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Abstract Operations Research (OR) and Artificial Intelligence (AI) disciplines have

been playing major roles on the design of new intelligent systems. Recently, differ-

ent contributions from both fields have been made on the models design for prob-

lems with multi-criteria. The credit scoring problem is an example of that. In this

problem, one evaluates how unlikely a client will default with his payments. Client

profiles are evaluated, being their results expressed in terms of an ordinal score scale

(Excelent ≻ Good ≻ Fair ≻ Poor). Intelligent systems have then to take in consid-

eration different criteria such as payment history, mortgages, wages among others in

order to commit their outcome. To achieve this goal, researchers have been delving

models capable to render these multiple criteria encompassed on ordinal data.

The literature presents a myriad of different methods either on OR or AI fields for

the multi-criteria models. However, a description of ordinal data methods on these

two major disciplines and their relations has not been thoroughly conducted yet. It

is key for further research to identify the developments made and the present state

of the existing methods. It is also important to ascertain current achievements and

what the requirements are to attain intelligent systems capable to capture relation-

ships from data. In this chapter one will describe techniques presented for over more

than five decades on OR and AI disciplines applied to multi-criteria ordinal prob-

lems.
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1 Introduction

Learning multicriteria (MC) models from data has recently gathered a substantial

attention. Such trend has its reasons in the diverse set of applications which can

be found in management [76, 105], financial [31, 33] and medical [6, 125] fields, to

name a few. Consequently, the very diversity of the multicriteria learning research

topics led to a discussion and proposals in several different fields. Decision analysis,

machine learning and statistics/econometrics are some of them. Hence, a rich termi-

nology can be found due to this diverse fields of study. Sorting, ranking, dominance,

among others, are some of the many names referring to multicriteria methods. Even

though mostly all share the same fundamental principles, it is on the methods as-

sumptions that most differences occur. Nevertheless, methods for learning ordinal

data have been recently seen as a generalisation of some multicriteria techniques [2].

The importance of ordinal data is clear. Nowadays, industry tries to cope with

current technological advancements and towards profit maximisation. Hence, more

and more personalised products and services are being commercialised to a wider

audience. Problems like credit scoring where the system evaluates the capability

of one default his debts [31, 33, 141] by grading a customer credit profile in the

scale Excelent ≻ Good ≻ Fair ≻ Poor, movies suggestion [28], breast cancer di-

agnosis [17], or gene analysis through the analysis of hyperactivity on certain pro-

teins [102, 103], are some examples of ordinal problems where data is structured

by a “natural” order. As a result, new and robust computational methods capable

to unravel reasoning’s behind ones decisions also led to new theoretical develop-

ments. Regarding to these developments two major disciplines lead the research:

Operations Research (OR) and Artificial Intelligence (AI).

In this chapter it is presented a literature review over different areas that deal with

ordinal data, in general, to the extent of what it is known nowadays. Section 2 starts

by providing the terminology that will be used. Section 3 will focus on methods

on the operations research side whereas techniques in the artificial intelligence field

will be described in Section 4. Section 3 will be concerned mainly about aggregation

models, fuzzy and rough set theory, and evolutionary algorithms approaches. Sec-

tion 4 will be dedicated to inductive learning, a very large and important topic within

AI. In this section different existing works in the literature will be identified as well

as feature selection approaches (Section 4.1) and performance assessment metrics

(Section 4.2). As remainder of this chapter, in Section 5, one will draw a summary

of what has been achieved until now and what still poses as open problems.

2 Terminology and Concepts

Learning multicriteria (MC) on ordinal data has a strong connection with OR and

AI [146]. Albeit being conceptually different topics, there is an intrinsic connection

among them. OR comprises several different areas of study such as decision anal-

ysis, mathematical programming among others. Whereas, AI can be described as
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being composed by machine learning, pattern recognition, data mining [119] etc.

Within each area there are concepts borrowed from one another. For instance, ma-

chine learning vastly uses techniques from mathematical programming and statistics

since its early days [45,132] (Fig. 1 depicts some of these relations). How these top-

ics interact with each other is not within the scope of this chapter. It is the purpose

of Fig. 1 to illustrate the broad aspects of the area in study. Its usage is so broad that

a full coverage is not possible. However, it is interesting to know how MC methods
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Fig. 1: Illustration of the different fields that overlap with operations research and

artificial intelligence.

have been used in data analysis to represent knowledge. Such is done in order to

understand reasoning’s behind decisions [94], outcome prediction [26, 36], in mim-

icking behaviours [90] and planning [68, 105].

Even though MC methods have been thoroughly studied, not much effort has

been employed on the particular case where data is presented in a “natural” order.

Let us consider the credit score problem. A bank assigns a score of Excellent to a

client given his wage, good payment history in previous mortgages and the number

of credits at the time of the evaluation. The score assessment is clearly rendered

over the different criteria: Wage, payment history, among others. Ideally, one wants

to find the best function that can capture all this information in order to output the

expected outcome.

Definition 1 (Classification on Ordinal Data Problems [16, 18, 91, 93, 146]). Clas-

sifying on ordinal data problems consists on finding the best mapping f : Rd →
{C1, . . . ,CK} of a given pattern, xxx ∈ R

d ⊂ X, to a finite set of classes, where

CK ≻ . . .≻ C1.

Pattern xxx is also referred as instance, example or alternative. Moreover, xxx can be

represented in a vector fashion where each entry is identified as a feature, attribute

or criterion, i.e., xxx = {x1, . . . ,xd}. A dataset is a tuple consisted of N patterns and its

target classes (or outcomes), D= {xxx(i),y(i)}N
i=1 and ≻, the order relation on the set

of classes.

Literature usually differentiates attribute and criterion [51]. Consequently, the

problem in analysis can be substantially different. In an ordinal data problem as the

credit scoring, an alternative (to which client a loan should be granted) is charac-

terised by several criteria, each one representing a level of importance to the de-

cision maker (DM) (the bank). Here, criteria is used instead of attribute being the

former more adequate for the ordinal problem [51, 135].
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The usage of the term ranking is also common in the MC field. However, such

term is usually mentioned to other subjects aside classification.

