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ABSTRACT
We present a new method for analysing multidetector maps containing several astrophysical
components. Our method, based on matching the data to a model in the spectral domain,
permits us to estimate jointly the spatial power spectra of the components and of the noise, as
well as their mixing coefficients. It is of particular relevance for analysis of millimetre-wave
maps of cosmic microwave background (CMB) anisotropies.

Key words: methods: data analysis – cosmic microwave background – cosmology: observa-
tions.

1 I N T RO D U C T I O N

Mapping sky emissions at millimetre wavelengths, and in particu-
lar cosmic microwave background (CMB) anisotropies, is one of
the main objectives of ongoing observational effort in millimetre-
wave astronomy. Sensitive balloon-borne and space-borne missions
such as Archeops (Benoı̂t et al. 2002), BOOMERanG (de Bernardis
et al. 2000), MAXIMA (Hanany et al. 2000) and WMAP (Bennett
et al. 1997) are currently yielding a large quantity of multidetector
and multifrequency measurements. Within a few years, the Planck
mission (Lamarre et al. 2000; Bersanelli & Mandolesi 2000), to be
launched by ESA in 2007, will observe the full sky with ∼100 detec-
tors distributed in nine frequency bands ranging from 30 to 850 GHz.
The main objective of these observations is the determination of the
spatial power spectrum of CMB anisotropies. A secondary objec-
tive is identifying and mapping the emission from all contributing
astrophysical processes.

The availability of several detectors operating in several bands
makes it possible to devise new powerful data processing schemes.
In particular, by combining data from several detectors, it is possi-
ble to substantially improve the signal-to-noise ratio (by weighted
averaging) and to separate several foreground components (possi-
bly of astrophysical interest in their own right) from the CMB by
component separation methods. Component separation, however,
typically requires good knowledge of the transfer function connect-
ing a multicomponent sky to multidetector maps.

This paper proposes spectral matching as a new approach to pro-
cessing multidetector, multicomponent (MDMC) data, in which all
the information needed to estimate the spatial power spectra of com-
ponents and/or to separate them is sought in the data structure it-
self. The method works with or without prior detector calibration
and gives access to spatial power spectra in a straightforward way;
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it is statistically efficient (being a maximum likelihood technique)
and computationally efficient (working with a small set of statistics
rather than with original maps).

This paper is organized as follows. The idea of spectral estimation
via multidetector multicomponent spectral matching is introduced in
Section 2. Section 3 describes the technique in more detail, connects
it to a maximum likelihood method, and discusses specific imple-
mentations. Section 4 is devoted to evaluating the performance of
the method on synthetic Planck HFI observations. We discuss the
method and some possible extensions in Section 5.

2 T H E M U LT I D E T E C TO R M U LT I C O M P O N E N T
F R A M E WO R K

Multidetector CMB measurements can be modelled as result-
ing from the superposition of multiple components. Statistically
efficient data processing should coherently exploit this MDMC
structure.

2.1 Data model

The sky emission at millimetre wavelengths is well modelled at
first order by a linear superposition of the emissions of a few pro-
cesses: CMB anisotropies, thermal dust emission, thermal Sunyaev–
Zel’dovich (SZ) effect, synchrotron emission, etc. The observation
of the sky with detector d is then a noisy linear mixture of N c com-
ponents:

yd (θ, φ) =
Nc∑
j=1

Ad j s j (θ, φ) + nd (θ, φ), (1)

where sj is the emission template for the jth astrophysical process,
hereafter referred to as a source or a component. The coefficients
Adj reflect emission laws and detector properties while nd accounts
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for noise. For simplicity, we neglect for the moment beam effects,
postponing their discussion to Section 5.

Quantities of prime interest are spatial power spectra. For the jth
component, at frequency �, this is

C j (�) = 〈 | s j (�) | 2〉, (2)

where 〈·〉 denotes the expectation operator and � indexes either a
Fourier mode or an (�, m) mode.

In practice, power spectra are estimated by averages over bins

C j (q) = 1

nq

∑
�∈Dq

C j (�), (3)

where q = 1, . . . , Q is the spectral bin index, Dq is the set of
frequencies contributing to bin q and nq is the number of such fre-
quencies.1 Typical bins can be bands �min � � < �max extending over
a range of one to tens of � values.

Multidetector power spectrum. Since we focus on jointly pro-
cessing the maps from all detectors, it is convenient to stack y1, . . . ,
yN d into a single Nd × 1 vector Y . Then the set of equation (1) for
all Nd detectors is more compactly written in matrix vector form
as

Y(θ, φ) = AS(θ, φ) + N(θ, φ) (4)

with a so called Nd × N c ‘mixing matrix’ A. In Fourier space, this
equation reads

Y(�) = AS(�) + N(�). (5)

The power spectrum of process Y is represented by the Nd × Nd

spectral density matrix 〈Y(�)Y(�)†〉 where † denotes transpose con-
jugation. Its average over bins

RY (q) = 1

nq

∑
�∈Dq

〈Y(�)Y(�)†〉 (q = 1, . . . , Q) (6)

will also be referred to as a spectral density matrix. According to
the linear model (1), it is structured as

RY (q) = ARS(q)A† + RN (q) (q = 1, . . . , Q) (7)

with RS(q) and RN (q) defined similarly to RY (q). Statistical inde-
pendence between components implies

RS(q) = diag(C1(q), . . . , CNc (q)). (8)

For the sake of exposition, we assume that the noise is uncorrelated,
both across detectors and in space, so that the noise structure is
described by Nd parameters:

RN (q) = diag
(
σ 2

1 , . . . , σ 2
Nd

)
. (9)

Parameter extraction by spectral matching. The MDMC model,
as defined by equations (7–9), depends on a set {RY (q)} of Q spec-
tral density matrices, which in turn depend on {A, Cj(q), σ 2

d )},
amounting to Nd × N c + Q × N c + Nd scalar parameters. How-
ever, the number of independent correlations in Q spectral density
matrices is Q × Nd(Nd + 1)/2 (since each matrix is real symmetric).
This latter number is (in general) higher than the former.

With this in mind, our proposal can be summarized as ‘MDMC
spectral matching’, meaning: estimate all (or parts of) the parame-
ters θ = {A, Cj(q), σ 2

d )} by finding the best match between {RY (q)},

1 It is customary for CMB data analysis to weight the terms in sum 3 by
�(� + 1). For the sake of exposition, we use a flat weighting here (see
Section 5 for weighted sums).

as specified by (7–9), and a set of Q ‘empirical spectral density ma-
trices’ {R̂Y (q)}:

R̂Y (q) = 1

nq

∑
�∈Dq

Y(�)Y(�)† (q = 1, . . . , Q) (10)

which are the natural non-parametric estimates of the corresponding
RY (q).

2.2 Maximum likelihood spectral matching

Any reasonable measure of mismatch between the empirical density
matrices {R̂Y (q)} and their model counterparts {R̂Y (q; θ )} could be
used to compute estimates of a θ parameter. In order to get good es-
timates, however, one should use a mismatch criterion derived from
statistical principles. Such a derivation can be based on the statistical
distribution of the Fourier coefficients of a stationary process which
are (at least asymptotically in the data size) normally distributed,
uncorrelated, with a variance proportional to the power spectrum
(Whittle approximation, see Appendix B). Thus, the likelihood of
the observations can be readily expressed in terms of spectral den-
sity matrices. Appendix B outlines how the (negative) log likelihood
of the data then is (up to irrelevant factors and terms) equal to

φ(θ ) =
Q∑

q=1

nq D(R̂Y (q),RY (q; θ )) (11)

where D(·, ·) is a measure of divergence between two positive n ×
n matrices defined by

D(R1,R2) = tr
(
R1R

−1
2

) − log det(R1R
−1
2 ) − n. (12)

It can be seen2 that D(R1, R2) � 0 with equality if and only if R1 =
R2. Thus spectral matching corresponds to maximum likelihood
estimation in a stationary model. The minimizer of φ(θ ) is then a
maximum likelihood estimate, with the good statistical properties
associated with it.

