have −x ∈ K; therefore,

(K ∩ S) ∩ (−K ∩ S) = ∅.

With S endowed by the induced topology, S is an open set and therefore cannot
be written as the union of two disjoint closed sets. Therefore, K is not closed,
a rather problematic situation with respect to numerical algorithms. According
to the theorem above, practicioners prefer to choose a closed convex cone K ,
with 0 ∈ K , which contains no lines to define the partial order <K . Note that the
lexicographic order in R

m is defined by a cone which is not closed. Moreover, in
our context, the space R

m will be the image space of functions to be minimized.
As a consequence, it is important for numerical reasons to have scale-invariance
of the induced order. This means that, if x <K y and λ > 0, then λx <K λy, a
property which holds if and only if the set K is a cone.

Using a fixed set K to define an order relation as in (2) has one additional
advantage. For an arbitrary relation ≺, the sets

C(a) := {b ∈ R
m | a ≺ b} − a (3)

are constant if there exists a set K such that ≺ =<K holds. Indeed, if ≺=<K ,
then

C(a) = {b ∈ R
m | a ≺ b}

= {b ∈ R
m | a <K b}

= {b ∈ R
m | b − a ∈ K}

= a + K.

This means that ≺ is translation-invariant; i.e.,

x + z ≺ y + z, for all z if and only if x ≺ y.

To summarize the discussion above: we are in search for a convex cone K

with 0 ∈ K in order to define an order <K . Other attributes of K that can be used
to our advantage are closedness, pointedness, and K ∪ −K = R

m; but, as pointed
out before, we cannot have all of these at the same time.
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Usually, K is just the positive orthant without the origin, K = R
m
+\{0}, which

gives exactly the standard definition of order in multicriteria optimization. The
set of solutions (i.e., the set of efficient or Pareto points) of the problem (1)
is the preimage of all nondominated points of the set M with respect to the
order <K .

The standard strategy to compute nondominated elements w.r.t. <K is now
as follows.

First, we need a technical definition, generalizing the concept of mono-
tonicity.

Definition 2.1. (Monotonicity) Let K ⊆ R
m be a cone, let M ⊆ R

m a
set, and let s : M −→ R be a function. The function s is called K-monotonically
increasing in M if a <K b implies s(a) ≤ s(b) for all a, b ∈ M . The function
s is called strictly K-monotonically increasing in M if a <K b, a = b, implies
s(a) < s(b) for all a, b ∈ M .

The set M that we will use in what follows will be the image set of the
function f , i.e., M := f (Rn).

Functions monotone with respect to an arbitrary binary relation ≺ are also
called consistent with respect to ≺ (see Ref. 12, Chapter 1) or order-preserving
(see Ref. 13, Chapter 7 for an overview). These functions play an important role
in multicriteria optimization, as it is shown in the next theorems.

Theorem 2.2. Let K ⊆ R
m be a cone with 0 ∈ K and {0} = K = R

m; let
M ⊆ R

m be a set. Let s : M −→ R be a K-monotone increasing function; let
a ∈ M be a minimum of s over M . If a is unique or if s is strictly K-monotone in
M , then a is nondominated in M with respect to <K .

The proofs can be found in Vogel (Ref. 14, Chapter 2) or in Göpfert & Nehse
(Ref. 11, Section 2.20).

The simplest, most widely used K-monotone functions are the linear forms
in int(K∗), where K∗ is the dual cone of K defined by

K∗ = {ω | ∀a ∈ K : 〈ω, a〉 ≥ 0},
with 〈·, ·〉 the (standard) inner product in R

m. Other, nonlinear K-monotone func-
tions have attracted some attention only recently, mainly for numerical reasons
(Ref. 15). It turns out that, in the case of convex cones and sets, only these linear
forms need to be considered, at least in theory. More precisely, we need the linear
forms from the quasi-interior of K∗, i.e., the set

K+ := {ω ∈ R
m | ∀a ∈ K\{0} : 〈ω, a〉 > 0}.
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With this, it turns out that basically all efficient points can be found by minimizing
functions of the form 〈ω, ·〉 over M , as the following theorem shows.

Theorem 2.3. Let K,M ⊆ R
m and define

E(M,K) := {a ∈ M | a nondominated in M w.r.t <K}
as well as

P (M,K) :=
⋃

ω∈K+
arg min{〈ω, a〉 | a ∈ M}.

