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Abstract

Purpose: We present a new optimization technique for planning single arc VMAT (volumetric

modulated arc therapy).

Methods: First, a convex multicriteria dose optimization problem is solved for an angular grid of

180 equi-spaced beams. This allows the planner to navigate the ideal dose distribution Pareto

surface and select a plan of desired target coverage versus organ sparing compromise. The

selected plan is then made VMAT deliverable by a simple fluence map merging and sequencing

algorithm, which combines neighboring fluence maps based on a similarity score and then delivers

the merged maps together, simplifying delivery. Successive merges are made as long the dose

distribution quality is maintained.

Results: The method is applied to three cases: a prostate, a pancreas, and a brain. In each case,

the Pareto selected plan is matched almost exactly with the VMAT merging routine, resulting

in a high quality plan delivered with a single arc in less than three minutes on average.

Conclusions: The presented method offers significant improvements over existing VMAT algo-

rithms. The first is the multicriteria planning aspect, which greatly speeds up planning time

and allows the user to select the plan which represents the most desirable compromise between

target coverage and organ at risk sparing. The second is the (user-chosen) epsilon-optimality

guarantee of the final VMAT plan. Finally, the user can explore the tradeoff between delivery

time and plan quality, which is a fundamental aspect of VMAT that cannot be easily investigated

with current commercial planning systems.

1 Introduction

In the late 1990s, intensity modulated radiation therapy came on the clinical scene and quickly

rose to a dominant position in radiation treatment. The relatively simple idea behind IMRT – to

block flat radiation fields with the leaves of a collimator in order to produce spatially modulated

fields – took time to realize due to both hardware and computational challenges. In 1982, Brahme

described the dosimetric advantages of modulated beam fluence profiles [1]. Seven years later,

both Webb and Bortfeld developed algorithms for optimizing fluence maps [2, 3], but it was not

until seven years later that commercial IMRT systems (MLCs and their associated control systems)

became available [4].



It is interesting to note that already by 1995, i.e. before commercial IMRT systems were

available, rotational arc therapy, where the gantry rotates while MLC modulated beams are being

delivered, was proposed [5]. It is only in the last couple of years however that hardware and software

vendors have made rotational therapy commercially available (with the exception of TomoTherapy,

which is a rotational therapy technique but is not considered in this paper because the optimization

problem is fundamentally different), and this is largely due to the difficulty in treatment planning

for such a large scale problem.

VMAT (volumetric modulated arc therapy, which is the term we will use throughout for rota-

tional therapy delivered with a linac and an MLC) is a larger optimization problem than IMRT

because it delivers radiation from every angle around the patient, and therefore dose computations

need to be done for far more angles than IMRT. An even bigger hurdle presented by VMAT opti-

mization is due to the coupling between adjacent angles: for efficient VMAT delivery, one should

not move the MLC leaves more than necessary between neighboring angles. If VMAT is to be

optimized with delivery time in mind, leaf positions need to be accounted for, which results in a

large scale non-convex optimization. This non-convexity arises due to the non-linear mapping from

leaf position to voxel dose: if one plots dose to a given voxel versus leaf position for a single leaf,

the result is a sigmoid-shaped curve.

If delivery time would not be considered, then VMAT optimization is equivalent to a large

IMRT optimization problem, and could therefore be solved by any of the methods developed for

IMRT over the last 15 years. However, VMAT is about more efficient radiation delivery, and thus

a VMAT optimization system should allow the user to select an appropriate compromise between

delivery time and dose distribution quality.

The computational challenges of VMAT optimization have a direct impact on clinical VMAT

usage. While the radiation therapy community generally agrees that VMAT plans are as good as or

superior to IMRT plans, it is also well known that VMAT planning remains a great challenge and

can be much more time consuming than IMRT planning [6, 7]. Multicriteria optimization (MCO)

has been shown to be successful in reducing the planning time and increasing the plan quality for

IMRT [8]. Since VMAT is a more challenging planning problem, MCO has the potential for even

greater impact here.

It is possible to blindly write down the VMAT optimization problem and then apply various

optimization algorithms to try to solve it. However, due to the complexity of the problem, we

feel it is more useful, both for algorithm development and algorithm exposition, to first clearly

understand the physical basis (hardware, treatment dose parameters, etc.) of the VMAT problem.

To that end, we take the next couple of paragraphs to describe the relevant details.

