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ABSTRACT 

A security evaluation of Multics for potential use as a 
two-level (Secret / Top Secret) system in the Air Force 
Data Services Center (AFDSC) is presented. An overview 
is provided of the present implementation of the Multics 
Security controls. The report then details the results of a 
penetration exercise of Multics on the HIS 645 computer. 
In addition, preliminary results of a penetration exercise 
of Multics on the new HIS 6180 computer are presented.  
The report concludes that Multics as implemented today 
is not certifiably secure and cannot be used in an open 
use multi-level system.  However, the Multics security 
design principles are significantly better than other con-
temporary systems.  Thus, Multics as implemented today, 
can be used in a benign Secret / Top Secret environment.  
In addition, Multics forms a base from which a certifiably 
secure open use multi-level system can be developed. 

 

1 INTRODUCTION 

1.1 Status of Multi-Level Security 
A major problem with computing systems in the mili-

tary today is the lack of effective multi-level security con-
trols.  The term multi-level security controls means, in the 
most general case, those controls needed to process sev-
eral levels of classified material from unclassified through 
compartmented top secret in a multi-processing multi-user 
computer system with simultaneous access to the system 
by users with differing levels of clearances.  The lack of 
such effective controls in all of today’s computer operat-
ing systems has led the military to operate computers in a 
closed environment in which systems are dedicated to the 
highest level of classified material and all users are re-
quired to be cleared to that level.  Systems may be 
changed from level to level, but only after going through 
very time consuming clearing operations on all devices in 
the system.  Such dedicated systems result in extremely 
inefficient equipment and manpower utilization and have 
often resulted in the acquisition of much more hardware 
than would otherwise be necessary. In addition, many 

operational requirements cannot be met by dedicated sys-
tems because of the lack of information sharing.  It has 
been estimated by the Electronic Systems Division (ESD) 
sponsored Computer Security Technology Panel [10] that 
these additional costs may amount to $100,000,000 per 
year for the Air Force alone. 

1.2 Requirement for Multics Security 
Evaluation 

This evaluation of the security of the Multics system 
was performed under Project 6917, Program Element 
64708F to meet requirements of the Air Force Data Ser-
vices Center (AFDSC).  AFDSC must provide responsive 
interactive time-shared computer services to users within 
the Pentagon at all classification levels from unclassified to 
top secret.  AFDSC in particular did not wish to incur the 
expense of multiple computer systems nor the expense of 
encryption devices for remote terminals which would oth-
erwise be processing only unclassified material.  In a sepa-
rate study completed in February 1972, the Information 
Systems Technology Applications Office, Electronic Sys-
tems Division (ESD/MCI) identified the Honeywell Mul-
tics system as a candidate to meet both AFDSC’s multi-
level security requirements and highly responsive advanced 
interactive time-sharing requirements. 

1.3 Technical Requirements for Multi-Level 
Security 

The ESD-sponsored Computer Security Technology 
Planning Study [10] outlined the security weaknesses of 
present day computer systems and proposed a development 
plan to provide solutions base on current technology.  A 
brief summary of the findings of the panel follows. 

1.3.1 Insecurity of Current Systems 
The internal controls of current computers repeatedly 

have been shown insecure though numerous penetration 
exercises on such systems as GCOS [9], WWMCCS 
GCOS [8, 18], and IBM OS/360/370 [16].  This insecurity 
is a fundamental weakness of contemporary operating sys-



tems and cannot be corrected by “patches”, “fix-ups”, or 
“add-ons” to those systems.  Rather, a fundamental re-
implementation using an integrated hardware/software 
design which considers security as a fundamental re-
quirement is necessary.  In particular, steps must be taken 
to ensure the correctness of the security related portions 
of the operating system.  It is not sufficient to use a team 
of experts to “test” the security controls of a system.  
Such a “tiger team” can only show the existence of vul-
nerabilities but cannot prove their non-existence. 

Unfortunately, the managers of successfully penetrated 
computer systems are very reluctant to permit release of 
the details of the penetrations.   Thus, most reports of 
penetrations have severe (and often unjustified) distribu-
tion restrictions leaving very few documents in the public 
domain.  Concealment of such penetrations does nothing 
to deter a sophisticated penetrator and can in fact impede 
technical interchange and delay the development of a 
proper solution.  A system which contains vulnerabilities 
cannot be protected by keeping those vulnerabilities se-
cret. It can only be protected by the constraining of physi-
cal access to the system. 

1.3.2 Reference Monitor Concept 
The ESD Computer Security Technology Panel intro-

duced the concept of a reference monitor.  This reference 
monitor is that hardware/software combination which 
must monitor all references by any program to any data 
anywhere in the system to ensure that the security rules 
are followed.  Three conditions must be met to ensure the 
security of the system based on a reference monitor. 

a. The monitor must be tamper proof. 
b. The monitor must be invoked for every reference 

to data anywhere in the system. 
c. The monitor must be small enough to be proven 

correct. 
The stated design goals of contemporary systems such 

as GCOS or OS/360 are to meet the first requirement (al-
beit unsuccessfully).  The second requirement is generally 
not met by contemporary systems since they usually in-
clude “bypasses” to permit special software to operate or 
must suspend the reference monitor to provide address-
ability for the operating system in exercising its service 
functions.  The best known of these is the bypass in 
OS/360 for the IBM supplied service aid, IMASPZAP 
(SUPERZAP) [2]. Finally and most important, current 
operating systems are so large, so complex, and so mono-
lithic that one cannot begin to attempt a formal proof or 
certification of their correct implementation. 

1.3.3 Hypothesis: Multics is “Securable” 
The computer security technology panel identified the 

general class of descriptor driven processors1 as extremely 

                                                           
1 Descriptor driven processors use some form of address translation 
though hardware interpretation of descriptor words or registers. Such 

 

useful to the implementation of a reference monitor.  Mul-
tics, as the most sophisticated of the descriptor-driven sys-
tems currently available, was hypothesized to be a poten-
tially securable system; that is, the Multics design was suf-
ficiently well-organized and oriented towards security that 
the concept of a reference monitor could be implemented 
for Multics without fundamental changes to the facilities 
seen by Multics users. In particular, the Multics ring 
mechanism could protect the monitor from malicious or 
inadvertent tampering, and the Multics segmentation could 
enforce monitor mediation on every reference to data. 
However, the question of certifiability had not as yet been 
addressed in Multics.  Therefore the Multics vulnerability 
analysis described herein was undertaken to:  

a. Examine Multics for potential vulnerabilities. 
b. Identify whether a reference monitor was practical 

for Multics. 
c. Identify potential interim enhancements to 

Multics to provide security in a benign (restricted 
access) environment.     

d. Determine the scope and dimension of a 
certification effort. 

1.4 Sites Used 
The vulnerability analysis described herein was carried 

out on the HIS 645 Multics Systems installed at the Massa-
chusetts Institute of Technology and at the Rome Air De-
velopment Center.  As the HIS 6180, the new Multics 
processor, was not available at the time of the study, this 
report will describe results of analysis of the HIS 645 only. 
Since the completion of the analysis, work has started on 
an evaluation of the security controls of Multics on the HIS 
6180.  Preliminary results of the work on the HIS 6180 are 
very briefly summarized in this report, to provide an under-
standing of the value of the evaluation of the HIS 645 in 
the context of the new hardware environment. 

2  MULTICS SECURITY CONTROLS  
This section provides a brief overview of the basic Mul-

tics security controls to provide necessary background for 
the discussion of the vulnerability analysis.  However, a 
rather thorough knowledge of the Multics implementation 
is assumed throughout the rest of this document. More 
complete background material may be found in Lipner 
[21], Saltzer [25], Organick [22], and the Multics 
Programmers’ Manual [4]. 

The basic security controls of Multics fall into three ma-
jor areas:  hardware controls, software controls, and proce-
dural controls.  This overview will touch briefly on each of 
these areas. 

                                                                                                
systems include the Burroughs 6700, the Digital Equipment Corp.  PDP-
11/45, the Data General Nova 840, the DEC KI-10, the HIS 6180, the 
IBM 370/158 and 168, and several others not listed here. 



2.1 Hardware Security Controls 

2.1.1 Segmentation Hardware 
The most fundamental security controls in the HIS 645 

Multics are found in the segmentation hardware.  The 
basic instructions set of the 645 can directly address up to 
256K2 distinct segments3 at any one time, each segment 
being up to 256K words long.4 Segments are broken up 
into 1K word pages5 which can be moved between pri-
mary and secondary storage by software, creating a very 
large virtual memory.  However, we will not treat paging 
throughout most of this evaluation as it is transparent to 
security.  Paging must be implemented correctly in a se-
cure system. However, bugs in page control are generally 
difficult to exploit in a penetration, because the user has 
little or no control over paging operations. 

Segments are accessed by the 645 CPU through seg-
ment descriptor words (SDW’s) that are stored in the de-
scriptor segment (DSEG).  (See Figure 1.)  To access 
segment N, the 645 CPU uses a processor register, the 
descriptor segment base register (DBR), to find the 
DSEG.  It then accesses the Nth SDW in the DSEG to 
obtain the address of the segment and the access rights 
currently in force on that segment for the current user.  

                                                           
2 1K = 1024 units. 
3 Current software table sizes restrict a process to about 1000 segments.  
However, by increasing these table sizes, the full hardware potential 
may be used.  
4 The 645 software restricted segments to 64K words for efficiency 
reasons. 
5 The 645 hardware also support 64 word pages which were not used.  
The 6180 supports only a single page size which can be varied by field 
modification from 64 words to 4096 words.  Initially, a size of 1024 
words is being used. The supervisors on both the 645 and 6180 use 
unpaged segments of length 0 mod 64. 

Each SDW contains the absolute address of the page ta-
ble for the segment and the access control information.  
(See Figure 2.)  The last 6 bits of the SDW determine the 
access rights to the segment - read, execute, write, etc.6 
Using these access control bits, the supervisor can protect 
the descriptor segment from unauthorized modification by 
denying access in the SDW for the descriptor segment. 

2.1.2 Master Mode 
To protect against unauthorized modification of the 

DBR, the processor operates in one of two states – master 
mode and slave mode.  In master mode, any instruction 
may be executed and access control checks are inhibited.7  
In slave mode, certain instructions, including those which 
modify the DBR, are inhibited.  Master mode procedure 
segments are controlled by the class field in the SDW.  
Slave mode procedures may transfer to master mode pro-
cedures only through word zero of the master mode proce-
dure to prevent unrestricted invocation of privileged pro-
grams.  It is then the responsibility of the master mode 
software to protect itself from malicious calls by placing 
suitable protective routines beginning at location zero. 

2.2  Software Security Controls 
The most outstanding feature of the Multics security 

controls is that they operate on basis of  “form” rather than 
the classical basis of “content”.  That is to say, the Multics 
controls are based on operations on a uniform population 
of well defined objects, as opposed to the classical controls 
which rely on anticipating all possible types of accesses 
and make security essentially a battle of wits. 

2.2.1 Protection Rings 
The primary software security control on the 645 Mul-

tics system is the ring mechanism.  It was originally postu-
lated as desirable to extend the traditional master/slave 
mode relationship of conventional machines to permit lay-
ering within the supervisor and within user code (see Gra-

                                                           
6 A more detailed description of the SDW format may be found in the 645 
processor manual [11]. 
7 The counterpart of master mode on the HIS 6180, called privileged 
mode, does not inhibit access control checking. 
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ham [17]).  Eight concentric rings of protection, num-
bered 0 – 7, are defined with higher numbered rings hav-
ing less privilege than lower numbered rings, and with 
ring 0 containing the hardcore supervisor.8  Unfortu-
nately, the 645 CPU does not implement protection rings 
in hardware.9  Therefore, the eight protection rings are 
implemented by providing eight descriptor segments for 
each process (user), one descriptor segment per ring.  
Special fault codes are placed in those SDW’s which can 
be used for cross-ring transfers so that ring 0 software can 
intervene and accomplish the descriptor segment swap 
between the calling and called rings. 

2.2.2 Access Control Lists 
Segments in Multics are stored in a hierarchy of direc-

tories.  A directory is a special type of segment that is not 
directly accessible to the user and provides a place to 
store names and other information about subordinate 
segments and directories.  Each segment and directory has 
an access control list (ACL) in its parent directory entry 
controlling who may read (r), write (w), or execute (e) the 
segment or obtain status (s) of, modify (m) entries in, or 
append (a) entries to a directory.  For example in Figure 
3, the user Jones.Druid has read permission to segment 
ALPHA and has null access to segment BETA.  However, 
Jones.Druid has modify permission to directory DELTA, 
so he can give himself access to BETA.  Jones.Druid can-
not give himself write access to segment ALPHA, be-
cause he does not have modify permission to directory 
GAMMA. In turn, the right to modify the access control 
lists of GAMMA and DELTA is controlled by the access 
control list of directory EPSILON, stored in the parent of 
EPSILON.  Access control security checks for segments 
are enforced by the ring 0 software by setting the appro-
priate bits in the SDW at the time that a user attempts to 
add a segment to his address space. 