Then, the following statements hold:

(i) Let K be a convex cone with 0 ∈ K and {0} = K = R
m. Then,

P (M,K) ⊆ E(M,K).

(ii) Let K be a closed convex cone with 0 ∈ K such that K contains no
lines. Let M be closed and convex. Then,

E(M,K) ⊆ cl(P (M,K)).

(iii) Let K = R
m
+ and let M polyhedral. Then,

E(M,K) = P (M,K).

Different proofs can be found in various textbooks and original articles. See
e.g. Göpfert and Nehse (Ref. 11, Section 2.22), Sawaragi, Nakayama, and Tanino
(Ref. 16, Page 74), or Durier (Ref. 17). The first proof of Part 2 is due to Arrow,
Barankin, and Blackwell (Ref. 18).

So, in the convex case, by varying the function s over all monotone functions,
we can generate all nondominant points in f (Rn) w.r.t. <K and their corresponding
preimages by solving the problems

min s(f (x)), (4a)

s.t x ∈ R
n. (4b)

Some boundary points (more precisely, a subset of measure zero) are left out in
the convex case, but this is a detail rarely of importance in applications.

It is also possible to use quadratic functions to generate nondominated points.
Indeed, K-monotone quadratic functions have attracted some attention recently,
mainly due to their favorable numerical properties. We start by giving a charac-
terization of K-monotonically increasing quadratic functions. We will make use
of the notation

QM := {Qx | x ∈ M},
for arbitrary matrices Q ∈ R

m×m and arbitrary sets M ⊆ R
m.



JOTA: VOL. 131, NO. 2, NOVEMBER 2006 215

Theorem 2.4. Let K ⊆ R
m be a closed convex cone, let M ⊆ R

m be a
nonempty convex set, and let L be the subspace parallel to aff(M), the affine
hull of M . Let Q ∈ R

m×m be a symmetric positive-semidefinite matrix and define
the function v by v(x) := 〈Qx, x〉 for all x ∈ M . Then, v is K-monotonically
increasing on M if and only if

QM ⊆ K∗ + L⊥.

Furthermore, if K is closed and int(K∗ + L⊥) = ∅, then v is strictly K-
monotonically increasing on relint(M) if and only if

Qrelint(M) ⊆ relint(K∗) + L⊥.

The proof of this theorem as well as more details about K-monotonically
increasing quadratic functions can be found in Fliege (Ref. 15). The next result
describes one way to generate nondominated elements w.r.t. <K when considering
quadratic functions; see also Fliege (Ref. 15).

Theorem 2.5. Let K be a convex cone and let M be a convex set
with nonempty interior. Let the sets E(M,K) and P (M,K) be defined as in
Theorem 2.3. For an arbitrary set B of matrices in R

m×m, define

A(M,B) :=
⋃

Q∈B
arg min{〈Qy, y〉 | y ∈ M}.

(i) Let

QM,K := {Q ∈ R
m×m positive definite | QM ⊆ K∗}.

Then,

A(M,QM,K ) ⊆ E(M,K).

(ii) Let K+ ⊆ R
m
++ and M ⊂ R

m
++. Define

Q̂M,K := {diag(ω1/z1, . . . , ωn/zn) | z ∈ M,ω ∈ K+}.
Then,

P (M,K) ⊆ A(M, Q̂M,K ).

3. Bilevel Optimization

A common formulation for the bilevel optimization problem is as follows:

min
xu∈R

nu ,x�∈R
n�

fu(xu, x�), (5a)
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s.t. gu(xu) ≤ 0, (5b)

x� ∈ arg min
g�(xu,·)≤0

f�(xu, ·), (5c)

where fu, f� : R
nu × R

n� −→ R are the upper-level and lower-level objective
functions respectively and gu : R

nu −→ R
p, g� : R

nu × R
n� −→ R

q define the
upper-level and lower-level constraints respectively.