Assuming a single fraction delivers 2 Gy to the target, if radiation were delivered to the patient

via a single open field, it could be done in 200 monitor units (100 MU = 1 Gy is a standard MU

calibration). A typical dose rate is 600 MU per minute, which means that it would take 20 seconds
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to deliver the 2 Gy with a 10×10 cm field. At a maximum gantry speed of 6 degrees per second, a

single revolution takes 60 seconds. Therefore, for a single revolution VMAT plan at maximal dose

rate and gantry speed, one will see mostly small segments (on the rough order of 20/60 = 1/3 the

size of a 10×10 cm field). If one is willing to have the beam slow down to an average of half speed,

completing the single arc in 144 seconds, one would see on average segments with a further 50%

reduction in size.

With a maximum leaf speed of 2.5 cm/sec, leaves can travel across a 10 cm field in 4 seconds,

in which time the gantry can rotate up to 20 degrees. To deliver highly modulated fields that are

spaced close together, the gantry may need to slow down. In general, in a VMAT delivery the

gantry needs to slow down when it takes longer to deliver the fluence pattern (required over some

arc portion) than can be done at top gantry speed. It is useful to break this situation into two cases

that represent the two causes for gantry slowing. The first case is when the fluence map has fluence

levels that exceed the maximal fluence level that can be delivered at top gantry speed over the

given arc portion. This clearly requires the gantry to slow down. The second case is when the field

is modulated so much that it takes more time than available at top gantry speed to deliver all the

isolated humps of the fluence map. The reason to distinguish these two cases is the following: in

the first case, assuming the fluence profile is flat but at a large value, leaf speed is not the limiting

factor: the gantry needs to slow down just to get enough dose in. For the second case however, the

modulated fields might be able to be delivered without slowing down the gantry if the leaves could

move fast enough.

A useful relationship here is that delivery time for a fluence map to be delivered by a left-to-

right leaf sweep across the field is equal to the time it takes for the leaves to cross the field at

top leaf speed plus the sum-of-positive-gradients (SPG) for the field (see Equation 3). The SPG

for an IMRT field is a measure of the “ups and downs” of the field (the precise mathematical

description is given in [9], and also briefly in the paragraph herein right before Equation 3). SPG

can be minimized exactly in a convex optimization framework, whereas leaf travel distance, if

incorporated up-front in the optimization, results in a non-convex problem. In our approach, we

handle leaf travel issues in a VMAT-customized fluence map merging-and-sequencing routine which

explicitly ensures that the dose distribution quality is maintained, while the delivery efficiency is

successively improved. Our algorithm is designed to solve one of the key design issues of VMAT

planning: where to optimally slow down the gantry. By merging like neighboring fluence maps and

validating that the dose distribution after the merge is still good, we eliminate unnecessary gantry

slow downs which arise from “over-delivery” of fluence maps. With our approach, the leaves travel

back and forth at a high frequency only when needed and likewise the beam slows down only when

necessitated by leaf travel requirements or SPG requirements.

VMAT treatments are currently delivered with Elekta [10] and Varian [11] equipment, and

VMAT-like deliveries have been recently reported using Siemens equipment [12]. The treatment
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delivery systems deployed by the different manufacturers have different designs and thus impose

different delivery constraints in treatment planning. The Elekta and Varian linacs both allow dy-

namic machine parameter changes during the irradiation whereas for Siemens the delivery proceeds

via a burst mode in a step and shoot fashion. For the Siemens system, where dynamic delivery

restrictions do not play a role, a sequencer such as that advanced by [13] should be used to mini-

mize the total beam on time in MU and the number of beam apertures required. For the dynamic

VMAT deliveries the most important single constraint is the finite maximum MLC leaf velocity

restriction. This limits the degree by which an aperture shape can change between two control

points for a given dose rate. In our work, we consider only dynamic VMAT deliveries.

All dynamic arc planning algorithms approximate the continuous beam as a series of discrete

static beams. Approaches to optimizing the final plans include both one and two step methods. In

one step planning, the MLC motions are directly optimized with considerations for the limitations

of the MLC and gantry motions, ensuring that the plans are able to be implemented on the linac.

In two step planning, fluence maps are first optimized independently of delivery constraints. A

leaf sequencing algorithm is then employed to convert the optimal fluence maps into deliverable

MLC trajectories. A full review of VMAT optimization techniques is provided by Yu [14]. Here we

briefly discuss two approaches which exemplify the main techniques used for VMAT planning.

In 2007, Varian adopted a one step algorithm for single-arc VMAT, reported by Otto [11], under

the tradename RapidArcTM. The method first optimizes the MLC motions for a coarse sampling

of static points. Finer sampling is achieved by iteratively adding samples interpolated between

existing static points until the desired sampling frequency is reached. Throughout, leaf positions

are modified by local random search. Importantly, this algorithms allows both the gantry rate and

dose rate to change along the arc.

