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Multicriteria Forest Decisionmaking under Risk with
Goal-Programming Markov Decision Process

Models

Joseph Buongiorno and Mo Zhou

As multiple risks pervade forest decisionmaking, Markov decision process (MDP) models offer an analytically tractable approach to seek optimal policies that are
straightforward for implementation in practice. By incorporating goal programming (GP), this study extended MDP models with both average and discounted criteria
to deal with multiple, often noncommensurable and conflicting, objectives. This method (GPMDP) was applied to the management of mixed loblolly pine-hardwood forests
in the southern United States. The decision criteria were the values of harvests, carhon sequestered by trees, diversity of tree species and sizes, and fraction of old-growth
stands in the forested landscape. For the case study, the results showed that given equal weights for normalized criteria, with both average and discounted GPMDPs,
minimum deviations from the highest diversity of tree size and species were achieved af the cost of, on average, one-third of the decline of other criteria from their

maximum levels.
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orest management in practice rarely has a single objective,
F especially in nonindustrial forests. It usually involves multiple

criteria: economic, ecological, and recreational, often non-
commensurable and conflicting. Furthermore, biological, climatic,
and economic conditions change constantly, and catastrophes may
strike (Martell et al. 1998, Amacher and Brazee 2014). Conse-
quently, forest decisionmaking under risk, i.e., when outcomes are
uncertain but their probabilities can be assessed, is an active research
area (Yin and Newman 1996, Lohmander 2000, Alvarez 2004,
Gong et al. 2005, Amacher and Brazee 2014).

Decisionmaking problems under risk are harder to solve than
their deterministic counterparts, and the difficulty increases with the
number of stochastic variables. Accordingly, much of the literature
has concentrated on single stochastic variables. One line of work
deals with natural hazards only and focuses on risk assessment (for a
review, see Hanewinkel et al. 2011). For risky timber prices, har-
vesting rules have been developed with the assumption that they
follow geometric Brownian motions (Yin and Newman 1996) or
random draw processes (Haight 1991) or that they display large
jumps (Saphores et al. 2002) or regime switches (Chen 2010). An-

other approach has used scenarios for various price levels and based

decisions on their respective probabilities (Pukkala and Kangas
1996, Alonso-Ayuso et al. 2011, Veliz et al. 2015). Real options
models have also been used to deal with price volatility (Thorsen
1999).

Among the few studies that deal with multiple stochastic vari-
ables, Insley and Lei (2007) apply a real options approach, whereas
Pukkala and Miina (1997) use scenario optimization and Chang
(1998) adopts forward recursive programming. Markov decision
processes (MDPs) have standard solutions, including linear pro-
gramming, capable of dealing with large problems efficiently. They
give simple solutions of classic infinite horizon problems that are
difficult with other methods (Buongiorno 2001, Insley and Rollins
2005). MDPs are also readily combined with simulation (Bertsekas
and Tsitsiklis 1995, p. 94). Simulators of complex systems “bring
the real world into the laboratory,” where they can be optimized in
a simpler form with MDP methods (Holling et al. 1986, p.
453—473). Given numerous stochastic factors, analytical solutions
do not exist for most methods; thus, MDPs and heuristic ap-
proaches such as scenario optimization (Dembo 1991) may be the
only computationally tractable ones. Although MDPs are subject to
the curse of dimensionality, compactly representing large problems

Manuscript received August 29, 2016; accepted February 3, 2017; published online March 2, 2017.

Affiliations: Joseph Buongiorno (jbuongio@uwisc.edu), University of Wisconsin-Madison. Mo Zhou (mo.zhou@mail.wvu.edn), School of Natural Resources, West

Virginia University, Morgantown, WV.

Acknowledgments:  7his study was partly supported by the Davis College of Agriculture, Natural Resources and Design, West Virginia University, under USDA
MecIntire-Stennis Funds WVA00105. It was also supported in part by a joint venture agreement between the University of Wisconsin—Madison, and the USDA
Forest Service, Southern Forest Research Station, with Project Leader Jeff Prestemon.

A74  Forest Science * October 2017



as factored MDPs and approximately solving them have been active
research areas (Guestrin et al. 2003).

MDP models have proved effective in dealing with multiple
sources of risk in forest growth, timber prices, and weather (Lem-
bersky and Johnson 1975, Lin and Buongiorno 1999a, 1999b, Rol-
lin et al. 2005, Buongiorno and Zhou 2015). There has been con-
troversy on whether forest dynamics can be represented with
Markov chains (Roberts and Hruska 1986, Johnson et al. 1991,
Acevedo etal. 1995, Logofet and Lesnaya 2000). However, the issue
has less to do with the appropriateness of the Markov model, which
simply says that future can be predicted (with indeterminacy) with
current information, than with the definition of the system state in
itself. In the case of a stand of trees, the description of the current
state must be such that it contains all the information needed to
correctly predict the probability of moving to different states (Buon-
giorno and Gilless 2003). Similarly, Markov models for prices are
very general, embracing random walk, rational expectations, autore-
gressive, and “any stochastic model in which the price is conditional
on previous prices” (Taylor 1984, p. 351). Recent work has ex-
tended the models to include stochastic interest rates (Buongiorno
and Zhou 2011, Zhou and Buongiorno 2011) and the regime
switch of climate policies (Zhou 2015).