Only in an asymptotic framework can maximum likelihood proce-
dures be proved to reach minimum estimation variance. This means
that criteria which are equivalent to (11) are expected to have the
same statistical quality as (11). In particular, criterion (11) can be
replaced by a quadratic approximation: when each R̂Y (q) is close
to RY (q;θ ), a second-order expansion of D(R̂Y ,RY ) yields

D2(R̂Y ,RY ) = tr
(
R̂

−1

Y (R̂Y − RY )R̂
−1

Y (R̂Y − RY )
)

. (13)

The resulting quadratic criterion is of particular interest when the
unknown parameters enter linearly in RY (q; θ ) (for instance when
A is known and θ only contains the binned power spectra of the
components) since then criterion minimization becomes trivial. In
this paper, however, we stick to using (11)–(12). Even though the
divergence (12) may, in general, seem more difficult to deal with than
its quadratic approximation (13), it actually lends itself to simple
optimization via the EM algorithm (see Section 3.1) thanks to its
connection to the likelihood.

2.3 Comments

Some preliminary comments about the MDMC spectral matching
approach are in order.

2 For instance by expressing D(R1, R2) in terms of the eigenvalues of
R

−1/2
2 R1R

−1/2
2 .
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Parameter choice. There is a lot of flexibility in the choice of
parameters over which to minimize the spectral mismatch. By se-
lecting different sets of parameters, different goals can be achieved.
For instance, we may assume that matrix A and the noise spectrum
RN (q) are known so that the mismatch is minimized only with re-
spect to the binned spectra Ci(q) of all components: the method
appears as a spectral estimation technique which does not require
the explicit separation of the observed maps into component maps.
Another important example, as illustrated in Section 4, consists of
including matrix A among the free parameters. Then, the method
works as the so-called ‘blind techniques’, and permits a determina-
tion of the emission law of the components, or the cross-calibration
of detectors.

Degeneracies. A key issue in spectral matching is whether or not
matrix A can be uniquely determined from the data only. When all
parameters {A, Cj(q), σ 2

d} are allowed to vary, there are at least
two obvious degeneracies. First, the ordering (or numbering) of
the components in the model is immaterial: matrix A cannot be
recovered to better than a column permutation on the sole basis of a
spectral match. Second, a scalar factor can be exchanged, for each
component j, between the jth column of A and Cj(q). These scale
factors cannot be determined from the data themselves.

Another trivial case of indetermination is when two columns of A
corresponding to physically distinct components are proportional.
In this case, the sum of the two appears in the model as one sin-
gle component. The identifiability of the other components is not
affected.

A more severe degeneracy occurs if any two components have
proportional spectra. In this case, as is known from the noiseless case
(Pham & Garat 1997), only the space spanned by the corresponding
columns of A can be determined in a spectral match with A as
a free parameter. In this case, however, the identifiability of the
other components is unchanged, with no impact on the accuracy
of component separation with a Wiener method (Section 5). The
key point to remember is that spectral matching requires spectral
diversity to separate components associated with unknown columns
of A.

Maximum likelihood. Section 2.2 explains why ‘spectral match-
ing’ corresponds to maximum likelihood estimation. This occurs in
a Gaussian stationary model with smooth (actually: constant over
bins) spectra. In such a model the likelihood of the observations is
a measure (11) of spectral matching. Since the likelihood then de-
pends on the data only via the empirical spectral density matrices,
the massive data reduction gained from replacing the observations
by a (usually) much smaller set of statistics (the empirical spectral
density matrices R̂Y (q)) is obtained without information loss.

Comparison with component separation. It is interesting to com-
pare spectral matching with techniques based on prior explicit com-
ponent separation.

Producing a CMB map as free as possible from foreground and
noise contamination is the objective of the component separation
step, in which maps obtained at different frequencies are combined
to maximize the signal to noise ratio (where noise includes also
foreground contamination).

The usual approach for taking advantage of multidetector mea-
surements can be summarized as follows: first, form estimates ŝ j (�)
of component maps sj(�) (via component separation); secondly, es-
timate the spectrum of each component j by averaging within bins:

Ĉ j (q) = 1

nq

∑
�∈Dq

| ŝ j (�) | 2, (14)

with, possibly, some post-processing of the power spectrum esti-
mates.

This method suffers from two difficulties. First, the best compo-
nent separation methods typically require the prior knowledge of the
statistical properties of the components (including the CMB power
spectrum) and of the noise. Secondly, recovered maps contain resid-
uals (including noise) which contribute to the total power, biasing
the spectrum estimated on the map, unless the power spectrum of
these residuals can be estimated accurately and subtracted.

In contrast our approach takes the reverse path. The first step
is an estimation of the spectrum for the multidetector map (which
takes the form of a sequence of spectral density matrices). This first
step preserves all the joint correlation structure between maps. In
essence, the second step (spectral matching) amounts to resolving
the joint power spectrum into the spectra of individual components.

Hence, instead of first separating component maps and then com-
puting power spectra, we first compute the multivariate power spec-
trum and then separate component spectra.

Applicability of spectral matching. The real sky emission is
known to depart from the simple ideal model used for the devel-
opment of the spectral matching method. It is important, then, to
discuss how our method depends on some assumptions about the
structure of the data.

In particular, the spectral adjustment is made under the following
assumptions:

(i) the mixing matrix is position-independent,
(ii) the components are statistically independent,
(iii) noise is uncorrelated across detectors,
(iv) the components and the noise are normally distributed,
(v) the components and the noise are stationary,
(vi) the components and the noise are statistically isotropic,
(vii) their spectra are smooth functions of �.

Assumptions i, ii, and iii are critical because they determine the
structure (7) of the spectral matrices. Thus, matching estimates are
no longer consistent if these assumptions are violated and for strong
departures from the model, the spectral matching may fail com-
pletely. However, it is possible to refine the model as needed, for
instance by including some correlation terms between components,
by dividing the sky in patches where the mixing matrix may be as-
sumed to be constant, by discarding regions of the sky where the
emission is known to depart from the model (galactic regions of
intense complex emission, strong point sources). The existence and
applicability of such refined solutions depend on the exact sky emis-
sion model. If no structure can be assumed (for instance if the noise
correlation matrix is completely arbitrary and unknown) there is not
enough information to constrain the parameters uniquely.

Assumptions iv, v, vi and vii, in contrast, are not critical because
they do not change the basic structure (7) of the spectral matrices
and do not prevent the sample covariance matrices to converge to
such a structure. Hence, violation of these assumptions only results
in a loss of statistical efficiency with respect to techniques based
on complex models. The Gaussianity assumption is not a require-
ment of the method because the sample covariance matrices (10)
still have an expectation given by (7). If components or the noise
are not Gaussian distributed, then some information is lost by only
using second-order statistics (loss of efficiency), but consistency is
preserved. Stationarity, isotropy, and spectral smoothness allow us
to characterize in a meaningful way the distribution of a given com-
ponent j via a simple smoothed spectrum Cj(q). If they are violated
then Cj(q) may not have a meaningful statistical meaning; it is still
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defined none the less and spectral matching will just produce an es-
timate of it. Again, the key point is that, regardless of the details of
the distribution of Si(�), one can expect 〈Si (�)S̄ j (�)〉 = 0 for i �= j ,
that is, statistical independence is the true underlying inference en-
gine. We also note that in the case of anisotropic spectra, it is always
possible to use spectral domains Dq which are not ring-shaped.

Finally, spectral matching does not bias in any way the level of
non-Gaussianity present in the CMB maps. Non Gaussian signals,
even at low level, appear as an additional contribution to the CMB
spectrum. They will show in maps as well, in a way depending on the
method adopted to solve the linear system after the spectral matching
step, once mixing coefficients and power spectra are known.