Wang and Luan developed a two-step planning algorithm for single-arc VMAT that utilizes

the graph theoretic concept of a shortest path to complete their leaf sequencing [15, 16]. Fluence

maps spaced at 10◦ are first optimized using a conventional IMRT inverse planning algorithm. Leaf

sequences are then determined by finding the shortest path on a directed acyclic graph consisting

of all possible leaf positions for k angles. The shortest path is the one that best minimizes the

error, for a given delivery time, between the deliverable intensity profiles and the optimized fluence

maps. A treatment time constraint is calculated before leaf sequencing, and reflects the number of

arc portions to be sequenced and their required number of monitor units.

In this work, we provide a two step approach to VMAT planning that utilizes a multicriteria

optimization algorithm to optimize 180 static beams placed at 2◦ intervals. Leaf sequencing is

accomplished using a unidirectional sequencing algorithm. After obtaining this initial plan, neigh-

boring fluence maps are iteratively merged to increase gantry speed and decrease delivery time. In

this way, we work from the ideal solution towards one that is epsilon close to dose optimality, but

has greatly increased delivery efficiency.
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2 Methods

We begin by solving a 180 equi-spaced beam IMRT problem. We solve a multicriteria version of

the IMRT optimization problem, which allows the planner to explore the tradeoffs between target

coverage and healthy organ sparing, finally choosing a best-compromise solution [8, 17, 18]. Such a

solution represents an ideal dosimetric plan, where treatment time is ignored. To actually deliver

this solution, one would deliver the full IMRT fluence maps at every 2 degrees, which would be

time consuming. Instead, we successively coarsen this 180-beam fluence map solution such that

the delivery is made faster while the dose quality is kept within user selected bounds. Thus, in the

sequencing step, we allow the user to explore the tradeoff between dose quality and delivery time.

In the following sections we describe the details of each of these components of our VMAT

planning approach.

2.1 180-beam IMRT solution and Pareto surface plan selection

We consider the following multicriteria IMRT problem:

optimize {g1(d), g2(d), . . . gN (d)}

subject to d = Df

d ∈ C

f ≥ 0 (1)

Here d is the vector of voxel doses, D is the dose-influence matrix, and f is a concatenation

of all the fluence maps into a single beamlet fluence vector. The constraint set C is a convex set

of dose constraints. This can include for example bounds on mean structure doses, and minimum

and maximum doses to individual voxels.

The objective functions are g1(d), . . . , gN (d) where N is the number of objectives defined. The

optimization objectives can be any of the following: minimize the maximum structure dose, max-

imize the minimum structure dose, or minimize or maximize the mean structure dose. In general

any convex functions would be permissible [19]. For our optimization, we only consider these ones

since they can be handled with a linear solver, and since in the multicriteria planning context, they

are typically sufficient to create high quality treatment plans [20, 21].

We solve this problem multiple times, approximating the Pareto surface, by following the meth-

ods detailed in [22]. Briefly, this method uses a feasibility projection solver that iteratively projects

onto violated constraints until all constraints are satisfied. Objectives are turned into constraints

with initially loose bounds which are gradually tightened until they are within user specified toler-

ance of optimality. After the projection solver runs for the N objectives and some mixed objective
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plans, the user navigates the solution space, which amounts to choosing the most preferable con-

vex combination of the calculated Pareto surface plans. This plan, which we consider the ideal

dosimetric plan, is then passed to the leaf sequencing and merging routine, described below.

2.2 Unidirectional leaf sequencing

In leaf sequencing the task is to create a set of MLC leaf trajectories which produce the desired

fluence map while the gantry rotates over the arc portion allotted to that map. Each arc portion

is assumed to be small, such that the angular difference in the ray paths produced by the rotating

gantry is negligible as compared with the many static beam angles at which the fluence maps were

optimized. To be deliverable, the leaf trajectories must not have leaf velocities greater than a given

maximum value, either within the delivery of a given fluence map or between the delivery of one

map and the next. A simple way of ensuring this condition is met is to sequence the trajectories

as an alternating sequence of left to right and right to left dynamic MLC (dMLC) leaf sweeps. All

leaves are aligned at one edge of the field at the beginning of the arc portion delivery and align at

the opposite edge of the field at the end of the arc portion ready to commence the next arc portion

with the leaves moving in the opposite direction.

The dMLC leaf sweep trajectory is calculated using the equations provided by [23, 24, 25], which

give the leaf velocity of the leading (vlead) and trailing (vtrail) leaves in terms of the maximum leaf

velocity (vmax) and the local fluence gradient df(x)
dx . The equations (2) give the leaf velocities in

terms of bixels per MU delivered and require a constant dose rate over the arc portion.