Despite the existence of multiple solution methods for MDPs
including dynamic programming, policy iteration, and reinforce-
ment learning, the majority of previous forestry applications use the
linear programming (LP) formulation. One particular advantage of
the LP formulation is the ease of dealing with multiple objectives, by
setting a criterion as the objective function and the others as con-
straints, e.g., maximizing economic returns while maintaining spe-
cies richness, or, symmetrically, one may seck the highest species
richness while keeping discounted returns above a minimum thresh-
old. Solving these constrained problems is also useful for finding the
trade-off between ecological and economic objectives.

Lin and Buongiorno (1998, 1999a, 1999b) maximize dis-
counted returns with ecological constraints by limiting the decision
space to the decisions that do not result immediately in an undesir-
able state. This may give a satisfactory approximate solution, but it
does not guarantee that the state attained, over a long sequence of
decisions, will be in a desirable domain. Solving for a maximum
expected criterion subject to a discounted constraint is even more
difficult, and there is no obvious similar approximation. Rollin et al.
(2005) optimize discounted objectives subject to undiscounted con-
straints, or the reverse, by exploiting the relation between the deci-
sion variables of undiscounted and discounted MDP models. How-
ever, the relation consists of many nonlinear constraints, making the
model hard to solve.

More simply, Buongiorno and Zhou (2015) suggest that multi-
criteria problems can be approached by discounting or not discount-
ing the criteria in both the objective function and in the constraints,
thus maintaining the classic LP formulation. This is in line with the
argument of Howarth (2009) that nonmarket values provided by
public goods should be discounted at a risk-free interest rate, just
like financial returns. Zhou et al. (2012) investigate the conse-
quences of discounting ecological criteria in forestry. We continue
to take advantage of the simplicity of LP while extending the for-
mulation to a goal-programming (GP) MDP (GPMDP) addressing
numerous criteria simultaneously. GP, initiated by Charnes et al.
(1955) and first formally introduced by Charnes and Cooper
(1961), is a prevailing technique in the family of multiple criteria

decisionmaking (MCDM) (for a comprehensive introduction, see
Jones and Tamiz 2010).

As noted by Romero et al. (1998), “GP has the underlying satis-
ficing philosophy which is intuitively more appealing to many de-
cision makers.” It also has a general structure so that other MCDM
models such as compromise programming (CP) and the reference
point method can be restated as GPs. Here we show how GP can be
combined with MDP to deal with multiobjective decisionmaking
under risk in forestry.

The following section presents the classic LP formulations of
discounted and undiscounted MDPs followed by their extensions as
weighted GPMDDPs. These methods are then applied to the man-
agement of all-aged mixed loblolly pine (Pinus taeda L.) and hard-
wood forests in the southern United States. Three sources of risk
were considered: forest growth, stumpage prices, and catastrophic
storms. The results gave optimum management rules that simulta-
neously accounted for economic and ecological objectives.

Materials and Methods

The methods extended classic MDP models, consisting of state
variables, transition probabilities, decision sets, and expected re-
wards (Winston and Goldberg 2004). Here, the state variables
joined the forest stand state and the market state (price level). Tran-
sition probabilities referred to movements between stand-market
states. A decision consisted of changing a stand state with a harvest.
The decision rewards were biological (expected tree species and size
diversity, basal area, CO, equivalent [CO,e] stored by trees, and
fraction of area in old growth) and financial (net present value and
volume of harvests), over an infinite horizon.

Undiscounted GPMDP

Expected average criteria, such as average annual harvest per unit
area, are easy to interpret and compare with current conditions.
Moreover, by not discounting, they conform to the philosophy by
which “we should treat future generations as we would ourselves, so
that the pure rate of pure time preference should be zero” (Arrow
1999, p. 13). However, a zero interest rate implies not only the
absence of time preference but also zero productivity of investments
(Buongiorno and Gilless 2003, p. 393). The classic LP formulation
of this undiscounted MDP model is (Manne 1960)

N
max H = E E Hsdzsd
Zsd

s=1d€EDy

Management and Policy Implications

Forest management in practice rarely has a single objective. It usually
involves multiple criteria, economic, ecological, and recreational, often
noncommensurable and conflicting. Furthermore, biological, climatic, and
economic conditions change constantly and catastrophes may strike, which
introduce risk in decisionmaking. The method proposed in this article deals
with diverse objectives of forest management while taking multiple sources
of risk into account. It combines Markov decision process models and goal
programming info a general structure covering several classes of mulfiple
criteria decisionmaking models. The resulting decision tables provide
straightforward guidelines for practical implementation by public and private
nonindustrial forest owners with diverse and often conflicting goals.
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subject to:

s D,
EZs'd_EzzsdP(S'f,d)=0 ss=1,...,8 (1)
deD, s=1d=1

Ezzuﬁl

s=1d€Dy
24=0,5=1,...,8d € D,

where H,,is the instantaneous return of the criterion of interest with
decision 4 in state 5. The decision variable, z,,, is the probability of
state s and decision 4. There are S possible states, and a decision is a
harvest that changes the stand instantaneously to another state. D; is
the set of possible decisions in state s. p(s’|s, &) is the probability of
ending in state 5" in a year, when in state s and making decision 4.
After solving 1, the best policy is given by

X Zsd (2)
sd — E 244
dEDy

where X, = 0 or 1; i.e., the best policy is deterministic, and for each
state there is only one best decision. The best policy is also indepen-
dent of the initial stand state, but in contrast with the discounted
problem introduced in the following section, so is the value of the
objective function, the expected yearly reward, H.

