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Abstract 

One of the most important management issues lies in de-
termining the best portfolio of a given set of investment 
proposals. This decision involves the pursuit of multiple 
criteria, and has been commonly addressed by implement-
ing a two-phase procedure whose first step identifies the 
efficient solution space. In this paper we introduce our 
algorithm called Non-Outranked Ant Colony Optimiza-
tion (NO-ACO) that optimizes portfolios with inter-
projects interactions whilst takes into account the DM’s 
preferences by incorporating a priori preferences articula-
tion.  Experimental tests show the advantages of our pro-
posal over the two-phase approach. Also, NO-ACO per-
formed particularly well for problems with high dimen-
sionality. 

Keywords: portfolio selection, interdependent projects, 
multicriteria optimization, preferences incorporation. 

1. Introduction 

Portfolio problems are ubiquitous in business and gov-
ernment organizations. Usually, there are more good ideas 
for projects or programmes than resources (funds, capaci-
ty, time, etc.) to support them ([1]). Manufacturing enter-
prises recognize that success depends on the selection of 
research and development (R&D) project portfolios, ex-
pecting that these projects permit them to develop new 
products that generate growing benefits. Local govern-
ments allocate public funds to projects and programmes 
that improve social and educational service. Environmen-
tal regulations and alternative policy measures attempt to 
mitigate harmful consequences of human activity ([2]). 
To fight poverty, governments in underdeveloped coun-
tries fund many helpful social programmes. 

Portfolio consequences are usually described by multi-
ple attributes related to the organizational strategy. A vec-
tor z(x)=<z1(x), z2(x), …, zp(x)> is associated to the conse-
quences  of a portfolio x considering p criteria. This is a 
vector representation of the portfolio’s impact. In the 
simplest case, z(x) is obtained from a cumulative sum of 
benefits of the selected projects, but under interacting pro-

ject conditions, it is necessary to consider the contribution 
of interdependent project groups. Without loss of general-
ity, we can assume that higher criterion values  are pre-
ferred to lower values. The best portfolio is obtained by 
solving:  

 

})(,),(),({max 21  xzxzxz pRx F
     (1) 

 
where RF is the feasible portfolios space, usually deter-
mined by the available budget, and by constraints for the 
kinds of projects, social roles and geographic zones. Prob-
lem 1 is badly defined mathematically, yet people must 
solve it. To solve Problem 1 means to find the best com-
promise solution according to the system of preferences 
and values of the decision maker (DM). 

In the scientific literature, the problem expressed by 
(1) has received great interest in R&D management by 
manufacturing and industrial enterprises (e.g. [3, 4, 5, 6, 
7, 8]). Most of these approaches can also be applied in 
public sector. Perhaps, what best characterizes the portfo-
lio problems in non-profit organizations are the emphasis 
on intangible criteria and, likely, a higher number of pro-
ject proposals and objectives to optimize. For example, in 
socially responsible organizations, the number of criteria 
used for capital investment may be about a dozen ([9]). 
Even more objective functions should be considered in 
basic research project management (cf. [10]). A high 
number of project proposals can apply for public support 
in a simple call for projects. For instance, in 2012 the U. 
S. state of Georgia had a list of over 1600 applicant pro-
jects only at the State Department of Transportation ([11, 
12, 13, 14]). There should be a large set of Pareto-
efficient solutions to Problem 1. However, the decision 
maker has to select only one portfolio according to her/his 
preferences on the portfolio’s consequences expressed by 
z(x). 

2. An outline of the state of the art 

Only non-dominated solutions to (1) can fulfill the 
necessary conditions for being considered the best portfo-
lio. So, most solution methods seek to generate the Pareto 
frontier, and later, by some interactive method, 
multicriteria procedure or heuristic, try to identify the best 
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compromise. These approaches assume that the DM has 
the capacity to make valid judgments about the set of ef-
ficient points until reaching the best compromise. This 
way to identify the best solution is commonly referred as 
the a posteriori preferences modeling (cf. [15]). 