(
vlead(x) = vmax, vtrail(x) =

vmax

1 + vmax
df(x)

dx

)
if df(x)

dx ≥ 0(
vtrail(x) = vmax, vlead(x) =

vmax

1− vmax
df(x)

dx

)
otherwise (2)

The time for all leaf pairs to traverse the field is given by (3) and is governed by the width of

the field WF and the ratio of the maximum over the sum of positive gradients terms (
∑ df(x)

dx

+
) as

evaluated over each leaf path divided by the dose rate r.

T =
WF

vmax
+

maxrows

(∑ df(x)
dx

+)
r

(3)

Each fluence map is locked to a given portion of the gantry rotation arc, so that if the gantry

rotation time over the arc portion is less than the leaf travel time required, the gantry speed is

reduced. In a similar manner, if the required leaf travel time is less than the gantry rotation

time, then the leaf travel time is increased by reducing the dose rate over the arc portion. It

should be noted that currently a continuously variable dose rate is assumed, but also that there is

no strict requirement that the leaves take the full duration of the time available to complete the
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fluence modulation. However, it is dosimetrically favorable to reduce the dose rate if this can be

accomplished without an effect on delivery time, as this will lead to larger beam apertures (all else

being equal, larger aperatures are preferred due to reduced scatter and higher confidence in the

associated dose calculations).

The leaf velocities of the leading and trailing leaves are then assigned to the right and left

leaves respectively. The next fluence map is processed in the opposite direction (right to left) and

the leading and trailing leaf trajectories assigned to the left and right leaves respectively. This

process then repeats for all the fluence maps in the VMAT arc. The fluence produced by the final

delivery control points is then computed over the original 2◦ angular bins to facilitate the fluence

map merging process.

2.3 Merging neighboring fluence maps

The purpose of the merging algorithm is to lower the beam-on treatment time by reducing the

number of distinct fluence maps that need to be delivered. To deliver each fluence map, the leaves

must make a full unidirectional sweep across the aperture over the arc portion that fluence map is

specified for. VMAT solutions with a large number of distinct fluence maps thus require the gantry

to move slowly in order to give the leaves sufficient time to move across the field. Our merging

algorithm iteratively merges neighboring fluence maps, allowing the gantry to move more quickly

around the full-arc.

We begin with 180 optimized fluence maps which are delivered over the ranges [0, 2◦], [2◦, 4◦],

...[358◦, 360◦]. The initial solution is a high-quality treatment plan, and we seek to merge fluence

maps in a way that preserves this optimized dose distribution. Our merging strategy is based on

the observations that 1) merging fluence maps with the greatest degree of similarity will have the

least effect on the final dose distribution, and 2) merging fluence maps with small arc portions

will have less of an effect on the dose distribution than merging fluence maps defined over long arc

portions.

These two observations allow us to define a similarity metric between any two neighboring

fluence maps f1 and f2, with arc portion lengths of θ1 and θ2. The similarity metric δ is defined

as the Frobenius norm of the difference between the maps (normalized by their arc portion lengths

to make them comparable), scaled to the combined arc portion length θ1 + θ2:

δ(f1, f2) = (θ1 + θ2)

√√√√∑
i,j

(
f1

ij

θ1
−
f2

ij

θ2

)2

. (4)

We incorporate this similarity metric into a greedy search algorithm that merges a single pair

of fluence maps with every iteration, such that after n iterations the number of fluence maps is

180− n. The neighboring pair with the lowest δ score is selected for merging. The merged fluence
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map is defined as the sum of the two neighboring fluence maps, with a new arc portion equal to

the union of the initial two arc portions. This combined map is then sequenced and the fluence is

binned into the original 2◦ bins. The stopping criterion for the greedy search will depend on the

planner’s desired balance between treatment time and plan quality.

2.4 Sensitivity to algorithm settings

We apply the technique to three different clinical cases. For the prostate case, we also investigate

some variations to the algorithm. The first is smoothing the solution after the Pareto navigation

phase. We consider two types of smoothing. The first smoothing method minimizes the maximum

beamlet value with all the objective values of the ideal dosimetric solution turned into constraints,

also maintaining the original MCO formulation constraints. The second smoothing method uses

an SPG smoother during the solver’s projection steps. During the projection iterations, an SPG

smoothing step is periodically called. This step identifies the single row with the largest SPG and

redistributes the fluences by reducing the peak fluences of that row by a factor of 0.9, and then

adding the 10% to the neighboring adjacent beamlets. This is a heuristic approach to control-

ling the SPG with a projection solver inspired by smoothing kernels in projection-based image

reconstruction [26].