Definition 2 (Ranking [16, 25]). A ranking problem consists on finding the best

mapping f : Rd → {R1, . . . ,RL} of a given pattern, xxx ∈ R
d ⊂ X, to a finite set of

ranks, where RL ≻ . . .≻ R1 is not pre-defined.

There are subtle differences between the two problems. Whereas in classification the

order between classes is already defined and all patterns have to be assigned into at

most one class, in ranking such does not hold. Think for instance on the GoogleTM

or YahooTM search engines. When entering a search query, the result can vary from

user to user for the same query. The search engine will look on its database and

rank the results according to, for instance, user search history. Ranking approaches

however go beyond the subject of this chapter.

Depending on the problem, criteria can also represent a magnitude of importance

or unimportance, a ratio, among others. This can generate datasets where order may

not be explicitly represented. Different works tackled the ordinal problem assuming

that data were monotone, i.e., where both criteria and classes were assumed to be

ordered [10,39,101]. Nevertheless, recent works argue that monotonicity constraint

cannot be verified despite being however perfect representatives of an ordinal prob-

lem [18, 56]. The following synthetic datasets depict some of those claims. To each

(a) (b)

Fig. 2: Two synthetic ordinal dataset where the monotonicity property at input data

does not hold.

point in Fig. 2a was assigned a class y from the set {1,2,3,4,5}, according to

y = min
r∈{1,2,3,4,5}

{r : br−1 < 10(x1 −0.5)(x2 −0.5)+ ε < br}

(b0,b1,b2,b3,b4,b5) = (−∞,−1,−0.1,0.25,1,+∞)
(1)

where ε ∼ N(0;0.1252) simulates the possible existence of error in the assignment

of the true class to xxx. Data in Fig. 2b is uniformly distributed in the unit-circle, with
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the class y being assigned according to the radius of the point: y =
⌈√

x2
1 + x2

2

⌉
.

These synthetic datasets are examples where order cannot be captured directly in

the input space, but in an implicit feature space.

Hence, the following question can be posed: How to capture order? Many models

have been proposed towards this goal. But before answering that question, first a

brief description of the most commonly used models is required. The following

concepts will allow a better understanding of the most recent techniques discussed

along this chapter.

Starting by the OR domain, a classic multicriteria decision analysis (MCDA)

approach is done by the representation of a specific aggregation model. Aggregation

models are performed by aggregating different value or utility functions in order to

be expressed by a single criterion. One aggregation model that we can think of a, for

instance, the mean: 1
d ∑

d
j=1 x j. The use of utility vs. value depends upon the problem.

Whereas, utility functions are used in stochastic problems, value function are used

in deterministic ones [92]. In brief, an aggregation model is a function U : Rd → R,

that maps criteria of the DM onto outcomes [92]. Utility functions are widely used,

where the one presented in Equation (2) is an example of several other aggregation

models. It has the advantage of considering both qualitative and quantitative criteria.

The simplest additive case of an utility function is defined as follows:

U(xxx) =
d

∑
j=1

u j(x j) (2)

where U ∈ [0,1]. For the interested reader Siskos [115] presents a good description

of these methods.

Fuzzy set theory is another topic with increasing interest on the scientific commu-

nity. Its usage is not restricted only to the MCDA problem being however strongly

defended thanks to its capability to handle uncertainty [50, 65]. In general, fuzzy

set theory presents a fundamental principle which describes a special type of sets

which have degrees of membership through simple logical operators. Such can be

described by any mapping function µ(xxx) : Rd → [0,1]. Fig. 3a) consists of a valid

representation for a given membership function. Moreover, it can represent knowl-

edge in a if . . . then way in a similar way to decision trees (DTs) [69] which will be

described shortly.

In much of the works currently present in the literature, fuzzy set theory usually

appears along with rough sets. The latter field is however slightly different from the

former. Rough Set theory not just handle uncertainty, but also incomplete informa-

tion which can be present on data [65]. Even though new approaches on utility ad-

ditive functions (UTA—UTilitès Additives [115]) already tackle this problem, it has

also been stated that rough and fuzzy set theory are complementary because of deal-

ing with different kinds of uncertainty [50]. It was initially proposed by Pawlak [97]

with the objective to provide a mathematical formulation of the concept of approxi-

mated (rough) equality of sets in a given space. In the rough set theory it is assumed

that to every object there is an associated amount of information that describes
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Fig. 3: Fuzzy and Rough Set concept illustrations: (a) An example of a membership

function that defines a possible economic class problem in a fuzzy set approach;

(b) Lower and Upper approximations of a given set which represent the domain

knowledge;

it. This refers to the view that knowledge has a granular structure [1, 50, 51, 98].

Therefore, an important characteristic of rough sets theory is the identification of

consistent data and assigning them into lower and upper approximations of sets—

see Fig. 3b).

More on the AI domain, in general, one tries to obtain valid generalisation rules,

classifier, from data. Once a classifier has been designed, one has to assess its per-

formance by estimating the error of the classifier for unseen examples. Classifica-

tion error is expressed as a misclassification error defined by a “true misclassifi-

cation rate” (here denoted as R∗(d)). d(xxx) is the learner model with input data xxx.

Breiman [15] defines this function as:

Definition 3 (Accuracy Estimation [15]). Take (xxx,y), xxx ∈ X, y ∈ Y, to be a new

sample from the probability distribution P(A, j); i.e.,

• P(xxx ∈ A,y = j) = P(A, j).
• (xxx,y) is independent of D.

Then define

R∗(d) = P(d(xxx) 6= y) (3)

But how can R∗(d) be estimated? There are many approaches. One that this work

will use is the cross-validation approach. Dataset D is randomly divided in subsets,

with the same size as possible, e.g., D1, . . . ,DV . For each v, v = 1, . . . ,V , a learning

method is applied to the sample D−Dv, resulting in the dv(xxx) model.

Rcv(d) =
1

V

V

∑
v=1

Rts(dv) (4)

where Rts is defined as

Rts(dv) =
1

Nv
∑

(xxxi,yi)∈Dv

F(dv(xxxi),yi) (5)
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where Nv ≃ N/V and F any function which penalises each error1. One can now

analyse the different learning methods for ordinal data.

k-Nearest Neighbour (k-NN) is a simple method that interestingly has not been

explored enough in the MCDA setting until very recently. It consists of a non-

parametric method with the main objective to estimate the density function from

sample patterns [38]. It extends the local region around a data point xxx until the

kth nearest neighbour is found. The most represented class in the k-closest cases

defines the predicted class. Fig. 4a-b) illustrates such procedure. DTs are another

*

(a) (b) (c)

.