Ghasemzadeh et al. ([16]) model preferences using a 
weighted-sum function. They approximate the Pareto 
frontier by changing the weights and solving the resultant 
model by 0-1 programming. Stummer and Heidenberger 
in [5] include synergy and redundancy in selecting R&D 
projects; their procedure consists of three phases: 1) filter-
ing the proposals and retaining those most promissory 
projects in order to reduce the set of projects to a "man-
ageable" size, 2) generating the efficient frontier of port-
folios for the reduced set by an integer linear program-
ming method, and 3) supporting the decision making pro-
cess, helping the DM to identify the best compromise by 
an interactive process. 

However, most recent works show the advantages of 
multiobjective metaheuristics methods to approximate the 
Pareto set (e.g. [8, 17, 18, 19, 20, 21, 22, 23]). In [24] 
Doerner et al. combine Ant Colony Optimization (ACO) 
with 0-1 dynamic mathematical programming to initialize 
the algorithm with enhanced solutions. One of the most 
complete proposals was suggested by Carazo et al. in [18, 
25], which model interactions among projects (such as 
Stummer and Heidemberger in [5]) and temporal depend-
encies, enabling the allocation of resources not used in 
previous periods. By means of a Scatter Search, Carazo et 
al. ([18]) outperform SPEA2 [26] in the range of 25-60 
projects considering up to six objective functions. 

Compared to multi-objective optimization methods 
based on mathematical programming, metaheuristic ap-
proaches exhibit relevant advantages: 1) they have the 
ability to deal with a set of solutions (called population) at 
the same time, allowing to approximate the efficient fron-
tier in a single algorithm run, and 2) they are less sensi-
tive to the mathematical properties of objective functions 
and problem constraints ([27]). 

Despite their advantages, most metaheuristic algo-
rithms are degraded when trying to solve problems with 
more than a small number of objectives ([28, 29]). Also, 
when they try to approximate the efficient frontier, gener-
ate a very large amount of solutions. This exceeds the 
cognitive abilities of an average DM to identify satisfac-
torily the best compromise. Even if we could apply the 
multicriteria decision analysis methods, this process can 
turn too hard, because these methods do not perform well 
on decision problems with so many alternatives. 

In order to address these drawbacks, in [30] Fernandez 
et al. proposed a method of preference incorporation in 
multiobjective evolutionary optimization, which was after 
extended in [10] to project portfolio optimization. They 
use a fuzzy outranking preference system to identify a 
small privileged subset of Pareto-efficient solutions. The 
model is independent of the number of criteria considered 
by the DM, and achieves to solve instances in a range of 
100-500 projects and 9-16 objectives. Another advantage 

is its high tolerance to imprecise objective values, and its 
capacity of handling ordinal and qualitative criteria. 
However, the model of Fernandez et al. ([10, 30]) does 
not consider interactions among projects, what is an im-
portant concern in most practical applications. 

In light of this feedback, we propose a portfolio opti-
mization metaheuristic approach based on the preferential 
model of Fernandez et al. ([10]). So, our metaheuristic 
inherits all advantages of their model, but we have incor-
porated the capacity to solve portfolios with interdepend-
ent projects. Several papers in the literature consider the 
synergy as an inherent characteristic of the portfolio prob-
lem (e.g. [5, 18, 24, 31]). Our solution approach, called 
Non-Outranked Ant Colony Optimization (NO-ACO) 
shows promising results compared to other related algo-
rithms. Experimental results provide evidence that is very 
capable to get close to the Pareto frontier when is looking 
for the best compromise. 

3. Preference incorporation in multicriteria optimiza-

tion metaheuristic approaches 

Because it would be difficult to determine the Pareto fron-
tier in real applications, most search algorithms are lim-
ited to a predetermined number of efficient solutions. 
With the intention of finding a representative sample of 
the Pareto frontier, some algorithms include distance 
measures that favor the spread among solutions (e.g. [32, 
33]). However, this do not ensure that the best compro-
mise can be found, and if even so, the solution set exceeds 
the capacity of an average DM to make the decision pro-
cess successfully. 

In order to make easier the decision making phase, the 
DM would agree with incorporating his/her multicriteria 
preferences into the search process. This preference in-
formation is used to guide the search towards the Region 
Of Interest (ROI) ([34]), the privileged zone of the Pareto 
frontier that best matches the DM’s preferences. 