Let us define the set of lower-level minimizers for a given xu by

x�(xu) = arg min{f�(xu, ·) | g�(xu, ·) ≤ 0}.
The feasible region of the bilevel problem, also called the induced region, is thus
defined by the set

{(xu, x�) ∈ R
nu × R

n� | gu(xu) ≤ 0, x� ∈ x�(xu)}.
The induced region is typically a nonconvex set even if all the functions defining
it are linear. In the presence of upper-level constraints of the form gu(xu) ≤ 0, the
induced region is a connected set. However, if we consider upper-level constraints
involving the lower-level variables, of the form gu(xu, x�) ≤ 0, then the induced
region could become a disconnected set.

It is possible to derive optimality conditions for the bilevel problem in the
case where x�(xu) is a singleton and in the case where it is not. Also, it is possible
to guarantee, under appropriate conditions, that the set x�(xu) is a singleton.
We refer the reader to the books on bilevel optimization by Bard (Ref. 19),
Dempe (Ref. 10), Shimizu, Ishizuka, and Bard (Ref. 20), and Migdalas, Pardalos,
and Värbrand (Ref. 21). Moreover, if the lower-level problem is convex and
continuously differentiable in the lower-level variables, then it admits a necessary
and sufficient representation in terms of its first-order necessary conditions (under
the presence of a constraint qualification). The resulting problem is a one-level
optimization problem.

4. Multicriteria Approach to Bilevel Optimization

Now, let us consider a bilevel problem with no upper-level or lower-level
constraints:

min
xu∈R

nu ,x�∈R
n�

fu(xu, x�), (6a)

s.t. x� ∈ arg min f�(xu, ·), (6b)

specified by two functions fu, f� : R
nu × R

n� −→ R. Our goal is to define a
(nonreflexive) order ≺ that captures exactly the optimality properties of the bilevel
problem and then proceed by looking at what set might induce this order. We want
to define an order ≺ in such a way that all the solutions to the bilevel problem (6)
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are nondominated elements of R
nu × R

n� with respect to ≺. Of course, it would
be desirable if all nondominated elements of ≺ are solutions to (6).

For x = (xu, x�) ∈ R
nu × R

n� , we have the following chain of equivalences:

x solves (6)

⇐⇒ x feasible and

 ∃ ∈ R
nu × R

n� : y feasible and fu(y) < fu(x)

⇐⇒ ∃x̄� ∈ R
n� : f�(xu, x̄�) < f�(x) and

 ∃y = (yu, y�) ∈ R
nu × R

n� : y� ∈ arg min f�(yu, ·) and fu(y) < fu(x).

Therefore,

x does not solve (6)

⇐⇒ ∃x̄� ∈ R
n� : f�(xu, x̄�) < f�(x)

or

∃y = (yu, y�) ∈ R
nu × R

n� : y� ∈ arg min f�(yu, ·) and fu(y) < fu(x).

Now, let

x = (xu, x�), y = (yu, y�) ∈ R
nu × R

n�

be given and define

x ≺ y :⇐⇒ [xu = yu and f�(x) < f�(y)]

or

[x� ∈ arg min f�(xu, ·) and fu(x) < fu(y)].

Then, we have the following result.

Theorem 4.1. The point z = (zu, z�) ∈ R
nu × R

n� solves the bilevel prob-
lem (6) if and only if z is nondominated with respect to ≺.

Proof. The proof follows immediately from the definition of ≺. In fact, if
z does not solve the bilevel problem (6), then it is either because it is not feasible
(there would be an w = (wu,w�) such that wu = zu and f�(w) < f�(z), yielding
w ≺ z) or it is because there is a w = (wu,w�) such that w� ∈ arg min f�(wu, ·)
and fu(w) < fu(z), also yielding w ≺ z. The other implication is proved
similarly. �

Unfortunately, ≺ is a difficult relation to work with. In fact, given C(x) defined
as in (3), it is not clear how to get C(x) − x = C(y) − y,∀x, y. Therefore, we
suggest the use of a weaker relation, ≺̃, defined under suitable differentiability
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assumptions by

x≺̃y :⇐⇒ [xu = yu and f�(x) < f�(y)]

or

[‖D2f�(xu, x�)‖ = 0 and fu(x) < fu(y)],

where D2f�(xu, x�) denotes the gradient of f� with respect to the second argument
x� and ‖ · ‖ is an arbitrary norm (for instance ‖ · ‖2). Of course, if f�(xu, ·) is
convex for all xu, we have that ≺ and ≺̃ are the same. However, we have always,
even in the nonconvex case, that

x ≺ y =⇒ x ≺̃ y. (7)

So, the set of nondominated points of ≺̃ is included in the set of nondominated
points of ≺.