.

.

.

.

.

.

.

.

.

.

.

True

True

False

False

(d)

Fig. 4: k-NN and DT methods. (a) A test pattern (illustrated as a star) composed

by two features checks for, in this example, two closest labelled patterns in order

to determine its own class; (b) Prediction over the whole feature domain for an 2-

NN on the training data shown in (a); (c) A DT discriminates the feature space by

rectangles; (d) A sample of the decision tree for (c).

method that captured some interest for tackling MCDA problems, specially on the

OR domain. DTs classify a pattern through a sequence of questions where the next

question depends on the answer to the previous one. These trees are constructed as

logical expressions as is illustrated in Fig. 4c-d). This ability generates a powerful

data analysis tool capable to obtain interpretable results [38]. Nodes are consecu-

tively split where a stop-splitting rule is required that controls the growth of the

tree.

Neuron Networks are another kind of learning models. Multi-Layer Perceptron

(MLP) is the most commonly used. A MLP is a layered structure consisting of

nodes or units (called neurons) and one-way connections or links between the nodes

of successive layers, such as the structure of Fig. 5a). The first layer is called the

input layer, the last layer is the output layer, while the ones in the middle are called

the hidden layers. Input layer of neurons is only a vector where all data are in-

troduced triggering the learning process. Data propagates through the network in

a forward direction, on a layer-by-layer basis. Layers are constituted by several

neurons which commonly have non-linear and differentiable activation functions.

Support Vector Machines (SVM) are another popular learning mechanism. In its

simple form, SVMs uses a linear separating hyperplane to create a binary classifier

1 The l0−1 loss function is the most commonly used one, i. e., F(a,b) = I(a 6= b) being I the

identity function.
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Fig. 5: MLP and SVM methods: (a) Example of a MLP. This MLP is composed

by 2 hidden layers, one input and output layer; (b) A two dimensional dataset is

augmented to a higher feature space.

with a maximal margin. In cases where data cannot be linearly separable, data are

transformed to a higher dimension than the original feature space—see Fig. 5b).

Such is done by choosing a given kernel function, representing the inner product

in some implicit higher dimension space. Formally, a kernel function is defined

by k(xxx,xxx′) = φ(xxx)T φ(xxx′). This transformation (φ ) can be achieved by several non-

linear mappings: e.g., polynomial, sigmoidal and radial basis functions. However,

in a multiclass problem the usage of a binary SVM classifier can be limited. In order

to improve this some heuristics and new formulations were proposed as an exten-

sion to the binary classification problem. Some of them encompass the OVO (One-

Versus-One), OVA (One-Versus-All), DDAG (Decision Directed Acyclic Graph),

single optimisation formulation, among others. Basically, OVO consists on the de-

sign of K(K-1)/2 binary classifiers where one class is discriminated against another.

Similarly, and as the name suggests, OVA consists on the design of K binary classi-

fiers where one class is compared against the others. Likewise the former heuristic,

DAG, follow a similar procedure. The major difference is that prediction is made

in a graph path manner where each node corresponds to a given binary classifier. In

a completely different scenario, there are also techniques that try to define a single

optimisation problem to solve the multiclass problem on SVMs.

This Section provided some key concepts regarding techniques for learning from

data. Knowing that still much more has to be covered, the interested reader is ad-

vised to OR and AI textbooks [9, 38, 55, 65, 82, 108] for more information. Next

Sections will describe different methods using some of the aforementioned method-

ologies for learning multicriteria models on ordinal data problems.

3 Multicriteria Decision Analysis

Multicriteria decision analysis (MCDA) is an important field within OR. It helped

researchers to devise new approaches in order to analyse and interpret human’s rea-
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soning. Specifically, when handling several usually conflicting criteria towards an

outcome. Such methods are generally composed by five phases depicted in Fig. 6.

Alternatives
Formulation

Criteria 
Selection

Criteria 
Weighting

Criteria 
Analysis

Aggregation

Fig. 6: Common Diagram of MCDA Methods [130, 137].

This Section will review multicriteria decision methods for ordinal data prob-

lems. Alternative formulation and criteria selection is usually defined by a set of

experts or DMs [130, 137] and can depend on the problem in analysis. On the other

hand, a given importance (weight) can be defined to each criterion whether through

subjective or objective methods. After every criteria being considered, the analysis

takes place. In general, MCDA tries to learn about users preferences encompassed

in the different criteria considered. One key aspect of such methods is that they do

not rely on any statistical assumptions [145]. Such highly contrasts with the topic

which will be reviewed in Section 4. These two views can mark great differences

on both topics, but as one shall see, there are points of connection between these

two fields. In doing so, one can identify a trend towards filling the gap between OR

and AI on MCDA. Finally, all criteria which were considered are then aggregated

in order to define a plausible outcome.

It is important to stress that this work is mostly concerned with ordinal data.

Hence, not all topics within MCDA can be covered in this Section. The interested

reader is referred to [44, 58, 126, 147] for more information.

3.1 MCDA Methods

From Fig. 6, one can define methodologies which follow the whole process. An-

alytic Hierarchy Process (AHP) is one of such kind of frameworks [109]. After

having the problem analysed and criteria selected, usually performed by an expert

(or DM), it considers through an hierarchical approach each criteria [109]. How-

ever, recent reviews have argued that AHP results may not be the most desirable

ones [62–64]. Mentioning that there is no clear evidence that AHP provides its

users with their “best” decision [62], or in more detail, identifying the limitations

in each step on the process [63]. Even though the Analytic Network Process (ANP)

was introduced as a generalisation over AHP (a feedback network capable to adjust

weights) [64, 110], few work has been done for the ordinal case.

ELECTRE [35,107] and PROMETHEE [35,37,43] are two well known methods

that, like AHP, can consist at most by the five steps illustrated in Fig. 6 [63]. Both

techniques arose from the foundations of the outranking relation theory (ORT) [35].