DM preference information can be expressed in differ-
ent ways. According to Bechikh ([35]), the most com-
monly used ways are the following: 
 those in which importance factors (weights) are as-
signed by the DM to each objective function (e.g. [36, 
37]), 
 those in which the DM makes pair-wise comparisons 
on a subset of the current population in order to rank the 
sample’s solutions (e.g. [38, 39]), 
 when pair-wise comparisons between pairs of objec-
tive functions are performed in order to rank the set of 
objective functions (e.g. [40, 41]), 
 those based on goals or aspiration levels to be 
achieved by each objective (reference point) (e.g. [42, 
43]), 
 when the DM identifies acceptable trade-offs between 
objective functions (e.g. [44]); 
 when the DM supplies the model’s parameters to build 
a fuzzy outranking relation (e.g. [10, 30]); 
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 construction of a desirability function which is based 
on the assignment of some desirability thresholds (e.g. 
[45]). 

In the field of portfolio optimization, the model of Fer-
nandez et al. ([10]) has shown substantial benefits for 
tackling these problems. This model is briefly explained 
below. 

 
3.1. The best portfolio in the sense of Fernandez et al. 

([10]) 

The proposal by Fernandez et al. ([10, 30]) is based on the 
relational system of preferences described by Roy in [46]. 
A crucial model is the degree of credibility of the state-
ment "x is at least as good as y"; this is represented as 
σ(x,y) and could be calculated using proven methods of 
literature, such as ELECTRE ([47]) and PROMETHEE 
([48]). The proposal by Fernandez et al. ([10]) identifies 
one of the following relations for each pair of portfolios 
(x,y) controlled by the parameters λ, β, and ε (0 ≤ ε ≤ β ≤ 
λ and  λ≥0.5): 
1) Indifference: From the DM perspective, both alterna-
tives have a high degree of equivalence; therefore he/she 
cannot state that one is preferred over other. This relation-
ship is denoted as xIy. In terms of σ(x,y) is defined as the 
conjunction of:  

a. σ(x,y) ≥ λ  σ(y,x) ≥ λ. 
b. |σ(x,y) − σ(y,x)| ≤ ε. 

2) Strict preference: Denoted as xPy, represents the situa-
tion when the DM significantly prefers x. It is defined as a 
disjunction of the conditions: 

a. x dominates y. 
b. σ(x,y) ≥ λ  σ(y,x) < 0.5. 
c. σ(x,y) ≥ λ  (0.5 ≤ σ(y,x) ≤ λ)  (σ(x,y) − 

σ(y,x)) ≥ β. 
3) Weak preference: Represented as xQy, models a state 
of doubt between xPy and xIy. It can be defined as the 
conjunction of: 

a. σ(x,y)≥λ  σ(x,y)≥σ(y,x). 
b. ¬xPy  ¬xIy. 

4) Incomparability: From the point of view of DM, there 
is a high heterogeneity between the alternatives, so he/she 
cannot set a preference relation between them. It is denot-
ed as xRy, and is expressed in terms of σ(x,y) as 
xRyσ(x,y) < 0.5  σ(y,x)<0.5. 
5) k-Preference: Represents a doubt between xPy and 
xRy, and is denoted as xKy. (x,y)K if the following three 
conditions are true:   

a. 0.5 ≤ σ(x,y) < λ. 
b. σ(y,x) < 0.5. 
c. σ(x,y)-σ(y,x) > β/2 

Indifference corresponds to the existence of clear and 
positive reasons that justify equivalence between the two 
options. Besides, incomparability represents situations 
where the DM cannot, or does not want to, express a pref-
erence. Strict preference is associated with conditions in 
which the DM has clear and well-defined reasons justify-
ing the choice of an alternative over the other. However, 

due to the DM usually has a non-ideal behavior, there ex-
ist the weak preference and the k-preference. These rela-
tions can be considered as “weakened” ways of the strict 
preference. 

The model parameters need to be adjusted according to 
the specific characteristics of the problem and the DM. 
This can be done by an interaction between the DM and a 
decision analyst, utilizing, if necessary, indirect elicitation 
methods to support this task ([49, 50, 51]). 

From a set of feasible portfolios O, the preferential sys-
tem defines the following sets: 
1) S(O,x) = {yO | yPx}, composed of the solutions that 
strictly outrank x. 
2) NS(O) = {xO | S(O,x) = }, is known as non-strictly-
outranked frontier. 
3) W(O,x) = {yNS(O) | yQx  yKx}, composed of the 
non-strictly-outranked solutions that weakly outrank x. 
4) NW(O) = {xNS(O) | W(O,x) = }, is known as non-
weakly-outranked frontier. 

