
MULTICUBE: Multi-Objective Design Space

Exploration of Multi-Core Architectures

Cristina Silvano∗, William Fornaciari∗, Gianluca Palermo∗, Vittorio Zaccaria∗, Fabrizio Castro∗,

Marcos Martinez†, Sara Bocchio‡, Roberto Zafalon‡, Prabhat Avasare§, Geert Vanmeerbeeck§,

Chantal Ykman-Couvreur§, Maryse Wouters§, Carlos Kavka¶, Luka Onesti¶, Alessandro Turco¶,

Umberto Bondi‖, Giovanni Mariani‖, Hector Posadas‡‡, Eugenio Villar‡‡, Chris Wu††,

Fan Dongrui
x
, Zhang Hao

x
, Tang Shibin

x

∗ Dipartimento di Elettronica e Informazione - Politecnico di Milano - Milano - Italy
†Design of Systems on Silicon (DS2) - Valencia - Spain, ‡STMicroelectronics - Italy, §IMEC vzw - Belgium,

¶ESTECO - Italy, ‖ALaRI - Universita’ della Svizzera Italiana - Switzerland, ‡‡University of Cantabria - Spain,
††STMicroelectronics Beijing - China,

x
Institute of Computing Technology - Chinese Academy of Sciences - China

Abstract—Technology trends enable the integration of many
processor cores in a System-on-Chip (SoC). In these complex
architectures, several architectural parameters can be tuned to
find the best trade-off in terms of multiple metrics such as energy
and delay. The main goal of the MULTICUBE project consists
of the definition of an automatic Design Space Exploration
framework to support the design of next generation many-core
architectures1.

I. INTRODUCTION

The main goal of MULTICUBE project is the definition

of an automatic framework to support multi-objective De-

sign Space Exploration (DSE) of multi and many core SoC

architectures. The framework enables the tuning of several

architectural parameters to minimize multiple metrics (such

as energy and latency) while meeting system-level constraints

(such as throughput, bandwidth and QoS). The project focuses

on the definition of an automatic modeling and optimization

methodologies for improving the conventional SoC design

flow. In such a design flow, the optimization process is still

done manually, based on the past experience of the designer

to leverage existing simulation models to explore the design

space and find out power-performance trade-offs (Pareto anal-

ysis).

The project targets an efficient and automatic exploration

of parallel embedded architectures in terms of several design

parameters such as available parallelism (e.g., number of cores,

processor issue width), cache-subsystem (e.g. cache size and

associativity) and NoC-related parameters (e.g., channel buffer

size). When dealing with complex many-core architectures, the

design space exploration can easily become very huge, making

a full-search simulation-based exploration unfeasible. Auto-

matic exploration techniques based on optimisation heuristics

should be used to figure out an approximate Pareto set in a

reasonable time. The exploration time can even be reduced by

decreasing the number of design points to be simulated. This

can be done by using analytical models to predict the system

behavior corresponding to design points not yet simulated.

1This project is supported by the EC under grant MULTICUBE FP7-216693

These analytical models are defined from a training set of

simulations.

II. THE MULTICUBE DESIGN METHODOLOGY

The MULTICUBE design flow (shown in Figure 1) consists

of two frameworks:

Power/Performance Estimation Framework includes the

simulation tools for power and performance estimation of

the target architectures to be explored. Each configurable

simulation model accepts an architectural configuration as

input and generates, at the end of simulation, the correspond-

ing system-level metrics running the reference application.

The combination of architecture and reference application is

defined, from here on, as use case. The simulators used in the

context of the project are either open source (MULTICUBE-

SCOPE) or proprietary (such as the IMEC TLM platform,

the STMicroelectronics SP2 simulator or the Institute of

Computing Technology’s (ICT) many core simulator). The

tool interface has been standardized with the definition of the

MULTICUBE XML interface so as other simulators can be

plugged in with minimal effort. Besides event-based simula-

tion, a set of Response Surface Models has been developed

to further speedup the evaluation of the system-level metrics

through analytical expressions derived from a training set of

simulations.