2.2.3 Protected Access Identification 
In order to do access checking, the ring 0 software 

must have a protected, non-forgeable identification of a 
user to compare with the ACL entries.  This ID is estab-
lished when a user signs on to Multics and is stored in the 
process data segment (PDS) which is accessible only in 
ring 0 or in master mode, so that the user may not tamper 
with the data stored in the PDS.  

2.2.4 Master Mode Conventions 
By convention, to protect master mode software, the 

original design specified that master mode procedures 
were not to be used outside ring 0.  If the master mode 

                                                           
8 The original design called for 64 rings, but this was reduced to 8 in 
1971. 
9 One of the primary enhancements of the HIS 6180 is the addition of 
ring hardware [28] and a consequent elimination of the need for master 
mode procedures in the user ring. 

procedure ran in the user ring, the master mode procedure 
itself would be forced to play the endless game of wits of 
the classical supervisor call.  The master mode procedure 
would have to include code to check for all possible com-
binations of input arguments, rather than relying on a fun-
damental set of argument independent security controls.  
As an aid (or perhaps hindrance) to playing the game of 
wits, each master mode procedure must have a master 
mode pseudo-operation code assembled into location 0.  
The master mode pseudo-operation generates code to test 
an index register for a value corresponding to an entry 
point in the segment.  If the index register is invalid, the 
master-mode pseudo-operation code saves the registers for 
debugging and brings the system down. 

2.3 Procedural Security Controls 

2.3.1 Enciphered Passwords 
When a user logs in to Multics, he types a password as 

his primary authentication.   Of course, the access control 
list of the password file denies access to regular users of 
the system.  In addition, as a protection against loss of a 
system dump which could contain the password file, all 
passwords are stored in a non-invertible cipher form.  
When a user types his password, it is enciphered and com-
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Figure 3.  Directory Hierarchy 



pared with the stored enciphered version for validity.  
Clear text passwords are stored nowhere in the system.    

2.3.2 Login Audit Trail 
Each login and logout is carefully audited to check for 

attempts to guess valid user passwords.   In addition, each 
user is informed of the date, time and terminal identifica-
tion (if any) of the last login to detect past compromises 
of the user’s access rights.  Further, the user is told the 
number of times his password has been given incorrectly 
since its last correct use. 

2.3.3 Software Maintenance Procedures 
The maintenance of the Multics software is carried out 

online on a dial-up Multics facility. A systems program-
mer prepares and nominally debugs his software for in-
stallation.  He then submits his software to a library in-
staller who copies and recompiles the source in a pro-
tected directory.  The library installer then checks out the 
new software prior to installing it in the system source 
and object libraries. Ring 0 software is stored on a system 
tape that is reloaded into the system each time it is 
brought up.  However, new system tapes are generated 
from online copies of the ring 0 software.   The system 
libraries are protected against modification by the stan-
dard ACL mechanism.  In addition, the library installers 
periodically check the date/time last modified of all seg-
ments in the library in an attempt to detect unauthorized 
modifications. 

3 VULNERABLITY ANALYSIS 

3.1 Approach Plan 
It was hypothesized that although the fundamental de-

sign characteristics of Multics were sound, the implemen-
tation was carried out on an ad hoc basis and had security 
weaknesses in each of the three areas of security controls 
described in Section 2 – hardware, software, and proce-
dures. 

The analysis was to be carried out on a very limited 
basis with less than one-half man month per month level 
of effort.  Due to the manpower restrictions, a goal of one 
vulnerability per security control area was set.  The pro-
cedure followed was to postulate a weakness in a general 
area, verify the weakness in the system, experiment with 
the weakness on the Rome Air Development Center 
(RADC) installation, and finally, using the resulting de-
bugged penetration approach, exploit the weakness on the 
MIT installation. 

An attempt was to be made to operate with the same 
type of ground rules under which a real agent would oper-
ate.  That is, with each penetration, an attempt would be 
made to extract or modify sensitive system data without 
detection by the system maintenance or administrative 
personnel. 

Several exploitations were successfully investigated.  
These included changing access fields in SDW’s, changing 
protected identities in the PDS, inserting trap doors into the 
system libraries, and accessing the system password file. 

3.2 Hardware Vulnerabilities  

3.2.1 Random Failures 
One area of significant concern in a system processing 

multi-level classified material is that of random hardware 
failures.  As described in Section 2.1.1, the fundamental 
security of the system is dependent on the correct operation 
of the segmentation hardware.  If this hardware is prone to 
error, potential security vulnerabilities become a significant 
problem. 

To attempt a gross measure of the rate of security sensi-
tive component failure, a procedure called the subverter 
was written to sample the security sensitive hardware on a 
frequent basis, testing for component failures which could 
compromise the security controls.  The subverter was run 
in the background of an interactive process.  Once each 
minute, the subverter received a timer interrupt and per-
formed one test from the list described below.  Assuming 
the test did not successfully violate security rules, the sub-

1100 operating hours 
 Test Name Number 

Attempts 
1. Clear Associative Memory 3526 
2. Store Control Unit 3466 
3. Load Timer Unit 3444 
4. Load Descriptor Base Register 3422 
5. Store Descriptor Base Register 3403 
6. Connect I/O Channel 3378 
7. Delay Until Interrupt Signal 3359 
8. Read Memory Controller Mask 

Register 
3344 

9. Set Memory Controller Mask  
Register 

3328 

10. Set Memory Controller Interrupt 
Cells 

3309 

11. Load Alarm Clock 3289 
12. Load Associative Memory 3259 
13. Store Associative Memory 3236 
14. Restore Control Unit 3219 
15. No Read Permission 3148 
16. No Write Permission 3131 
17. XED – No Read Permission 3113 
18. XED – No Write Permission 3098 
19. Tally Word Without Write  

Permission 
3083 

20. Bounds Fault <64K 2398 
21. Bounds Fault >64K 2368 
22. Illegal Opcodes 2108 

Table 1.  Subverter Test Attempts



verter would go to sleep for one minute before trying the 
next test.  A listing of the subverter may be found in Ap-
pendix A. 

The subverter was run for 1100 hours in a one year pe-
riod on the MIT 645 system.  The number of times each 
test was attempted is shown in Table 1.  During the 1100 
operating hours, no security sensitive hardware compo-
nent failures were detected, indicating good reliability for 
the 645 security hardware. However, two interesting 
anomalies were discovered in the tests.  First, one un-
documented instruction (octal 471) was discovered on the 
645.  Experimentation indicated that the new instruction 
had no obvious impact on security, but merely seemed to 
store some internal register of no particular interest.  The 
second anomaly was a design error resulting in an algo-
rithmic failure of the hardware described in Section 3.2.2. 

Tests 1-14 are tests of master mode instructions. Tests 
15 and 16 attempt simple violation of read and write per-
mission as set on segment ACL’s.  Tests 17 and 18 are 
identical to 15 and 16 except that the faulting instructions 
are reached from an Execute Double instruction rather 
than normal instruction flow.  Test 19 attempts to incre-
ment a tally word that is in a segment without write per-
mission.  Tests 20 and 21 take out of bounds faults on 
segments of zero length, forcing the supervisor to grow 
new page tables for them.  Test 22 attempts execution of 
all the instructions marked illegal on the 645. 

3.2.2 Execute Instruction Access Check Bypass 
While experimenting with the hardware subverter, a 

sequence of code10 was observed which would cause the 
hardware of the 645 to bypass access checking.  Specifi-
cally, the execute instruction in certain cases described 
below would permit the executed instruction to access a 
segment for reading or writing without the corresponding 
permissions in the SDW. 

This vulnerability occurred when the execute instruc-
tion was in certain restricted locations of a segment with 
at least read-execute (re) permission.  (See Figure 4.) The 
execute instruction then referenced an object instruction 
in word zero of a second segment with at least R permis-
sion.  The object instruction indirected through an ITS 
pointer in the first segment to access a word for reading or 
writing in a third segment.  The third segment was re-
quired to be active; that is, to have an SDW pointing to a 
valid page table for the segment.  If all these conditions 
were met precisely, the access control fields in the SDW 
of the third segment would be ignored and the object in-
struction permitted to complete without access checks. 

The exact layout of instructions and indirect words was 
crucial.  For example, if the object instruction used a base 
register rather than indirecting through the segment con-

                                                           
10 The subverter was designed to test sequences of code in which single 
failures could lead to security problems.  Some of these sequences exer-
cised relatively complex and infrequently used instruction modifications, 
which experience had shown were prone to error. 

taining the execute instruction (i.e., staq ap|0 rather than 
staq 6,*), then the access checks were done properly.  Un-
fortunately, a complete schematic of the 645 was not avail-
able to determine the exact cause of the bypass.  In infor-
mal communications with Honeywell, it was indicated that 
the error was introduced in a field modification to the 645 
at MIT and was then made to all processors at all other 
sites.  

This hardware bug represents a violation of one of the 
most fundamental rules of the Multics design - the check-
ing of every reference to a segment by the hardware.  This 
bug was not caused by fundamental design problems.  
Rather, it was caused by carelessness by the hardware en-
gineering personnel. 

No attempt was made to make a complete search for ad-
ditional hardware design bugs, as this would have required 
logic diagrams for the 645.  It was sufficient for this effort 
to demonstrate one vulnerability in this area. 

3.2.3 Preview of 6180 Hardware Vulnerabilities 
While no detailed look has been taken at the issue of 

hardware vulnerabilities on the 6180, the very first login of 
an ESD analyst to the 6180 inadvertently discovered a 
hardware vulnerability that crashed the system.  The vul-
nerability was found in the Tally Word Without Write 
Permission test of the subverter.  In this test, when the 
6180 processor encountered the tally word without write 
permission, it signalled a trouble fault rather than an access 
violation fault.  The trouble fault is normally signalled only 
when a fault occurs during the signalling of a fault.  Upon 
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encountering a trouble fault, the software normally brings 
the system down. 

It should be noted that the HIS 6180 contains very new 
and complex hardware that, as of this publication, has not 
been completely “shaken down”.  Thus, Honeywell still 
quite reasonably expects to find hardware problems.  
However, the inadequacy of “testing” for security vulner-
abilities applies equally well to hardware as to software.  
Simply “shaking down” the hardware cannot find all the 
possible vulnerabilities. 

3.3 Software Vulnerabilities 
Although the approach plan for the vulnerability 

analysis only called for locating one example of each 
class of vulnerability, three software vulnerabilities were 
identified as shown below.  Again, the search was neither 
exhaustive nor systematic. 

3.3.1 Insufficient Argument Validation 
Because the 645 Multics system must simulate protec-

tion rings in software, there is no direct hardware valida-
tion of arguments passed in a subroutine call from a less 
privileged ring to a more privileged ring.  Some form of 
validation is required, because a malicious user could call 
a ring 0 routine that stores information through a user 
supplied pointer.  If the malicious user supplied a pointer 
to data to which ring 0 had write permission but to which 
the user ring did not, ring 0 could be tricked into causing 
a security violation. 

To provide validation, the 645 software ring crossing 
mechanism requires all gate segments11 to declare to the 
gatekeeper the following information. 

1. number of arguments expected 
2. data type of each argument 
3. access requirements for each argument - read only 

or read/write 
This information is stored by convention in specified 

locations within the gate segment.12 The gatekeeper in-
vokes an argument validation routine that inspects the 
argument list being passed to the gate to ensure that the 
declared requirements are met.  If any test fails, the argu-
ment validator aborts the call and signals the condition 
gate error in the calling ring. 

In February 1973, a vulnerability was identified in the 
argument validator that would permit the “fooling” of ring 
0 programs.  The argument validator’s algorithm to vali-
date read or read/write permission was as follows:  First 
copy the argument list into ring 0 to prevent modification 
of the argument list by a process running on another CPU 

                                                           
11 A gate segment is a segment used to cross rings.  It is identified by 
R2 and R3 of its ring brackets R1, R2, R3 being different.  See Organick 
[22] for a detailed description of ring brackets. 
12 For the convenience of authors of gates, a special “gate language” 
and “gate complier” are provided to generate properly formatted gates.  
Using this language, the author of the gate can declare the data type and 
access requirement of each argument. 

in the system while the first process is in ring 0 and has 
completed argument validation.  Next, force indirection 
through each argument pointer to obtain the segment num-
ber of the target argument.  Then look up the segment in 
the calling ring’s descriptor segment to check for read or 
write permission. 

