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Maximum likelihood and Bayesian procedures for item selection and scoring of multidi- 
mensional adaptive tests are presented. A demonstration using simulated response data illus- 
trates that multidimensional adaptive testing (MAT) can provide equal or higher reliabilities 
with about one-third fewer items than are required by one-dimensional adaptive testing (OAT). 
Furthermore, holding test-length constant across the MAT and OAT approaches, substantial 
improvements in reliability can be obtained from multidimerlsional assessment. A number of 
issues relating to the operational use of multidimensional adaptive testing are discussed. 

Key words: computerized adaptive testing, mathematical models, multidimensional adaptive 
testing, multidimensional item response theory, reliability, tests. 

Introduction 

Over the past decade, Computerized Adaptive Testing (CAT) has achieved great 

popularity. Adaptive tests possess several benefits over conventional paper-and-pencil 

tests. These include increased measurement precision, reduced testing time, standard- 
ized instructions, and flexible scheduling of examinees. Most adaptive tests use item 
selection and scoring algorithms based on Item Response Theory (IRT). To date, these 

techniques used in operational adaptive testing rely on the assumption of unidimen- 
sionality. 

A number of investigators have examined the issue of dimensionality in IRT. For 
the most part, the focus of this work has been on studying the consequences of using 
unidimensional IRT models in the presence of multidimensional data (Ackerman, 1989, 

1991; Ansley & Forsyth, 1985; Drasgow & Parsons, 1983; Folk & Green, 1989; Harri- 

son, 1986; Reckase, 1979; Reckase, Ackerman, & Carlson, 1988; Way, Ansley, & 
Forsyth, 1988; Yen, 1984). Two notable exceptions involve the development and eval- 

uation of multidimensional adaptive testing (MAT) estimation procedures by Bloxom 

and Vale (1987), and Tam (1992). The procedure developed by Bloxom and Vale is a 
multivariate extension of Owen's sequential Bayesian adaptive updating algorithm 
(Owen, 1975). The work by Tam evaluated this procedure and five others. Tam com- 

pared the estimators using several criteria including precision, test information, and 
computation time. These studies (Bloxom & Vale, 1987; Tam, 1992) focused on the 
performance of ability estimation methods--item selection procedures used in these 
evaluations assumed ideal item pools. 

Several multidimensional item selection strategies have been compared using sim- 

ulated adaptive testing data (Miller, Reckase, Spray, Luecht, & Davey, in press). 

Examinees and their item responses were simulated according to a two-dimensional 
latent space, assuming a bivariate normal distribution with uncorrelated abilities. Pro- 
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cedures were evaluated according to the Euclidean distance between the true and 

estimated ability parameters. A method which selects an item that contributes to max- 

imizing the determinant of the Fisher information matrix was judged most precise 

according to the Euclidean distance criterion. 

Missing from previous work (Bloxom & Vale, 1987; Miller, et al., in press; Tam, 

1992) however is a theory based procedure for multidimensional adaptive item selection 

which incorporates prior knowledge of the joint distribution of ability. It will be dem- 

onstrated that when the dimensions are correlated, consideration of the prior distribu- 

tion of ability in item selection can lead to increased measurement efficiency. 

Perhaps more importantly, previous work has failed to demonstrate the utility of 

MAT. This lack of evidence supports the belief by some that MAT offers few benefits, 

if any, over unidimensional adaptive testing. Wainer et al. (1990) indicate that "al- 

though it is certainly theoretically possible to construct a CAT to measure two or more 

proficiencies simultaneously, it "is not yet clear exactly why anyone would want to do 

that" (p. 242). There are however at least two unique and compelling advantages of 