Design Space Exploration Framework contains the tools

for automatic DSE and interacts with the power/performance

estimation framework by iteratively generating different in-

stances of the design space and reading back power and per-

formance evaluation metrics (system metrics). This framework

includes several optimization heuristics for identifying pow-

er/performance trade-offs and generating the approximated

Pareto frontier which may be more or less close to the actual

Pareto front. The DSE tools developed in the project are: the

open source (MULTICUBE Explorer tool) and the proprietary

(ESTECO’s modeFRONTIER) optimization tool (widely used

tool in multi-disciplinary optimization).

The Use Case and Simulator Provider. (S)he is the system

architect providing the simulator with a set of configurable

2010 IEEE Annual Symposium on VLSI

978-0-7695-4076-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ISVLSI.2010.67

488

Fig. 1. The MULTICUBE design flow

parameters and performance and power estimation model for

the target use case (model setup).

The Exploration Architect. (S)he is in charge of optimiz-

ing the configurable architecture by exploiting the automatic

DSE framework. The exploration architect can directly interact

with the DSE engine to set up exploration strategies, metrics

and constraints.

The final exploration results (Pareto frontier) can be further

pruned by a set of decision-making mechanisms. The solution

set can be ordered according to some ranking criteria to

derive the final candidate solution for the implementation.

Besides, the Pareto frontier can then be used to support run-

time management of the resources. This last feature has been

already tested on an industrial use case and described in [1].

III. POWER AND PERFORMANCE ESTIMATION

FRAMEWORK

The MULTICUBE project can easily manage a wide range

of simulation technologies ranging from full-system cycle-

accurate to application-level back-annotated functional sim-

ulation by using a standardized XML-based interface. The

capability to span across several abstraction levels is funda-

mental to model cross-validation between different abstraction

levels (e.g., high-level vs. TLM) or to provide mixed-level

optimization strategies [2]. In the optimization literature, the

simulator is also referred to as the solver.

The power and performance estimation tools can be grouped

as open-source and proprietary:

Open Source Estimation Framework. The open source

prototype tool is MULTICUBE-SCoPE and it is based on

existing technology (SCoPE) [3] developed by University

of Cantabria for performing HW/SW co-simulation. MUL-

TICUBE SCoPE enables the definition of SystemC platform

template models to evaluate performance and power consump-

tion. MULTICUBE-SCoPE efficiency comes from the fact

that performance and power estimations of the software side

are performed at the application source code level by using

back-annotation. The back-annotated software components are

then linked to the hardware components by using a standard

SystemC interfaces. This modeling style is called Timing

Approximate. Software back-annotation avoids instruction set

simulation therefore decreasing of several orders of magnitude

the simulation time and maintaining a fairly good accuracy

with respect to cycle-accurate simulations. MULTICUBE-

SCoPE also provides some hooks for enabling C/C++ software

code to invoke operating system primitives compliant with

POSIX and MicroC/OS.

Proprietary Estimation Framework. These modeling and

simulation tools span several abstraction levels. To simulate

IMEC multimedia architecture based on the ADRES proces-

sor [4], two simulators are provided: a high-level simulator

(HLSIM) and a SystemC-based platform simulator based on

CoWare virtual prototyping environment. The target platform

is shown in figure 2: it is composed of a variable number of

processor nodes and memory nodes. All processor nodes con-

tain an ADRES processor, IMEC proprietary VLIW processor

and its scratch-pad local data (L1) memory. The processing

nodes are connected to the memory nodes by a configurable

communication infrastructure. It can be either a multi-layer

AHB bus, which provides a full point-to-point connectivity,

or a Network-on-Chip (NoC) model built with the CoWare

AVF cross-connect IP.

Fig. 2. IMEC ADRES platform.

From one side, IMEC HLSIM provides fast simulation at the

source code level of parallel applications by providing support

for timing annotation, thread spawning/joining, DMA trans-

fers, FIFO communication and loop synchronization modeling.