The GPMDP extension of Model 1 introduced goal variables,
i.e., positive (D;) and negative (D;") deviations from the desired
level of each criterion, 7. With the objective of minimizing the total
weighted deviation from all goals, the GPMDP became

N
min X (a; D; + o5 D))

zaD;, D=1

subject to:

E Zs'd E E stP(S'

dEDy s=1dED;

55d)=0 s'=1,...,8

S
> D za=1 (3)

s=1dE€D;

s
2 E H;gzqa + D; — Di+ =C7

s=1dED;

i=1i,...

zu=0s=1,...,8d € D,
D;,Df=0i=1,...,N

where with N criteria, (o ) and («;") are the weights of negative and
positive deviations from the target value of criterion 7, respectively.
Each weight can be viewed as the product of a normalizing constant
that reconciled the incommensurability of objectives and of a pref-
erential indicator to reflect the decisionmaker’s preference for a neg-
ative or positive deviation. The first two constraints were the same as
in Model 1. In the third set of constraints, /; _, was the value of
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criterion 7 when decision 4 was made in state sand C; was the target
level of criterion 7.

An alternative objective was the Chebyshev variant (Flavell
1976), which minimized the largest unwanted weighted deviation
from the target criteria:

min A
\zsa.D; D]

subject to:

5, d) =0 ss=1,...,8

z Zg'd — Z z st])(S’

dEDy s=1dED;y

S
DDz =1 (4)

s=1deDy

N
Z 2 Hi,sdzxd + D: - D,Jr = Ci*

i=i4, ..., N
s=1dE€Dy
2, =0 s=1,...,8 dE D,
D7, D=0 i=1,..., N

a; D7 ,a; D =\ i=1,..., N

Like Model 1, both Models 3 and 4 were linear and the policy that
gave the best compromise decisions was obtained with Equation 2.

Discounted GPMDP

Financial rewards, the income generated by successive harvests,
are typically discounted with a specific interest rate, leading to the
expected net present value (NPV) criterion. It has also been argued
that ecological assets and damages should be discounted as well,
although a consensus on the discount rate is lacking (Gollier 2010).
We used the LP approach (d’Epenoux 1963) to find the policies that
maximized the expected NPV of each criterion over an infinite
horizon, given a particular initial stand-market state:

N
max NPV = E E Hsd_ysd

ysa:D; DY s=1dEDy
subject to: (5)
S S S
Js'd m )/sd]?(f s, d) = m,
dED, s=1dED,
s'=1,...,8

Jsa = 0, s=1,...,8 d€E D,

where the variable y,, is the infinite sum of the discounted probabil-
ity of state s and decision 4. Parameter 7 is the yearly discount rate,
and 7, is the initial probability of state s". Given the solution of
Problem 5, the best management policy is

_ysd
6
2 JVsd ( )

dED;

X\' d =



Table 1. Basal area threshold defining low and high basal area level by tree category, and average basal area at each level.

Pines Hardwoods
Small Large Small Large
Basal area Pulpwood sawtimber sawtimber Pulpwood sawtimber sawtimber
........................................ M2 ha ™ l) .
Threshold 2.5 4.3 3.6 2.9 1.2 1.7
Average
Low (L) 1.1 2.4 1.7 1.5 0.4 0.5
High (H) 4.9 7.2 6.3 4.8 2.5 2.7

where X, is the probability of making decision 4 in stand-market
state 5. Similar to the average criterion MDP, X, equals 0 or 1, so a
unique decision is optimal for each stand-market state. Further-
more, the decision is independent of the initial distribution of states,
{m,} (Hillier and Lieberman, 2005). Nevertheless, the maximum
expected NPV depends very much on the initial state because po-
tential rewards depend on the state and with discounting, the initial
state matters the most.

After introducing goal variables, the discounted GPMDP

became

N
min 2, (a; D] + o' D))
zaD; D] i=1
subject to:
18
> Vsta Q +7r)2 Eysdp(s' 5, d) = my
deDy s=1d€ED;
ss=1,...,8
s
X2 HyputDi =Df=Cr i=i... N (7)
s=1dED;
Yua=0s=1,...,8 d€E D,
D;,D;=0 i=1,...,N
Likewise, the GPMDP with a Chebyshev objective became
min A
NzsasD; D}
subject to:
P8
E _)’s’d - (1 + r)z ZJ’MP(S, Sy d) = Ty
deD, s=1dED,
s'=1, )
s
2 2 Hypu+ D =D =CF i=i...,N (8)
s=1dED;
Ysa =0 s=1,...,85 d€ D,
D7, D=0 i=1,..., N
a;D;,a;Df =\Ni=1,...,N

i

Table 2. Range of the market index, I, ($ t=!, 2010 = 100)
defining the market states and mean price level in each market
state.