3 M D M C S P E C T R A L M AT C H I N G
I N P R AC T I C E

The implementation of MDMC spectral matching will now be de-
scribed in more detail; Section 3.1 describes the EM algorithm for
its optimization; Section 3.2 describes a complementary technique
for fast convergence.

3.1 The EM algorithm

The expectation maximization (EM) algorithm (Dempster, Laird &
Rubin 1977) is a well-known technique for maximizing the like-
lihood of statistical models which include ‘latent’ or ‘unobserved’
variables. It is well suited to our purpose by taking the components
as the latent variables. The EM algorithm is iterative: starting from
an initial value of the parameters, it performs a sequence of param-
eter updates called ‘EM steps’. Each step is guaranteed to increase
the likelihood of the parameters.

The spectral matching criterion (11) actually being a likelihood
function in disguise, the EM algorithm can be used for its mini-
mization. Each EM step is guaranteed to improve the spectral fit by
decreasing φ(θ ).

We consider the regular EM algorithm, based on the Gaussian
likelihood described in Appendix B and taking as ‘latent variables’
the spectral modes Y(�). The form of the EM steps immediately fol-
lows, as sketched in Appendix C, and is summarized by the pseudo-
code given in Table 1.

Table 1. The EM algorithm for minimizing the MDMC spectral
mismatch φ(θ ) with respect to θ = {A, Cj(q), σ 2

d}.

Require: Spectral density matrices R̂Y (1), . . . , R̂Y (Q)
Require: Initial value of θ = {A, Cj(q), σ 2

d}.

Set R̃yy (q) = R̂Y (q) and R̃yy =
∑

q
nq
n R̃yy (q).

repeat
{ E-step. Compute conditional statistics:}
Set RS(q) = diag(Cj(q)) and RN = diag(σ 2

d )
for q = 1 to Q do

G(q) = (A†R−1
N A + RS(q)−1)−1

W(q) = G(q)A†R−1
N

R̃ss (q) = W(q)R̂Y (q)W(q)† + G(q)

R̃sy (q) = W(q)R̂Y (q)
end for

R̃ss =
∑Q

q=1
nq
n R̃ss (q)

R̃ys =
∑Q

q=1
nq
n R̃ys (q)

{ M-step. Update the parameters:}
A = R̃ys R̃

−1
ss

Ci (q) =
[
R̃ss (q)

]
i i

σ 2
d =

[
R̃yy − R̃

†
syR̃

−1
ss R̃sy

]
dd

Rescale the parameters (see text).
until a convergence criterion is satisfied

It is worth mentioning that EM steps take such a regular structure
when the parameters are θ = {A, Cj(q), σ 2

d}. A slightly different
form would result from a more constrained parameter set.

Recall that, as previously noted, there is a scale indetermination
on each component’s spectrum when θ = {A, Cj(q), σ 2

d}. We have
found that this inherent indetermination must be explicitly fixed in
order for EM to converge (this is the rescaling step in the last line of
the pseudo-code). Our strategy is, after each EM step, to fix the norm
of each column of A to unity and to adjust the corresponding power
spectra accordingly. This is an arbitrary choice which happens to
work well in practice.

The algorithm is initialized as follows. We take Rn = diag(R̂Y )
where R̂Y = ∑

q (nq/n)R̂Y (q). This is a gross overestimation since
it amounts to assume no signal and only noise. The initial value of
A is obtained by using the N c dominant eigenvectors of R̂Y as the
N c columns of A. Again, this is nothing like any real estimate of A,
but rather a vague guess in ‘the right direction’. Finally, the spectra
Pi(q) are taken as to be the diagonal entries of A†Â. This ad hoc
initialization procedure seems satisfactory. Note that it is a common
rule of thumb to initialize EM with overestimated noise power.

Regarding the stopping rule, there is little point in devising a so-
phisticated stopping strategy (in practice, the algorithm is run for a
pre-specified number of steps based on a few preliminary experi-
ments with the data) because EM is only used ‘halfway’: its output
is further fed to a specialized optimization algorithm (described at
next section).

3.2 Non-linear optimization

When applied to our data, the EM algorithm demonstrates rapid
convergence at first, and then enters a second phase of slower con-
vergence. This is due to the fact that some parameters (e.g. subdom-
inant power spectra in some spectral domains) have a very small
effect on the criterion. In order to reach the true minimum of φ(θ ),
it appears necessary to complement EM with another minimization
technique. The strategy is to use the straightforward EM algorithm
to quickly get close to the minimum of φ(θ ) and then to complete the
minimization using a dedicated minimization algorithm. This com-
plementary algorithm can use a simple design thanks to the good
starting point provided by EM.

The spectral mismatch criterion (11) can, in theory, be minimized
by any optimization algorithm. However, the same effect that slows
down EM in its final steps also makes the minimization of the mis-
match criterion (11) difficult for any algorithm. In particular, simple
gradient algorithms are unacceptably slow. Actually, we found that
even conjugate gradient techniques cannot overcome this problem
and had to resort to a quasi-Newton method. We have used the
classic BFGS (Broyden–Fletcher–Goldfarb–Shapiro) algorithm
(Luenberger 1973). This technique minimizes an objective func-
tion by successive one-dimensional minimization (line searches).
At each step, the direction for the line search is the gradient ‘rec-
tified’ by the inverse of Hessian matrix. The BFGS technique is
a rule to update an estimate of the inverse Hessian matrix at low
computational cost.

4 T E S T I N G A N D P E R F O R M A N C E

We now turn to illustrating the applications and performance of
our multidetector multicomponent spectral-matching method on a
simple set of synthetic observations: three-component noisy lin-
ear mixtures featuring contributions from CMB anisotropies, dust
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emission, and SZ thermal emission. Bias and statistical uncertainties
are investigated by a Monte Carlo technique.

Five implementations of the method for different applications will
be discussed:

(i) a multicomponent spatial power spectrum estimation assum-
ing the mixing matrix is known,

(ii) a blind approach in which spatial power spectra, noise levels,
and the emission laws of components are jointly estimated on the
data,

(iii) a semi-blind approach where CMB and SZ emission laws
are assumed to be known, and the emission law of the dust com-
ponent (in addition to spatial power spectra and noise levels for all
components) is estimated from the data,

(iv) an application for detector cross-calibration,
(v) a Wiener-filter component separation using parameters esti-

mated via blind spectral matching.

Finite beam effects are neglected in the present work, although they
are not a fundamental limitation for our method (see Section 5). For
definiteness, we also assume here that the noise is white, although
this assumption can also be relaxed if needed.

4.1 Simulated data

Synthetic observations in six frequency bands identical to those of
the Planck HFI are generated on 300 × 300 pixel maps correspond-
ing to a 12.◦5 × 12.◦5 field located at high galactic latitude. For each
mixture realization, synthetic components and noise are obtained as
follows.

(i) The CMB component is a COBE-normalized, randomly gen-
erated realization of CMB anisotropies obtained using the spatial
power spectrum C� predicted by the CMBFAST software (Zaldar-
riaga & Seljak 2000) with H 0 = 65 km s−1 Mpc−1, �m = 0.3, �b =
0.045, � = 0.7.

(ii) The galactic dust emission template is obtained from the
100-µm IRAS data in the sky region located around α = 204◦ and
δ = 11◦. Bright stars are removed using a point source extracting
algorithm. Residual stripes are cut out by setting to zero the con-
taminated Fourier coefficients. The Fourier modes suppressed in
this way are randomly regenerated with a distribution obtained, for
each mode, from the statistics of the other modes at the same scale
in the IRAS map. This method preserves the (assumed) statistical
azimuthal symmetry and general shape of the spatial spectrum.

Figure 1. Simulated observations for six frequency bands. This figure can
be seen in colour in the on-line version of the journal on Synergy.