HLSim takes as an input the platform architecture description

which contains information on the processors, the memory

hierarchy structure, the timing figures and the power consump-

tion of the other IP cores. For example, the timing information

of the computation-intensive loops in the threads is measured

on the compiled code simulator and is used as an input in

HLSim. This means that the timing figures are instruction-

accurate because they take all the compiler optimizations into

account. On the other side, IMEC’s CoWare simulator is

based on cycle-accurate Transaction-Level Modeling (TLM)

and provides a multi-processor platform template leveraging a

Network-on-Chip (NoC) as interconnection model. The tem-

plate links compute ADRES nodes (processing elements) and

memory nodes together using a central communication back-

489

bone. This model has been used for creating back-annotation

data used in the HLSIM simulator and performing cross-

validation. Overall, we found an acceptable relative accuracy

with a significant speed-up in simulation time (see Figure

3, where the relative accuracy and speed of MULTICUBE-

SCoPE technology has been added for comparison).

Fig. 3. Accuracy versus speed trade-off for several abstraction level
simulators .

An instruction set simulator has been used for SP2 super-

scalar processor provided from STMicroelectronics and for

the many-core architecture from ICT. Both simulators expose

program execution time and power consumption as system

level metrics. More in detail, the ICT many-core architecture

is a tiled MIMD machine composed of a bi-dimensional grid

of homogeneous, general-purpose compute elements, called

tiles. A 2D-mesh network architecture is used for connecting

the cores to a non-shared memory sub-system.

Finally, as an example of control-oriented architecture, the

DS2’s STORM platform has been integrated in the framework.

The platform is used to model a PLC (Programmable Logic

Controller) technology with several implementation choices.

For this platform, both Ethernet QoS and internal communi-

cation are considered as metrics.

IV. ADVANTAGES OF AUTOMATIC DSE

Multi-objective optimization heuristics and high-level sim-

ulation techniques can successfully contribute to dramatically

decrease the exploration time, while guaranteeing a certain

level of ’closeness’ to the actual Pareto frontier. Reducing the

exploration time reduces the time-to-market of the product and

therefore the risk to miss market deadlines (with the associated

economic loss).

Both conventional and automatic DSE starts from a defi-

nition of design-space (see Figure 4) representing the set of

feasible architectural configurations. In a conventional DSE

approach, the starting point is the definition of an initial

model (model setup phase) of the target architecture. The

enabling simulation technologies used for creating such a

model can range from cycle-accurate SystemC up to anno-

tated functional simulation, with variable ratio of accuracy

with respect to speed. The exploration is done iteratively by

subjective assumptions of the designer, who will edit manually

the architectural simulator and modify a limited number of

parameters per evaluation. The model simulation corresponds

to a limited portion of the time of the overall exploration

procedure. A larger amount of time is spent by the designer

editing the configuration parameters and/or the model structure

and analyzing the results. There is also an idle time (from the

point of view of the use of computational resources) that lasts

from the end of the simulation till the moment in which human

operator is informed about it and handles the simulation tools

to get the results.

In this case, the overall quality of the DSE is based on the

designer’s ability and past experience to assess the results and

to move towards the next instance of the model to be simulated

based on aggregate information resulting from the simulation

campaign. The outcome (solution set) is thus highly dependent

on the skills and past experience of the designer.

An automatic DSE flow uses numerical/objective criteria

combined with efficient heuristics to drive the exploration. The

basic assumption is that the model should be a configurable

template model which can be automatically manipulated to

generate any instance of the target design space. The model

setup stage, thus, may be longer than in the conventional

case. Given the configurable model template, the DSE tool

will change systematically all the parameters at each step

and will evaluate the best result based on robust optimisation

heuristics. The automatic selection of the next configuration

to be simulated (model selection) is typically faster than the

conventional one because of it does not involve any overhead

due to human intervention. The final output of the automatic

DSE flow is a set of dominant configurations in the design

space which are, with high probability, close to the actual

Pareto set. Besides, all data concerning previous evaluations

are stored in a structured database which can be automatically

analyzed by using mathematical/statistical tools to derive ag-

gregate information about the population of analyzed design

points.

V. DESIGN SPACE EXPLORATION FRAMEWORK

The structure of the exploration framework is composed

of an open-source optimization tool (MULTICUBE Explorer)

and a proprietary multi-objective optimization tool (ESTECO’s

modeFRONTIER). The open-source tool has been designed

from scratch to address embedded system exploration, while

the proprietary tool is an existing tool for multi-disciplinary

optimization which has been re-targeted to address discrete

embedded system exploration. In general, DSE is an op-

timization process that takes into account a typical set of

IP parameters that are associated with the memory system

structure (e.g., cache size), the inherent parallelism of the

processor (e.g., number of simultaneous tasks and the instruc-

tion issue width) and the on-chip interconnect configuration.