The vulnerability is as follows:  (See figure 5.)  An ar-
gument pointer supplied by the user is constructed to con-
tain an IDC modifier (increment address, decrement tally, 
and continue) that causes the first reference though the 
indirect chain to address a valid argument.  This first refer-
ence is the one made by the argument validator.  The refer-
ence through the IDC modifier increments the address field 
of the tally word causing it to point to a different indirect 
word which in turn points to a different ITS pointer which 
points to an argument which is writable in ring 0 only.  The 
second reference through this modified indirect chain is 
made by the ring 0 program, which proceeds to write data 
where it shouldn’t.13 

This vulnerability resulted from violation of a basic rule 
of the Multics design – that all arguments to a more privi-
leged ring be validated.  The problem was not in the fun-

                                                           
13 Depending on the actual number of references made, the malicious 
user need only vary the number of indirect words pointing to legal and 
illegal arguments.  We have assumed for simplicity here that the validator 
and the ring 0 program make only one reference each. 
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damental design – the concept of a software argument 
validator is sound given the lack of ring hardware.  The 
problem was an ad hoc implementation of that argument 
validator which overlooked a class of argument pointers. 

Independently, a change was made to the MIT system, 
which fixed this vulnerability in February 1973.  The 
presence and exploitability of the vulnerability were veri-
fied on the RADC Multics, which had not been updated to 
the version running at MIT.  The method of correction 
chosen by MIT was rather brute force.  The argument 
validator was changed to require the modifier in the sec-
ond word of each argument pointer always to be zero.  
This requirement solves the specific problem of the IDC 
modifier, but not the general problem of argument valida-
tion. 

3.3.2 Master Mode Transfer 
As described in Sections 2.1.2 and 2.2.4, the 645 CPU 

has a master mode in which privileged instructions may 
be executed and in which access checking is inhibited 
although address translation through segment and page 
tables is retained.14  The original design of the Multics 
protection rings called for master mode code to be re-
stricted to ring 0 by convention.15  This convention caused 
the fault handling mechanism to be excessively expensive 
due to the necessity of switching from the user ring into 
ring 0 and out again using the full software ring crossing 
mechanism.  It was therefore proposed and implemented 
that the signaller, the module responsible for processing 
faults to be signalled to the user,16 be permitted to run in 
the user ring to speed up fault processing.  The signaller is 
a master mode procedure, because it must execute the 
RCU (Restore Control Unit) instruction to restart a proc-
ess after a fault. 

The decision to move the signaller to the user ring was 
not felt to be a security problem by the system designers, 
because master mode procedures could only be entered at 
word zero.  The signaller would be assembled with the 
master mode pseudo-operation code at word zero to pro-
tect it from any malicious attempt by a user to execute an 
arbitrary sequence of instructions within the procedure.  It 
was also proposed, although never implemented, that the 
code of master mode procedures in the user ring be spe-
cially audited.  However as we shall see in Section 3.4.4, 
auditing does not guarantee victory in the battle of wits 
between the implementer and the penetrator.  Auditing 
cannot be used to make up for fundamental security 
weaknesses. 

                                                           
14 The 645 also has an absolute mode in which all addresses are abso-
lute core addresses rather than being translated by the segmentation 
hardware.  This mode is used only to initialize the system. 
15 This convention is enforced on the 6180.  Privileged mode (the 6180 
analogy to the 645 master mode) only has effect in ring 0.  Outside ring 
0, the hardware ignores the privileged mode bit. 
16 The signaller processed such faults as zerodivide and access viola-
tion, which are signalled to the user.  Page faults and segment faults, 
which the user never sees, are processed elsewhere in ring 0. 

It was postulated in the ESD/MCI vulnerability analysis 
that master mode procedures in the user ring represent a 
fundamental violation of the Multics security concept.  
Violating this concept moves the security controls from the 
basic hardware/software mechanism to the cleverness of 
the systems programmer who, being human, makes mis-
takes and commits oversights.  The master mode proce-
dures become classical supervisor calls with no rules for 
sufficient security checks.  In fact, upon close examination 
of the signaller, this hypothesis was found to be true. 

The master mode pseudo-operation code was designed 
only to protect master mode procedures from random calls 
with ring 0.  It was not designed to withstand the attack of 
a malicious user, but only to operate in the relatively be-
nign environment of ring 0. 

The master mode program shown in Figure 6 assembles 
into the interpreted object code shown in Figure 7.  The 
master mode procedure can only be entered at location 
zero.17  By convention, the n entry points to the procedure 

are numbered from 0 to n-1.  The number of the desired 
entry point must be in index register zero at the time of the 
call.  The first two instructions in the master mode se-
quence check to ensure that index register zero is in 
bounds.  If it is, the transfer on no carry (tnc) instruction 
indirects through the transfer vector to the proper entry.  If 

                                                           
17 This restriction is enforced by hardware described in Section 2.1.2. 

name master_test
mastermode
entry a
entry b

a: code
…

b: code
…
end

Figure 6.  Master Mode Source Code 

cmpx0 2,du     "call in bounds?
tnc transfer_vector,0 

         "Yes, go to entry 
stb sp|0     "Illegal call here 
sreg sp|10    "save registers 
stcd sp|24 
tra lp|12,*  "lp|12 points 

         "to mxerror 
a: code  

…  
b: code  

…  
transfer_vector: 

tra a 
tra b 
end  

Figure 7.  Master Mode Interpreted Object Code 



index register zero is out of bounds, the processor regis-
ters are saved for debugging and control is transferred to 
mxerror, a routine to crash the system because of an unre-
coverable error. 

The transfer to mxerror is the most obvious vulnerabil-
ity.  By moving the signaller into the user ring, the de-
signers allowed a user to arbitrarily crash the system by 
transferring to signaller|0 with a bad value in index 
register zero.  This vulnerability is not too serious, since it 
does not compromise information and could be repaired 
by changing mxerror to handle the error, rather than 
crashing the system. 

However, there is a much more subtle and dangerous 
vulnerability here.  The tra lp|12,* instruction that 
is used to call mxerror believes that the lp register points 
to the linkage section of the signaller, which it should if 
the call were legitimate.  However, a malicious user may 
set the lp register to point wherever he wishes, permitting 
him to transfer to an arbitrary location while the CPU is 
still in master mode.  The key is the transfer in master 
mode, because this permits a transfer to an arbitrary loca-
tion within another master mode procedure without access 
checking and without the restriction of entering at word 
zero.  Thus, the penetrator need only find a convenient 
store instruction to be able to write into his own descriptor 
segment, for example.  Figure 8 shows the use of a sta 
bp|0 instruction to change the contents of an SDW ille-
gally. 

There is one major difficulty in exploiting this vulner-
ability.  The instruction to which control is transferred 
must be chosen with extreme care.  The instructions im-
mediately following the store must provide some orderly 
means of returning control to the malicious user without 
doing uncontrolled damaged to the system.  If a crucial 
data base is garbled, the system will crash leaving a core 
dump which could incriminate the penetrator. 

This vulnerability was identified by ESD/MCI in June 
1972.  An attempt to use the vulnerability led to a system 
crash for the following reason: Due to an obsolete listing of 
the signaller, the transfer was made to an ldbr (Load De-
scriptor Base Register) instruction instead of the expected 
store instruction.  The DBR was loaded with a garbled 
value, and the system promptly crashed.  The system main-
tenance personnel, being unaware of the presence of an 
active penetration, attributed the crash to a disk read error. 

The Master Mode Transfer vulnerability resulted from a 
violation of the fundamental rule that master mode code 
shall not be executed outside ring 0.  The violation was not 
made maliciously by the system implementers.  Rather it 
occurs because of the interaction of two seemingly inde-
pendent events: the ability to transfer via the lp without the 
system being able to check the validity of the lp setting, 
and the ability for that transfer to be master mode code.  
The separation of these events made the recognition of the 
problem unlikely during implementation. 

3.3.3 Unlocked Stack Base 
The 645 CPU has eight 18-bit registers that are used 

for inter-segment    references.  Control bits are associated 
with each register to allow it to be paired with another reg-
ister as a word number-segment number pair. In addition, 
each register has a lock bit, settable only in master mode, 
which protects its contents from modification. By conven-
tion, the eight registers are named and paired as shown in 
Table 2. 

During the early design of the Multics operating system, 
it was felt that the ring 0 code could be simplified if the 
stack base (sb) register were locked, that is, could only be 
modified in master mode.  The sb contained the segment 
number of the user stack which was guaranteed to be write-
able.  If the sb were locked, then the ring 0 fault and 
interrupt handlers could have convenient areas in which to 
store stack frames.  After Multics had been released to us-
ers at MIT, it was realized that locking the stack base un-
necessarily constrained language designers.  Some lan-
guages would be extremely difficult to implement without 
the capability of quickly and easily switching between 
stack segments.  Therefore, the system was modified to no 
longer lock the stack base. 

When the stack base was unlocked, it was realized that 
there was code scattered throughout ring 0 which assumed 

        Setup Conditions

A reg :=  new SDW
Index 0 :=  -1
lp := address(POINTER)-12
POINTER := address(sta instruction)
bp := address(SDW)

sta bp|0

tra lp|12,*

signaller

offset:

 offset

<signaller>      ITS

SDW

DSEG

enter

Figure 8.  Store with Master Mode Transfer 

Num Name Use Pairing 
0 ap Argument pointer Paired with ab 
1 ab Argument base Unpaired 
2 bp Unassigned Paired with bb 
3 bb Unassigned Unpaired 
4 lp Linkage pointer Paired with lb 
5 lb Linkage base Unpaired 
6 sp Stack pointer Paired with sb 
7 sb Stack base unpaired 

Table 2.  Base Register Pairing 



that the sb always pointed to the stack.  Therefore, ring 0 
was audited for all code which depended on the locked 
stack base.  However, the audit was never completed and 
the few dependencies identified were in general not re-
paired until much later. 

As part of the vulnerability analysis, it was hypothe-
sized that such an audit for unlocked stack base problems 
was presumably incomplete.  The ring 0 code is so large 
that a subtle dependency on the sb register could easily 
slip by an auditor’s notice.  This, in fact proved to be true 
as shown below: 

tra lp|12, *

...

sreg sp|10

stb sp|0

...

signallerenter

return

tra bp|2

xed bp|0

index regs

base regs

emergency_shutdown.link

sp|0

sp|10

sp|14

Setup Conditions

AQ register := xed bp|0;  tra bp|2
Index 0 := -1
sp := address(unused storage in

emergency_shutdown.link)
lp|12 := address(return location)

Figure 9.  Unlocked Stack Base (Step 1) 

Section 3.3.2 showed that the master mode pseudo-
operation code believed the value in the lp register and 
transferred through it.  Figure 7 shows that the master 
mode pseudo-operation code also depends on the sb 
pointing to a writeable stack segment.  When an illegal 
master mode call is made, the registers are saved on the 
stack prior to calling mxerror to crash the system.  This 
code was designed prior to the unlocking of the stack base 
and was not detected in the system audit. The malicious 

user need only set the sp-sb pair to point anywhere to per-
form an illegal store of the registers with master mode 
privileges. 

The exploitation of the unlocked stack base vulnerabil-
ity was a two step procedure.  The master mode pseudo-
operation code stored all the processor registers in an area 
over 20 words long.  This area was far too large for use in a 
system penetration in which at most one or two words are 
modified to give the agent the privileges he requires.  
However, storing a large number of words could be very 
useful to install a trap door in the system -- that is a se-
quence of code which when properly invoked provides the 
penetrator with the needed tools to subvert the system.  
Such a trap door must be well hidden to avoid accidental 
discovery by the system maintenance personnel. 

It was noted that the linkage segments of several of the 
ring 0 master mode procedures were preserved as separate 
segments rather than being combined in a single linkage 
segment.  Further, these linkage segments were themselves 
master mode procedures.  Thus, segments such as signaller, 
fim, and emergency_shutdown had corresponding master 
mode linkage segments signaller.link, fim.link, and emer-
gency_shutdown.link.  Linkage segments contain a great 
deal of information used only by the binder and therefore 
contain a great deal of extraneous information in ring 0.  
For this reason, a master mode linkage segment is an ideal 
place to conceal a trap door.  There is a master mode pro-
cedure called emergency_shutdown that is used to place 
the system in a consistent state in the event of a crash.  
Since emergency_shutdown is used only at the time of a 
system crash, its linkage segment, emer-
gency_shutdown.link, was chosen to be used for the trap 
door.  