Market state

Parameter Low Medium High
.............. S oo
Range 1,<26.68 26.68 <1,=38.77 P/ >3877
Mean pine price 28.60 39.49 54.03
Mean hardwood price 16.47 20.27 25.70

In both cases the best policy was obtained with Equation 6.

Markov Chain Model of Forest Growth

The forests considered for the case study were uneven-aged
mixed loblolly pines and hardwoods in the southern United States
that grow naturally, except for the periodic harvest of some trees.
Regeneration of new trees occurs by seeding from the old trees, and
there is no fertilization. We used the Markov chain model of forest
stand growth developed by Zhou and Buongiorno (2006) in this
application.

The forest stand states (Table 1) were defined by the basal area of
trees in six classes of tree size and species (Schulte et al. 1998). Each
state was written as a string of six letters such as (LHL,HHL), where
the first three letters stand for the basal area (Z for low, H for high)
of pulpwood, small sawtimber, and large sawtimber of pines, respec-
tively, and the last three for hardwoods. Six tree classes with two
levels of basal area in each class made up 2° = 64 possible stand
states.

To each stand state corresponded an expected stand basal area,
CO,e stored in trees, a diversity of tree size and tree species, mea-
sured with Shannon’s entropy index (Pielou 1975), and an expected
timber volume by tree size and species group. The yearly harvest
changed the stand state instantaneously by reducing the basal area in
one or more tree groups. It was further assumed conservatively that
a hurricane reduced the stand basal area in the six tree groups to its
lowest level (state 1) regardless of the current state. Thus, the tran-
sition probability from state s to state 1 was modified to p(1]s) X
(1 — 0.975) + 0.025, whereas the other probabilities became
p(s'| 5) X 0.975 fors" # 1.

Markov Models of Stumpage Market

Because the main products in the forests under consideration are
pine and hardwood sawtimber, we constructed an index based on
their stumpage prices to represent the overall price level. The two
quarterly price series ($ t ') were from 1977 to 2014, averaged over
the 21 regions in the US South, reported by TimberMart-South
(Frank W. Norris Foundation 1977-2014). The quarterly Producer
Price Index (PPI) (2010 = 100) of the US Bureau of Labor Statistics
(2016) was used to adjust the two series for inflation. The market
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Table 3. Probabilities of annual change in the market index (I).  index was the average of real pine and hardwood sawtimber prices,
weighted by their relative volume in the sample plots used to cali-

s brate the forest growth model.

1, Low Medium High Three market states, low, medium, and high, were defined by
Low 0.71 0.25 0.04 setting the threshold between low and medium and that between
Medium 0.27 0.52 021 medium and high at the 33.3% and 66.7% percentiles of the calcu-
High 0.04 0.21 0.75

lated quarterly market index from 1977 to 2014, respectively. Table
2 shows the average sawtimber prices of pine and hardwood in each
state over that period. The relative frequency of quarterly transitions
between market states, Py, was then obtained and from it the annual
transition probabilities, Pg» (Table 3). In each market state, the prices

Table 4. Effects of policies that minimized the total or the maximum weighted deviation from undiscounted criteria.

Minimizing total weighted deviation® Minimizing maximum weighted deviation®
Criterion Unit Target' Achieved value Relative deviation (%) Achieved value Relative deviation (%)
Annual income $ha”! 326.0 210.9 35.3 217.8 33.2
Species diversity Shannon index 1.0 0.9 1.6 0.9 2.4
Size diversity Shannon index 2.0 1.9 3.2 1.9 3.9
Basal area m?ha™! 21.7 17.7 18.5 16.6 23.6
CO,e tha™! 218.6 158.3 27.6 146.1 33.2
Old growth Fraction 0.3 0.2 29.1 0.2 33.2
Harvests m’ ha™'yr ! 7.5 4.3 42.6 5.0 33.2

! Maximum unconstrained, undiscounted value.
2 Deviation is from the undiscounted maximum; weight is the inverse of undiscounted maximum.

Table 5. Decisions that minimized the total weighted deviation from undiscounted criteria.

Stand state Decision” for market state Stand state Decision for market state
No Basal area’ Low Medium High No. Basal area Low Medium High
1 LLLLLL — — — 33 HLL,LLL 1 1 1
2 LLLLLH — — — 34 HLLLLH 2 2 2
3 LLL,LHL — — — 35 HLLLHL — — —
4 LLLLHH — — — 36 HLLLHH —_ —_ —_
5 LLLHLL — — — 37 HLLHLL — — 5
6 LLLHLH —_ — —_ 38 HLLHLH —_ — —
7 LLLHHL — — — 39 HLL,HHL 7 7 7
8 LLLLHHH — — — 40 HLL,HHH 36 36 36
9 LLH,LLL 1 1 1 41 HLH,LLL 41 1 1
10 LLH,LLH 2 2 2 42 HLH,LLH — 2 2
11 LLH,LHL — — 3 43 HLH,LHL — 35 35
12 LLH,LHH — — — 44 HLH,LHH 12 12 12
13 LLH,HLL 5 5 5 45 HLH,HLL = 37 5
14 LLH,HLH — 6 6 46 HLHHLH — — —
15 LLH,HHL — — 7 47 HLH,HHL — — 7
16 LLH,HHH — — — 48 HLH HHH — — —
17 LHL,LLL 1 1 1 49 HHL,LLL — — 1
18 LHL,LLH —_ — 2 50 HHL,LLH 18 18 2
19 LHL,LHL — 3 3 51 HHL,LHL — — 35
20 LHL,LHH — — 4 52 HHL,LHH = — 36
21 LHL,HLL — — 5 53 HHLHLL — — 5
22 LHL,HLH 6 6 6 54 HHLHLH — — —
23 LHL,HHL — 7 7 55 HHL,HHL — — —
24 LHL,HHH — — — 56 HHL,HHH — — —
25 LHH,LLL X X X 57 HHH,LLL 49 49 1
26 LHH,LLH — 18 2 58 HHH,LLH 26 18 2
27 LHH,LHL — 11 3 59 HHH,LHL 51 51 35
28 LHH,LHH 12 12 12 60 HHH,LHH 12 12 12
29 LHH,HLL 21 21 5 61 HHH,HLL 53 53 5
30 LHH,HLH —_ — 6 62 HHH,HLH 46 46 54
31 LHH HLH — — 7 63 HHH,HHL — — 55
32 LHH,HHH — 16 16 64 HHH,HHH 48 48 48
Harvests 21 30 44
Total 95