The optimization problem involves either the maximization

or minimization of multiple objectives (such as execution

490

Fig. 4. Comparison between a manual (or conventional) design space exploration approach and an automatic approach.

time, power consumption, area, etc.) making the definition of

optimality not unique [5].

In our context, the multi-objective optimization targets a set

of n system configuration parameters grouped on a configu-

ration vector:

a =

a1

. . .

an

 ∈ A (1)

where A is usually a finite, discrete domain (subset of Nn
0).

The multi-objective optimization problem is defined as a set

of m objective functions to be minimized (or maximized):

min
a∈A

φ(a) =

φ1(a)
. . .

φm(a)

 ∈ Rm (2)

subject to a set of k constraints which, without loss of

generality, can be expressed as:

χ(a) =

χ1(a)
. . .

χk(a)

 ≤

0
. . .

0

 (3)

The set of feasible solutions of an optimization problem is

defined as the feasible region:

Φ = {a ∈ A | χi(a) ≤ 0, 1 ≤ i ≤ k}

In single-objective optimization problems, the feasible set is

totally ordered w.r.t. the function φ(a), thus a single exact

solution a exists. When several objectives are defined, the

feasible set is partially ordered through dominance relation

and, thus, multiple exact solutions exist. The solution set is

defined as the exact Pareto set of the problem. We say that φ

dominates γ when:

φ ≺ γ =

{

φi ≤ γi,∀i = 1, . . . ,m and

φi < γi for at least one i
(4)

Given a subset of feasible configurations Ω ⊆ A, we define

the Pareto set Ψ associated to Ω as:

Ψ(Ω) =

{

a
∣

∣

∣

(

a ∈ (Φ ∩ Ω)∧
¬∃b ∈ Ψ(Ω) s.t. φ(b) ≺ φ(a)

)}

(5)

The Pareto set Ψ(Φ) is the exact Pareto set of the problem.

Based on set theory, the projection of Ψ(Φ) in the objective

space is called the exact Pareto front.

Fig. 5. Pareto Dominance, Ω = {aa, ab, ac}. Point ac is dominated by
point ab.

Whenever the considered solution set Ω is a subset of the

feasible solution space Φ, the Pareto set Ψ(Ω) is called an

approximate Pareto set of the problem.

Figure 5 shows a feasible set of solutions Ω = Φ =
{aa,ab,ac} for an unconstrained minimization problem for

[φ1, φ2]. Point ac is dominated by point ab since both φ1(ac)
and φ2(ac) are greater than φ1(ab) and φ2(ab). In this case

we thus have that Ψ(Ω) = {aa,ab}.

The overall goal of multi-objective optimization heuristics

is to identify approximate Pareto sets which are as near as

possible to the exact Pareto set. For evaluating the quality of

the approximate Pareto sets, a measure of the distance between

the exact and the approximate Pareto sets can be introduced. In

literature, many quality functions have been proposed to tackle

this problem [6]. In the MULTICUBE project we leveraged

the Average Distance from Reference Set (ADRS). The ADRS

is used to measure the distance between the exact Pareto set

Π = Ψ(Φ) and the approximate Pareto set Λ = Ψ(Ω) [7]:

ADRS(Π,Λ) =
1

|Π|

∑

aR∈Π

(

min
aA∈Λ

{δ(aR,aA)}

)

(6)

where δ is a measure of the normalized distance in the

objective function space of two configurations:

δ(aR,aA) = max
j=1,...,m

{

0,
φj(aA) − φj(aR)

φj(aR)

}

(7)

The ADRS is usually measured in terms of percentage; the

higher the ADRS, the worst is Λ with respect to Π.

491

A. Multi-objective optimization heuristics

In this section we present the multi-objective optimization

heuristics implemented in MULTICUBE project and an anal-

ysis of the features carried out on an industrial architecture.