Table 2. Fraction of the power in each of the components.

ν 100 143 217 353 545 857

CMB 0.889 0.926 0.896 0.275 0.0019 1.3 × 10−7

dust 9 × 10−5 6 × 10−4 0.0082 0.215 0.687 0.938
SZ 0.0064 0.0032 2 × 10−7 0.0044 0.00019 5.2 × 10−8

noise 0.102 0.0727 0.108 0.536 0.320 0.0667

(iii) The thermal Sunyaev–Zel’dovich template is drawn at ran-
dom from a set of 1500 SZ maps generated for this purpose using
the software described in (Delabrouille, Melin & Bartlett 2002).

(iv) White noise at the level of the nominal per-channel Planck
HFI values is added to the observations.

Synthetic observations are displayed in Fig. 1. The general com-
mon pattern which can be seen in the lowest frequency channels
is simulated CMB anisotropies, whereas the pattern of emission of
interstellar dust as observed with IRAS dominates our 857- and
545-GHz maps. The contribution of the SZ effect, very subdomi-
nant, is not obviously visible on these maps.

Table 2 gives, for each channel, the relative power of all compo-
nents and of noise for a typical synthetic mixture (here, ‘relative’
means that the sum of all powers is normalized to unity). Typical
input templates for the three components can be seen later (Fig. 6,
left column).

4.2 Application 1: spectral estimation

The first application is the estimation of component spatial power
spectra. It is assumed that the mixing matrix is known, but that
the noise level for each map is not known precisely. The set of
parameters to be estimated from the data then is θ = {Cj(q), σ 2

d}.
Component spectra are estimated on 32 ring-shaped domains for

5000 different mixtures. The first 30 domains are equally spaced
rings covering the lowest 60 per cent of the spatial frequencies
(0 < �/�max < 0.6), and the remaining two cover respectively 0.6 <

�/�max < 0.8 and 0.8 < �/�max < 1. This choice of spectral domains
is adapted to the assumed azimuthal symmetry of the spectra by the
choice of ring-shaped domains, and has a large number of rings in
the region where the signal is strong and where information from
source spectra is relevant.

The resulting estimation of the spatial power spectrum of the three
components in the relevant frequency range is shown in Fig. 2. Errors
on estimated spectra are obtained from the dispersion over the 5000
distinct simulated observations. For the SZ effect, the spatial power
spectrum is averaged into larger bins after parameter estimation
to reduce the scatter of the measurements. The figure shows that,
as expected, a low-variance unbiased power spectrum is obtained
for all components without explicit separation of the observations
into component maps. For the CMB, the measurement is sample
(cosmic) variance limited at small spatial frequencies. Such an effect
does not appear on the dust spectrum estimate because we use only
one dust map in the Monte Carlo simulation.

4.3 Application 2: blind parameter estimation

Let us now assume that the exact emission laws of all components are
unknown. Then the full parameter set, to be estimated from the data,
is θ = {Cj(q), σ 2

d , A}. Again, we estimate parameters on 5000 dif-
ferent simulated data sets. For each run, the scale freedom between
mixing matrix columns and component power spectra is fixed by
renormalizing to the true value of A at a single reference frequency
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1094 J. Delabrouille, J.-F. Cardoso and G. Patanchon

Figure 2. This figure shows the recovered spatial power spectrum �2C� (crosses) compared with the exact band-averaged spectra (solid lines) for CMB (left),
dust (middle), and thermal SZ effect (right). These results correspond to a non-blind MDMC spectral estimation in which the mixing matrix A is known.
Vertical bars show the 1σ errors, and horizontal bars the spatial frequency range of each bin.

Figure 3. The figure shows the recovered emission laws of the components
(diamonds) compared with the exact emission laws used in the simulations
(solid lines). The errors are computed from the dispersion of the recovered
values for 10 000 different synthetic mixtures.

Figure 4. The figure – similar to Fig. 2 but for blind spectral matching – shows the recovered power spectra of the components compared to exact ones (solid
lines). The errors are computed from the dispersion of the recovered values for 5000 different synthetic mixtures.

(100 GHz for the CMB and thermal SZ effect, and 857 GHz for the
dust). Error bars (±1σ ) for all parameters are computed from the
distribution of the estimates over all simulated observations.

Fig. 3 displays recovered emission spectra (diamonds with 1σ

error bars) as compared with exact emission spectra (lines). Emis-
sion laws of all components are recovered with no significant bias.
The CMB emission law is recovered very accurately at all frequen-
cies except 857 GHz. The dust emission law is recovered quite
accurately at high frequencies, less accurately at frequencies where
it is very subdominant. The SZ effect emission shape, subdomi-
nant at all frequencies, is recovered with larger relative error bars.
Because of the renormalization, error bars for CMB and SZ van-
ish at 100 GHz, and the dust emission-law error bar vanishes at
857 GHz.

Spatial power spectra, in turn, are also estimated. As shown in
Fig. 4, CMB and dust spatial power spectra are recovered with good
accuracy and no significant bias, almost as well as for the non-blind
spectral estimation. The SZ power spectrum is also significantly
constrained, although error bars are significantly larger than in the
non-blind spectral estimation.
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MDMC spectral matching for CMB data analysis 1095

Table 3. Comparison of true and estimated noise levels (RMS). The errors are obtained from the dispersion of results obtained using
10 000 different mixtures.

Channel 100 143 217 353 545 857

RMS est. ×10−6 (29.1 ± 0.22) (18.7 ± 0.13) (12.85 ± 0.09) (11.92± 0.07) (8.98 ± 0.05) (4.97 ± 0.06)
RMS true ×10−6 29.11 18.70 12.86 11.93 8.980 4.970

Table 4. Relative errors in dust emission-law estimation. In the first case, all the elements of the mixing matrix are estimated (blind
approach). In the second case, the columns of the mixing matrix which corresponds to the CMB and the thermal SZ components are
fixed (semi-blind approach). Although the semi-blind approach does not improve significantly the determination of the dust spectrum at
545 GHz, the improvement is very significant (factors of two to three) at other frequencies.

Channel 100 143 217 353 545 857

True dust em spectrum 0.3071 0.5902 1.2177 2.6106 4.5371 6.4288
Relative error, blind approach 6.229 2.469 0.634 0.0662 0.00790 No values
Relative error, semi-blind approach 2.623 1.056 0.285 0.0368 0.00725 No values

Finally, Table 3 shows the estimates of the noise RMS as com-
pared to true levels. Relative errors are below 2.5 per cent for all
channels.

4.4 Application 3: semi-blind parameter estimation

In our particular case, the emission laws of the CMB and of the
SZ are known to almost perfect accuracy. Assume, however, that
measuring the dust emission law is of particular interest. How much
do we gain by forcing known emission laws to their true value, and
estimating only the unknown dust emission spectrum?

We repeat the simulations described in 4.3, now fixing two
columns of the mixing matrix, and estimating the third one (in
addition to domain-averaged spatial spectra and noise levels).
Table 4 compares quantitatively the relative errors on the resulting
dust emission law. At low frequency (between 100 and 217 GHz),
the accuracy of the estimation is improved by a factor of 2 to 3. At
353 GHz, the improvement is still noticeable, but at 545 GHz, where
the dust emission begins to dominate, the blind and semi-blind ap-
proaches give similar errors. The use of partial prior information on
the mixing matrix A is thus useful here to improve the estimation

Figure 5. The figure shows the comparison of the quality of the blind and semi-blind power spectrum estimation of the components. The solid line displays
the ratio between the size of the 1σ error in the semi-blind and in the non-blind spectral matching, showing that they are comparable to within simulation
accuracy. In contrast, the dotted line shows the ratio between the size of the 1σ error in the blind and in the non-blind spectral matching, showing that some
accuracy is lost when all components of the mixing matrix are adjusted as additional parameters.

of the entries of A which contribute little relative power to the
observations.