In simple words, it consists of checking the outranking relation among instances
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which permits to conclude whether an instance xxx(p) outranks instance xxx(q). Meaning,

that instance xxx(p) will be better for the DM than xxx(q). This is achieved if there are

enough statements to confirm (concordance) or to refute that (discordance). The

two aforementioned methods require some preferential information which has to

be defined by the DM. However, it may be difficult for the DM to understand the

meaning of the preferences [61]. To overcome this, different improvements over the

methods have been conducted. One of them was through the usage of evolutionary

algorithms.

Evolutionary algorithms (EAs) came in a way to reproduce Darwin’s theory of

the survival of the fittest. EAs are also referred as populational meta-heuristics

meaning that they work on the population space of solutions [13]. EAs generally

encompasses on three major steps: 1) Gather a set of solutions; 2) Select a possible

subset of candidates on that set of solutions and allow them to reproduce. Reproduc-

tion consists mainly on creating new solutions from the selected ones by crossover

and mutation operators; 3) Finally, the process is repeated for the set of new solu-

tions until a stopping criteria is achieved. Swiki in [116, 117] introduced an elitist

evolutionary agent2 system to solve multicriteria optimisation problems. By trying

to reproduce biological mechanisms, an elitist group is introduced in the evolution-

ary architecture proposal. The final solution identified by the elitist group would

indicate the desirable one which will dominate other possible solutions identified

by other groups. Some hybrid approaches are also present in the literature [32, 42].

In [42] an outranking combined with an EA was proposed thanks to an indiffer-

ence measure. Since preference modelling is cumbersome, authors used a popula-

tion based meta-heuristic to generate the best solutions. An agent would then decide

the best one. An approach proposed by Doumpos [32] comprehends the usage of

concordance and discordance measures into a credibility index of an outranking

method. This will assess the outranking relation among several alternatives. Since

incomparable relations can occur, an EA is used to infer the parameters of the out-

ranking method.

In a complete different setting, constraint programming tries to explore all pos-

sible combination of solutions thoroughly. Despite this being highly computational

expensive, Junker in [66, 67] argues that an interactive approach has its advantages

over state of the art techniques. It is also claimed that current existing methods do

not express a clear explanation of the reason for one alternative being more prefer-

able than another. In other words, a performance of 98% does not express which

option is the best based on the original preferences. Using a special utility function

to define preferences order in [67] a lexicographic optimal scheme is applied. Since

lexicographic approach establish some ranking over the preferences order [41, 67],

authors also permute the order of alternatives search. Bouveret [11] explores the

idea in which characterises good solutions where multiple criteria have to be han-

dled through the use of lexicographic algorithms.

Other methods incorporate cooperative algorithms which take part in the learn-

ing process from diverse sources of information and by different decision crite-

2 In a simple way, an agent is a solution vector generated by some sub-optimal learning method.
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ria [29, 71]. Methods with such properties are named Dominance-based Set Ap-

proach (DRSA) [29] which deal with the problem of multicriteria classification us-

ing maximum likelihood estimation. The problem is then solved by an optimal ob-

ject reassignment algorithm. In [71] a stochastic DRSA approach is introduced. The

rationale behind this method is to assess object class probability from an interval of

classes.

Rough set theory is another field that one can count with when tackling MCDA.

One interesting aspect is that rough set have the ability to produce a model of rule

induction similar to data mining, knowledge discovery and machine learning [50].

In [50] authors extend the fuzzy set theory to rough sets theory in order to avoid

as much as possible meaningless transformation of information. Rule induction is

made through decision rules induced from dominance-based rough approximations

of preference-ordered decision classes [51].

Let us now analyse in more depth contributions made to each node in the multi-

criteria methods process.

Criteria Weighting

Criteria weighting can be considered one of the most important steps for the deci-

sion maker. Once it weights the importance of each criterion, acting as a trade-off

between criteria [61] that will be considered in the decision process, subtle changes

can produce different outcome [136].

Methods for weighting criteria encompass equal weights, rank-order and hybrid

approaches where after some considerations from the DM, weighting can be per-

formed by a subjective or objective method [136, 137]. Equal weights (w j = 1/d)

is not valuable once relative importance among the criteria is ignored. Remains

rank-order weighting approaches and their derivations to overcome these limita-

tions. Another issue is that when dealing with uncertainty or incomplete informa-

tion in any decision problem, the DM may not be reliable to define her/his prefer-

ences accurately. One way to handle this type of information is to represent pref-

erences by a suitable distribution using stochastic multicriteria acceptability anal-

ysis (SMAA) methods. Several methods have been proposed in the literature—

e.g. [40, 74, 75, 128] to name a few. SMAA-O proposed in [74] was an extension

of SMAA works [127, 128] applied to ordinal (and cardinal) criteria. The problem

is that, in the authors approach, an ordered criteria cannot be used directly in MC

model. Therefore, it is assumed that exists a cardinal measure that corresponds to

the known ordinal criteria and by considering consistent mappings between ordinal

and cardinal scales, they randomly simulate such mapping through Monte Carlo it-

erations. Or in other words, ordinal data is converted into stochastic cardinal data by

simulating consistent mappings between ordinal and cardinal scales that preserve

the given labels. In SMAA literature review work of Tervonen [127] they claim that

such simulations are not necessary since cardinal values can be interpreted directly.
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Criteria Analysis

To the best of our knowledge, one of the first works in criteria analysis was proposed

by Herstein [57] where an axiomatic approach was carried. A set of mathematical

axioms was presented in this work to measure preferences order. Maccheroni in

his work [85] explores the possibility where DM does not know for certain her/his

preferences being therefore unable to rationalise her/his choices.

As previously mentioned, in the outranking approaches inconsistencies may arise

when the preferences which are learned by given instances cannot be expressed

through a model. Belacel in [6] proposes a construction of partial indifference in-

dexes comparing pairs of preferences according to some criteria, aggregating them

according to a concordance and non-discordance concept. Mousseau in [93] sug-

gest to discard contradictory information from the preferences through an iterative

aggregation-disaggregation scheme.