We also investigate how the final VMAT solution depends on beamlet size and beam angle

spacing, in order to show that our solution technique yields a fundamentally correct VMAT plan

and not one that is sensitive to algorithm initial conditions. Since most commercial VMAT solutions

calculate the final dose on a 2 degree gantry spacing, we choose to use this as our baseline angular

spacing grid. We examine the nature of the VMAT solution that arises when this grid is coarsened

to 4 degrees (thus, we start by solving a 90 beam IMRT problem). We then take this angular

grid and further investigate shrinking the beamlet size by a factor of 2 in the leaf travel direction

(creating 0.5×1 cm beamlets).

3 Results

We demonstrate the method on three clinical cases: a prostate, a pancreas, and a brain case

with two distinct targets. For each case we assume we are designing a 2 Gy fraction plan. It

is important to note that unlike step and shoot IMRT optimization, where fraction dose scaling

does not fundamentally affect the plan, here fraction dose is important since it is linked to dose

rate, gantry speed, and leaf speed (see Discussion). For display purposes we scale the dose-volume-

histograms (DVHs) up to the total dose delivered from all the fractions. We also display the

optimization formulations for the total dose. We use CERR 3.0 beta 3 [27] for dose computation. We

use the following VMAT delivery parameters: maximum gantry speed = 1 rotation/min, maximum

leaf speed = 2.5 cm/sec, maximum dose rate = 600 MU/min.
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For the prostate case (voxel size: 3×3×2.5mm, 1×1cm beamlets), the main dosimetric tradeoff

is between the rectum dose and the target coverage. However, for this analysis we hold the prostate

coverage fixed at the prescription level, 79 Gy, and consider the tradeoff between mean dose to the

rectum (more precisely, the anterior rectum as contoured by the physician), the bladder, and the

unclassified tissue. A Pareto surface is constructed using the following multicriteria formulation:

minimize {mean rectum dose, mean bladder dose, mean u.t. dose}

subject to d = Df

di ≥ 79 Gy, ∀i ∈ target

di ≤ 45 Gy, ∀i ∈ femoral heads

di ≤ 79 ∗ 1.07 Gy, ∀i

f ≥ 0 (5)

where u.t. stands for unclassified tissue: all the voxels not belonging to any other structure.

We navigate to a solution with (mean rectum dose, mean bladder dose, mean u.t.)=(0.50, 0.50,

0.12)*79 Gy. The results of the sequential merging routine are shown in Figure 1. Plan quality is

assessed using the mean dose to the anterior rectum, femoral heads, and bladder, the standard error

from the prescription level of the dose to the prostate, and the volume of the prostate receiving the

prescription dose.

Figure 1 shows the results of the merging algorithm for the prostate case. The plan does not

degrade until after 140 iterations, where we begin to lose target coverage. Therefore, we selected a

plan requiring 40 arc portions and a treatment time of 187.4 s (original time of 806.2 s with 180 arc

portions), which had the optimal tradeoff between treatment time and plan quality. This tradeoff

between quality and time is shown for both the target (Figure 1a) and three key organs-at-risk

(Figure 1b). The DVH comparing the original plan (solid line) to the simplified plan (dashed line)

is shown in Figure 1c. The simplified plan has (mean rectum dose, mean bladder dose)=(0.50,

0.50)*79 Gy, with 98.9% of the prostate volume receiving the full dose (V79Gy). Femoral head

constraints are easily maintained. The plot of the arc portions in Figure 1d shows that the gantry

speed varies during the course of the single arc. Smaller arc portions require the gantry to slow

down to allow the leaves time to traverse the aperture, and represent the fluence maps that are

most dissimilar to their neighbors.

For the prostate case, we additionally examine the sensitivity of our approach to the following

issues: smoothing of the IMRT solution before passing it to the merging routine, using fewer than

180 beams, and using smaller beamlets. The purpose of this experiment is to verify that quality of

the final plan remains generally insensitive to the initial smoothing method, and that the use of 1

cm beamlets does not bias our results in any way.
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Figure 1: Results of the merge algorithm for prostate VMAT. The merged plan that was determined

to have the best tradeoff between quality and treatment time is indicated by the black arrow.

Quality-time tradeoff plots are shown for the a) prostate target and b) the anterior rectum. c) The

DVH data for the original (solid) and merged (dashed) plan. d) The fluence map arc portion plot

for the merged plan, showing the gantry speed at different angles.

The total SPG values (in seconds) for no smoothing, max beamlet smoothed, and SPG smoothed,

are 168, 113, and 92.2 respectively. Figure 2a shows the DVH plots for the final merged plans for

these three smoothing methods. Each plan is simplified from an initial 180 beam solution, and

represents the point on the tradeoff curve with the best compromise between plan quality and

treatment time. The three plans are highly similar, differing only slightly in the dose to the

femoral heads, which is simply reflective of the original plan. Because the type of smoothing does

not have a significant effect on the quality-time tradeoff, we will use only max beamlet smoothing

for our three disease sites.