The first step of the exploitation of the unlocked 
stack base is shown in Figure 9.18  The signaller is entered 
at location 0 with an invalid index register 0.  The stack 
pointer is set to point to an area of extraneous storage in 
emergency_shutdown.link.  The AQ register contains a two 
instruction trap door which when executed in master mode 
can load or store any 36-bit word in the system.  The index 
registers could be used to hold a longer trap door; how-
ever, in this case the xed bp|0, tra bp|2 sequence is suffi-
cient.  The base registers, index registers, and AQ register 
are stored into emergency_shutdown.link, thus laying the 
trap door.  Finally a transfer is made indirect through lp|12 
which has been pre-set as a return pointer.19 

Step two of the exploitation of the unlocked stack base 
is shown in Figure 10.  The calling program sets the bp 
register to point to the desired instruction pair and transfers 
to word zero of the signaller with an invalid value in index 

                                                           
18 Listings of the code used to exploit this vulnerability are found in 
Appendix B. 
19 This transfer uses the Master Mode Transfer vulnerability to return.  
This is done primarily for convenience.  The fundamental vulnerability is 
the storing though the sp register.  Without the Master Mode Transfer, 
exploitation of the Unlocked Stack Base would have been more difficult, 
although far from impossible. 



register 0.  The signaller saves its registers on the user’s 
stack frame since the sp has not been changed.  It then 
transfers indirect through lp|12 which has been set to 
point to the trap door in emergency_shutdown.link. The 
first instruction of the trap door is an execute double 
(XED) which permits the user (penetration agent) to spec-
ify any two arbitrary instructions to be executed in master 
mode.  In this example, the instruction pair loads the Q 
register from a word in the stack frame20 and then stores 
indirect through a pointer in the stack to an SDW in the 
descriptor segment.  The second instruction in the trap 
door transfers back to the calling program, and the pene-
trator may go about his business. 

 
The trap door inserted in emergency_shutdown.link 

remained in the system until the system was reinitial-
ized.21  At initialization time, a fresh copy of all ring zero 
segments is read in from the system tape erasing the trap 
door.  Since system initializations occur at least once per 

                                                           
20 It should be noted that only step one changed the value of the sp.  In 
step two, it is very useful to leave the sp pointing to a valid stack frame. 
21 See Section 3.4.5 for more lasting “trap doors”. 

day, the penetrator must execute step one before each of 
his working sessions.  Step two is then executed each time 
he wishes to access or modify some word in the system. 

The unlocked stack base vulnerability was identified in 
June 1972 with the Master Mode Transfer Vulnerability.  It 
was developed and used at the RADC site in September 
1972 without a single system crash.  In October 1972, the 
code was transferred to the MIT site.  Due to lack of good 
telecommunications between the two sites, the code was 
manually retyped into the MIT system.  A typing mistake 
was made that caused the word to be stored into the SDW 
to always be zero  (See Figure 10).  When an attempt was 
made to set slave access-data in the SDW of the descriptor 
segment itself,22 the SDW of the descriptor segment was set 
to zero causing the system to crash at the next LDBR in-
struction or segment initiation.  The bug was recognized 
and corrected immediately, but later in the day, a second 
crash occurred when the SDW for the ring zero segment 
fim (the fault intercept module) was patched to slave ac-
cess-write permit-data rather than slave access-write per-
mit-slave procedure.  In more straightforward terms, the 
SDW was set to read-write rather than read-write-execute.  
Therefore, when the system next attempted to execute the 
fim it took a no-execute permission fault and tried to exe-
cute the fim, thus entering an infinite loop crashing the 
system. 

3.3.4 Preview of 6180 Software Vulnerabilities 
The 6180 hardware implementation of rings renders in-

valid the attacks described here on the 645.  This is not to 
say, however, that the 6180 Multics is free of vulnerabili-
ties.  A cursory examination of the 6180 software has re-
vealed the existence of several software vulnerabilities, any 
one of which can be used to access any information in the 
system. These vulnerabilities were identified with compa-
rable levels of effort to those shown in Section 3.5. 

3.3.4.1 No Call Limiter Vulnerability 

The first vulnerability is the No Call Limiter vulnerabil-
ity.  This vulnerability was caused by the call limiter not 
being set on gate segments, allowing the user to transfer to 
any instruction within the gate rather than to just an entry 
transfer vector.  This vulnerability gives the penetrator the 
same capabilities as the Master Mode Transfer vulnerabil-
ity. 

3.3.4.2 SLT-KST Dual SDW Vulnerability 

The second vulnerability is the SLT-KST Dual SDW 
vulnerability.  When a user process was created on the 645, 
separate descriptor segments were created for each ring 
with the ring 0 SDW’s being copied from the segment 
loading table (SLT).  The ring 0 descriptor segment was 

                                                           
22 The attempt here was to dump the contents of the descriptor segment 
on the terminal.  The user does not normally have read permission to his 
own descriptor segment. 

tra lp|12,*

. . .

return code

stq sp|sdwp,*

ldq sp|word

tra <signaller>|0

eapbp 2,ic

. . .

tra bp|2

xed bp|0

sdwp         ITS

word

SDW

calling program

signaller

emergency_shutdown.link

calling stack frame

Descriptor Segment

enter

Figure 10.  Unlocked Stack Base (Step 2) 



essentially a copy of the SLT for ring 0 segments.  The 
ring 4 descriptor segment zeroed out most SDW’s for ring 
0 segments.  Non-ring 0 SDW’s were added to both the 
ring 0 and ring 4 descriptor segments from the Known 
Segment Table (KST) during segment initiation.  Upon 
conversion to the 6180, the separate descriptor segments 
for each ring were merged into one descriptor segment 
containing ring brackets in each SDW [5].  The ring 0 
SDW’s were still taken from the SLT and the non-ring 0 
SDW’s from the KST as on the 645. 

The system contains several gates from ring 4 into ring 
0 of varying levels of privilege.  The least privileged gate 
is called hcs_ and may be used by all users in ring 4.  The 
most privileged gate is called hphcs_ and may only be 
called by system administration personnel.  The gate 
hphcs_ contains routines to shut the system down, access 
any segment in the system, and patch the ring 0 data 
bases.  If a user attempts to call hphcs_ in the normal 
fashion, hphcs_ is entered into the KST, an SDW is as-
signed, and access rights are determined from the access 
control list stored in hphcs_’s parent directory.  Since 
most users would not be on the access control list of 
hphcs_, access would be denied.  Ring 0 gates, however, 
also have a second segment number assigned from the 
segment loading table (SLT).  This duplication posed no 
problem on the 645, since SLT SDW’s were valid only in 
the ring 0 descriptor segment.  However on the 6180, the 
KST SDW for hphcs_ would be null access ring brackets 
0,0,5, but the SLT SDW would read execute (re) access, 
ring brackets 0,0,5.  Therefore, the penetrator need only 
transfer to the appropriate absolute segment number 
rather than using dynamic linking to gain access to any 
hphcs_ capability.  This vulnerability was considerably 
easier to use than any of the others and was carried 
though identification, confirmation, and exploitation in 
less than 5 man-hours total (See Section 3.5). 

3.3.4.3 Additional Vulnerabilities 

The above mentioned 6180 vulnerabilities have been 
identified and repaired by Honeywell.  The capabilities of 
the SLT-KST Dual SDW vulnerability were demonstrated 
to Honeywell on 14 September 1973 in the form of an 
illegal message to the operator’s console at the 6180 site 
in the Honeywell plant in Phoenix, Arizona.  Honeywell 
did not identify the cause of the vulnerability until March 
1974 and installed a fix in Multics System 23.6. As of the 
time of this publication, additional vulnerabilities have 
been identified but at this time have not been developed 
into a demonstration. 

3.4 Procedural Vulnerabilities 
This section describes the exploitation by a remote 

user of several classes of procedural vulnerabilities.  No 
attempt was made to penetrate physical security, as there 
were many admitted vulnerabilities in this area.  In par-
ticular, the machine room was not secure and communica-
tions lines were not encrypted.  Rather, this section looks 

at the areas of auditing, system configuration control,23 
passwords, and privileged users. 

3.4.1 Dump and Patch Utilities 
To provide support to the system maintenance person-

nel, the Multics system includes commands to dump or 
patch any word in the entire virtual memory.  These utili-
ties are used to make online repairs while the system con-
tinues to run.  Clearly these commands are very dangerous, 
since they can bypass all security controls to access other-
wise protected information, and if misused, can cause the 
system to crash by garbling critical data critical data bases.  
To protect the system, these commands are implemented 
by special privileged gates into ring zero.  The access con-
trol lists on these gates restrict their use to system mainte-
nance personnel by name as authenticated by the login pro-
cedure.  Thus an ordinary user nominally cannot access 
these utilities.  To further protect the system, the patch util-
ity records on the system operator’s console every patch 
that is made.  Thus, if an unexpected or unauthorized patch 
is made, the system operator can take immediate action by 
shutting the system down if necessary. 

Clearly dump and patch utilities would be of great use 
to a system penetrator, since they can be used to facilitate 
his job.  Procedural controls on the system dump and patch 
routines prevent the penetrator from using them by the 
ACL restrictions and the audit trail.  However by using the 
software vulnerabilities described in section 3.3, these pro-
cedural controls may be bypassed and the penetration agent 
can implement his own dump and patch utilities as de-
scribed below. 

Dump and patch utilities were implemented on Multics 
using the Unlocked Stack Base and Insufficient Argument 
Validation vulnerabilities.  These two vulnerabilities dem-
onstrated two basically different strategies for accessing 
protected segments.  These two strategies developed from 
the fact that the Unlocked Stack Base vulnerability oper-
ates in ring 4 master mode while the Insufficient Argument 
Validation vulnerability operates in ring 0 slave mode.  In 
addition, there was a requirement that a minimal amount of 
time be spent with the processor in an anomalous state - 
ring 4 master mode or ring 0 illegal code.  When the proc-
essor is in an anomalous state, unexpected interrupts or 
events could cause the penetrator to be exposed in a system 
crash. 

3.4.1.1 Use of Insufficient Argument Validation 

As was mentioned above, the HIS 645 implementation 
of Multics simulates protection rings by providing one de-
scriptor segment for each ring.  Patch and dump utilities 

                                                           
23 System configuration control is a term derived from Air Force pro-
curement procedures and refers to the control and management of the 
hardware and software being used in a system with particular attention to 
the software update tasks.  It is not to be confused with the Multics dy-
namic reconfiguration capability, which permits the system to add and 
delete processors and memories while the system is running. 



can be implemented using the Insufficient Argument 
Validation vulnerability by realizing that the ring zero 
descriptor segment will have entries for segments which 
are not accessible from ring 4.  Conceptually, one could 
copy an SDW for some segment from the ring 0 descrip-
tor segment to the ring 4 descriptor segment and be guar-
anteed at least as much access as available in ring 0.  
Since the segment number of a segment is the same in all 
rings, this approach is very easy to imple-
ment.

Get Seg #
from

Arg List
1

Get Ring 4
SDW from

wdseg
2

Get Ring 0
SDW from

dseg
3

SDW ^= 0?
4

Is Segment
Accessible
in Ring 0?

Return Error

5

Stop Patch SDW in
wdseg

6

Yes

Store Ring 0
SDW in
wdseg with
REW access

Perform
Dump/Patch

7

Restore old
Ring 4 SDW

8
Stop

No

 

The exact algorithm is shown in flow chart form in 
Figure 11. In block 2 of the flow chart, the ring 4 SDW is 
read from the ring 4 descriptor segment (wdseg) using the 
Insufficient Argument Validation vulnerability.  Next the 
ring 0 SDW is read from the ring 0 descriptor segment 
(dseg).  The ring 0 SDW must now be checked for valid-
ity, since the segment may not be accessible even in ring 
0.24  An invalid SDW is represented by all 36 bits being 
zero.  One danger present here is that if the segment in 
question is deactivated,25 the SDW being checked may be 
invalidated while it is being manipulated.  This event 
could conceivably have disastrous results, but as we shall 

                                                           
24 As an additional precaution, ring 0 slave mode programs run under 
the same access rules as all other programs.  A valid SDW entry is made 
for a segment in any ring only if the user is on the ACL for the segment.  
We shall see in Section 3.4.2 how to get around this “security feature”. 
25 A segment is deactivated when its page table is removed from core.  
Segment deactivation is performed on a least recently used basis, since 
not all page tables may be kept in a core at one time.   

see in Section 3.4.2, the patch routine need only be used on 
segments which are never deactivated.  The dump routine 
can do no harm if it accidentally uses an invalid SDW, as it 
always only reads using the SDW, conceivably reading 
garbage but nothing else.  Further, deactivation of the seg-
ment is highly unlikely since the segment is in use by the 
dump/patch routine. 
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Figure 12.  Dump/Patch Utility Using  
Unlocked Stack Base 

If the ring 0 SDW is invalid, an error code is returned in 
block 5 of the flow chart and the routine terminates.  Oth-
erwise, the ring 0 SDW is stored into the ring 4 descriptor 
segment (wdseg) with read-execute-write access by turning 
on the SDW bits for slave access, write permission, slave 
procedure (See Figure 2).  Now the dump or patch can be 
performed without using the vulnerability to load or store 
each 36 bit word being moved.  Finally in block 8, the ring 
4 SDW is restored to its original value, so that a later unre-
lated system crash could not reveal the modified SDW in a 
dump.  It should be noted that while blocks 2, 3, 6, and 8 
all use the vulnerability, the bulk of the time is spent in 
block 7 actually performing the dump or patch in perfectly 
normal ring 4 slave mode code. 