A number of variants of UTA [115] have been proposed in the literature over

the last two decades and many works have been published concerned to this sub-

ject [8, 52, 54, 73, 146]. One related to ordinal problem was proposed in [145]. In

this work, additive functions are used discriminating the preferences being evalu-

ated from those that are not. Trying to go through a more natural way to human

thinking over their outcomes or goals, some methods also based on utility func-

tions have recently been proposed [88–90]. In this method, the authors developed a

model to express logic of preferences in order to determine which of two outcomes

is preferable.

Aggregation

As mentioned, aggregation models are one of the most studied methods within mul-

ticriteria decision analysis. For instance, in our credit scoring problem a model has

to be designed to aggregate wage, payments history, age among others so that it can

express the credit score profile of a given client. However, this approach implies that

those functions have to be, among others, monotone [86]. Most important of all, the

aggregation model has to be able to evince the importance of a criterion (done in

the criteria analysis step), but also the interaction and compensation effects between

criteria (done in the weighting step) [60]. Meaning that one has to design a model

such that it can assign weights to a subset of possible criteria in order to capture

these relations [60, 123].

As one saw until now, multicriteria methods encompass a variety of different

approaches. Many of them address this problem through classification techniques

using some sort of aggregation model [36, 44]. Afterwards, restrictions are then de-

fined to the problem in question. However, despite the existence of the myriad of

techniques, many pass through the definition of some objective function which can

be delved through mathematical programming approaches. In [145] a multi-group

hierarchical discrimination (M.H.DIS) method is defined. An error minimisation

and clear group discrimination utility function is presented. Then, a two optimisa-
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tion stages are conducted to avoid high computational complexity of MIP problems

with many binary variables. An extension of this work is presented in [31] where the

estimation of the additive utility functions in aforementioned work is accomplished

through mathematical programming techniques. Two linear and one mixed-integer

programs are used in M.H.DIS to estimate optimally the utility functions.

Unsupervised approaches such as the k-means algorithm or agglomerative hi-

erarchical clustering (AHC) can also be used. The latter performs a hierarchical

clustering where given individual clusters it can merge or split clusters until a stop-

ping criteria is achieved. Given the utility matrix, authors employ clustering algo-

rithms to form groups of alternatives (e.g., customers) with closely related prefer-

ences [77, 78]. However, in this phase little or no usage of the ordered criteria is

explored.

4 Inductive Learning Algorithms

Inductive learning describes a very powerful field of research where machine learn-

ing (ML) lies. In ML one tries to obtain valid generalisation rules from data instead

of the deductive learning approaches where one is already presented with a formal-

isation of the world and constructs (deducts) reasonable conclusions that cover our

initial assumptions. Being also referred as a technique that learns by example (in-

stances), it has been another thoroughly studied field which is composed by two

main research topics: Regression and classification. A schematic of such problems

and some real world scenarios are depicted in Fig. 7.

Inductive Learning

Yes, No

True, False

Has Cancer?

Is a Fact?

Binary Multiclass
Outdoor Elements

Beach, Bird, Tree, Sea, Sky
Fruits

Apple, Grapefruit, Melon, Peach

Nominal

Temperature

Credit Scoring

Ordinal

Classification

Regression
Univariate

Multivariate

Predict:
- Stock Market Value Variation
- Ratio Population Growth
in general, problems with one 
response variable

Predict:
- Public Transportation Usage Ratio and Automobile 
Selling Volumes
- Population Growth Ratio and Unemployment
in general, problems with more than one response variable

Multi-Label
Fellings
[Happy, Glad, Excited], [Sad, 
Depressed]

Fig. 7: Inductive Learning encompasses on two major research topics: Regression

and classi f ication. Both thrives on finding the best function that explains our data.

The former renders the reasoning’s on a continuous domain whereas the latter on

a discrete (finite) domain. Each one is divided in other subtopics being their thor-

oughly analysis more appropriate for other textbooks [9, 38, 55] and here depicted

just for context.
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Learning mechanisms that solve ordinal problems have been tackled with both

regression and classification strategies. Albeit being fundamentally different, both

ordinal regression and ordinal classification methods have thrived among the scien-

tific community, e.g., [18,26,46,56,72,87,113,120], to name a few. The first works

that tried to solve the classification of ordinal data were based on generalised linear

models, as the cumulative model [87]. Tutz [129] presents a generic formulation for

semi-parametric models extending the additive models [54]. In the machine learn-

ing community, Frank&Hall [46] have introduced a simple process which permits

to explore information order in classification problems, using conventional binary

classifiers as can be depicted in Fig. 8. In [56] it is applied the minimal structural

risk principle [132] to derive a learning algorithm based in pairs of points.

Another way to learn ordering relation is by using classical algorithms of classifi-

cation or regression and mapping the results into an ordinal scale. Kramer et al. [72]

investigate the use of a learning algorithm for regression tasks—more specifically,

a regression tree learner—to solve ordinal classification problems. In this case each

class needs to be mapped to a numeric value. Kramer et al. [72] compare several

different methods for doing this. However, if the class attribute represents a truly or-

dinal quantity—which, by definition, cannot be represented as a number in a mean-

ingful way—there is no principled way of devising an appropriate mapping and

this procedure is necessarily ad hoc. Harrington [53] argues that these type of ap-

proaches have many drawbacks as 1) makes regression learners sensitive to rank

representation than their ordering and 2) since classification algorithms ignore rank

order treating them as classes, it will be required more training data. Consequently,

Harrington [53] presents a perceptron algorithm where its goal it to find a percep-

tron weight vector www which successfully projects all the instances into the k classes

subintervals defined by some thresholds.

Moreover, existing methods incurring ordinal regression approaches fit data in

general by a single rule defined by parts through K-1 thresholds [133]. This has a

drawback since a mapping is required to convert ranks into real values or vice-versa.

Hence, determining this mapping function is in general very difficult and makes re-

gression learners more sensitive to rank value than their pairwise ordering. Some

...

Fig. 8: Schematic of the proposal presented by Frank&Hall in [46]. Firstly it is

performed a transformation of a K-class problem to a K − 1 binary class problem.

The training of the ith classifier involves the transformation of the K ordinal class

into a binary one where the ith discriminator is obtained by separating the classes

C1, . . . ,Ci and Ci+1, . . . ,Ck. The ith class represents the test Cx > Ci.