In addition to this substantial improvement in estimating the un-
known ‘dust column’ of A, the semi-blind approach is more efficient
for estimating the SZ power spectrum than the full blind imple-
mentation. Fig. 5 shows the comparison of the quality of spectral
estimation in the blind and semi-blind approaches relative to the
non-blind. To the precision of our Monte Carlo tests (1–2 per cent
level on error bars), the semi-blind result is as accurate for this par-
ticular mixture as the non-blind estimate, and significantly better
than the blind result. As the semi-blind and the non-blind estimates
give similar results, however, the actual enhancement in precision
depends on details of the mixture and parametrization.

This comparison, however, shows that it is in general useful to
exploit as much as possible reliable prior information. Our method
is flexible enough to do so.

4.5 Application 4: detector calibration

The mixing matrix A depends not only on components (through
emission spectra), but also on detectors (through frequency bands
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1096 J. Delabrouille, J.-F. Cardoso and G. Patanchon

Figure 6. Left: true templates used as inputs. Middle: templates recovered using the ‘true’ Wiener filter. Right: templates recovered using the blind separation.
This figure can be seen in colour in the on-line version of the journal on Synergy.

and optical efficiency). Mixing matrix coefficients Ad j , expressed
in readout (rather than physical) units can be approximated by the
product of a detector-dependent calibration coefficient αd and an
emission law ε j (ν):

Ad j � αdε j (νd ), (15)

where νd is the central observing frequency of detector d. Used on
a data set from detectors observing in the same frequency band,
the estimation of A for any astrophysical component gives relative
calibration coefficients between detectors. If in addition the emis-
sion law of at least one of the components is known (e.g. CMB
anisotropies), the estimation of the mixing matrix provides a rela-
tive calibration across frequency bands. Finally, if among the com-
ponents there is one with known emission spectrum and known
amplitude (or known spatial power spectrum), absolute calibration
can be obtained in the same way. For instance, it is not excluded
that in the not-so-far future, a high-resolution experiment dedicated
to a wide-field point source survey in the millimetre range can be
calibrated on CMB anisotropies(!).

4.6 Application 5: component separation

The separation of astrophysical components by some kind of in-
version of the linear system of equation (1) has been the object of

extensive previous work. Popular linear methods are listed in Ap-
pendix A. In a Gaussian model, the best inversion is obtained by
the Wiener filter. This filter, however, requires prior knowledge of
the mixing matrix A, component spatial power spectra, and noise
power spectra. As discussed by Cardoso et al. (2002), our spectral-
matching method yields all the parameters needed to implement a
Wiener-based component separation on maps.

We compare the quality of component reconstruction using
either the estimated parameter set θ = {Cj(q), σ 2

d , A} or ‘true’
best-knowledge values.

Reconstructed maps. Fig. 6 illustrates the quality of map recon-
struction by Wiener inversion. The first column displays the input
components, the second column shows components recovered with
the exact Wiener filter (computed from the true mixing matrix, en-
semble averages of the noise, ensemble averages of CMB and SZ
power spectra, and a k−3 fit of the spatial power spectrum of the dust
template). The third column displays the components recovered by
Wiener inversion using estimated parameters. In both cases, CMB
and dust emissions are recovered satisfactorily, but the SZ effect –
strongly peaked and hence poorly suited to processing in Fourier
space – remains noisy. Visually, both methods perform about as
well.
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MDMC spectral matching for CMB data analysis 1097

Figure 7. Contributions to the output map as a function of spatial frequency, relative to the true level of that component map. The left panel is for CMB, the
middle panel for dust, and the right panel for the SZ effect. Results obtained with exact values of the mixing matrix, the spectra and noise levels are plotted as
plain lines, and results obtained with the Wiener implementation using estimated parameters as diamonds.

Contamination levels. The quality of the separation can be as-
sessed by a measure of contamination levels, i.e. how much of the
other components get into a given component map after separation.

The Wiener matrix, W = [AtR−1
N A + R−1

S ]−1AtR−1
N , obtained

with exact values of A, RN and RS , differs slightly from its estimate
Ŵ, computed with estimates Â, R̂N and R̂S(q).R̂S(q) differs from
RS not only because it is an estimate, but also because it is a flat
band-power approximation.

At each frequency, off-diagonal terms of ŴA correspond to leak-
age of other components into a given component’s estimate at spatial
frequency k. Each panel of Fig. 7 refers to one component (CMB,
dust and SZ), and shows the relative contribution of all components
and of noise to the recovered map. Levels are relative to the true
map, so that the contribution of a component to its own recovered
map illustrates the spatial filtering induced by the Wiener inversion.
The figure illustrates that the inversion done with blindly estimated
parameters performs almost as well as the separation using exact
values of the spectra and mixing matrix. Differences are typically
much smaller than noise contamination, which is comparable with
the blind and the non-blind approaches.

5 D I S C U S S I O N

5.1 Related work on component separation

Explicit component separation was investigated first in CMB appli-
cations by Tegmark & Efstathiou (1996), Bouchet & Gispert (1999)
and Hobson et al. (1998). In these applications, all the parameters of
the model (mixing matrix, noise levels, statistics of the components,
including the spatial power spectra) are assumed to be known.

Recent research has addressed the case of an imperfectly known
mixing matrix. It is then necessary to estimate it (or at least some
of its components) directly from the data. For instance, Tegmark
et al. assume power-law emission spectra for all components except
CMB and SZ, and fit spectral indices to the observations (Tegmark
et al. 2000).

More recently, it has been proposed to resort to ‘blind source sep-
aration’ or ‘independent component analysis’ (ICA) methods. The

work of Baccigalupi et al. (2000), further extended by Maino et al.
(2002), implements a blind source separation method exploiting the
non-Gaussianity of the sources for their separation. This infomax
method, unfortunately, is not designed for noisy mixtures and cannot
deal with a frequency-dependent beam.

The idea to use spectral diversity and an EM algorithm for the
blind separation of components in CMB observations was proposed
first by Snoussi et al. (2001). This approach exploits the spectral
diversity of components as in our MDMC spectral matching, but
assumes the prior knowledge of the spatial power spectra of the
components. Our approach extends further on this idea, with sig-
nificantly more flexibility, and the new point of view that spatial
power spectra are actually the main unknown parameters of interest
for CMB observations.

Other reports of blind component separation in Astronomical data
include Nuzillard & Bijaoui (2000) and Funaro, Oja & Valpola
(2001).

5.2 Comments on the spectral matching approach

Robustness. Our approach assumes that the data are collected in
the form of a linear mixture of a known number of components that
are independent, have different spatial power spectra, and differ-
ent laws of emission as a function of frequency. These assumptions
are valid in the three-component mixtures used in our simulations.
Applying this method to real data obtained with the Archeops ex-
periment (Benoı̂t et al. 2003) gave us the opportunity to verify that
the method is quite robust, with satisfactory performance even when
the noise is neither white nor stationary, and when some residual
systematic effects remain in the data. Of course, the exact impact of
large departures from the model remains to be tested on a case by
case basis.

Detector-dependent beams. It is quite usual in CMB observa-
tions that, because of the diffraction limit, the resolution of the
available maps depends on frequency. For Planck, the resolution
ranges from about 30 arcmin at 30 GHz to 4.5 arcmin at 350 GHz
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and higher. It is mandatory that a method combining all observations
benefit from the full resolution of the highest frequency channels.
MDMC spectral matching, being implemented in Fourier (or spher-
ical harmonics) space, permits one to take beam effects into account
straightforwardly by including in the model the effect of a transfer
function.

Identifying components. In practice, MDMC spectral matching
runs with a fixed number of components. This number might not be
well known (or even not very well defined), and must be guessed (or
assumed). For CMB applications, an educated guess can be made
(as usual for all component separation methods).