! L, low; H, high; left side before comma, softwoods; right side after comma, hardwoods.
% Stand state no. after decision. — denotes doing nothing; x denotes undefined decision as the probability of this stand state was 0.
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Table 6. Decisions that minimized the maximum weighted deviation from undiscounted criteria.

Stand state Decision” for market state

Stand state Decision for market state

No. Basal area’ Low Medium High No. Basal area Low Medium High
1 LLLLLL — — — 33 HLL,LLL 1 1 1
2 LLLLLH — — — 34 HLL,LLH 2 2 2
3 LLL,LHL — — — 35 HLL,LHL — — —
4 LLLLHH — — — 36 HLL,LHH — — —
5 LLLHLL — — — 37 HLLHLL 5 5 5
6 LLLHLH — — — 38 HLL,HLH 6 6 6
7 LLL,HHL 3 3 3 39 HLL,HHL 35 35 35
8 LLLLHHH — — — 40 HLL,HHH 36 36 36
9 LLHLLL 1 1 1 41 HLH,LLL X X X
10 LLH,LLH 2 2 2 42 HLH,LLH X X X
11 LLH,LHL 3 3 3 43 HLH,LHL — 35 35
12 LLH,LHH — — — 44 HLH,LHH 12 12 36
13 LLHHLL 5 5 5 45 HLH HLL X X X
14 LLH,HLH 6 6 6 46 HLH HLH X X X
15 LLH,HHL — 3 3 47 HLH,HHL — — 35
16 LLH,HHH — — — 48 HLH HHH — — —
17 LHL,LLL 1 1 1 49 HHL,LLL X X X
18 LHL,LLH 2 2 2 50 HHL,LLH X X X
19 LHL,LHL 3 3 51 HHL,LHL — — 35
20 LHL,LHH —_ 4 4 52 HHL,LHH — — 36
21 LHL,HLL 5 5 5 53 HHL,HLL b X x
22 LHL,HLH 6 6 6 54 HHL,HLH X X X
23 LHL,HHL 19 3 3 55 HHL,HHL — — —
24 LHL,HHH — — — 56 HHL,HHH — — 36
25 LHH,LLL X X X 57 HHH,LLL X X X
26 LHH,LLH X X X 58 HHH,LLH X X X
27 LHH,LHL — 3 3 59 HHH,LHL 51 51 35
28 LHH,LHH 12 12 12 60 HHH,LHH 12 12 12
29 LHH,HLL X X X 61 HHH,HLL X X X
30 LHH HLH X X X 62 HHH,HLH X X X
31 LHH,HLH — — 3 63 HHH,HHL — 55 35
32 LHH HHH 16 16 16 64 HHH,HHH 48 48 48
Harvests 23 29 34
Total 86

UL, low; H, high; left side before comma, softwoods; right side after comma, hardwoods.
% Stand state no. after decision. — denotes doing nothing; x denotes undefined decision as the probability of this stand state was 0.

of small sawtimber of pine and hardwood were assumed to be half of
those of large sawtimber prices (Zhou 2005), whereas pulpwood
prices were set constant at 10.2 $ ¢ ' for pines and 6.1 $ ¢~ ' for
hardwoods (2010 = 100). All of the stumpage prices were for fresh
weight.

Integrating Forest and Market Markov Chains

With 64 stand states and three price levels, there were 64 X 3 =
192 stand-market states. The transition probability between each
pair of stand-market states was the product of the transition proba-
bilities between the stand states and between the market states. The
expected immediate financial reward depended on the volume of
harvest due to a decision and the market state. Other criteria, inde-
pendent of the market state, included harvest volume, tree size, and
species diversity measured with Shannon’s index, basal area, CO,e
stored in trees, and fraction of the landscape in old-growth state
(Zhou and Buongiorno 2006).

Results
Multiple-Objective Optimization with Undiscounted Criteria

The maximum unconstrained value obtained with Model 1 was
set as the target level for each criterion. Thus, the positive devia-
tional variables (D) were unnecessary, leading to one-sided
GPMDP models with only the negative deviational variables (D;")
penalized. The normalizing constant in Models 3 and 4 was the

inverse of its maximum unconstrained value, whereas the preferen-
tial indicator was 1. This gave the same importance to a 1% devia-
tion from each goal target.