So far, the following optimisation algorithms have been

implemented and analyzed:

• Standard algorithms: In this group we can find well-

known multi-objective optimisation algorithms that have

been implemented by following the original specification.

The group is composed of the NSGA-II [8] and MOGA-

II [9] algorithms.

• Enhanced algorithms: In this group we can find en-

hanced version of standard algorithms in order to deal

with the specific discrete parameters addressed in MUL-

TICUBE. The group is composed of the MOSA [10], ES

and MOPSO [11] algorithms.

• New algorithms: In this group we can find all the

algorithms that have been specifically defined in the

MULTICUBE project for multi-objective optimization in

the context of SoC design optimization. In this group

we can find the MFGA (Evolutionary) [12] and APRS

(Randomized) algorithms.

Evaluation of the algorithms. The algorithm validation

shown here is based on the Low-Power Processor Use Case

(Superscalar Processor SP2) delivered by STMicroelectronics-

China. The executable model for the design space exploration

consists of sp2sim simulator, which is an instruction set

simulator for the SP2 microprocessor design. The benchmark

application selected is the 164.gzip application, based on the

popular gzip compression algorithm. The design space is de-

fined as a combination of 11 configuration parameters, among

which out-of-order execution parameters (issue width, reorder

buffer length, rename register number), cache sub-system

(instruction and data cache configurations and load/store queue

sizes), branch prediction (type and table size). For improving

the validation speed, the number of input parameters was

reduced to 7 by fixing the remaining ones to a constant value.

The final design space of the problem is composed of 9,216

designs while the three objectives to be minimized are the total

number of cycles, the power dissipation and the area.

A fair evaluation of non-deterministic algorithms requires

several repeated runs without changing any parameter besides

the random generator seed. Notwithstanding the relative small

search space consisting of only 9,216 designs, very large

variations can be observed in the algorithms behavior and

a rigorous study needs to analyze also this aspect. Besides,

preliminary tests were performed in order to identify non-

significant parameters that have been then fixed to a con-

stant value. Algorithms configuration parameters are usually

problem-dependent. Typically, they depend on the user expec-

tations: the optimal choices for the parameters that control

the ratio between exploration and exploitation phase (e.g.,

the temperature schedule in the MOSA heuristic) are strictly

related to the number of evaluations the user can afford. It

was decided to tune these parameters considering the largest

target (i.e. 50% of the design space, as described below) and

accepting possible worse results in the partial samples. The

evaluation process then proceeds checking at fixed numbers

of explored points the quality of the non-dominated front

found so far. The steps selected for the evaluation are: 184

designs (corresponding to about 2% of the design space), 461

(5%), 922 (10%), 1,843 (20%), 2,765 (30%), 3,686 (40%) and

4,608 (50%). Only the requests of evaluation of new designs

were counted, since sometimes the algorithms requested the

evaluation of an already evaluated design due to the inherent

behavior of their random engines.

Fig. 6. Number of Pareto points found plotted against the percentages of
evaluated designs.

Concerning all algorithms, we found that they easily reach

an ADRS value below 2% evaluating 30% of the design space

(lower ADRS corresponds to a better solution). This result can

be considered very promising though variations in the slope of

the lines for some algorithms are due to different ’behavioral’

phases of the specific optimization process. The most clear

example encountered in the project was the MOSA heuristic

with its ’hot’ and ’cold’ phase. We point out also that a semi-

automatic support is also provided by modeFRONTIER tool

to choose the most suitable algorithm for the target design

space.

Figure 6 shows the number of true Pareto points found

by the algorithms at the specified percentage of design space

exploration. MOSA is tuned to reach the top of the exploitation

phase at 50% of evaluations and therefore its results are the

worst up to 20-30%, while at the end it is one of the most

effective algorithms. APRS shows a similar behavior.

B. Response surface modeling

To further increase the efficiency of the exploration process,

Response Surface Modeling (RSM) techniques have been

introduced in the project. The basic idea is to reduce the

number of simulations by defining an analytical response

model of the system metrics based on a subset of simulations

used as training set. Then the analytical expressions are used

to predict the unknown system response. More in detail, RSM

492

493