A practical way to handle this issue consists of applying the
method several times with a increasing number of expected compo-
nents. Comparing successive results permits one to identify ‘stable’
components, which remain essentially unchanged when more com-
ponents are sought. Too few components result in unsatisfactory
identification and poor adjustment of the model to the empirical
spectrum. Too many components result in the separation of artifi-
cial components, either very weak or single-detector noise maps.

With this strategy, the method can be viewed as a component dis-
covery tool, which can be useful in particular to uncover and separate
out instrumental effects behaving as additional components.

Connected to the issue of component identification is the unique-
ness (or identifiability) problem. As discussed above, MDMC spec-
tral matching uses spectral diversity as the ‘engine’ of blind separa-
tion: components with proportional spatial power spectra (or nearly
so) are not (or poorly) separated. In the current test, the three compo-
nents are different enough that no such problem arises. In richer mix-
tures, containing contributions from several galactic components, it
is quite possible that spectral diversity does not hold. If, for instance,
several galactic components had a spatial power spectrum propor-
tional to 1/k3, the method would satisfactorily estimate parameters
relevant to the CMB and the SZ effect, but would be unable to un-mix
Galactic contributions. A way out is to use a semi-blind approach in
which some entries of the mixing matrix are forced to zero when the
contribution of a particular component at a particular frequency is
known to be negligible. This is the object of forthcoming research.

5.3 Comments on the Wiener inversion

After adjusting the parameters of the model to the data, the recovered
mixing matrix, spectra, and noise levels can be used for component
separation by Wiener inversion.

Quite interestingly, the Wiener filter can be implemented for iden-
tified components even if some sub-mixtures are not identified (for
instance by lack of spectral diversity). It can be shown straightfor-
wardly that the Wiener form

W = [
A†R−1

N A + R−1
S

]−1
A†R−1

N (16)

can be rewritten equivalently as

W = RSA
†[ARSA

† + RN ]−1 (17)

or

W = RSA
†R−1

Y . (18)

Thus, the Wiener inversion for component j requires only an esti-
mate of RY (readily available as R̂Y ), of the spatial power spectrum
of component j, and of the column of the mixing matrix A corre-
sponding to component j. Therefore, it is not necessary to identify
all components, nor to know all spatial power spectra, nor to know
noise levels, to separate the CMB from the other components. We

just need to know the CMB emission law (which we do) and its
spatial power spectrum (which can be estimated blindly with our
method).

As a final note, we stress that the Wiener method has the prop-
erty of filtering the data spatially – an unpleasant fact when power
spectra are estimated on separated maps. In contrast, MDMC spec-
tral matching adjusts domain-averaged spatial power spectra on the
data prior to component map separation (bypassing the need for
power-spectrum estimation on output maps).

5.4 Comments on spectral estimation

In the above discussion, we have assumed for simplicity that the
noise is spatially white for all detectors. This assumption, however,
can be relaxed if needed, without (in general) loosing identifiability.

If the noise is uncorrelated between detectors, noise terms ap-
pear only on the diagonal of the multivariate power spectrum of
the observations RY . Off-diagonal terms contain only contributions
from the off-diagonal terms of ARSA†. If noise power spectra are
completely free, off-diagonal terms of R̂Y constrain ARSA†, and
diagonal terms serve to measure RN .

For instance, if the mixing matrix A is known, it is possible to
adjust simultaneously the spatial power spectrum of the components
and that of the noise on the data, as long as enough observations are
available, which is generically the case.

If data from several experiments are analysed jointly, however,
no correlated noise of instrumental origin is expected between data
from detectors belonging to different experiments. This provides
strong consistency checks, which ultimately provides an additional
handle on the assessment of errors in the final results.

With a MDMC approach in Fourier (or spherical harmonic) space,
data at different frequencies and with different beam sizes can be
analysed jointly. This joint analysis can be done straightforwardly
by stacking all observations from different instruments in the same
vector of observations Y, as long as they cover the same area of the
sky. This is bound to become of major importance for the future
scientific exploitation of multiscale and multifrequency data.

5.5 Using single-detector maps

For a well-calibrated instrument, the linear mixture model can be
written in physical units, and the mixing matrix A depends only on
the emission laws of components. Traditionally then, component
separation is implemented on a set of maps per frequency channel
(data from all detectors in each single frequency channel are com-
bined into a single map). This approach should be preferred if good
maps cannot be obtained independently for each detector (for sam-
pling reasons, or because of striping. . .), and if all detector data at
the same frequency can be combined (with some optimality) into
one single map.

An alternate solution, when calibration coefficients and noise
properties for individual detectors (levels, correlations between the
noise of different detectors) are not known precisely, is to estimate
parameters directly using single detector maps in readout units (e.g.
microvolts), which can be done naturally with our spectral-matching
method.

5.6 Comment on domain averaging

We have considered band-averaged spectra as in definition (3).
In CMB studies, one may be more interested in quantities like
�(� + 1)Cj(�) which are expected to vary more slowly than C(�)
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itself. In this case, it may be more appropriate to perform bin aver-
ages as

R̃Y (q) =


∑

�∈Dq

�(� + 1)




−1 ∑
�∈Dq

�(� + 1) Y(�)Y(�)†. (19)

Spectral matching on such statistics would then yield estimates of

C̃ j (q) =


∑

�∈Dq

�(� + 1)




−1 ∑
�∈Dq

�(� + 1)C j (�). (20)

This weighted band-averaging can be used in our MDMC spectral-
matching method as well.

5.7 Extensions and application

The spectral matching method described in this paper resolves sev-
eral problems relevant to the analysis of multidetector observations
of noisy linear mixtures.

To a large extent, the efficiency of the method is due to the as-
sumed structure of the data. In real observations, the model holds
only approximately. For instance, some components may display
anomalous behaviour in some regions of the sky. In this case, it may
be worth cutting those regions out of the observations and treating
them independently.

If the emission laws of some of the components vary slowly with
position on the sky, then the method may be used on small maps
rather than all-sky maps. A similar approach can be adopted in the
case where spatial power spectra or noise levels are very dependent
on sky coordinates.

Point sources induce correlated emissions across frequency chan-
nels, which cannot be modelled as a small set of additional compo-
nents on the sky. One way to handle this problem is by detecting
them with a matched filter, and blanking them out in the observations
prior to applying the spectral matching.

To summarize, while MDMC spectral matching is a very pow-
erful tool for CMB data analysis, it is not by itself a full reduction
pipeline, and should be used for the most appropriate application,
in conjunction with any other tool relevant to the problem at hand.

6 C O N C L U S I O N

This paper describes a spectral matching method for blind source
identification in noisy mixtures. The method adjusts a simple model
of the data to the observations. We estimate a physically relevant
set of parameters (fundamental parameters of the model: the mixing
matrix, domain-averaged spatial power spectra of the sources and
of noise) by maximum likelihood. Only unknown parameters are
estimated, as the method lends itself easily to the modifications
necessary to exploit partial prior information. Thanks to a Gaussian
stationary model, the likelihood depends only on a reduced set of
statistics (average spectral density matrices of the observations). An
efficient, dedicated algorithm can adjust the parameters in just a few
minutes on a modest workstation.

Our method is of particular relevance for CMB data analysis in a
multidetector, multichannel mission such as Planck.

First, the method permits the blind separation of underlying com-
ponents, hence, of emissions coming from different astrophysical
sources. Obtaining clean maps of emissions resulting from distinct
astrophysical processes is crucial to understanding their properties.

Secondly, the blind method permits one to estimate the number of
components (by repeating the adjustment with a varying number of

sources). This will be of utmost importance for analysing data from
sensitive missions such as Planck, in particular for the identifica-
tion and characterization of subdominant processes of foreground
emission (e.g. free–free emission, non-thermal dust emission), or to
track down systematic effects in the data.