3.4.1.2 Use of Unlocked Stack Base 

The Unlocked Stack Base vulnerability operates in a 
very different environment from the Insufficient Argument 
Validation vulnerability.  Rather than running in ring 0, the 
Unlocked Stack Base vulnerability runs in ring 4 in master 
mode.  In the ring 0 descriptor segment, the segment dseg 
is the ring 0 segment, and wdseg is the ring 4 descriptor 

Figure 11.  Dump/Patch Utility Using 
Insufficient Argument Validation 



segment.26  However, in the ring 4 descriptor segment, the 
segment dseg is the ring 4 descriptor segment and wdseg 
has a zeroed SDW.  Therefore, a slightly different strat-
egy must be used to implement dump and patch utilities 
as shown in the flow chart in Figure 12.27  The primary 
difference here is in blocks 3 and 5 of Figure 12 in which 
the ring 4 SDW for the segment is used rather than the 
ring 0 SDW.  Thus the number of segments, which can be 
dumped or patched is reduced from those accessible in 
ring 0 to those accessible in ring 4 master mode.  We shall 
see in Section 3.4.2 that this reduction is not crucial, since 
ring 4 master mode has sufficient access to provide inter-
esting segments to dump or patch. 

3.4.1.3 Forging Generation of New SDW’s 

Two strategies for implementation of dump and patch 
utilities were shown above.  In addition, a third strategy 
exists which was rejected due to its inherent dangers.  In 
this third strategy, the penetrator selects an unused seg-
ment number and constructs an SDW occupying that 
segment number in the ring 4 descriptor segment using 
any of the vulnerabilities.  This totally new SDW could 
then be used to access some part of the Multics hierarchy.  
However, two major problems are associated with this 
strategy, which caused its rejection.  First the absolute 
core address of the page table of the segment must be 
stored in the SDW address field. There is no easy way for 
a penetrator to obtain the absolute address of the page 
table for a segment not already in his descriptor segment 
short of duplicating the entire segment fault mechanism 
which runs to many hundreds or thousands of lines of 
code. Second, if the processor took a segment or page 
fault on this new SDW, the ring 0 software would mal-
function, because the segment would not be recorded in 
the Known Segment Table (KST). This malfunction could 
easily lead to a system crash and the disclosure of the 
penetrator’s activities. Therefore, the strategy of generat-
ing new SDW’s was rejected. 

3.4.2 Forging the Non-Forgeable User  
Identification  

In section 2.2.3, the need for the protected, non-
forgeable identification of each user was identified. This 
non-forgeable ID must be compared with access control 
list entries to determine whether a user may access some 
segment. This identification is established when the user 
logs into Multics and is authenticated by the user pass-
word.28  If this user identification can be forged in any 

                                                           
26 Actually wdseg is the descriptor segment for whichever ring (1-7) 
was active at the time of the entry to ring 0.  No conflict occurs since 
wdseg is always the descriptor segment for the ring on behalf of which 
ring 0 is operating 
27 This strategy is also used with the Execute Instruction Access Check 
Bypass vulnerability, which runs in ring 4. 
28 Clearly more sophisticated authentication schemes than a single user 
chosen password could be used on Multics (see Richardson [24]).  How-
ever, such schemes are outside the scope of this paper. 

way, then the entire login audit mechanism can be rendered 
worthless. 

The user identification in Multics is stored in a per-
process segment called the process data segment (PDS). 
The PDS resides in ring 0 and contains many constants 
used in ring 0 and the ring 0 procedure stack. The user 
identification is stored in the PDS as a character string rep-
resenting the user’s name and a character string represent-
ing the user’s project. The PDS must be accessible to any 
ring 0 procedure within the user’s process and must be 
accessible to ring 4 master mode procedures (such as the 
signaller). Therefore, as shown in the Sections 3.4.1.1 and 
3.4.1.2, the dump and patch utilities can dump and patch 
portions of the PDS, thus forging the non-forgeable user 
identification.  Appendix E shows the actual user command 
needed to forge the user identification. 

This capability provides the penetrator with an ultimate 
weapon. The agent can now undetectably masquerade as 
any user of the system including the system administrator 
or security officer, immediately assuming that user’s access 
privileges. The agent has bypassed and rendered ineffective 
the entire login authentication mechanism with all its at-
tendant auditing machinery. The user whom the agent is 
impersonating can login and operate without interference. 
Even the who table that lists all the users currently logged 
into the system records the agent with his correct identifi-
cation rather than the forgery. Thus to access any segment 
in the system, the agent need only determine who has ac-
cess and change his user identification as easily as a legiti-
mate user can change his working directory.  

It was not obvious at the time of the analysis that chang-
ing the user identification would work.  Several potential 
problems were foreseen that could lead to system crashes 
or could reveal the penetrator’s presence.  However, none 
of these proved to be a serious barrier to masquerading. 

First, a user process occasionally sends a message to the 
operator’s console from ring 0 to report some type of un-
usual fault such as a disk parity error.  These messages are 
prefaced by the user’s name and project taken from the 
PDS.  It was feared that a random parity error could “blow 
the cover” of the penetrator by printing his modified identi-
fication on the operator’s console.29  However, the PDS in 
fact contains two copies of the user identification – one 
formatted for printing and one formatted for comparison 
with access control list entries.  Ring 0 software keeps 
these strictly separated, so the penetrator need only change 
the access control identification. 

Second, when the penetrator changes his user identifica-
tion, he may lose access to his own programs, data and 
directories.  The solution here is to assure that the access 
control lists of the needed segments and directories grant 
appropriate access to the user as whom the penetrator is 
masquerading.   

                                                           
29 This danger exists only if the operator or system security officer is 
carefully correlating parity error messages with the names of currently 
logged in users. 



Finally, one finds that although the penetrator can set 
the access control lists of his ring 4 segments appropri-
ately, he cannot in any easy way modify the access con-
trol lists of certain per process supervisor segments in-
cluding the process data segment (PDS), the process ini-
tialization table (PIT), the known segment table (KST), 
and the stack and combined linkage segments for ring 1, 
2, and 3.  The stack and combined linkage segments for 
ring 1, 2, and 3 can be avoided by not calling any ring 1, 
2, or 3 programs while masquerading.  However the PDS, 
PIT, and KST are all ring 0 data bases that must be acces-
sible at all times with read and write permission.  This 
requirement could pose the penetrator a very serious prob-
lem; but, because of the very fact that these segments 
must always be accessible in ring 0, the system has al-
ready solved this problem.  While the PIT, PDS and KST 
are paged segments,30 they are all used during segment 
fault handling.  In order to avoid recursive segment faults, 
the PIT, PDS, and KST are never deactivated.31  Deactiva-
tion, as mentioned above, is the process by which a seg-
ment’s page table is removed from core and a segment 
fault is placed in its SDW.  The access control bits are set 
in an SDW only at segment fault time.32  Since the system 
never deactivates the PIT, PDS, and KST, under normal 
conditions, the SDW’s are not modified for the life of the 
process.  Since the process of changing user identification 
does not change the ring 0 SDW’s of the PIT, PDS, and 
KST either, the penetrator retains access to these critical 
segments without any special action whatsoever. 

3.4.3 Accessing the Password File 
One of the classic penetrations of an operating system 

has been unauthorized access to the password file.  This 
type of attack on a system has become so embedded in the 
folklore of compute security that it even appears in the 
definition of a security breach in DOD 5200.28-M [7].  In 
fact, however, accessing the password file internal to the 
system proves to be of minimal value to a penetrator as 
shown below.  For completeness, the Multics password 
file was accessed as part of this analysis. 

3.4.3.1 Minimal Value of the Password File 

It is asserted that accessing the system password file is 
of minimal value to a penetrator for several reasons.  
First, the password file is generally the most highly pro-
tected file in a computer system.  If the penetrator has 
succeeded in breaking down the internal controls to ac-
cess the password file, he can almost undoubtedly access 

                                                           
30 In fact the first page of the PDS is wired down so that it may be used 
by page control.  The rest of the PDS, however, is not wired. 
31 In Multics jargon, their entry hold switches are set. 
32 In fact, a segment fault is also set in a SDW when the access control 
list of the corresponding segment is changed.  This is done to ensure that 
access changes are reflected immediately, and is effected by setting 
faults in all descriptor segments that have active SDW’s for the segment.  
This additional case is not a problem, because the access control lists of 
the PIT, PDS, and KST are never changed. 

every other file in the system.  Why bother with the pass-
word file? 

Second, the password file is often kept enciphered.  A 
great deal of effort may be required to invert such a cipher, 
if indeed the cipher is invertible at all. 

Finally, the login path to a system is generally the most 
carefully audited to attempt to catch unauthorized pass-
word use.  The penetrator greatly risks detection if he uses 
an unauthorized password.  It should be noted that an unau-
thorized password obtained outside the system may be very 
useful to a penetrator, if he does not already have access to 
the system.  However, that is an issue of physical security, 
which is outside the scope of this paper. 

3.4.3.2 The Multics Password File 

The Multics password file is stored in a segment called 
the person name table (PNT).  The PNT contains an entry 
for each user on the system including that user’s password 
and various pieces of auditing information.  Passwords are 
chosen by the user and may be changed at any time.33  
Passwords are scrambled by an allegedly non-invertible 
enciphering routine for protection in case PNT appears in a 
system dump.  Only enciphered passwords are stored in the 
system.  The password check at login time is accomplished 
by the equivalent of the following PL/I code: 

 
   if  scramble_(typed_password) = pnt.user.password 

then call ok_to_login; 
else call reject_login; 

 
For the rest of this section, it will be assumed that the 

enciphering routine is non-invertible.  In a separate volume 
[15], Downey demonstrates the invertibility of the Multics 
password scrambler used at the time of the vulnerability 
analysis.34 

The PNT is a ring 4 segment with the following access 
control list: 

 
rw *.SysAdmin.* 
null *.*.* 

Thus by modifying one’s user identification to the Sys-
Admin project as in Section 3.4.2, one can immediately 
gain unrestricted access to the PNT.  Since the passwords 
are enciphered, they cannot be read out of the PNT di-
rectly.  However, the penetrator can extract a copy of the 
PNT for cryptanalysis.  The penetrator can also change a 
user’s password to the enciphered version of a known 
password.  Of course, this action would lead to almost im-
mediate discovery, since the user would no longer be able 
to login. 

                                                           
33 There is a major problem that user chosen passwords are often easy to 
guess.  That problem, however, will not be addressed here.  Multics pro-
vides a random password generator, but its use is not mandatory. 
34 ESD/MCI has provided a ‘better” password scrambler that is now used 
in Multics, since enciphering the password file is useful in case it should 
appear in a system dump. 



3.4.4 Modifying Audit Trails 
Audit trails are frequently put into computer systems 

for the purpose of detecting breaches of security.  For 
example, a record of last login time printed when a user 
logged in could detect the unauthorized use of a user’s 
password and identification.  However, we have seen that 
a penetrator using vulnerabilities in the operating system 
code can access information and bypass many such au-
dits.  Sometimes it is not convenient for the penetrator to 
bypass an audit.  If the audit trail is kept online, it may be 
much easier to allow the audit to take place and then go 
back and modify the evidence of wrong doing.  One sim-
ple example of modification of audit trails was selected 
for this vulnerability demonstration. 

Every segment in Multics carries with it audit informa-
tion on the date time last used (DTU) and date time last 
modified (DTM).  These dates are maintained by an audit 
mechanism at a very low level in the system, and it is 
almost impossible for a penetrator to bypass this mecha-
nism.35  An obvious approach would be to attempt to 
patch the DTU and DTM that are stored in the parent di-
rectory of the segment in question.  However, directories 
are implemented as rather complex hash tables and are 
therefore very difficult to patch. 

Once again, however, a solution exists within the sys-
tem.  A routine called set_dates is provided among the 
various subroutine calls into ring 0 which is used when a 
segment is retrieved from a backup tape to set the seg-
ment’s DTU and DTM to the values at the time the seg-
ment was backed up.  The routine is supposed to be call-
able only from a highly privileged gate into ring 0 that is 
restricted to system maintenance personnel. However, 
since a penetrator can change his user identification, this 
restriction proves to be no barrier.  To access a segment 
without updating DTU or DTM: 

1. Change user ID to access segment. 
2. Remember old DTU and DTM. 
3. Use or modify the segment.  
4. Change user ID to system maintenance. 
5. Reset DTU and DTM to old values. 
6. Change user ID back to original. 