Now, the question is how we can compute the set of nondominated points of
≺̃. For this purpose, we introduce the function

F : x = (xu, x�) �−→ (xu, fu(x), f�(x), ‖D2f�(x)‖).

The image space of this function is R
r = R

nu × R × R × R. In this space, we
then define the cone

K := {(x, f1, f2, d) ∈ R
r | (x = 0 and f2 > 0) or (f1 > 0 and d ≥ 0)}

and the induced order <K by (2). The following result provides us a scheme to
compute the nondominated points w.r.t. to ≺̃.

Theorem 4.2. If F (z) ∈ R
r is nondominated with respect to <K , for some

z = (zu, z�) ∈ R
nu × R

n� , then z is nondominated with respect to ≺̃.

Proof. Let us assume that there exists no F̄ ∈ R
r such that F̄ <K F (z),

i.e., such that F (z) − F̄ ∈ K . Consequently, there exists no F (w), with w =
(wu,w�) ∈ R

nu ∈ R
n� , such that F (z) − F (w) ∈ K; in other words, there exists

no w such that

[wu = zu and f�(w) < f�(z)]

or

[‖D2f�(wu,w�)‖ ≤ ‖D2f�(zu, z�)‖ and fu(w) < fu(z)].

In turn, this implies that

‖D2f�(zu, z�)‖ = 0,

because otherwise there would be an w̄ such that w̄u = zu and f�(w̄) < f�(z),
contradicting what we have just stated above. Thus, thereexists no w = (wu,w�) ∈
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R
nu × R

n such that

[wu = zu and f�(w) < f�(z)]

or

[‖D2f�(wu,w�)‖ = 0 and fu(w) < fu(z)],

which proves that z is nondominated with respect to ≺̃. �

The following corollaries are simple consequences of Theorems 4.1, 4.2, and
the implication (7).

Corollary 4.1. If F (z) ∈ R
r is nondominated with respect to <K , for some

z = (zu, z�) ∈ R
nu × R

n� , then z is nondominated with respect to ≺.

Corollary 4.2. If F (z) ∈ R
r is nondominated with respect to <K , for some

z = (zu, z�) ∈ R
nu × R

n� , then z is an optimal solution of the bilevel problem
(6).

5. Practical Aspects and Extensions

Unfortunately, the cone K is not convex (but rather the union of two convex
cones) and due to conv(K) = R

r , we get K∗ = {0}. We are allowed to use a
cone L larger than K , i.e., K ⊂ L, but of course the identities conv(L) = R

r

and L∗ = {0} follow immediately. As a consequence, the standard scalarization
approach outlined in Section 2 cannot be used directly here.

5.1. Scalarization. An alternative strategy is to define the convex cones

K1 := {(x, f1, f2, d) ∈ R
r | x = 0 and f2 > 0},

K2 := {(x, f1, f2, d) ∈ R
r | f1 > 0 and d ≥ 0}.

Then,

K = K1 ∪ K2.

Now let si be a Ki-monotone function, i = 1, 2 (easy to construct, since the cones
Ki are convex), and define

s(x) := min{s1(x), s2(x)}.
This function s is K-monotone and continuous, and the corresponding optimiza-
tion problem (4) is equivalent to solving two optimization problems, one with the
objective function s1 ◦ F and one with the objective function s2 ◦ F .
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Let us illustrate this cone decoupling with the following example:

min
xu∈R,x�∈R

x�

s.t. x� ∈ arg min
(
x� − x2

u

)2
/2.

The function F (xu, x�) is defined as

F : x = (xu, x�) �−→ (
xu, x�,

(
x� − x2

u

)2
/2,

(
x� − x2

u

)2)

and thus

s1(F (xu, x�)) = c1xu + c3
(
x� − x2

u

)2
/2,

s2(F (xu, x�)) = c2x� + c4
(
x� − x2

u

)2
.

Here, we used ‖ · ‖2
2 instead of ‖ · ‖2. Also, we have

K1 = {0} × R × R++ × R, K2 = R × R++ × R × R+.