When the total weighted deviations from all criteria were max-
imized, as shown in Table 4, the smallest deviation from the
maximum value was for tree species diversity, only 1.6% less,
followed by tree size diversity, 3.2% less than its maximum. The
largest deviation from the target value was for the harvest volume
(43% less than the maximum achievable value) and annual in-
come (35% less).

With the Chebyshev (minmax) criterion, tree species and size
diversities were also the closest to their targets, both less than 4%
smaller than their maximum achievable values. The same largest
difference (33.2%) occurred for annual income, stored carbon, old-
growth fraction, and volume of harvests. In sum, the Chebyshev
objective function led to better financial performance and more
harvest, whereas the total weighted objective function achieved
higher ecological benefits.

Tables 5 and 6 show the optimal policies derived with undis-
counted criteria. Minimizing the total weighted deviation called for
harvest in 95 of the 192 possible stand-market states (21 at low price
level, 30 at medium, and 44 at high), and in states wanting a harvest,
14 were independent of the price level.(Table 5). With the Cheby-

shev criterion, 86 stand-market states suggested a harvest (23 at low

Forest Science ® October 2017 479



Table 7.  Effects of policies that minimized the total or the maximum weighted deviation from discounted criteria.

Minimizing total weighted deviation*

Minimizing maximum weighted deviation®

Criterion Unit Target' Achieved value Relative deviation (%) Achieved value Relative deviation (%)
Net present value $ha™! 13,552.7 9,594.7 29.2 9,497 .4 29.9
Species diversity Shannon index 31.9 31.1 2.6 31.1 2.6
Size diversity Shannon index 65.2 62.9 3.5 62.6 4.1
Basal area m?ha™! 718.4 566.5 21.2 535.9 25.4
CO,e tha™! 7,242.1 4,984.2 31.18 4,785.5 33.9
Old growth Fraction 7.2 52 27.9 4.7 33.9
Harvests m®ha™'yr™! 350.6 206.2 41.2 231.7 33.9

! Maximum unconstrained, discounted value.

2 Deviation is from the discounted maximum; weight is the inverse of discounted maximum.

Table 8. Decisions that minimized the total weighted deviation from discounted criteria.

Stand state Decision? for market state:

Stand state Decision for market state:

No. Basal area’ Low Medium High No. Basal area Low Medium High
1 LLLLLL — — — 33 HLLLLL 1 1 1
2 LLLLLH — — — 34 HLL,LLH 2 2 2
3 LLL,LHL — — — 35 HLL,LHL — — —
4 LLLLHH — — — 36 HLL,LHH — — —
5 LLLHLL — — — 37 HLL,HLL 5 5 5
6 LLLHLH — — — 38 HLLHLH — — 6
7 LLL,HHL — — — 39 HLL,HHL 35 35 35
8 LLL,HHH — — — 40 HLL.HHH 36 36 36
9 LLH,LLL 1 1 1 41 HLH,LLL — 1 1
10 LLH,LLH 2 2 2 42 HLH,LLH 2 2 2
11 LLH,LHL — — 3 43 HLH,LHL 11 11 35
12 LLH,LHH —_ — —_ 44 HLH,LHH 12 12 12
13 LLH,HLL 5 5 5 45 HLH,HLL — 5 5
14 LLH,HLH — — 6 46 HLH,HLH = — —
15 LLH,HHL — — 7 47 HLH,HHL — — —
16 LLH,HHH — — — 48 HLH HHH — — —
17 LHL,LLL 1 1 1 49 HHL,LLL — — 1
18 LHL,LLH — 2 2 50 HHL,LLH 18 2 2
19 LHL,LHL — 3 3 51 HHL,LHL — 35 35
20 LHL,LHH — — — 52 HHL,LHH — — —
21 LHLHLL — 5 5 53 HHL,HLL — — 5
22 LHL,HLH 6 6 6 54 HHL,HLH —_ —_ —_
23 LHL,HHL — 7 7 55 HHL,HHL — — —
24 LHL,HHH — — — 56 HHL,HHH —_ — —
25 LHH,LLL 1 1 1 57 HHH,LLL 49 49 1
26 LHH,LLH — 2 2 58 HHH,LLH 26 2 2
27 LHH,LHL — 11 3 59 HHH,LHL 27 11 35
28 LHH,LHH 12 12 12 60 HHH,LHH 12 12 12
29 LHH,HLL 21 5 5 61 HHH,HLL 53 53 5
30 LHH HLH — — 6 62 HHH,HLH 46 46 46
31 LHH,HLH — — 7 63 HHH,HHL — — 55
32 LHH HHH — 16 16 64 HHH,HHH 48 48 48
Harvests 24 34 43
Total 101

VL, low; H, high; left side before comma, softwoods; right side after comma, hardwoods.

2 Stand state no. after decision.— denotes doing nothing.

price level, 29 at medium, and 34 at high), and in states requiring a
harvest, 20 were price independent. Maximizing the total weighted
deviation led to zero steady-state probability for one single-stand
state (LHH,LLL), suggesting that it would be absent from the forest
landscape under this policy, in the long run. In contrast, with the
Chebyshev formulation, 16 stand states were absent in the steady
state (Table 6). Thus, the long-term landscape generated by the
policy maximizing total weighted deviations was more diverse than
the policy obtained with the other variant.