In fact due to yet another system bug, the procedure is 
even easier.  The module set_dates is callable, not only 
from the highly privileged gate into ring 0, but also from 
the normal user gate into ring 0.36  Therefore, step 4 in the 
above algorithm can be omitted if desired.  A listing of 
the utility that changes DTU and DTM may be found in 
Appendix F. 

It should be noted that one complication exists in step 
5 – resetting DTU and DTM.  The system does not update 
the dates in the directory entry immediately, but primarily 
at segment deactivation time.37  Therefore, step 5 must be 

                                                           
35 Section 3.4.5 shows motivation to bypass DTU and DTM. 
36 The user gate into ring 0 contains set_dates, so that users may per-
form reloads from private backup tapes. 
37 Dates may be updated at other times as well. 

delayed until the segment has been deactivated – a delay of 
up to several minutes.  Otherwise the penetrator could reset 
the dates, only to have them updated again a moment later. 

3.4.5 Trap Door Insertion 
Up to this point, we have seen how a penetrator can ex-

ploit existing weaknesses in the security controls of an op-
erating system to gain unauthorized access to protected 
information.  However, when the penetrator exploits exist-
ing weaknesses, he runs the constant risk that the system 
maintenance personnel will find and correct the weakness 
he happens to be using.  The penetrator would then have to 
begin again looking for weaknesses.  To avoid such a prob-
lem and to perpetuate access into the system, the penetrator 
can install trap doors in the system which permit him ac-
cess, but are virtually undetectable. 

3.4.5.1 Classes of Trap Doors 

Trap doors come in many forms and can be inserted in 
many places throughout the operational life of a system 
from the time of design up to the time the system is re-
placed.  Trap doors may be inserted at the facility at which 
the system is produced.  Clearly if one of the system pro-
grammers is an agent, he can insert a trap door in the code 
he writes. However, if the production site is a (perhaps on-
line) facility to which the penetrator can gain access, the 
penetrator can exploit existing vulnerabilities to insert trap 
doors into system software while the programmer is still 
working on it or while it is in quality assurance. 

As a practical example, it should be noted that the soft-
ware for WWMCCS is currently developed using un-
cleared personnel on a relatively open time sharing system 
at Honeywell’s plant in Phoenix, Arizona. The software is 
monitored and distributed from an open time sharing sys-
tem at the Joint Technical Support Agency (JTSA) at 
Reston, Virginia.  Both of these sites are potentially vul-
nerable to penetration and trap door insertion. 

Trap doors can be inserted during the distribution phase.  
If updates are sent via insecure communications – either 
US Mail or insecure telecommunication, the penetrator can 
intercept the update and subtly modify it.  The penetrator 
could also generate his own updates and distribute them 
using forged stationery.  

Finally, trap doors can be inserted during the installation 
and operation of the system at the user’s site.  Here again, 
the penetrator uses existing vulnerabilities to gain access to 
stored copies of the system and make subtle modifications. 

Clearly when a trap door is inserted, it must be well 
hidden to avoid detection by system maintenance person-
nel. Trap doors can best be hidden in changes to the binary 
code of a compiled routine.  Such a change is completely 
invisible on system listings and can be detected only by 
comparing bit by bit the object code and the compiler list-
ing.  However, object code trap doors are vulnerable to 
recompilations of the module in question. 



Therefore the system maintenance personnel could 
regularly recompile all modules of the system to eliminate 
object code trap doors.  However, this precaution could 
play directly into the hands of the penetrator who has also 
made changes in the source code of the system.  Source 
code changes are more visible than object code changes, 
since they appear in system listings.  However, subtle 
changes can be made in relatively complex algorithms 
that will escape all but the closest scrutiny. Of course, the 
penetrator must be sure to change all extant copies of a 
module to avoid discovery by a simple comparison pro-
gram. 

Two classes of trap doors which are themselves source 
or object trap doors are particularly insidious and merit 
discussion here.  These are the teletype key string trigger 
trap door and the compiler trap door. 

It has often been hypothesized that a carefully written 
closed subsystem such as a query system or limited data 
management system without programming capabilities 
may be made invulnerable to security penetration.  The 
teletype key string trigger is just one example of a trap 
door that provides the penetrator with a vulnerability in 
even the most limited subsystem.  To create such a trap 
door, the agent modifies the supervisor teletype modules 
at the development site such that if the user types nor-
mally, no anomaly occurs, but if the user types a special 
key string, a dump/patch utility is triggered into operation 
to allow the penetrator unlimited access.  The key string 
would of course have to be some very unlikely combina-
tion to avoid accidental discovery.  The teletype key 
string trap door is somewhat more complex than the trap 
door described below in Section 3.4.5.2.  However, it is 
quite straightforward to develop and insert with relatively 
nominal effort. 

It was noted above that while object code trap doors 
are invisible, they are vulnerable to recompilations.  The 
compiler (or assembler) trap door is inserted to permit 
object code trap doors to survive even a complete recom-
pilation of the entire system  In Multics, most of the ring 
0 supervisor is written in PL/I.  A penetrator could insert a 
trap door in the PL/I compiler to note when it is compil-
ing a ring 0 module.  Then the compiler would insert an 
object code trap door in the ring 0 module without listing 
the code in the listing.  Since the PL/I compiler is itself 
written in PL/I, the trap door can maintain itself, even 
when the compiler is recompiled.38  Compiler trap doors 
are significantly more complex than the other trap doors 
described here, because they require a detailed knowledge 
of the compiler design.  However, they are quite practical 
to implement at a cost of perhaps five times the level 
shown in Section 3.5.  It should be noted that even costs 
several hundred times larger than those shown here would 
be considered nominal to a foreign agent. 

                                                           
38 This type of trap door does not require a higher level language.  En-
tirely analogous trap doors could be placed in an assembler. 

There is also a variant on the compiler trap door called 
the initialization trap door.  Here, the system initialization 
code is modified by the penetrator to insert other trap doors 
as the system is brought up.  Such trap doors can be rela-
tively invulnerable to detection and recompilation, because 
system initialization is usually a very complex and poorly 
understood procedure. 

3.4.5.2 Example of Trap Door in Multics 

To demonstrate the feasibility of inserting and distribut-
ing trap doors, the following object code change was made 
to check$device_name to provide a generalized dump or 
patch facility.  Figure 13 shows a PL/I program that per-
forms essentially the same function as the trap door actu-
ally inserted in the object code.  The listing of the actual 
trap door and its calling program is in Appendix C.  
Check$device_name is normally called with three argu-
ments, the third being a fixed binary error code.  The trap 
door is inserted at the point at which check$device_name 
would have returned.  The trap door looks at the 72 bits 
immediately following the error code that was passed by 
the caller.  If those 72 bits match a predefined 72 bit pass-
word, then the fixed binary word to which ptr1 points is 
copied into the fixed binary word to which ptr2 points.  
Since check$device_name is a ring 0 procedure, this copy 
is carried out using the ring 0 descriptor segment and al-
lows the caller to read or write any word in ring 0.  Dump 
and patch utilities can use this trap door exactly like the 
Insufficient Argument Validation vulnerability.  The 72 bit 
key is used to ensure that the vulnerability is not invoked 
by accident by some unsuspecting user. 

The actual insertion of the trap door was done by the 
following steps: 

1. Change user identification to project SysLib. 
2. Make patch in object archive copy of 

check$device_name in >ldd>hard>object. 
3. Reset DTM on object archive. 

check$device_name: proc (a, b, code); 
dcl 1 code parameter, 
   2 err_code fixed bin (35), 
   2 key bit (72) aligned, 
   2 ptr1 pointer aligned, 
   2 ptr2 pointer aligned; 
dcl overlay fixed bin (35) based; 
 
/*   Start of regular code  */ 
 . . .; 
/* Here check$device_name would  
   normally return  */ 
if key = bit_string_constant_password 
   then ptr2->overlay = ptr1->overlay; 
 
return; 
end check$device_name; 

Figure 13.  Trapdoor in check$device_name 



4. Mark patch in bound archive copy of 
check$device_name in 
>ldd>hard>bound_components. 

5. Reset DTM on bound archive. 
6. Reset user identification. 

This procedure ensured that the object patch was in all 
library copies of the segment.  The DTM was reset as in 
Section 3.4.4, because the dates on library segments are 
checked regularly for unauthorized modification.  These 
operations did not immediately install the trap door.  Ac-
tual installation occurred at the time of the next system 
tape generation. 

A trap door of this type was first placed in the Multics 
system at MIT in the procedure del_dir_tree.  However, it 
was noted that del_dir_tree was going to be modified and 
recompiled in the installation of Multics system 18.0.  
Therefore, the trap door described above was inserted  
in check$device_name just before the installation of 18.0 
to avoid the recompilation problem.  Honeywell was 
briefed in the spring of 1973 on the results of this vulner-
ability analysis.  At that time, Honeywell recompiled 
check$device_name, so that the trap door would not be 
distributed to other sites. 

3.4.6 Preview of 6180 Procedural Vulnerabilities 
To actually demonstrate the feasibility of trap door dis-

tribution, a change which could have included a trap door 
was inserted in the Multics software that was transferred 
from the 645 to the 6180 at MIT and from there to all 
6180 installations in the field. 

3.5 Manpower and Computer Costs 
Table 3 outlines the approximate costs in man-hours 

and computer charges for each vulnerability analysis task.  
The skill level required to perform the penetrations was 
that of a recent computer science graduate of any major 
university with a moderate knowledge of the Multics de-
sign documented in the Multics Programmers’ Manual 
[4] and Organick [22], plus nine months experience as a 
Multics programmer.  In addition, the penetrator was 
aided by access to the system listings (which are in the 
public domain) and access to an operational Multics sys-

tem on which to debut penetrations.  In this example, the 
RADC system was used to test penetrations prior to their 
use at MIT, since a system crash at MIT would reveal the 
intentions of the penetrations.39  

Costs are broken down into identification, confirmation, 
and exploitations.  Identification is that part of the effort 
needed to identify a particular vulnerability.  It generally 
involves examination of system listings, although it some-
times involves computer work.  Confirmation is that effort 
needed to confirm the existence of a vulnerability by using 
it in some manner, however crude, to access information 
without authorization.  Exploitation is that effort needed to 
develop and debug command procedures to make use of 
the vulnerabilities convenient.  Wherever possible, these 
command procedures follow standard Multics command 
conventions. 

All figures in the table are conservative estimates as ac-
tual accounting information was not kept during the vul-
nerability analysis.  However, costs did not exceed the fig-
ures given and in all probability were somewhat lower. 

The costs of implementing the subverter and inverting 
the password scrambler are not included, because those 
tasks were not directly related to penetrating the system. 

(See Downey[15].)  The Master Mode Transfer vulnerabil-
ity has no exploitation cost shown, because that vulnerabil-
ity was not carried beyond confirmation. 

4 CONCLUSION 
The initial implementation of Multics is an instance of 

an uncertified system. For any uncertified system: 
a. The system cannot be depended upon to protect 

against deliberate attack 
b. System fixes or restrictions (e.g., query only sys-

tems) cannot provide any significant improvement 
in protection. Trap door insertion and distribution 
has been demonstrated with minimal effort and 
fewer tools (no phone taps) than any industrious 
foreign agent would have. 

                                                           
39 It should be noted that while the MIT system was crashed twice due to 
typographical errors during the penetration, the RADC system was never 
crashed. 

 Identification Confirmation Exploitation Total 
Task Manhrs CPU $ Manhrs CPU $ Manhrs CPU $ Manhrs CPU $ 
Execute Instruction Access Check 
Bypass 

60 $150 5 $30 8 $100 73 $280 

Insufficient Argument Validation 1 $0 5 $30   24 $300 30 $330 
Master Mode Transfer 0.5 $0 2 $20 -- --- 2.5 $20 
Unlocked Stack Base 0.5 $0 8 $50 80 $500 88.5 $550 
Forging User ID 5 $0 5 $30 5 $90 15 $120 
check$device_name Trap door 5 $0 8 $50 5 $30 18 $80 
Access Password File (Does not 
include deciphering.) 

1 $0 5 $30 24 $150 30 $180 

Total 73 $150 38 $240 146 $1170 257 $1560 

Table 3. Cost Estimates



However, Multics is significantly better than other 
conventional systems due to the structuring of the super-
visor and the use of segmentation and ring hardware.  
Thus, unlike other systems, Multics can form a base for 
the development of a truly secure system. 