The constants c1, c2, c3, c4 satisfy

(c1, 0, c3, 0) ∈ K∗
1 = R × {0} × R+ × {0},

(0, c2, 0, c4) ∈ K∗
2 = {0} × R+ × {0} × R+.

We have also

M = F (R, R) = R × R × R+ × R+.

This example shows that this cone-decoupling strategy together with linear
scalarizations might not be appropriate. In fact, by choosing c1 = 0 and c3 ∈ R

arbitrary, we see immediately that the function s1(F (xu, x�)) is unbounded be-
low. In this case, the arg min operator in the definition of P (M,K1) in Theorem
2.3 returns the empty set. When c1 = 0, arg min s1(F (xu, x�)) coincides with the
induced region {(xu, x�(xu))|xu ∈ R} of the bilevel problem. A similar situation
happens when minimizing s2(F (xu, x�)): if c2 > 0, then arg min s2(F (xu, x�)) = ∅;
otherwise, arg min s2(F (xu, x�)) is the same as {(xu, x�(xu))|xu ∈ R}. With these
parameter values, the minimization of min{s1(x), s2(x)} yields points in the in-
duced region, but is not able to identify the optimal solution (0, 0) of the bilevel
problem.

However, we have mentioned in the end of Section 2 that quadratic
scalarizations can be used too to generate nondominated points w.r.t. to an order
relation defined by a closed convex cone. To construct a K1-monotone quadratic
function on M , Theorem 2.4, Part 1, tells us that we have to look for symmetric
positive-semidefinite matrices Q with QM ⊆ K∗

1 . For the sake of simplicity, let
us consider only diagonal matrices

Q = diag(q1, q2, q3, q4).
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Then, q1 ∈ R can be chosen arbitrarily; we have to choose q2 = 0 necessarily;
q3 ∈ R+ is arbitrary; q4 = 0 necessarily again. However, we need q1 ≥ 0 to get
positive semidefiniteness. Likewise, K2-monotone quadratic functions with diag-
onal matrices Q have to fulfill q1 = q2 = q3 = 0, while q4 ∈ R+ can be chosen
arbitrarily. The corresponding quadratic functions on M ⊂ R

4 can be written as

s1(x, f1, f2, d) := q1x
2 + q3f

2
2

and

s2(x, f1, f2, d) := q4d
2

respectively (with q1 ∈ R+, q3 ∈ R+, and q4 ∈ R+). In the end, we arrive at
scalarizations of the form

s1(F (xu, x�)) = q1x
2
u + q3

(
x� − x2

u

)4
/4,

s2(F (xu, x�)) = q4
(
x� − x2

u

)4
.

For q1, q3 ≥ 0, the first objective function is bounded below and the second objec-
tive function is bounded below for all feasible parameter values q4 ≥ 0. Moreover,
for q1, q3 > 0, the unique minimizer of min s1 ◦ F is the unique solution to the
original bilevel problem (despite the fact that Theorem 2.5, Part 1, is not applicable
here since q2 = q4 = 0 yields a nonpositive definite matrix Q). So, for this
instance problem, by choosing sensible parameter values, we were able to solve
the bilevel problem by solving parametrized one-level optimization problems.

In general, we would have to choose a finite set of parameters to get a
finite number of one-level optimization problems. A natural question is what
type of scalarization to use (linear, quadratic, or other) and how to choose the
set of parameters. These questions are hard to answer and seem to be highly
problem dependent. The parameters could be chosen a priori based on some
information about the problem or corrected a posteriori after analyzing information
gained during the solution of a first set of parametrized one-level optimization
problems.

5.2. Constrained Bilevel Case. We consider here briefly constrained bilevel
problems of the form given in (5). Let

x = (xu, x�), y = (yu, y�) ∈ R
nu × R

n�

be given and define

x ≺ y :⇐⇒ [xu = yu and f�(x) < f�(y)]

or[
x� ∈ arg min

g�(xu,·)≤0
f�(xu, ·) and fu(x) < fu(y)

]
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as well as

� := {x ∈ R
nu | gu(xu) ≤ 0} × R

n� .

Then,

z = (zu, z�) ∈ R
nu × R

n�

solves the bilevel problem (5) if and only if z is nondominated with respect to ≺
in �.