Figure 2b shows DVH plots for final plans that were created by iterative merging from an

initial 180 beam solution (1×1 cm beamlet), 90 beam solution (1×1 cm), and 90 beam solution

with reduced beamlet sizes (.5×1 cm). The final plans have similar treatment times and target
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coverage. In the optimization with the smaller beamlets, we reduce the rectum dose down as much

as possible. As expected, finer beamlet resolution yields better dose distribution shaping (the mean

anterior rectum dose is reduced from 50% to 44% of the prescription dose), which indicates the

value of reducing the beamlet size. But to ease the computational burden we remain with the 1

cm beamlets for the pancreas case. We switch to .5×.5 cm beamlets for the brain case due to its

overall smaller target.

a! b!
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)*&++'"(

&,%'"-#"("'.%/0(

1'0#"&*(
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)*&++'"(
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Figure 2: The sensitivity of our algorithm to different initial plans was tested on our prostate

case. a) DVH plots for the final merged plans for 3 different 180 beam initial plans: max beamlet

smoothing, no smoothing, and SPG smoothing. b) DVH plots for the final merged plans for 3

different initial plans, all with max beamlet smoothing: 180 beams, 90 beams, and 90 beams with

small beamlets (.5×1 cm).

The second case is a pancreas case (voxel size: 2.6×2.6×2.5 mm, 1×1 cm beamlets). The

pancreas is an interesting site for VMAT for the same reason that it is interesting for beam angle

optimization: it is surrounded by kidneys, stomach, and liver, and the optimal radiation entry

directions are not obvious [28]. Our MCO formulation is as follows:

minimize {mean shell dose, mean kidneys dose, mean liver dose,

mean stomach dose, -min target dose}

subject to d = Df

di ≥ 50.4 ∗ 0.95 Gy, ∀i ∈ target

di ≤ 45 Gy, ∀i ∈ spinal cord

di ≤ 50.4 ∗ 1.12 Gy, ∀i

f ≥ 0 (6)

The shell is a .7 cm band around the target used to promote dose conformality to the target. We
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navigate to a solution with (mean shell dose, mean kidneys dose, mean liver dose, mean stomach

dose)=(.9, .24, .23, .20, .95)*50.4 Gy. The maximum beamlet level can then be reduced to 0.4

(and possibly beyond, but this is the value of the maximum level that can be delivered in 2 degrees

without slowing the gantry down, so we do not attempt to reduce it further).

Figure 3 shows the results of the merging algorithm for the pancreas case. Plan quality begins

to degrade after 155 merges, after which the mean dose to the kidneys, liver and stomach begins

to increase. The selected plan requires 25 fluence maps and 108.4 s (initial time of 732.3 s), and

reflects nearly the same DVH as the original 180 beam solution. The selected plan has (mean

kidneys dose, mean liver dose, mean stomach dose)=(.24, .23, .21)*50.4 Gy, with 95.8% of the

tumor volume receiving the full dose (V50.4Gy).
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Figure 3: Results of the merge algorithm for pancreas VMAT. The merged plan that was determined

to have the best tradeoff between quality and treatment time is indicated by the black arrow.

Quality-time tradeoff plots are shown for the a) pancreas target and b) kidneys, liver and stomach.

c) The DVH data for the original (solid) and merged (dashed) plan. d) The arc portion plot for

the merged plan, showing the gantry speed at different angles.

The third case is a brain double lesion case (voxel size: 1.35×1.35×1.25 mm, .5×.5 cm beamlets).

We selected this case due to the potential of VMAT to treat isolated metastic lesions in a single
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gantry revolution. Minimizing treatment time in these cases is important because of the precise

set up required for such treatments. In this case there are two adjacent lesions, one of them being

inside the brainstem, and the prescription is 32 Gy. For the optimization, we consider the targets

as a single combined structure:

minimize {mean chiasm dose, mean brainstem dose, mean u.t. dose, -min target dose}

subject to d = Df

di ≥ 32 ∗ 0.95 Gy, ∀i ∈ target

di ≤ 32 ∗ 1.15 Gy, ∀i

f ≥ 0 (7)

We navigate to a solution with (mean chiasm dose, mean brainstem dose, mean u.t. dose)=(.15,

.9, .44)*32 Gy. The maximum beamlet level is reduced to 0.9 and then the solution is passed to

the merging algorithm.

Figure 4 shows the results of the merging algorithm for the brain case. Plan quality begins

to degrade after 145 merges, after which the mean dose to the optic chiasm begins to rise. The

selected plan requires 35 fluence maps and 138.6 s (initial time of 662.0 s), and reflects nearly the

same DVH as the original 180 beam solution. The selected plan is associated with (mean chiasm

dose, mean brainstem dose=(.15, .9)*32 Gy, with 99.0% of the target volume receiving the full dose

(V32Gy).