Obviously, solutions that presumed to be the best com-
promise among a set O of actions must belong to NS(O). 
However, there may be more than one solution with such 
feature, so more information is needed to describe the 
DM’s preferences and enhance the optimization process. 
A solution belonging to NW(O) has a greater potential to 
be the best compromise that those that do not have this 
condition. 

Besides the weak outranking, the net flow score is an-
other measure used by Fernandez et al. ([10, 30]) to iden-
tify the DM’s preferences in the non-strictly-outranked 
frontier. It can be defined as: 
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Since Fn(x)>Fn(y) indicates a preference for x over y, 

Fernandez et al. ([10]) define: 
1) F(O,x) = {yNS(O) | Fn(y)>Fn(x)}, as the set of non-
strictly-outranked solutions that surpass in net flow to x. 
2) NF(O) = {xNS(O) | F(O,x) = }, is known as net 
flow non-outranked frontier. 

Then, the model proposed in [10] suggests finding the 
best compromise in O by solving Problem 3: 

 

 }),(,),(,),({min xOFxOWxOSOx      (3) 

 
with pre-emptive priority favoring |S(O,x)|. Fernandez et 
al. proved in [10] that the best portfolio compatible with 
the fuzzy outranking relation σ should be a (0,0,0) solu-
tion to Problem 3 with O=RF. 

4. Our proposal 

Fernandez et al. ([10]) solve Problem 3 by using an evolu-
tionary algorithm inspired by NSGA2. This performs well 
when interdependent projects are not considered. Howev-
er, if project interaction is addressed, the crossover opera-
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tion could remove convenient synergetic projects from the 
portfolio. Therefore, we prefer to use a building-oriented 
metaheuristic approach. 

Our algorithm, NO-ACO (Non-Outranked Ant Colony 
Optimization), is based on the optimization idea proposed 
in [52] by Dorigo and Gambardella which has been 
adapted more than once to find a set of Pareto solutions 
(e.g. [31, 53, 54]). Unlike other multiobjective ant-based 
optimization methods, NO-ACO incorporates the prefer-
ence model from [10, 30]. The algorithm performs the 
optimization process through a set of agents called ants. 
Each ant in the colony builds a portfolio by selecting a 
project at a time. The way how to choose each project is 
called selection rule. When all ants have finished con-
structing their portfolios, these are evaluated and each ant 
drops pheromone according to this assessment. Phero-
mone is a learning kind that allows next generation of 
ants to acquire knowledge of the structure of the best so-
lutions. To prevent premature convergence, the colony 
includes a strategic oblivion mechanism, known as evapo-
ration, which reduces the pheromone trail every specified 
period of time. 

In order to improve the intensification, NO-ACO in-
cludes a variable neighborhood search for the best solu-
tions. This local search runs once per iteration. 

This intensifier scheme is complemented by a diversi-
fier mechanism, in which portfolios that have remained 
non-strictly-outranked for more than γ generations are 
removed from the solution set. This allows relaxing the 
selective pressure. This behavior is desirable whether the 
algorithm has only found out local optima. 

The optimization process ends when reaching a prede-
termined termination criterion, such as a maximum num-
ber of iterations, or subsequent recurrence of the best so-
lution. The following sections describe in further detail 
the elements of NO-ACO algorithm. 

 
4.1. Pheromone representation 

Pheromone is usually represented by the Greek letter τ 
and is modeled in NO-ACO as a two dimensional array of 
size N×N, where N is the total number of applicant project 
proposals. The pheromone between two projects i and j is 
represented as τi,j, and indicates how good is that both 
projects receive financial support. Pheromone values are 
in range (0,1], initializing at the upper limit to prevent 
premature convergence. The pheromone matrix acts as a 
reinforcement learning structure reflecting the knowledge 
gained by ants that formed high-quality portfolios. Pher-
omone transmits it to ants of the next generation for 
building better solutions. 