4.1 Multics is not Now Secure 
The primary conclusion one can reach from this vul-

nerability analysis is that Multics is not currently a secure 
system.  A relatively low level of effort gave examples of 
vulnerabilities in hardware security, software security, 
and procedural security.  While all the reported vulner-
abilities were found in the HIS 645 system and happen to 
be fixed by the nature of the changes in the HIS 6180 
hardware, other vulnerabilities exist in the HIS 6180.40  
No attempt was made to find more than one vulnerability 
in each area of security.  Without a doubt, vulnerabilities 
exist in the HIS 645 Multics that have not been identified.  
Some major areas not even examined are I/O, process 
management, and administrative interfaces. Further, an 
initial cursory examination of the HIS 6180 Multics easily 
turned up vulnerabilities. 

We have seen the impact of implementation errors or 
omissions in the hardware vulnerability.  In the software 
vulnerabilities, we have seen the major security impact of 
apparently unimportant ad hoc designs.  We have seen 
that the development site and distribution paths are par-
ticularly attractive for penetration.  Finally, we have seen 
that the procedural controls over such areas as passwords 
and auditing are no more than “security blankets” as long 
as the fundamental hardware and software controls do not 
work. 

4.2 Multics as a Base for a Secure System 
While we have seen that Multics is not now a secure 

system, it is in some sense significantly “more secure” 
than other commercial systems and forms a base from 
which a secure system can be developed.  (See Lipner 
[21].)  The requirements of security formed part of the 
basic guiding principles during the design and implemen-
tation of Multics.  Unlike systems such as OS/360 or 
GCOS in which security functions are scattered through-
out the entire supervisor, Multics is well structured to 
support the identification of the security and non-security 
related functions.  Further Multics possesses the segmen-
tation and ring hardware which have been identified [29] 
as crucial to the implementation of a reference monitor. 

4.2.1 A System for a Benign Environment 
We have concluded that AFDSC cannot run an open 

multi-level secure system on Multics at this time.  As we 

                                                           
40 In all fairness, the HIS 6180 does proved significant improvements 
by the addition of ring hardware.  However, ring hardware by itself does 
not make the system secure.  Only certification as a well-defined closed 
process can do that. 

have seen above, a malicious user can penetrate the system 
at will with relatively minimal effort.  However, Multics 
does provide AFDSC with a basis for a benign multi-level 
system in which all users are determined to be trustworthy 
to some degree.  For example, with certain enhancements, 
Multics could serve AFDSC in a two-level security mode 
with both Secret and Top Secret cleared users simultane-
ously accessing the system.  Such a system, of course, 
would depend on the administrative determination that 
since all users are cleared at least to Secret, there would be 
no malicious users attempting to penetrate the security con-
trols. 

A number of enhancements are required to bring Mul-
tics up to a two-level capability.  First and most important, 
all segments, directories, and processes in the system 
should be labeled with classification levels and categories.  
This labeling permits the classification check to be com-
bined with the ACL check and to be represented in the de-
scriptor segment.  Second, an earnest review of the Multics 
operating system is needed to identify vulnerabilities.  
Such a review is meaningful in Multics, because of its well 
structured operating system design.  A similar review 
would be a literally endless task in a system such as 
OS/360 or GCOS.  A review of Multics should include an 
identification of security sensitive modules, an examination 
of all gates and arguments into ring 0, and a check of all 
intersegment arguments in ring 0.  Two additional en-
hancements would be useful but not essential.  These are 
some sort of high water mark system as in ADEPT-50 (see 
Weissman [31]) and some sort of protection from user 
written applications programs that may contain Trojan 
Horses. 

4.2.2 Long Term Open Secure System 
In the long term, it is felt that Multics can be developed 

into an open secure multi-level system by restructuring the 
operating system to include a security kernel.  Such re-
structuring is essential since malicious users cannot be 
ruled out in an open system.  The procedures for designing 
and implementing such a kernel are detailed elsewhere. 
[10, 12, 13, 20, 23, 26, 27, 30] To briefly summarize, the 
access controls of the kernel must always be invoked 
(segmentation hardware); must be tamperproof (ring hard-
ware);  and must be small enough and simple enough to be 
certified correct (a small ring 0).  Certifiability is the criti-
cal requirement in the development of a multi-level secure 
system.  ESD/MCI is currently proceeding with a devel-
opment plan to develop such a certifiably secure version of 
Multics[1]. 

APPENDIX A    Subverter Listing41

This appendix contains listings of the three program 
modules which make up the hardware subverter described 

                                                           
41 The actual listing files from this and all subsequent appendices have 
been omitted, but can be found in [19]. 



in Section 3.2.1.  The three procedure segments which 
follow are called subverter, coded in PL/I; ac-
cess_violations_, coded in PL/I; and subv, coded in as-
sembler.  Subverter is the driving routine which sets up 
timers, manages free storage, and calls individual tests.  
Access_violations_ contains several entry points to im-
plement specific tests.  Subv contains entry points to 
implement those tests which must be done in assembler. 

The internal procedure check_zero within subverter is 
used to watch word zero of the procedure segment for 
unexpected modification.  This procedure was used in 
part to detect the Execute Instruction Access Check By-
pass vulnerability. 

The errors flagged in the listing of subv are all warn-
ings or obsolete 645 instructions, because the attached 
listing was produced on the 6180. 

APPENDIX B   Unlocked Stack Base Listing 
This appendix contains listings of the four modules 

which make up the code needed to exploit the Unlocked 
Stack Base Vulnerability described in Section 3.3.3.  The 
first two procedures, di and dia, implement step one  
of the vulnerability  –  inserting code into emer-
gency_shut-down.link (referred to in the listings as 
esd.link.)  The last two procedures, fi and fia, implement 
step two of the vulnerability – actually using the inserted 
code to read or write any 36 bit quantity in the system.  
Figure 9 in the main text corresponds to di and dia.  Fig-
ure 10 corresponds to fi and fia.  As in Appendix A, obso-
lete 645 instructions are flagged by the assembler. 

APPENDIX C   Trap door in check$device_ 
name Listing 

This appendix contains listings of the trap door in-
serted in check$device_name in Section 3.4.5.2 and the 
two modules needed to call the trap door.  
Check$device_name is actually one entry point in the 
procedure check$device_index.  The patches are shown in 
the assembly language listing of the code produced by the 
PL/I compilation of check$device_index.  Most of the 
patches were placed in the entry sequence to 
check$device_index, taking advantage of the fact that 
PL/I entry sequences contain the ASCII representation of 
the entry name for debugging purposes.  Since the debug-
ger cannot run in ring 0, this is essentially free patching 
space.  Additional patches were placed at each return 
point from check$device_name, so that the trap door 
would be executed whenever check$device_name re-
turned to its caller. 

Zg is a PL/I procedure which calls the trap door to ei-
ther read or write any 36-bit word accessible in ring 0.  Zg 
uses zdata, an assembly language routine, to define a 
structure in the linkage section which contains machine 
instructions with which to communicate with the trap 
door. 

The trap door algorithm is as follows: 
1. Set the bp register to point to the argument rcode.  

Rcode has been bound to zdata$code in the proce-
dure call from zg and must lie on an odd word 
boundary. 

2. Compare the double word at bp|1 with the key 
string in the trap door to see if this is a legitimate 
user calling.  If the keys do not match, then just 
return.  If the keys do match, then we know who 
this is and must proceed. 

3. Do an execute double (XED) on the two instruc-
tion at bp|3.  This allows the caller to provide any 
instructions desired. 

4. The two instructions provided by zdata at bp|3 and 
bp|5 are ldq bp|5 and stq bp|7.  Bp|5 and bp|7 con-
tain pointers to the locations from which to read 
and to which to write, respectively.  These point-
ers are set in zg. 

Finally, the trap door simply returns upon completion of 
the XED pair. 

APPENDIX D   Dump Utility Listing 
This appendix is a listing of a dump utility program de-

signed to use the trap door shown in Section 3.4.5 and Ap-
pendix C.  The program, zd, is a modified version of the 
installed Multics command, ring_zero_dump, documented 
in the MPM Systems Programmers’ Supplement [6].  Zd 
will dump any segment whose SDW in ring zero is not 
equal to zero.  In addition, zd will not dump the ring zero 
descriptor segment, because the algorithm used would re-
sult in the ring 4 descriptor segment being completely re-
placed by the ring 0 descriptor segment which could poten-
tially crash the system.  Zd will also not dump master pro-
cedures, since modifying their SDW’s could also crash the 
system. 

APPENDIX E    Patch Utility Listing 
This appendix is a listing of a patch utility correspond-

ing to the dump utility in Appendix D.  The utility, zp, is 
based on the installed Multics command patch_ring_zero, 
documented in the MPM System Programmers Supple-
ment [6].  Zp uses the same algorithm as zd in Appendix D 
and operates under the same restrictions.  A sample of its 
use is shown below.  Lines typed by the user underlined. 

 
zp pds 660 123171163101 144155151156
660 104162165151 to 123171163101
661 144040040040 to 144155151156
Type “yes” if patches are correct: yes

As seen above, the command requests the user to con-
firm the patch before  actually performing the patch.  The 
patch shown above changes the user’s project identification 
from Druid to SysAdmin. 



APPENDIX F   Set Dates Utility Listing 
This appendix is a listing of the set dates utility de-

scribed in Section 3.4.4.  The get entry point takes a path-
name as an argument and remembers the dates on the 
segment at that time.  The set entry point takes no argu-
ments and sets the dates on the segment to the values at 
the time of the call to the get entry point.  Set remembers 
the pathname as well as the dates and may be called re-
peatedly to handle the deactivation problem discussed in 
Section 3.4.4. 

GLOSSARY
Access 

“The ability and the means to approach, communicate 
with (input to or receive output from), or otherwise make 
use of any material or component in an ADP System.”  
[7] 

 
Access Control List (ACL) 

“An access control list (ACL) describes the access at-
tributes associated with a particular segment.  The ACL is 
a list of user identifications and respective access attrib-
utes.  It is kept in the directory that catalogs the segment.”  
[3] 

 
Active Segment Table (AST) 

The AST contains an entry for every active segment in 
the system.  A segment is active if its page table is in 
core.  The AST is managed with a least recently used al-
gorithm. 

 
Argument Validation 

On call to inner-ring (more privileged) procedures, ar-
gument validation is performed to ensure that the caller 
indeed had access to the arguments that have been passed 
to ensure that the called, more privileged procedure does 
not unwittingly access the arguments improperly. 

 
Arrest 

“The discovery of user activity not necessary to the 
normal processing of data which might lead to a violation 
of system security and force termination of the activity.” 
[7] 

 
Breach 

“The successful and repeatable defeat of security con-
trols with or without an arrest, which if carried to con-
summation, could result in a penetration of the system.  
Examples of breaches are: 

a. Operation of user code in master mode; 
b. Unauthorized acquisition of I.D. password or file 

access passwords; and 
c. Accession to a file without using prescribed op-

erating system mechanisms.” [7] 
 

Call Limiter 
The call limiter is a hardware feature of the HIS 6180 

which restricts calls to a gate segment to a specified block 
of instructions (normally a transfer vector) at the base of 
the segment. 

 
Date Time Last Modified (DTM) 

The date time last modified of each segment is stored in 
its parent directory. 

 
Date Time Last Used (DTU) 

The date time last used of each segment is stored in its 
parent directory. 

 
Deactivation 

Deactivation is the process of removing a segment’s 
page table from core. 

 
Descriptor Base Register (DBR) 

The descriptor base register points to the page table of 
the descriptor segment of the process currently executing 
on the CPU. 

 
Descriptor Segment (DSEG) 

The descriptor segment is a table of segment descriptor 
words which identifies to the CPU to which segments, the 
process currently has access. 

 
Directory 

“A directory is a segment that contains information 
about other segments such as access attributes, number of 
records, names, and bit count.”  [3] 

 
emergency_shutdown 

“This mastermode module provides a system reentry 
point which can be used after a system crash to attempt to 
bring the system to a graceful stopping point.”  [6] 

 
Fault Intercept Module (fim) 

The fim is a ring 0 module which is called to handle 
most faults.  It copies the saved machine state into an easily 
accessible location and calls the appropriate fault handler 
(usually the signaller). 

 
Gate Segment 

A gate segment contains one or more entry points used 
on inward calls.  A gate entry point is the only entry in a 
inner ring that may be called from an outer ring.  Argument 
validation must be performed for all calls into gate seg-
ments. 

 
General Comprehensive Operating Supervisor (GCOS) 

GCOS is the operating system for the Honeywell 
600/6000 line of computers.  It is very similar to other con-
ventional operating systems and has no outstanding secu-
rity features. 

 



HIS 645 
The  Honeywell 645 is the computer originally de-

signed to run Multics.  It is a modification of the HIS 635 
adding paging and segmentation hardware. 