4 Discussion and Conclusions

Finite leaf speed is the single parameter that makes the single arc coplanar VMAT optimization

problem so challenging. As leaf speed approaches infinity, the complexity and delivery time of a

plan is governed solely by the SPG of the fluence maps, and this quantity can be minimized exactly

in a convex optimization setting [9]. On the other hand, for fields even with low SPG in the finite

leaf speed setting, the beam may have to slow down just to have the leaves travel across the field.

This information cannot be represented in a convex optimization setting. Fortunately, similar to

the decomposition of IMRT planning into a convex fluence map optimization step and then a leaf

sequencing step, we show in this work that we can similarly decompose the VMAT problem. The

additional challenge in the VMAT setting stems from the continous motion of the leaves and the

gantry.

We adopt an approach of starting with a fine solution and gradually coarsening it. This decreases

the delivery time while maintaining a good dose distribution. The rationale for our fine-to-coarse

approach is that in VMAT planning, whatever method is used to derive a solution, one will ulti-

mately do a dose computation on a fine angular grid, such as a 2 degree spacing. Given current

computing capacity and tailored algorithms to solve the IMRT problem (e.g. [22, 29]), it is not
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Figure 4: Results of the merge algorithm for brain VMAT. The merged plan that was determined

to have the best tradeoff between quality and treatment time is indicated by the black arrow.

Quality-time tradeoff plots are shown for the a) tumor target and b) the brain stem and optic

chiasm. c) The DVH data for the original (solid) and merged (dashed) plan. d) The fluence map

range plot for the merged plan, showing the gantry speed at different angles.

difficult to solve a 180-beam IMRT optimization problem. We show in this paper that starting from

this ideal plan, we can successively smoothen the delivery until we have a plan that is both of high

dose quality and efficient to deliver. The user first explores the dosimetric tradeoffs exactly as done

for IMRT MCO, and then either presses a button which does automatic merging to a pre-specified

epsilon dose deviation threshold, or uses the merging routine to interactively explore the tradeoff

between dose quality and delivery time, i.e. the information displayed in Figures 1, 3, and 4. To

create these figures, we run the merging algorithm until the gantry is moving at maximum speed

for the entire rotation, in order to show the entire plan quality-delivery time tradeoff curve. This

merging takes on the order of 5 minutes for each of the cases (this includes computing the dose

and plan evaluation metrics after each merge; if you knew a priori how many merges you wanted,

the merging would take on the order of 10 seconds). Our method of starting from the fine ideal
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solution and then making it deliverable contrasts with all of the other VMAT approaches which

start from a coarse solution and then add segments to improve the dose quality [11, 14]. Another

way to view the difference is: we start at the global minimum of a relaxed convex problem and

then modify that solution to make it deliverable while staying as close as desired to the ideal plan,

while the coarse-to-fine approaches first employ a global search and then use local refinements to

optimize further but do not yield any guarantees on optimality. Such guarantees are important

both for high quality patient care and for proper comparisons of treatment modalities, comparisons

which can easily be muddled when using planning systems with no optimality guarantees.

Our VMAT approach is designed to intrinsically address two closely related VMAT issues: 1)

how much fluence modulation is needed as the gantry proceeds around the patient, and 2) with

what frequency do the fluence maps need to be delivered. The second point is an important one

in the context of minimizing delivery time in the finite leaf speed setting. Using a finely spaced

angular grid of beams and an IMRT solver to compute optimal fluence maps, one may observe

that neighboring maps are identical. Indeed, in symmetric cases like a donut-shaped target with

a central circular organ at risk, the maps from each angle are identical, and yet one does not

know from this how frequently those modulated fields need to be formed by the MLC leaves as

the gantry rotates around the patient. In the merging algorithm, we not only combine fluence

maps, but we also enforce that the combined map will be delivered once over the span occupied

by the two original fluence maps. When the user makes the final delivery selection, leaf motion

throughout the gantry rotation occurs at a rate dependent on how many merges occured. Even

with our simple greedy selection strategy (merging the current two neighboring fluence maps with

the best similarity score and employing with no backtracking), we see that we can merge many of

the maps and not change the plan perceptibly. It remains to be investigated if something other

than the greedy merging strategy, and/or merging based on dose distribution similarities rather

than fluence map similarities, could be more successful.

We study two approaches to create initially smoother 180-beam IMRT fluence maps. Neither

of the two methods has a dramatic effect on the final dose distribution or treatment time, although

they both show improvements in the expected direction. Max beamlet smoothing reduces treatment

time by 5 seconds (a 2.6% decrease from no smoothing), and SPG smoothing by another 3 seconds.