Multiple-Objective Optimization with Discounted Criteria
The maximal value of each discounted criterion was obtained by
solving Model 5 with a discount rate of 3.08% per year, roughly the
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upper bound of the social rate for intra- and intergenerational
discounting used by the US Environmental Protection Agency
(2010). The initial frequency of stand states (7r,,) was that ob-
served in the study region (Zhou and Buongiorno 2006). The
initial market states (low, medium, or high) were given equal
probabilities. The results of Model 5 were used as the targets in
the discounted GPMDPs 7 and 8. The weights were the inverse
of each target, thus giving equal importance to a 1% deviation
from each goal target.

As shown in Table 7, minimizing the total weighted deviation
from the discounted criteria, or the maximum weighted deviation,
gave similar results for tree species and tree size diversity, at most 4%



Table 9. Decisions that minimized the maximum weighted deviation from discounted criteria.

Stand state Decision? for market state

Stand state Decision for market state:

No. Basal area’ Low Medium High No. Basal area Low Medium High
1 LLLLLL — — — 33 HLL,LLL 1 1 1
2 LLL.LLH — — — 34 HLL,LLH 2 2 2
3 LLL,LHL — — — 35 HLL,LHL 3 3 3
4 LLLLHH — — — 36 HLL,LHH — — —
5 LLL,HLL — — — 37 HLL,HLL 5 5 5
6 LLL.HLH — — — 38 HLL,HLH 6 6 6
7 LLL,HHL 3 3 3 39 HLL,HHL 3 3 3
8 LLL,HHH — — — 40 HLL,HHH 36 36 36
9 LLH,LLL 1 1 1 41 HLH,LLL 1 1 1
10 LLH,LLH 2 2 2 42 HLH,LLH X X X
11 LLH,LHL 3 3 3 43 HLH,LHL — — —
12 LLH,LHH — — — 44 HLH,LHH 12 12 12
13 LLH,HLL 5 5 5 45 HLH,HLL 5 5 5
14 LLH,HLH 6 6 6 46 HLH HLH — — —
15 LLH,HHL — — — 47 HLH,HHL — — —
16 LLH,HHH — — — 48 HLH HHH — — —
17 LHL,LLL 1 1 1 49 HHL,LLL 1 1 1
18 LHL,LLH 2 2 2 50 HHL,LLH 2 2 2
19 LHL,LHL 3 3 3 51 HHL,LHL — — —
20 LHL,LHH 4 4 4 52 HHL,LHH —_ —_ —_
21 LHL,HLL 5 5 5 53 HHL,HLL — — —
22 LHL,HLH 6 6 6 54 HHL,HLH —_ —_ —
23 LHL,HHL 3 3 3 55 HHL,HHL — — —
24 LHL,HHH — — — 56 HHL,HHH 52 52 52
25 LHH,LLL 1 1 1 57 HHH,LLL 1 1 1
26 LHH,LLH 2 2 2 58 HHH,LLH X X X
27 LHH,LHL — — — 59 HHH,LHL 27 27 27
28 LHH,LHH 12 12 12 60 HHH,LHH 12 12 12
29 LHH,HLL 5 5 5 61 HHH,HLL 53 53 5
30 LHH,HLH — — — 62 HHH,HLH 46 46 46
31 LHH,HLH — — — 63 HHH,HHL 63 63 63
32 LHH,HHH 16 16 16 64 HHH,HHH 48 48 48
Harvests 38 38 38
Total 114

UL, low; H, high; left side before comma, softwoods; right side after comma, hardwoods.
% Stand state no. after decision. — denotes doing nothing; x denotes undefined decision as the steady-state probability of this stand state was 0.

less than the highest unconstrained values. For the other goals, the
relative deviations were much larger (21-41%). Overall, the total
weighted objective function gave results that were inferior to those
of the Chebyshev objective function for harvested volume only,
whereas they were similar or superior for all other criteria.

The best decisions obtained by minimizing the sum of the
weighted deviations from the discounted criteria (Table 8) were
different from those by minimizing the maximum weighted devia-
tion (Table 9) in 55 of the 192 stand-market states. Minimizing the
sum of the weighted deviations called for a harvest in 101 of the 192
possible stand-market states (24 at low price level, 34 at medium,
and 43 at high). With the Chebyshev objective, 114 stand-market
states wanted a harvest. In this case, regardless of price level, 38 stand
states needed a basal area reduction, and only in one state
(HHH,HLL) was the reduction price dependent (Table 9). When
the sum of the weighted deviations was minimized, there was a
well-defined decision for each stand state, whereas with the Cheby-
shev objective function states (HLH,LLH) and (HHH,LLH) had no
attendant decision as the probability of observing them was zero
under the optimum policy described in Table 9.

Discussion
MDPs make it possible to obtain solutions for systems with multiple
objectives and subject to multiple sources of risk. Classic MDDPs

formulated as LP models are capable of handling numerous man-
agement goals by setting one as the objective and the rest as con-
straints, so long as both objective and constraints are discounted or
undiscounted. However, defining specific bounds for some criteria,
especially ecological ones, that reflect accurately the decisionmaker’s
preferences presents considerable challenges (Tamiz et al. 1998). In
addition, infeasibility often occurs if conflicting objectives are all set
too aggressively.