 
4.2. Selection rule 

Each ant builds its portfolio by selecting one by one the 
projects, taking into account two factors: 
1) Local knowledge: This considers the benefits provided 
by the project to the portfolio and how much resource it 

consumes. Local knowledge for a project i is denoted as 
ηi and is calculated by the expression:  
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where ci is the cost of project i, p is the number of objec-
tives, X is the applicant project list, and fj(i) the benefits of 
the project i to the jth objective. Formula 4 promotes the 
inclusion of projects that have a good balance between 
intended objectives and requested budget. 
2) Global knowledge: This takes into account the experi-
ence of previous generations ants, expressed in the pher-
omone matrix. The global knowledge for the project i to 

be included in a portfolio x is denoted by ),( ix  and is 

defined by the expression:  
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where N is the total number of applicant projects, xj is the 
binary value indicating whether the jth project is included 
in the portfolio x, and τi,j is the pheromone for projects i 
and j. The numerator in (5) is the total sum of pheromone 
between i and each project in the portfolio x; and the de-
nominator is the cardinality of x. The global knowledge 
favors the selection of projects that were part of the best 
portfolios in previous generations. At the first iteration 
this knowledge has no effect on portfolio formation pro-
cess. 

Both knowledge factors are linearly combined into a 
single evaluation function: 

 

),()1(),( ixwwix i         (6) 

 
where w is a weight parameter between global and local 
knowledge, and should receive a value between zero and 
one. Each ant in the colony has a different value for w 
generated at random. Function Ω forms the basis of the 
selection rule. 

If x is a partially-constructed portfolio, one or more 
projects may be included to x. From among all project 
proposals, only those ones that are not part of x and 
whose inclusion favors the fulfillment of budgetary con-
straints should be considered. This set is known as candi-
date project list and is denoted by X Ө. Note that X Ө is a 
subset of X. The choice of what jX Ө will be added is 
made by using the selection rule: 
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where j is the next project to be included,  is a pseu-
dorandom number between zero and one; α1 is a parame-
ter that sets the intensification probability in the algorithm 
(choosing the project with the greatest value of Ω); whilst 
α2−α1 is the probability to trigger a middle state between 
intensification and diversification (selecting randomly a 
project i with probability proportional to its assessment 
Ω), this selection scheme is represented by L ; in the 

event that >α2, diversification is promoted by means of 
the function ℓ (taking a project  uniformly at random). 
 
4.3. Pheromone laying and evaporation 

At the beginning of the first iteration, the pheromone ma-

trix is initialized to 1, ji  for all NNji ),( . After 

that, each ant constructs a feasible portfolio. In a colony 
with n ants, n new solutions are generated at the end of 
each iteration, and also there is a set of size m with the 
best portfolios found out in previous iterations. If all al-
ternatives are integrated into a set O whose cardinality is 
n+m, we can identify the non-strictly-outranked front 
NS(O). 

In addition, NS(O) is subdivided into domination fronts 
similarly to NSGA-II ([32]). The fronts are obtained con-
sidering two objectives to minimize: W(O,x) and F(O,x),  
according to the best-compromise definition given in (3). 
The set composed by these fronts is denoted by 

},,,,{ 121   kFFFF , where 1F  contains the non-

dominated solutions, 2F contains the dominated by only 

one solution, 3F the dominated by two solutions, and so 

forth. In general, the solutions dominated by k solutions 

are in 1kF . The setF will be used in the pheromone inten-

sification in order to increase the selective pressure to-
wards the best compromise. 

Each pair of projects (i,j) for each solution cO inten-
sifies the pheromone trail according to the expression: 
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If c is a non-strictly-outranked solution, then there is a 

k such that kc F . The cpheromone increase depends on 

k, and is defined as: 
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If there are cycles in the strict preference relation, no 

solution can be identified into NS(O). This may result 
from a wrong settlement of model parameters; in this 
case, a closer interaction with the DM will be required for 
reaching a consistent preference representation. Another 
reason may be a high heterogeneity in preferences when 
the DM is a conflicting group. 

At the end of each iteration, the entire pheromone ma-
trix is evaporated through a multiplication by a constant 
factor between zero and one, denoted as ρ. 

 
4.4. Local search 

The algorithm intensification is promoted by a greedy 
variable-neighborhood local search that is only carried out 
on non-strictly-outranked solutions. This search explores 
regions near to the best known solutions by a simple 
scheme consisting of selecting randomly v projects, and 
generating all possible combinations of them for each so-
lution in the non-strictly-outranked frontier. Small values 
for v provoke a too greedy behavior, whereas large values 
produce intolerable computation times. In our experi-
ments we obtained a good balance between both by using 

 Nv ln .  