Using the same strategy as above, define

x≺̃y :⇐⇒ [xu = yu and f�(x) < f�(y)]

or

[‖projxu
(D2f�(xu, x�))‖ = 0 and fu(x) < fu(y)],

where projxu
(·) is the projection operator (see e.g. Ref. 22) onto the set of feasible

points of the lower-level problem,

{z ∈ R
n� | g�(xu, z) ≤ 0}.

Likewise, we consider now the function F defined by

F : x = (xu, x�) �−→ (xu, fu(x), f�(x), ‖projxu
(D2f�(x))‖)

and it is clear that the strategy outlined above for the unconstrained case would
also work for the constrained case.

5.3. Three-Level Case. Let us now consider three-level optimization prob-
lems of the form

min
x1∈R

n1 ,x2∈R
n2 ,x3∈R

n3
f1(x1, x2, x3)

s.t. (x2, x3) solve min
ξ2,ξ3

f2(x1, ξ2, ξ3),

s.t. ξ3 ∈ arg min f3(x1, ξ2, ·).
For x1 ∈ R

n1 fixed, the feasibility for the problem above is controlled by the bilevel
problem

min
ξ2,ξ3

f2(x1, ξ2, ξ3),

s.t. ξ3 ∈ arg min f3(x1, ξ2, ·).
Using the result from Section 4, we define the order ≺x1 on (Rn2 × R

n3 ) ×
(Rn2 × R

n3 ) for two points (x2, x3) and (y2, y3) by

(x2, x3) ≺x1 (y2, y3) :⇐⇒ [x2 = y2 and f3(x1, x2, x3) < f3(x1, y2, y3)]
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or

[x3 ∈ arg min f3(x1, x2, ·)
and f2(x1, x2, x3) < f2(x1, y2, y3)].

This parametrized order relation could then be used to define an order relation
for the original three-level problem. We give a couple of alternatives in the next
paragraph but none of which seems totally satisfactory. It is important to stress
the high complexity of hierarchical optimization problems and to convey the point
that the jump from two-level to three-level should not be regarded as a simple
increase in dimensionality.

One possibility would be to define the order relation as

x ≺ y :⇐⇒ [x1 = y1 and (x2, x3) ≺x1 (y2, y3)]

or [(x2, x3) is nondominated w.r.t. ≺x1 and f1(x) < f1(y)],

reflecting well the structure of the original problem, but leading to a relation that
is difficult to check, since it involves global information [(x2, x3) is nondominated
w.r.t. ≺x1 ]. Another possibility would be to define the order relation as

x ≺ y :⇐⇒ [x1 = y1 and (x2, x3) ≺x1 (y2, y3)]

or [(x2, x3) ≺y1 (y2, y3) and f1(x1, x2, x3) < f1(y1, y2, y3)].

Now, the problem is that we are checking optimality of (y1, y2, y3) against points
(x1, x2, x3) that are not necessarily feasible.

6. Concluding Remarks and Future Work

Bilevel optimization problems appear in a wide range of applications (Ref. 10,
19, 20) and in particular in engineering applications related with optimal design
(Ref. 23). Many of these latter problems are defined by black-box simulation codes
related with different engineering disciplines, where the derivatives frequently are
unavailable. The use of derivative-free methods in bilevel optimization was part
of the motivation for the theoretical investigations reported in this paper. Given
that there exist already several sophisticated algorithms and implementations for
derivative-free one-level optimization, a natural approach to derivative-free bilevel
optimization would be to reformulate the bilevel problem into a one-level opti-
mization problem, to allow the application of such derivative-free techniques.

Such approach is also supported from the fact that one encounters frequently
one-level optimization problems where the derivatives are unavailable and that
resulted from the linear combination of functions appearing in an multicriteria
optimization problem. Our approach has the same flavor. However, since there is
a hierarchical structure involved, it would be wrong to address the derivative-free
bilevel optimization problem as a derivative-free bicriteria optimization problem.
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Therefore, we have investigated how to repose bilevel optimization problems as
appropriate multicriteria (more precisely, four-criteria) optimization problems and
how to choose the corresponding appropriate scalarizations.

Certainly, we would like to improve our current knowledge in many direc-
tions. As discussed in Section 5.1, the choice of the type of scalarization and of
the scalarization parameters is quite important in practice. We hope to learn more
about this opening issue by looking at particular classes of bilevel optimization
problems.
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