Multicriteria Models for Learning Ordinal Data: a literature review 15

of the aforementioned drawbacks were avoided in Shashua and Levin [113] work

where a generalised formulation of Support Vector Machines (SVMs) applied to or-

dinal data was proposed. However, such models can be too complex. Cardoso in [18]

proposed a reduction technique to solve data ordinal problem classification using

only one binary classifier. Following this idea, Lin et al. [83] explored the potential

of solving ordinal problems through binary classification methods whereas Cheng

et al. in [21] presented an adaptation of the Neural Networks (NN) towards ordinal

problems. In [27] an order relation is incorporated among classes by imposing an

unimodal distribution. This fundamental principle allowed to delve simpler Neural

Networks (NNs) classifiers. The same rationale was instantiated to SVMs in [26]

through the all-at-once strategy by solving a multiclass ordinal problem through

a single optimisation process. Sun et al. in [124] proposed a Kernel Discriminant

Analysis (KDA) for ordinal data. Even though authors argued that finding an opti-

mal projection would result in better reasonable results, in doing so one would loose

its relation to the original features. Hence, in the case of need for interpretable re-

sults, through the usage of such methods, one would be unable to understand the

reason of the outcome given specific features.

Metric learning is research subject that recently has been gaining increasingly

attention, specially in the machine learning community [138, 142, 144]. The per-

formance of all machine learning algorithms depends critically on the metric that is

used over the input space. Some learning algorithms, such as K-means and k-nearest

neighbours, require a metric that will reflect important relationships between each

classes in data and will allow to discriminate instances belonging to one class from

others [104]. Ouyang [96, 111] explored this subject in the ordinal problem. In [96]

by assuming that closer instances in the input space should translate an order of rela-

tion, a metric distance is learn so that pairs of instances are closer than the remainder

pairs. However, class label is discarded in this approach.

Other approaches [22–24, 143] consisted on probabilistic approaches based in

Gaussian processes to learn models for the ordinal problem. In [143] a collaborative

approach is delved towards better, not only in accuracy, but also in a context of

collaborative preference learning.

Regarding decision trees (DTs) for ordinal data, some works consider problems

that are monotone, i.e., all attributes have ordered domains. Meaning, if xxx,zzz are data

points such that xxx ≤ zzz (xi ≤ zi for each criteria i) then their classes should satisfy

the condition f̂ (xxx) ≤ f̂ (zzz), where f̂ (.) is the labeling function. Potharst [99–101]

proposes a method that induces a binary decision tree from a monotone dataset.

Other methods were also proposed for non-monotone datasets (the most likely sce-

nario in the presence of noise) where the resulting tree may be non-monotone. In

this scenario, a fuzzy operator was used instead of a entropy function for perfor-

mance measurement [30]. Works on k-nearest neighbour for ordinal data seems

even scarcer. Besides the well-known adaptation of using the median as labelling

rule instead of mode for the k labels, literature only presents a modified version

of the standard k-NN for the construction of monotone classifiers from data [39].

Again, this work continues to be limited by the assumption of monotonocity in the

input data. In general, the monotone constraint was overcame in [19, 120]. Argu-
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ing that ordinality could not be captured directly from the input space, but from the

feature space, authors explored a re-labelling approach on the output decision space

through a postprocessing optimisation procedure.

From the works until now revised, one has encountered several methods that

make use of different procedures from operations research field, and other propos-

als design their learning models so that multicriteria can be rendered in the learning

phase. In this setting, multicriteria assessment is simply performed over a set of di-

verse unattached reasoning’s which renders the desirable outcomes without a clear

understanding of which criteria contributed most. To overcome this, De Smet et

al. [118] developed a k-means clustering algorithm in a multicriteria decision anal-

ysis perspective.

In this section we have reviewed several learning approaches for the resolution

of the ordinal problem. In the end, it is obvious how increasingly this subject has

been studied. The reasons can be due to the awareness of its transversal usability in

a set of diverse applications. However, due to the background of many researchers,

many have tried to solve this problem through regression, classification and ranking

methodologies. The work of Furnkranz et al. [48, 49] despite using a pairwise ap-

proach, compared ranking and classification principles in their proposals. As final

remark, one must note how vastly such methods can be employed such it has been

explored by Van Belle et al. [114, 131]. In these works, different approaches have

been delved towards ranking, ordinal and survival analysis problems. Even though

authors performed strict assumptions on data to develop their models, such as mono-

tone data, it still is a good example of the importance of this topic in the inductive

learning field.

4.1 Feature Selection Algorithms on Ordinal Data

Nowadays, it is relatively easy to solve problems with millions of instances, each of

them with a reasonable number of features. However, it is common to have access

to datasets with significantly higher number of features than instances leading to

the well known problem of the curse of dimensionality. Feature selection (FS) tech-

niques provide the means to overcome this issue by identifying the most valuable

features so that good and simple class discrimination models can be obtained. Fur-

thermore, a noise reduced dataset can be achieved since these methods can “clean”

data from features with noise [34].

There are three types of feature selection algorithms: Filter, wrapper and em-

bedded. The former is independent of the classifier being usually done before the

learning phase. Wrapper algorithms iteratively select subset of features and assess

the learning models performance to determine how useful that set of features are

whereas embedded algorithms select automatically features during the model con-

struction [34, 106]. Fig. 9 succinctly depicts the three approaches.

Feature selection on ordinal data is a relatively young topic. In [84] a χ2 statis-

tic method is used to discretize numeric features as a way to select features. Even
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FS MD FS MD FS+MD

Fig. 9: Three different standard approaches for feature selection: (left) depicts the

f ilter feature selection (FS) approach done before the model design (MD); (centre)

the wrapper is consisted on an iterative approach where features are removed step

by step until a desirable performance of the model is achieved; and (right) embedded

method is designed jointly with the learning model algorithm.

though the method proposed by Liu [84] was identified as being limited to a first-

order feature-class correlation (i.e., are linearly correlated), such should not be seen

as a drawback. Once highly complex learning machines could easily cope with the

data complexity and infer a linear relation with the features and classes, or more

precisely, perform overfitting on data [112, 121]. Nevertheless, Last et al in [79]

proposed an information-theoretic method for feature selection by performing a dis-

cretization over the features in order to minimise classes entropy. Even though or-

dinal data can contain only discrete features fitting well to this technique, there are

datasets with continuous features (see for instance [17]). In such scenarios, applying

a discretization technique can lead to loss of accuracy in the model design. Despite

being mentioned the capability to handle ordinal data, no experiment has been con-

ducted, neither their methods were designed for this type of problems. Through a

completely different approach, Xia et al. [140] presents a recursive approach to ex-

tract features where it learns consecutively new rules from instances represented by

the new features.