5. Case study: Optimization of social assistance port-

folios 

Consider a DM facing a portfolio problem, with 100 pro-
ject proposals that attempt to benefit the most precarious 
social classes. The project quality is measured as the 
number of beneficiaries for each of nine criteria estab-
lished previously. Each objective is associated to one of 
three classes (extreme poverty, lower class and lower-
middle class) and one of three levels of impact (low, me-
dium and high). 
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Table 1: Effect of preferences incorporation on the Pareto Ant Colony Optimization algorithm 

Instance Algorithm 
Time  (se-

conds) 

Size of the 

solution set 

Non-dominated 

solutions in 

O1 O2  

Solutions belong-

ing to NS(O1 

O2) 

Obtains the best 

compromise in   

O1 O2 

1 
P-ACO 3448.07 2006      928   10 
P-ACO-P  536.66 15 15 10 

2 
P-ACO 3470.29 2514 1295 7 
P-ACO-P 775.94 19 19 13 

3 
P-ACO 3485.16 2456 280 13 
P-ACO-P 1112.49 34 34 17 

4 
P-ACO 3591.27 2587 1392 10 

P-ACO-P 734.58 38 37 19 

5 
P-ACO 3525.85 2245 1165 10 
P-ACO-P 1035.85 21 21 15 

Note: O1 and  O2 are the solution sets generated by P-ACO and P-ACO-P respectively 
The best compromise is a (0,0,0) solution to Problem 3 

 
The total budget to distribute is 250 million dollars. 

The proposals can be grouped into three types according 
to their nature, and into two geographic regions according 
to the impact location. Furthermore, desiring to provide 
equitable conditions, the DM imposes the following re-
strictions: 1) the budget allocated to support each project 
type should vary between 20% and 60% of the total 
budget, and 2) the financial support allocated to each re-
gion must be at least 30% of the total, and no more than 
70%. 

Also, the DM has identified 20 relevant interactions 
among projects: four of them are cannibalization phe-
nomena, six correspond to situations of mutually exclud-
ing projects, and ten are synergism interactions. There are 
up to five projects per interaction. Into our algorithm, the-
se relations are modeled as in [5]. 

Below, we present a range of experiments to verify the 
validity and advantages of our approach to solve this case 
study. They give evidence of the benefits of incorporating 
DM preferences during the optimization process, and 
thus, they also prove that our approach has good potential 
in solving real resource-allocation problems. 

 
5.1. Effect of the DM´s preference incorporation 

In order to appraise which is the effect on a multi-
objective optimization algorithm by incorporating DM 
preferences, we implemented the P-ACO algorithm pro-
posed by Doerner et al. in [31]. 

To the best of our knowledge, P-ACO is the most 
prominent ant colony algorithm applied to solve project 
portfolio selection. 

We also developed a version of P-ACO including the 
preferential model described in Section 3. This adaptation 
was called P-ACO with preferences (P-ACO-P). The lat-
ter, instead of approximating the Pareto frontier defined 
by the nine maximizing objectives of the problem, 
searches the best compromise expressed by (3). It is easy 
to prove that the set of solutions pursued by P-ACO-P is a 
subset of P-ACO’s. 

In order to reflect a credible decision situation, we as-
sign the values suggested by Fernandez et al. in [30] to 
the preferential model parameters. 

Both algorithms were programmed in Java language, 
using the JDK 1.6 compiler, and NetBeans 6.9.1 as inte-
grated development environment. The experiments were 
run on a Mac Pro with processor Intel Quad-Core 2.8 
GHz and 3 GB of RAM. The P-ACO parameter setting 
was the suggested by Doerner et al. ([31]). The version 
that incorporates preferences has the same setting values. 

Table 1 shows the experimental results on five artifi-
cial instances following the case-study features.  