Thirdly, the blind method can estimate the entries of the mix-
ing matrix. This may be used, if needed, to constrain the emission
law (electromagnetic spectrum) of the different components con-
tributing to the mixture, which is essential for understanding their
physical properties and possibly the emission processes.

Fourthly, if strong sources, for which the mixing matrix is well
recovered, contribute to the mixture, the method can provide a use-
ful tool for the intercalibration (or the absolute calibration) of the
different detectors or of the different channels.

Fifthly, as our method is essentially a spectral matching method,
which adjusts the spectra of a number of components to the obser-
vational data, it provides a direct measurement of the spatial power
spectrum of the components in the mixture, of particular relevance
for the CMB.

Sixthly, even though the above discussion assumed for simplicity
a spatially white noise for all detectors, this assumption can be
relaxed if needed, without (in general) loosing identifiability. The
EM algorithm has to be adapted accordingly.

As a final word, let us emphasize that the method can be applied
to sets of data from different experiments. As the MDMC spec-
tral matching approach, implemented in Fourier space, straightfor-
wardly accounts for beam effects, it can also be used for the blind,
joint analysis of multiexperiment, multichannel, multidetector, mul-
tiresolution data as long as they cover the same area of the sky. The
method may become an essential tool for mapping and analysing
sources of emission observed with present and upcoming submil-
limetre experiments.
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A P P E N D I X A : L I N E A R C O M P O N E N T
S E PA R AT I O N

The separation of astrophysical components relies on the key as-
sumption that the total sky emission at frequency ν is a linear super-
position of a number of components as in equation (1). In principle,
then, the observation of the sky emission at several frequencies
(ν1, ν2, . . .) recovers estimates Ŝ j (θ, φ) of the component templates
S j (θ , φ) by inverting equation (1). There are several methods for a
linear inversion of the system when the mixing matrix A is known.

(i) If there are as many noiseless observations as there are astro-
physical components contributing to the total emission, by simple
inversion of the square matrix A, so that the recovered components,
Ŝ, are given by Ŝ = A−1Y .

(ii) If there are more observations than astrophysical compo-
nents, the system can be inverted using the pseudo-inverse, Ŝ =
[A†A]−1A†Y .

(iii) For optimal signal-to-noise ratio under Gaussian statis-
tics, without other prior assumptions on the astrophysical com-
ponents, one can use a generalized least-squares solution, Ŝ =
[A†R−1

N A]−1A†R−1
N Y , where RN is the noise correlation matrix.

(iv) The choice Ŝ = [A†R−1
N A + R−1

S ]−1A†R−1
N Y = WY is the

Wiener solution. It is the linear solution which minimizes the vari-
ance of the error, but requires knowledge of both the noise autocorre-
lation, RN , and of the component autocorrelation, RS . As [WA]i i �
1, this solution modifies the spatial spectra of the components since
different weights are given to different spatial frequencies of a com-
ponent map.

(v) The renormalized Wiener solution, Ŝ = ΛWY , where Λ =
[diag(WA)]−1, is the Wiener solution under the constraint [WA]i i =
1. This solution renormalizes the Wiener solution at each spatial
frequency, so that no spatial filtering is applied to the data.

In the above list, solution (i) is the special case of (ii) when A
is square and regular; (ii) is the special case of 3 when the noise is
white (RN ∝ Id); (iii) the special case of (iv) when the signal is much
stronger than the noise; and (v) a constrained version of (iv) that does
not modify the relative importance of different spatial frequencies in
a component map after inversion. Depending on the chosen method,
one or more ofA,RN andRS (which can be considered as parameters
of the model) is needed to implement the inversion.

Realizing the fact that optimal component separation requires
prior knowledge of a set of parameters of the model is one of the
driving ideas behind our MDMC spectral-matching approach: we

implement the joint estimation of all such parameters that are not
necessarily known a priori.

A P P E N D I X B : S P E C T R A L M AT C H I N G
A N D L I K E L I H O O D

This section shows that minimizing the spectral matching crite-
rion (11) is equivalent to maximizing the likelihood of a simple
model.

Gaussian likelihood and covariance matching. We first show
how criterion (11) is related to a Gaussian likelihood. If y is a real
n × 1 zero mean Gaussian random vector with covariance matrix
R, then

−2 log p(y) = y†R−1 y + log det(2πR). (B1)

If Y = [y1, . . . , yT ] is an n × T matrix made of T such vectors,
independent from each other, with Cov(yt ) = Rt , then

−2 log p(Y) =
T∑

t=1

y†
t R

−1
t yt + log det(2πRt ). (B2)

Assume further that the index set [1, . . . , T] can be decomposed in
Q subsets I 1, . . . , I Q such that Rt is constant with value R(q) over
the qth subset, that is, Rt = R(q) if t ∈ I q. Then, equation (B12)
can be rewritten, using y†R−1 y = tr(R−1 yy†), as

−2 log p(Y) =
Q∑

q=1

nq

[
trR̂(q)(R(q)−1) + log det(R(q))

]+ constant

where R̂(q) = 1
nq

∑
t∈Iq

yt y†
t and nq is the number of indices in I q.

This last expression also reads

−2 log p(Y) =
Q∑

q=1

nq D(R̂y(q),Ry(q)) + constant (B3)

where the constant term is a function of the data Y via R̂y(q) but not
of any R(q). This form makes it clear that the mismatch (11) corre-
sponds to the log-likelihood of a sequence of zero mean Gaussian
vectors which are modelled as having blockwise identical covari-
ance matrices.

Whittle approximation. The statistical distribution of the Fourier
coefficients of a stationary time series is a well researched topic. If
T samples y(1), . . . , y(T) of an n-variate discrete time series are
available, the Fourier transform is:

ỹ( f ) = 1√
T

T −1∑
t=0

y(t) exp −2iπ f t. (B4)

For a stationary time series with spectral covariance matrix R(f ),
simple asymptotic (for large T) results are available. In particular, the
Whittle approximation consists of approximating the distribution of
the Fourier transform ỹ( f ) at DFT points f = q/T as follows.

(i) The real part and the imaginary part of ỹ( f ) are Gaussian,
uncorrelated, with the same covariance matrix and E ỹ( f )ỹ( f )† =
R( f ).

(ii) For 0 < p �= p′ < T /2 (assuming T even and for p, p′

integers), ỹ(p/T ) is uncorrelated with ỹ(p′/T ).

This is a standard approximation: it has been used for the blind
separation of noise free mixtures of components by Pham & Garat
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(1997) and in the context of astronomical component separation by
e.g. Bouchet & Gispert (1999) and Tegmark & Efstathiou (1996).

Expression (B3) thus shows3 that the minimization of (11) is
equivalent to maximizing (the Whittle approximation to) the likeli-
hood provided we model the spectra of the sources as being constant
over spectral domains.

A P P E N D I X C : A N E M A L G O R I T H M
I N T H E S P E C T R A L D O M A I N

The expectation maximization (EM) algorithm (Dempster et al.
1977) is a popular technique for computing maximum likelihood
estimates. This section first briefly reviews the general mechanism
of EM and then shows its specific form when applied to our model.

The EM algorithm. Consider a probability model p(y, s | θ ) for a
pair (y, s) of random variables with θ a parameter set. If the variable
s is not observed, the log-likelihood of the observed y is

l(θ ) = log p(y | θ ) = log

∫
p(y, s | θ ) ds. (C1)

For some statistical models, the maximization of the log-likelihood
l(θ ) can be made easier by considering the EM functional:

l(θ, θ ′) =
∫

log(p(y, s | θ )) p(s | y, θ ′) ds. (C2)

The EM algorithm is an iterative method which computes a sequence
of estimates according to

θ (n) → θ (n+1) = arg max
θ

l
(
θ, θ (n)

)
. (C3)

It can be shown that

l(θ ′′, θ ′) > l(θ ′, θ ′) ⇒ l(θ ′′) > l(θ ′), (C4)

meaning that every step of the algorithm can only increase the likeli-
hood. Actually, a stationary point of the algorithm is also a stationary
point of the likelihood since

∂l(θ )

∂θ
= ∂l(θ, θ ′)

∂θ

∣∣∣∣
θ ′=θ

. (C5)

The EM algorithm is an interesting technique for maximizing the
likelihood if (i) the computation of the conditional expectation in
definition (C2) (E step) and (ii) the maximization (C3) of the func-
tional (M step) are both computationally tractable.