Other techniques in the ordinal context have been referred to Baccianella et al

in [4, 5]. Using only the filter approach for feature selection, authors used several

measures to identify feature relevance through the minimisation of the instances

variance over all classes, similarity, information gain and negative correlation ac-

cording to the class label, specifically developed for ordinal problems. Finally, Sousa

et al. [121] explored a concept introduced by Rodriguez et al. [106] where they

tackle the FS problem in one-step process through quadratic programming as rep-

resented in Equation (6). The quadratic term (Q in Equation (6)) would capture the

redundancy whereas the linear term (F in Equation (6)) would capture the relevance.

min
xxx

{
1

2
(1−α)xxxtQxxx−αF txxx

}
(6)

Here α is the trade-off between relevance and redundancy which can be empirically

defined. In order to capture the ordinal relation on data in this setting, authors chosen

the Minimum Spanning Trees (MST) as the linear term (F) to assess the increase

of complexity when a subset of features is removed. However, one of the issues
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identified in this approach concerns to the fact that authors did not take advantage

of the ordinal information that could be explicitly included on data (quadratic term).

4.2 Performance Measures

After considering the advantages and disadvantages, goals achieved and open issues

of the techniques presented in previous sections, the discussion of how to measure

the performance of such techniques has not been debated much.

Usually, a learning process consists in two main phases: A cross-validation phase

and an estimation of the model performance (F represented in Equation (5)) on a

real-world scenario (also known as the testing phase). In both situations, one has to

analyse the performance of a model given certain parametrization and its behaviour

in a non controllable environment, respectively. Herein, the question that one obvi-

ously poses is: How much did the model err? Or, how much the prediction differs

from the real outcome? Given certain assumptions of models design, it is clear, as

we will shortly show, that the metric chosen for this task is crucial.

It is interesting to see that in contrast to the plethora of existing methods con-

cerning multicriteria learning, only recently we witnessed some concerns to this

issue [20, 47, 81], disregarding advances performance made on the broader field of

machine learning [80]. Knowing that “no free lunch” theorems state that there is

not an algorithm that can be superior on all problems in regard to classification

accuracy [139], the assessment of an appropriate learning method given a specific

problem is desirable [80].

For classification problems, MER (Misclassification Error Rate) is currently one

of the most used measures. Its widely use make it a de facto standard when compar-

ing different learning algorithms by just counting the misclassifications occurred. In

other problems domains, it is usual to penalise the misclassifications by weighting

them by the magnitude of the error to avoid uneven results. When such happens,

MAE (Mean Absolute Error) and MSE (Mean Squared Error) measures are usu-

ally the most appropriate choices. Summing, the performance of a classifier can be

assessed in a dataset D through

1

N
∑

xxx∈D
|g(Cxxx)−g(Ĉxxx)|

1

N
∑

xxx∈D

(
g(Cxxx)−g(Ĉxxx)

)2

,

respectively, where g(.) corresponds to the number assigned to a class, N = card(D),

and Cxxx and Ĉxxx are the true and estimated classes. However, this assignment is arbi-

trary and the numbers chosen to represent the existing classes will evidently influ-

ence the performance measurement given by MAE or MSE. A clear improvement

on these measures would be to define them directly from the confusion matrix CM

(a table with the true class in rows and the predicted class in columns, with each en-

try nr,c representing the number of instances from the r−th class predicted as being

from c−th class):
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MAE =
1

N

K

∑
r=1

K

∑
c=1

nr,c|r− c| MSE =
1

N

K

∑
r=1

K

∑
c=1

nr,c(r− c)2

where K is the number of classes. We will always assume that the ordering of the

columns and rows of the CM is the same as the ordering of the classes. This pro-

cedure makes MAE and MSE independent of the numbers or labels chosen to rep-

resent the classes. To a certain degree, these two measures are better than MER be-

cause they take values which increase with the absolute differences between ‘true’

and ‘predicted’ class numbers and so the misclassifications are not taken as equally

costly.

In order to avoid the influence of the numbers chosen to represent the classes

on the performance assessment, it has been argued that one should only look at

the order relation between ‘true’ and ‘predicted’ class numbers. The use of Spear-

man’s rank correlation coefficient, Rs, and specially Kendall’s tau-b, τb, is a step

in that direction [70, 122]. For instance, in order to compute Rs, we start by defin-

ing two rank vectors of length N which are associated with the variables g(C) and

g(Ĉ). There will be many examples in the dataset with common values for those

variables; for these cases average ranks are used. If ppp and qqq represent the two rank

vectors, then Rs =
∑(pi− p̄)(qi−q̄)√

∑(pi− p̄)2 ∑(qi−q̄)2
. As we can see, Spearman’s coefficient is still

dependent on the values chosen for the ranks representing the classes and so it is

not completely appropriate to measure the performance of ordinal data classifiers.

More importantly, Rs looses information about the absolute value of the classes.

Kendall’s coefficient τb has been advocated as a better measure for ordinal variables

because it is independent of the values used to represent classes [70]. Its robustness

is achieved by working directly on the set of pairs corresponding to different obser-

vations. However, there are limitations: By working only with the relative order of

elements, it loses information about the absolute prediction for a given observation.

Other attempts have considered the analysis of the learner behaviour on a ROC

(Receiver Operating Characteristic) curve or its equivalent, AUC (Area Under

Curve). Despite empirical evidences of AUC providing more desirable properties

when compared to accuracy [12] only recently this topic was not only re-proposed

but also new evidences of its advantages were shown [59]. In this work, AUC is

demonstrated as an objective measure for selecting the best learning model, but, and

most important, refers to the need of developing better measures for learner design

and performance assessment [59]. In this line of research, in [134] it is compared

different ROC measurements. However, and despite the assumptions made, ROC

derived measures that assess a ranking for different performance do not quantify

the performance achieved by a learner [133]. Such analysis, although with different

purposes, has been conducted by [7] using Cohen’s kappa statistic.