As is observed in Table 1, incorporating preferences 
provides a closer approximation to a privileged region of 
the Pareto frontier. The version considering preferences 
provides solutions that dominated the 57%, on average, of 
solutions from the algorithm original version. There is 
also a significant run-time reduction (in the test cases, it 
was 76% on average). Also, if the model of preferences 
matches with the DM´s preferences, the real best com-
promise among the set of all portfolios generated is al-
ways identified by P-ACO-P. Furthermore, when the DM 
has to choose one alternative as the final decision, the 
thousands of portfolios from P-ACO shall make difficult 
to make a decision. By incorporating preferences, this 
drawback is very strongly reduced. 

 
5.2. Analysis of the algorithm performance 

This section is presented with the intention to provide 
evidence of the performance of our algorithm NO-ACO. 
The main differences from the P-ACO-P (with prefer-
ences) are presented in Table 2. In order to verify whether 
the NO-ACO strategies have been properly instantiated, 
in this section we compare the performance of NO-ACO 
with P-ACO incorporating preferences. 

We have deactivating the local search of our algorithm, 
with the intention of achieving comparison conditions as 
balanced as possible. 

The experimental results are shown in Table 3, where 
can be observed that, although P-ACO-P finds larger so-
lution sets, most of these are suboptimal solutions with 
respect to NO-ACO’s. So the non-strictly-outranked fron-
tier is better approximated by NO-ACO. 
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Table 2: Main differences between P-ACO (with preferences) and NO-ACO algorithms 
Algorithm element The way like P-ACO-P carries out it The way like NO-ACO carries out it 

Pheromone represen-
tation 

A two-dimensional matrix with size N p´ . Where 

N is the number of applicant projects and p is the total of 
criteria. 

A two-dimensional matrix with size N N´ . 

Pheromone laying 
The best and the second best solutions for each ob-

jective intensify the pheromone. 
The solutions intensify the pheromone according to 

dominance fronts. 
Pheromone evapora-

tion 
The ants do it during the solution building. 

The entire pheromone matrix is evaporated once per 
iteration. 

Lifespan for  the ants 
It is randomly generated. Every time an ant adds a 

project, the lifespan is decreased by one. 
It is equal to budget. Every time an ant adds a project, 

the project cost is deducted from the lifespan. 

Local knowledge It promotes the forming of feasible portfolios. 
It promotes the inclusion of projects with higher ratio 

between benefits and cost. 
Ignoring old solu-
tions of the search 

process. 
It is not considered. 

Non-strictly-outranked solutions with more than λ it-
erations are taken out from the search. 

  
 

In addition, for all test instances, our proposal is able to 
identify the best compromise from both solution sets. 
Concerning run times, there are no significant differences 
according to a Student's t test for paired samples, using a 
confidence level of 90%. 

The NO-ACO parameter setting used to obtain the re-

sults in Table 3 is: 65.01  , 75.02  , 10.0 , 

5 , 21max rep , and 1000max iter . Moreover, the 

colony has one hundred ants. This setting was obtained 
from exploring parameters values with the objective of 
achieving a good algorithmic performance.   

 
5.3. Solving problems with high dimensionality 

The tests shown in this section are limited to one hundred 
projects and nine objectives. These dimensions exceed 
those addressed by most studies in the scientific literature 
(e.g. [24, 25, 31, 61]). These dimensions are appropriate 
for most portfolio problems in the business sector; how-
ever, in public organizations, the problem size may be 
larger. In order to explore the capacity of our algorithm to 
solve instances with a large size, we generated a set of 
instances with 500 projects and 16 criteria to optimize. 

The interpretation is similar to that described at the 
beginning of this section: there is a budget to distribute to 
250 million dollars, also the DM want to keep balancing 
conditions and has grouped the projects into two areas 
and in three regions and imposed budgetary constraints 
for each one (30-70% for each area and 20-60% for each 
region). In addition, the DM has identified 100 relevant 

interactions between projects: 20 are cannibalization phe-
nomena, 30 correspond to redundancy among projects 
and 50 are synergies that generate added value. 

Unlike the 100-projects case, in these instances it is 
not possible to generate an acceptable approximation of 
the Pareto frontier that can be used as reference for com-
parison purposes. Even the best multiobjective algorithms 
are degraded attempting to generate it. This combined 
with computation times that would be intolerable or an 
abrupt interruption of the algorithms if they fail to con-
verge towards the frontier. 