Because the merging routine combines neighboring fluence maps, any noise in the maps that is not

dosimetrically meaningful or useful will tend to get washed out. We speculate that this is why we

do not observe large gains from initial fluence map smoothing. For practical implementation, given

the difficulty of implementing an SPG smoothing solver, we recommend either no smoothing or

max beamlet smoothing.

Although we used fairly simple formulations for the initial 180-beam IMRT solution, the method

proposed herein does not preclude the use of more sophisticated formulations. For example,

quadratic penalty formulations, dose-volume constraints, equivalent uniform dose, and biologi-
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cal objective functions could all be used. Also, there is flexibility in the sequencing/merging step,

and any number and type of user-defined cutoff values could be defined to determine what solu-

tion along the delivery time/plan quality curve should be delivered. We have also used the simple

pencil beam decomposition approach for the IMRT and VMAT problem. The dose distribution

produced by such “Dij” approaches, in näıve implementations, can degrade significantly when final

dose calculations – which include output factor corrections and leaf transmissions – are performed,

but we have proceeded with the Dij approach due to its mathematical tractability and because it

is possible to successfully include delivery effects into Dij-based approaches [30].

We have considered unidirectional leaf sequencing in this paper. It is possible that more general

leaf sequencing would allow one to deliver the merged maps more quickly, but for fluence rows with

multiple ups-and-downs, one needs to sweep both leaves across almost the entire row to achieve

the inner row modulations. We do not believe there will be dramatic gains in switching to more

general leaf sequencing, but we do plan on investigating this.

Other extensions to the proposed approach include collimator rotation, couch rotation, and

dual and partial arc considerations. There could be a reduction in treatment time by aligning the

collimator to the fluence maps in such a way to minimize fluence map delivery time (Equation

3). The collimator angle trajectory could be determined by examining the fluence maps of the

180-beam IMRT solution with this metric, and therefore seems not an overly difficult extension

of the approach, aside from the potentially irksome issue of forming fluence maps with a rotating

MLC Couch rotation on the other hand, which leads to non-coplanar arcs, leads to a much larger

optimization space and is accordingly a much more challenging problem.

A partial arc solution could save treatment time by allowing the gantry to spend more time at

angles that are more beneficial for radiation delivery. A partial arc solution could be formed by

prescribing an arc based on user experience, or by observing the original 180-beam solution and

deciding to eliminate an angle sector which has generally low fluence. Once an arc is chosen, the

multicriteria dose optimization and subsequent merging steps would proceed exactly as specified

in this report.

Because we allow the gantry to slow down as much as possible to deliver the required fluence

patterns, there can be no dosimetric advantages to double arc (or more) solutions. The only possible

advantage for multiple arcs is treatment time. Double arc solutions will be treatment time superior

when most of the fluence maps are highly modulated large fields which can be delivered quicker in

two sweeps, with the leaves reset on the second sweep to be in favorable positions. For example,

a double hump fluence map, with the humps separated by a wide zero fluence section, would be

faster with a two arc approach if the first arc delivered the first hump and the leaves could be

positioned correctly during the second arc to deliver the second hump. To make a double arc plan

overall faster in treatment delivery, one would need a large number of the fluence maps to be of this

nature. We speculate that such situations will not arise often clinically, and that therefore single
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arc solutions, with good optimizers, will typically be the right choice. The single arc versus dual

arc issue will be examined in a future publication.

The ratio of fraction dose to the treatment machine’s maximum dose rate is an important

quantity in VMAT planning. For hypofractionation, the fraction dose can be much higher than 2

Gy. This gives the delivery system more time for delivery and shifts the treatment time bottleneck

from leaf speed to dose rate: since it will now take longer to deliver the required dose, the beam can

slow down more overall and finite leaf speed becomes less influential. On the other hand, higher

dose rates, achieved for example by treating without the flattening filter, will shift the burden to

the finite MCL leaf speed again. These are important issues that should be kept in mind by VMAT

researchers.

While interesting algorithmic challenges remain for VMAT (non coplanar arcs, dynamic colli-

mator rotations, optimal partial and multiple arc creation), we have introduced a method for single

arc coplanar VMAT that guarantees delivery of an epsilon-optimal dose distribution. No IMRT

researcher would claim that one ever needed more than 180 equi-spaced beams for an optimal

coplanar IMRT solution. Since we start with such a plan, and then make it VMAT-deliverable,

our method guarantees a proveably optimal (up to an arbitrarily small user-specified tolerance)

treatment plan, which is something no commercial VMAT planning system currently does.
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