On the other way, the discussion was revamped by Baccianella et al [3] through

an analysis of different derivations of MSE and MAE metrics for ordinal problems.

This work is key since it debates two main issues incurred on the performance mea-

surement of learners for this type of classification problems: Imbalanced classes

and classes with equal penalisation costs. In order to avoid the former problematic,
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a derivation from MAE is presented by averaging the deviations per class.

MAEM =
1

K

K

∑
i=1

1

g(Ĉi)
|g(Ci)−g(Ĉi)|

In the same line, the coefficient rint was recently introduced, taking into account

the expected high number of ties in the values to be compared [27]. In fact, the

variables C and Ĉ are two special ordinal variables. Because there are usually very

few classes compared to the number of observations, these variables will take many

tied values (most of them, in fact). Nevertheless, rint is sufficiently general and, if

there are no tied values, it can still be applied as it is. Like τb, rint assumes that the

only thing that matters is the order relation between such values, which is the same

as the order relation between the classes. This coefficient takes values in [−1,1], in

contrary to MAE (and MSE) which are upper-unbounded. The latter can be identi-

fied as a limitation. Another observation is that it is fair to compare MAE results in

two different applications with a different number of observations, N, since MAE is

properly normalised by N. However, if the applications involve a different number

of classes, K, it is not clear how to compare the performance obtained in the two

settings.

In [20] a different approach was taken. Even though the adaptation of the MAE

and MER to a confusion matrix form surpasses standard forms, there are still is-

sues regarding these metrics. Some of the vicissitudes as mentioned in [20] encom-

pass: Equally misclassification costs, metrics unable to evaluate example dependent

costs [14] or metrics more proper to ranking problems. Having Cardoso and Sousa

identified some key advantages of using the CM form, and given the merit of both

MAE and MER fundamental principles, they proposed a new one that takes advan-

tage of all as a single optimisation problem. This new metric chooses pairs of obser-

vations from the CM that do not contradict the relative order given by the classifier

and the true relative class order which minimise the cost of a global optimisation

procedure. The choice is done in a way that minimises the deviation of the pairs to

the main diagonal while maximising the entries values in the path that cross the CM.

This was formalised as

OC
γ
β
= min

{
1− ∑(r,c)∈path nr,c

N +
(
∑∀(r,c) nr,c|r− c|γ

)1/γ
+ β ∑

(r,c)∈path

nr,c|r− c|γ
}
, (7)

where the minimisation is performed over all possible paths from (1,1) to (K,K). γ
and β were defined based upon empirical experiments.

Other techniques can also go through data generators methodologies where one

can control the statistical properties herein aiding in the learners benchmark [47].

More importantly, techniques capable to manipulate Bayes error rate can foster new

lines of research where fair learners comparison [7] and the development of new

ones can take place.

In [20] it is raised a question that interesting enough has not been debated

since [81] in the ordinal context. As one knows, the usage of such metrics in the
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design of classifiers can be done on two distinct situations. A first use is ‘externally’

to the classifier, using the metric to select the best parametrization of the classifier

(usually when performing a cross-validation procedure). A second possibility is to

embed the new metric in the classifier design, adapting the internal objective func-

tion of the classifier, replacing loss functions based on standard measures by a loss

function based on the proposed measure. For instance, the standard loss function

of a neural network based on the square of the error or on cross-entropy could be

replaced by an error evaluated by an appropriate metric [59]. Lee [81] accomplished

such for the design of ordinal trees, but since then few works have addressed this

subject in the ordinal context.

It is interesting that only recently we saw a significant growth of the awareness

of this topic importance. Even though some works have already tackled this issue,

all lack on concretely assessing the performance of a given ordinal learning model.

Until now, new metrics have been designed and compared against MAE followed by

some reasoning. The problem resides how close a metric is in expressing accuracy.

Different prosaically strategies can pass through the definition of prior costs for each

class [95] or, when using a given set of different metrics, a meta-metric to assess the

performance of metrics should be in place as suggested by Cardoso [20].

5 Conclusion

Multicriteria (MC) has been studied for over more than five decades where recent

years presented interesting developments. Aside novel methodologies, a trend to-

wards the generalisation of this problem was identified where at the same time a

new light was shed over this topic thanks to a niche of applications. In this chapter

a thoroughly review was conducted on two major disciplines: Operations research

(OR) and artificial intelligence (AI).

MCDA has a strong connection with OR community. Fuzzy Set theory research

community was one that rapidly proposed new models towards these problems.

Their capability to handle uncertainty can be identified as an asset in these mod-

els. Even though in other research fields MC is giving its first steps, a new trend

is appearing as a number of different studies are taking place. On the other hand,

evolutionary approaches are still on the very beginning regarding ordinal problems.

It also has been claimed that some approaches do not cope well with many criteria

or do not capture correctly every rationale taken by the decision maker.

In the AI domain, it was described that albeit the myriad of techniques, some do

not totally incorporate or effectively use the additional information of order in the

classifier construction. Others have a higher complexity to be useful in real prob-

lems or require specific optimisation algorithms during the classifier construction.

Also, it was identified that is still common the usage of regression approaches to

solve the ordinal data problem. Notwithstanding, some improvements have been

achieved. Simplifications have been introduced through the usage of a standard bi-

nary classification techniques and fundamental principles towards the ordinal data
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problem. Such theories have proved to be valuable in the design of simpler classi-

fiers and when not possible, in the design of posterior rules to impose ordinality.

Another question that has recently been tackled concerns about finding good met-

rics for measuring learners performance. We reviewed many adaptations of standard

metrics and new ones that optimise different criteria of the learner behaviour.

In the end, and in spite of much of what has been achieved, a fair comparison

between methods of both fields is still lacking. It was also clear that MC is very rich

in terms of nomenclature. Having identified what has been achieved and current

open issues, it is expected that this study leads to future technical developments and

topic convergence.
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