Here, to aid multiobjective decisionmaking with MDPs, we ad-
opted techniques that take advantage of the “satisfying and suffic-
ing” (Simon 1957) nature of goal programming and its ease of use.
To this end, deviational variables were introduced in LP formu-
lations of MDPs with average or discounted criteria. We proposed
two formulations for each case: weighted total and Chebyshev;
the former allowed straightforward trade-offs between goals and
the latter strived to “achieve a good balance between a set of
goals” (Jones and Tamiz 2010). There is no strong reason to
prefer one formulation over the other, and, in practice, both
could be used for more insight, with only slight changes in the
model and with the same software. Within each method, the
setting of goal targets and weights is also at the discretion of
the decisionmaker. Diaz-Balteiro et al. (2013) offer guidance to
help analysts choose the methods and parameters that best reflect
the preferences of decisionmakers.
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The essence of the approach was to minimize the undesired de-
viations from multiple criteria without imposing fixed levels to be
achieved. There was a great amount of flexibility in assigning im-
portance to each objective by utilizing weights as preferential indi-
cators or normalizing metrics, and the resulting models were always
feasible. Another advantage of the GPMDP solutions was that best
policies were always deterministic; i.e., there was one single decision
for each state. In contrast, constrained MDPs are well known to
generate nondeterministic policies (Altman 1999), rendering them
difficult to implement, unless only a few decisions are stochastic.
One limitation was the separation of undiscounted and discounted
criteria, but it allowed LP formulations and thus efficient handling
of large practical problems with multiple objectives.

In chis particular application with mixed pine-hardwood forests
in the southern United States, we simultaneously dealt with ecolog-
ical and economic objectives. Because these objectives were not di-
rectly commensurate, the weights were the inverse of their maximal
achievable levels, implying that they were of equal importance to the
decisionmaker. Moreover, by setting the target level optimistically,
i.e., at its maximal unconstrained level, “the dominant underlying
philosophy was changed from satisficing to optimizing” (Jones and
Tamiz 2010, p. 7), which guaranteed Pareto efficiency (Pareto
1964): no other feasible solution existed that could improve at least
one of the criteria while keeping the others as good as in the optimal
GPMDP solution. This approach was also in essence equivalent to
CP (Tamiz et al. 1998), an ideal-point method in which “to be as
close as possible to the perceived ideal is assumed to be the rationale
of human choice” (Zeleny and Cochrane 1973).

The empirical results suggested that for the study area, maintain-
ing tree species and size diversity within 4% of their maximum value
required falling short of the maximum of other criteria (financial,
production, and ecological) by 19 to 43%. Also, in this application,
the choice of objective function, weighted total or Chebyshev, had
little effect on system performance, but the optimal policies were
quite different, especially for discounted criteria. The Chebyshev
formulation yielded undefined decisions for several stand states be-
cause such states were not present in the steady state.

The limitations of the GPMDPs emerged in part from the MDP
component. We must be concerned about the errors due to the
discretization of states (Tavella and Randall 2000). Defining a state
space sufficiently large for accurate representation, but small enough
to be practical, presents considerable challenge. One additional lim-
itation is the stationarity requirement of the system. Yousefpour
et al. (2012) provides an overview of some methods dealing with
nonstationary processes such as growth under climate change.
MDPs with enlarged state space can in principle reflect climate
change and related changing disturbance regimes, but again the
“curse of dimensionality” poses practical limits to this approach.

As for the GP component, the risk of Pareto inefficient solutions
should not be a problem as long as pessimistic target levels are
avoided. Setting targets at their maximum unconstrained levels is
good practice in that respect if optimizing instead of satisficing is the
decisionmaker’s goal. If levels other than the ideal ones are specified
for the targets, techniques outlined in Tamiz and Jones (1996) could
be used to restore Pareto efficiency. More difficult to resolve is the
specification of the relative importance/preferences of multiple ob-
jectives and therefore of their weights. Several lines of research are
needed in that respect on how to set weights for accurate represen-
tation of preferences (Martel and Aouni 1990, Linares and Romero
2002), to reflect ambiguous preferences with fuzzy objectives and
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constraints (Biswas and Pal 2005), or to use the lexicographic
variant of GP to rank the objectives (Jones and Tamiz 2010) and
thus customize models for decisionmaker’s preferences (Diaz-
Balteiro et al. 2013). The proposed methods also assumed risk
neutrality of decisionmakers. Although approaches of dynamic
programming and policy iteration exist for single-objective risk-
averse MDPs (Ruszczyfiski 2010), how to handle risk aversion in
MDP models with multiple objectives with LP such as those
considered in this article remains a challenging field for further
research.

Still, as it stands, the GPMDP method presented in this article
offers a pragmatic way to handle forestry decisionmaking with com-
peting objectives under risk. The methods are theoretically rigorous
and the numerical solutions based on linear programming handle
very large problems efficiently. The adaptive policies that emerge are
simple decision tables readily applicable in the field. Used wisely,
they should help both public and private nonindustrial forest own-
ers meet their diverse and often conflicting goals.
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