Both the E step and the M step turn out to be straightforward
because one elementary EM step amounts to solving

0 =
∫

∂ log
(

p
(

y, s
∣∣ θ (n+1)

))
∂θ

p
(

s
∣∣ y, θ (n)

)
ds. (C6)

In our model, the partial derivative in (C6) turns out to be a simple
function of y and s, allowing the conditional expectation to be easily
computed and equation (C6) to be easily solved. This is sketched in
the following.

3 Actually some care is required in dealing with the fact that the Fourier
coefficients are complex-valued and that ỹ(− f ) = ỹ( f )�. This introduces
some minor complications in the computations, but does not affect the final
result.

A single Gaussian vector. In order to introduce the necessary
notations, we start by considering a simple case where y = As + n
where s and n are independent Gaussian vectors with zero-mean
and covariance matrices equal to Rs and Rn respectively. Then the
parameter set is θ = (A, Rs , Rn) and one has

−2 log p(y | s, θ ) = (y − As)†R−1
n (y − As) + log |Rn| + constant,

−2 log p(s | θ ) = s†R−1
s s + log |Rs | + constant.

Using p(y, s) = p(y | s)p(s), the log derivatives of the joint density
with respect to the components of θ are

∂ log p(y, s | θ )

∂A
= R−1

n

[
(y − As)s†

]
, (C7)

∂ log p(y, s | θ )

∂R−1
n

= −1

2

[
(y − As)(y − As)† − Rn

]
, (C8)

∂ log p(y, s | θ )

∂R−1
s

= −1

2

[
ss† − Rs

]
. (C9)

Thus, in this simple model, computing the conditional expectations
as in equation (C6) would boil down to evaluating the conditional
expectations of the random variables ss†, sy†, ys† and yy†. This is
a routine matter in a Gaussian model y = As + n for which one
finds

E(ss† | y, θ ) = W(θ )yy†W(θ )† + C(θ ), (C10)

E(sy† | y, θ ) = W(θ )yy†, (C11)

E(ys† | y, θ ) = yy†W(θ )†, (C12)

E(yy† | y, θ ) = yy†, (C13)

with the following definitions for matrices C(θ ) and W(θ ):

C(θ ) = (
A†R−1

n A + R−1
s

)−1
, (C14)

W(θ ) = (
A†R−1

n A + R−1
s

)−1
A†R−1

n . (C15)

Note that C(θ ) = Cov(s | y, θ ) and that W(θ ) is the Wiener filter,
that is E(s | y, θ ) = W(θ )y.

The EM algorithm in the Whittle approximation. In our model,
according to the Whittle approximation, the DFT points y(k) are
independent so that the EM functional (C2) for the whole data set
simply is a sum over DFT frequencies of elementary functionals.
Thus an EM step θ ′ → θ consists of solving

0 =
∑

k

E

{
∂

∂θ
log p (y(k), s(k) | θ ) | y(k), θ ′

}
. (C16)

To proceed further, equation (C16) is specialized to the case of inter-
est by using two ingredients. First, we use the relation y(k)=As(k)+
n(k) and the Gaussianity of each pair (y(k), s(k)); this is expressed
via equations (C7)–(C9). Secondly, we use the approximation that
the power spectra are constant over each spectral domain. Com-
bining these properties, the cancellation (C16) of the gradient with
respect to A, Rn and each Rs(q) yields

0 = R̃ys(θ ′) − A(θ )R̃ss(θ ′), (C17)

0 = R̃yy(θ ′) − A(θ )R̃sy(θ ′) − R̃ys(θ ′)A(θ )†

+A(θ )R̃ss(θ ′)A(θ )† − Rn,
(C18)

0 = R̃ss(θ ′, q) − Rs(θ, q) (q = 1, . . . , Q), (C19)
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where we have defined the matrix

R̃ss(θ, q) = 1

nq

∑
k∈Dq

E
(

s(k)s(k)† | y(k), θ
)

(C20)

and its weighted average over all domains

R̃ss(θ ) =
Q∑

q=1

nq

n
R̃ss(θ, q). (C21)

The same definitions hold for R̃sy(q, θ ) [resp. R̃yy(q, θ )] as an
averaged conditional expectation of s(k)y(k)† [resp. y(k)y(k)†]
and R̃sy(θ ) [resp. R̃yy(θ )] as its weighted average over spectral
domains.

Equations (C17)–(C19) are readily solved for unconstrained A,
Rn and Rs(q). Recall however that our model involves diagonal co-
variance matrices so that the actual parameter set is (A, Cj(q), σ 2

d )).
This constraint, however, preserves the simplicity of the solution of
the M step since it suffices to use the diagonal parts of the solutions
of (C17)–(C19). Thus, the M step boils down to

A = R̃ys(θ ′)R̃ss(θ ′)−1, (C22)

σ 2
i = [

R̃yy(θ ′) − R̃ys(θ ′)R̃ss(θ ′)−1R̃sy(θ ′)
]

i i
, (C23)

Pi (q) = [R̃ss(θ ′, q)]i i . (C24)

The E-step of the algorithm essentially consists of computing the
conditional covariance matrices R̃××(q). In this step, the linearity
and the Gaussianity of the model, together with the domain approx-
imation, again provides us with significant computational savings.
Indeed, matrices C and W defined at equations (C14) and (C15)
are actually constant over each spectral domain so that the E-step
is implemented by the following computations which directly stem
from (C14)–(C15) and from equations (C10)–(C13):

C(q) = (
A†R−1

n A + Rs(q)−1
)−1

, (C25)

W(q) = (
A†R−1

n A + Rs(q)−1
)−1

A†R−1
n , (C26)

R̃ss(q) = W(q)R̂y(q)W(q)† + C(q), (C27)

R̃sy(q) = W(q)R̂y(q). (C28)

From this, one easily reaches the EM algorithm as described
at algorithm 1. The description of this procedure is completed by
specifying the initialization, the rescaling of the parameters and the
stopping rule, as briefly discussed next.

Some comments on EM implementation. Rescaling is required
because, as noted above, the model is not completely identifiable:
the spectral density matrices RY are unaffected by the exchange of
a scalar factor between each column of A and each component’s
power spectrum. We have found that this inherent indetermination
must be fixed in order for EM to converge. Our strategy is, after each
EM step, to fix the norm of each column of A to unity and to adjust
the corresponding power spectra accordingly. This is an arbitrary
choice which happens to work well in practice.

The algorithm is initialized with the following parameters. We
take Rn to be diag(R̂y) where R̂y = ∑

q
nq

n R̂y(q). This is a gross
overestimation since it amounts to assuming no signal and only
noise. The initial value of A is obtained by using the N c dominant
eigenvectors of R̂y as the N c columns of A. Again, this is nothing
like any real estimate of A, but rather a vague guess in ‘the right
direction’. Finally, the spectra Pi(q) are taken as the diagonal entries
of A†R̂y(q)A which would be a correct estimate in the noise free
case if A itself was. This ad hoc initialization procedure seems
satisfactory. Note that it is a common rule of thumb to initialize EM
with overestimated noise power.

Regarding the stopping rule, recall (from Section 3.2) that the EM
algorithm is only used ‘halfway’ to the maximum of the likelihood
and maximization is completed by a quasi-Newton technique. For
this reason, there is little point in devising a sophisticated stopping
strategy: in practice, the algorithm is run for a pre-specified number
of steps (based on a few preliminary experiments with the data).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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