Among several heuristics frequently used, we chose 
one based on assigning budgetary resources according to 
project-ranking information. Here, a project ranking is 
built by using a cost-benefit ratio; the benefit is modeled 
by a weighted sum, whose weights are adjusted to reflect 
the DM’s preferences. The project ranking is built follow-
ing the order given by the cost-benefit ratio. 

Once the set of projects has been ranked, the resources 
may be allocated by following the priorities implicit in the 
rank order until no resources are left. This ensures, at 
least, the inclusion of projects that provide more benefit 
per dollar. 

Synergism can be tackled if the inter-projects interac-
tions are modeled as dummy projects that can be ranked. 
Table 4 concentrates only five of 164 solutions found out 
by NO-ACO as an approximation to non-strictly-
outranked frontier. Our algorithm converges after 21,625 
seconds. The best compromise found (Solution 1) outper-
forms the ranking-based portfolio, even in Pareto sense.  

 
Table 3: Comparative analysis of the NO-ACO performance 

Instance Algorithm 
Time  (se-

conds) 

Size of the 

solution set 

Non-dominated 

solutions in   

O1 O2 

Solutions be-

longing to 

NS(O1 O2) 

Obtains the best 

compromise in 

O1 O2 

1 
P-ACO-P 536.66 15 0 0 
NO-ACO 248.68 10 10 10 

2 
P-ACO-P 775.94 19 0 0 
NO-ACO 891.76 6 6 6 

3 
P-ACO-P 1112.49 34 0 0 
NO-ACO 789.09 5 5 5 

4 
P-ACO-P 734.58 38 0 0 
NO-ACO 763.98 7 7 7 

5 
P-ACO-P 1035.85 21 16 9 
NO-ACO 456.43 10 10 9 

 
 
 

Note: O1 and  O2 are the solution sets generated by P-ACO and P-ACO-P respectively 
The best compromise is a (0,0,0) solution to Problem 3
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Table 4: A sample of the non-strictly-outranked frontier generated by NO-ACO compared to the ranking-based solution. 

  
Portfolio 

Values of objective functions Number of solutions that outranks it 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 strictly weakly 
in net flow 

score 

b
y
 N

O
-A

C
O

 

1 106 806 504 612 107 811 502 605 983 871 473 610 108 847 499 597 0 0 0 

2 96 766 467 556 98 786 459 562 988 772 457 565 98 756 454 545 0 0 1 

3 98 730 461 562 99 740 475 564 988 796 464 563 95 767 453 541 0 1 2 

4 100 742 479 545 94 744 459 565 992 785 451 547 96 745 447 535 0 2 1 

5 96 742 462 553 95 751 456 562 999 809 454 562 94 776 452 546 0 2 1 
                                    

   

Ranking-
based 

96 736 471 558 95 762 453 561 944 768 469 565 97 756 436 540 5 0 5 

 
Another ten instances were generated following the 

same features. When they were solved by NO-ACO, we 
observe the same behavior:  the ranking-based portfolio 
was dominated by the best compromise by NO-ACO. 
This test gives some evidence of the applicability of our 
approach to solve large-scale real instances. 

6. Conclusions and future work 

We have presented an original proposal to optimize inter-
dependent projects portfolios.  This proposal is an adapta-
tion of the well-known Ant Colony Optimization 
metaheuristic, but incorporating preferences based on the 
outranking model by Fernandez et al. (10). 

Our algorithm (NO-ACO) searches for optimal portfo-
lios in synergetic conditions and can handle interactions 
impacting both objectives and costs. Redundancy is also 
considered during portfolio formation.  

By incorporating preferences, the selective pressure 
toward a privileged zone of the Pareto frontier is in-
creased. Thus, a zone that matches better the DM’s pref-
erences can be identified. 

In comparison with other metaheuristic approaches that 
do not incorporate preferences, NO-ACO achieves a bet-
ter closeness to the true Pareto front with less computa-
tional effort. 

Being enriched by preferences, our proposal acquires 
the ability to solve efficiently portfolio problems with 
higher dimensions than those reported in scientific litera-
ture. 

Compared to the popular ranking-based method, NO-
ACO finds out solutions that outperform to the ranking-
based portfolio, both in Pareto dominance and strict out-
ranking. 

As future work we are going to add the alternative of 
partial project support. It will also be important to explore 
the limits of this approach, by finding the top size within 
instances can be solved with acceptable performance. 
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