 
HIS 6180 

The Honeywell 6180 is a follow-on design to the HIS 
645.  The HIS 6180 uses the advanced circuit technology 
of the HIS 6080 and adds paging and segmentation hard-
ware.  The primary difference between the HIS 6180 and 
the HIS 645 (aside from performance improvements) is 
the addition of protection ring hardware. 

 
hcs_ 

The gate segment hcs_ provides entry into ring 0 for 
most user programs for such functions as creating and 
deleting segments, modifying ACL’s, etc. 

 
hphcs_ 

The gate segment hphcs_ provides entry into ring 0 for 
such functions as shutting the system down, hardware 
reconfiguration, etc.  Its access is restricted to system ad-
ministration personnel. 

 
ITS Pointer 

An ITS (Indirect To Segment)  Pointer is a 72-bit 
pointer containing a segment number, word number, bit 
offset, and indirect modifier.  A Multics PL/I aligned 
pointer variable is stored as an ITS pointer. 

 
Known Segment Table (KST) 

The KST is a per-process table which associates seg-
ment numbers with segment names.  Details of its organi-
zation and use may be found in Organick [22]. 

 
Linkage Segment 

“The linkage segment contains certain vital symbolic 
data,  descriptive information, pointers, and instructions 
that are needed for the linking of procedures in each proc-
ess.” [22] 

 
Master Mode 

When the HIS 645 processor is in master mode (as op-
posed to slave mode), any processor instruction may be 
executed and access control checking is inhibited. 

 
Multics 

Multics, the Multiplexed Information and Computing 
Service, is the operating system for the HIS 645 and HIS 
6180 computers. 

 
Multi-Level Security Mode 

“A mode of operation under an operating system (su-
pervisor or executive program) which provides a capabil-
ity permitting various levels and categories or compart-
ments of material to be concurrently stored and processed 
in an ADP system.  In a remotely accessed resource-

sharing system, the material can be selectively accessed 
and manipulated from variously controlled terminals by 
personnel having different security clearances and access 
approvals.  This mode of operation can accommodate the 
concurrent processing and storage of (a) two or more levels 
of classified data, or (b) one or more levels of classified 
data with unclassified data depending upon the constraints 
placed on the systems by the Designated Approving Au-
thority.”  [7] 

 
OS/360 

OS/360 is the operating system for the IBM 360 line of 
computers.  It is very similar to other conventional operat-
ing systems and has no outstanding security features. 

 
Page 

Segments may be broken up into 1024 word blocks 
called pages which may be stored in non-contiguous loca-
tions of memory. 
 
Penetration  

“The successful and repeatable extraction and 
identification of recognizable information from a protected 
data file or data set without any attendant arrests.” [7] 

 
Process 

“A process is a locus of control within an instruction se-
quence.  That is, a process is that abstract entity which 
moves though the instructions of a procedure as the proce-
dure is executed by a processor.” [14] 

 
Process Data Segment (PDS) 

The PDS is a per-process segment which contains vari-
ous information about the process including the user identi-
fication and the ring 0 stack.  The PDS is accessible only in 
ring 0 or in master mode. 

 
Process Initialization Table (PIT) 

The PIT is a per-process segment which contains addi-
tional information about the process.  The PIT is readable 
in ring 4 and writable only in ring 0. 

 
Protection Rings 

Protection rings form an extension to the traditional 
master/slave mode relationship in which there are eight 
hierarchical levels of protection numbered 0 – 7. A given 
ring N may access rings N through 7 but may only call 
specific gate segments in rings 0 to N-1. 

 
Reference Monitor 

The reference monitor is that hardware/software 
combination which must monitor all reference by any 
program to any data anywhere in the system to ensure the 
security rules are followed. 

a. The monitor must be tamper proof. 
b. The monitor must be invoked for every reference 

to data anywhere in the system. 



c. The monitor must be small enough to be proven 
correct. 

 
Segment 

A segment is the logical atomic unit of information in 
Multics.  Segments have names and unique protection 
attributes and may contain up to 256K words.  Segments 
are directly implemented by the HIS 645 and HIS 6180 
hardware. 

 
Segment Descriptor Word (SDW) 

An SDW is a single entry in a Descriptor Segment.  
The SDW contains the absolute address of the page table 
of a segment (if one exists) or an indication that the page 
table does not exist.  The SDW also contains the access 
control information for the Segment. 

 
Segment Loading Table (SLT) 

The SLT contains a list of segments to be used at the 
time the system is brought up.  All segments in the SLT 
come from the system tape. 

 
Signaller 

“signaller is the hardcore ring privileged procedure re-
sponsible for signalling all fault and interrupt–produced 
errors.”  [6] 

 
Slave Mode 

When the HIS 645 processor is in slave mode, certain 
processor instructions are inhibited and access control 
checking is enforced.  The processor may enter master 
mode from slave mode only by signalling a fault of some 
kind. 

 
Stack Base Register 

The stack base register contains the segment number of 
the stack currently in use.  In the original design of Mul-
tics, the stack base was locked so that interrupt handlers 
were guaranteed that it always pointed to a writable seg-
ment.  This restriction was later removed allowing the 
user to change the stack base arbitrarily. 

 
Subverter 

The subverter is a procedure designed to test the reli-
ability of security hardware by periodically attempting 
illegal accesses. 

 
Trap door 

Trap doors are unnoticed pieces of code which may be 
inserted into a system by a penetrator.  The trap door 
would remain dormant within the software until triggered 
by the agent.  Trap doors inserted into the code imple-
menting the reference monitor could bypass any and all 
security restrictions on the systems.  Trap doors can po-
tentially be inserted at any time during software develop-
ment and use. 

 

WWMCCS 
WWMCCS, the World Wide Military Command and 

Control System, is designed to provide unified command 
and control functions for the Joint Chiefs of Staff.  As part 
of the WWMCCS contract for procurement of a large 
number of HIS 6000 computers, a set of software modifica-
tions were made to GCOS, primarily in the area of security.  
The WWMCCS GCOS security system was found to be no 
more effective that the unmodified GCOS security, due to 
the inherent weaknesses of GCOS itself. 

REFERENCES 
1.  ESD 1973 Computer Security Developments Summary, MCI-
74-1, December 1973, HQ Electronic Systems Division: 
Hanscom AFB, MA.  
   
2.  IBM System/360 Operating System Service Aids, GC28-6719-
0, June 1970, IBM Corporation.  
   
3.  Multics Users' Guide, AL40, Rev. 0, November 1973, Honey-
well Information Systems, Inc.: Waltham, MA.  
   
4.  The Multiplexed Information and Computing Service: Pro-
grammers' Manual, Revision 14, 30 September 1973, Massachu-
setts Institute of Technology and Honeywell Information Sys-
tems, Inc.: Cambridge, MA.  
   
5.  Summary of the H6180 Processor, 22 May 1973, Information 
Processing Center, Massachusetts Institute of Technology: Cam-
bridge, MA.  
   
6.  System Programmers' Supplement to the Multiplexed Informa-
tion and Computing Service:  Programmers' Manual, 1973, Mas-
sachusetts Institute of Technology and Honeywell Information 
Systems, Inc.: Cambridge, MA.  
   
7.  Techniques and Procedures for Implementing, Deactivating, 
Testing, and Evaluating Secure Resource-Sharing ADP Systems, 
DoD 5200.28-M, January 1973, Department of Defense: Wash-
ington, DC.  
   
8.  WWMCCS Security System Test Plan, 23 May 1972, Joint 
Technical Support Activity, Defense Communications Agency: 
Washington, DC.  
   
9.  Anderson, J.P., AF/ACS Computer Security Controls Study, 
ESD-TR-71-395, November 1971, James P. Anderson and Co., 
Fort Washington, PA, HQ Electronic Systems Division: Hanscom 
AFB, MA.  
   
10.  Anderson, J.P., Computer Security Technology Planning 
Study, ESD-TR-73-51, Vols. I and II, October 1972, James P. 
Anderson and Co., Fort Washington, PA, HQ Electronic Systems 
Division: Hanscom AFB, MA. URL: 
http://csrc.nist.gov/publications/history/ande72.pdf  
   
11.  Andrews, J., M.L. Goudy, et al., Model 645 Processor Refer-
ence Manual, revision 4, 1 April 1971, Cambridge Information 
Systems Laboratory, Honeywell Information Systems, Inc.: Cam-
bridge, MA.  
   



12.  Bell, D.E. and L.J. LaPadula, Secure Computer Systems: A 
Mathematical Model, ESD-TR-73-278, Vol. II, MTR-2547, Vol. 
II, November 1973, The MITRE Corporation, Bedford, MA, HQ 
Electronic Systems Division: Hanscom AFB, MA.  
   
13.  Bell, D.E. and L.J. LaPadula, Secure Computer Systems: 
Mathematical Foundations, ESD-TR-73-278, Vol. I, MTR-
2547, Vol. I, November 1973, The MITRE Corporation, Bed-
ford, MA, HQ Electronic Systems Division: Hanscom AFB, 
MA.  
   
14.  Dennis, J.B. and E.C. Van Horn, Programming Semantics 
for Multiprogrammed Computations. Communications of the 
ACM, March 1966. 9(3): p. 143-155.  
   
15.  Downey, P.J., Multics Security Evaluation:  Password and 
File Encryption Techniques, ESD-TR-74-193, Vol. III, June 
1977, HQ Electronic Systems Division: Hanscom AFB, MA.  
   
16.  Goheen, S.M. and R.S. Fiske, OS/360 Computer Security 
Penetration Exercise, WP-4467, 16 October 1972, The MITRE 
Corporation: Bedford, MA.  
   
17.  Graham, R.M., Protection in an Information Processing 
Utility. Comm. ACM, May 1968. 11(5): p. 365-369.  
   
18.  Inglis, W.M., Security Problems in the WWMCCS GCOS 
System, Joint Technical Support Activity Operating System 
Technical Bulletin 730S-12, 2 August 1973, Defense Communi-
cations Agency: Washington, DC.  
   
19.  Karger, P.A. and R.R. Schell, Multics Security Evaluation:  
Vulnerability Analysis, ESD-TR-74-193, Vol. II, June 1974, HQ 
Electronic Systems Division: Hanscom AFB, MA. URL: 
http://csrc.nist.gov/publications/history/karg74.pdf 
   
20.  Lipner, S.B., Computer Security Research and Development 
Requirements, MTP-142, February 1973, The MITRE Corpora-
tion: Bedford, MA.  
   
21.  Lipner, S.B., Multics Security Evaluation: Results and Rec-
ommendations, ESD-TR-74-193, Vol. I, MTR-3267, October 
1978, The MITRE Corporation, Bedford, MA, HQ Electronic 
Systems Division: Hanscom AFB, MA.  
   
22.  Organick, E.I., The Multics System: An Examination of Its 
Structure. 1972, Cambridge, MA: The MIT Press. 
   
23.  Price, W.R., Implications of a Virtual Memory Mechanism 
for Implementing Protection in a Family of Operating Systems, 
PhD thesis 1973, Carnegie-Mellon University: Pittsburgh, PA.  
   
24.  Richardson, M.H. and J.V. Potter, Design of a Magnetic 
Card Modifiable Credential System Demonstration, MCI-73-3, 
December 1973, HQ Electronic Systems Division: Hanscom 
AFB, MA.  
   
25.  Saltzer, J.H., Protection and the Control of Information 
Sharing in Multics. Comm. ACM, July 1974. 17(7): p. 388-402.  
   
26.  Schell, R.R., P.J. Downey, et al., Preliminary Notes on the 
Design of Secure Military Computer Systems, January 1973, HQ 
Electronic Systems Division: Hanscom AFB, MA. URL: 
http://csrc.nist.gov/publications/history/sche73.pdf  

   
27.  Schiller, W.L., Design of a Security Kernel for the PDP-
11/45, ESD-TR-73-294, MTR-2709, December 1973, The MI-
TRE Corporation, Bedford, MA, HQ Electronic Systems Divi-
sion: Hanscom AFB, MA.  
   
28.  Schroeder, M.D. and J.H. Saltzer, A Hardware Architecture 
for Implementing Protection Rings. Comm. ACM, March 1972. 
15(3): p. 157-170.  
   
29.  Smith, L.A., Architectures for Secure Computing Systems, 
ESD-TR-75-51, MTR-2772, April 1975, The MITRE Corpora-
tion: Bedford, MA, HQ Electronic Systems Division, Hanscom 
AFB, MA.  
   
30.  Walter, K.G., W.F. Ogden, et al., Primitive Models for Com-
puter Security, ESD-TR-74-117, 23 January 1974, Case Western 
Reserve University, Cleveland, OH: HQ Electronic Systems Divi-
sion, Hanscom AFB, MA.  
   
31.  Weissman, C. Security Controls in the ADEPT-50 time shar-
ing system. in Fall Joint Computer Conference. 1969, Vol. 35. 
AFIPS Conference Proceedings, AFIPS Press, Montvale, NJ. p. 
119-133.  
  