MAT. 
First, MAT can provide an efficient approach for ensuring adequate coverage of 

content in adaptive testing. In a test of  general science, for example, there may be 

concern about providing an adequate number of life, physical, and chemistry science 

items to each examinee, since these tend to be separate (but highly intercorrelated) 

dimensions of science proficiency. A common approach in unidimensional adaptive 

testing forces the item selection algorithm to administer a fixed number of  items from 

each content area. However, this approach can be problematic if content is confounded 

with item difficulty (e.g., if chemistry items are more difficult than life or physical 

science items). Forcing the administration of chemistry items to an examinee of low 

ability would provide little information about his level of science proficiency, and would 

lead to reduced measurement efficiency. 
Rather than forcing the item-selection algorithm to administer a fixed number of 

items from each content area, an alternative approach using MAT would treat these 

three content areas as separate, but highly intercorrelated dimensions. By incorporat- 

ing information from several sources on all dimensions simultaneously (including ex- 

aminee proficiency, item information, and the prior joint-distribution of ability), MAT 

can in principle provide an efficient choice of items which helps ensure an appropriate 

coverage of content for each examinee. Although content balancing constraints in 

unidimensional adaptive testing can result in the administration of items of inappropri- 

ate difficulty, MAT item selection procedures can for the most part avoid this prob- 

lem-providing items of appropriate content coverage and difficulty level. 

Increased measurement efficiency provides a second and perhaps more compelling 

justification for MAT. Increased efficiency can occur when the dimensions measured by 

the battery have non-zero correlations. In a Bayesian estimation framework, the re- 

sponses to items of one test can provide information about the level of proficiency 

measured by the other tests in the battery, provided the p dimensions are correlated. 

Rather than obtaining p separate ability estimates as in unidimensional adaptive testing, 

MAT provides a single p-dimensional vector of estimated abilities for each examinee. 

After each administered item, the p-dimensional vector is updated. For example, in a 

battery that includes "reading-comprehension" and "vocabulary" subtests, a correct 

response to a vocabulary item would result in increased provisional estimates for both 

the vocabulary and reading-comprehension dimensions, since the two are positively 

correlated. The response to the vocabulary item provides information not only about 

the vocabulary dimension, but also provides information about the level of  reading- 

comprehension, as well as the level of proficiency on other dimensions that have 
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non-zero correlations with vocabulary. One primary benefit of MAT is that this added 

information provided by items of correlated dimensions can lead to greater measure- 

ment efficiency--manifested by either greater precision or reduced test-lengths. How- 

ever, it remains to be seen how large this efficiency gain would be under realistic 

conditions, and whether this gain is large enough to justify the added computational 

complexities of MAT. 

This paper extends previous work (Bloxom & Vale, I987; Miller, et al., in press; 

Tam, 1992) in several respects. First a theory-based procedure for item selection (which 

incorporates prior knowledge of the joint distribution of ability) is presented and eval- 

uated within a multidimensional adaptive framework. In addition, maximum likelihood 

(ML) and Bayesian-modal ability estimators are presented for the general p-dimen- 

sional problem. This paper also presents a comparison of measurement efficiency be- 

tween MAT and one-dimensional adaptive testing (OAT) using simulated data based on 

the Computerized Adaptive Testing version of the Armed Services Vocational Aptitude 

Battery (CAT-ASVAB). In addition, a discussion of issues relating to the operational 

use of MAT is provided. 

The Item Response Model 

We begin by denoting a set o f p  traits by the vector 0 = { 0 1 ,  0 2 ,  . . . , Op}. We 

assume that each of these p traits affects performance on one or more test items. Next 

we define the item response function (Hattie, 1981) for item i by 

Pi(O) =- P ( U i  = llO) = c~ + 
1 ~ Ci 

1 + exp [ -Da[(O - b/ l)]  ' 

where 

(1) 

U i is the binary random variable, containing the response to item i ( U  i = 1, if 

item i is answered correctly; and Ui = 0, otherwise), 

ci is the probability that a person with infinitely low ability will answer item i 

correctly, 

b i is the difficulty parameter of item i, 

1 is a p  x 1 vector of l 's ,  

D is the constant 1.7, and 

a~ is a 1 x p vector of discrimination parameters for item i. 

Note that the exponent in the denominator of (I) can be expressed in scalar notation by 

P 

- D a ' ( O  - b i l )  = - D  ~_, a k i ( O  k - -  bi) .  
k = l  

(2) 

We observe that a convenient property of this model occurs when p = 1. From the fight 

hand side of (2), we see that (1) reduces to 

P ( U i  = l l0) = ci + 
1 - -  Ci  

1 + exp [ - D a i ( O  - bt)] ' 

which is the three parameter logistic (3PL) test model given by Birnbaum (1968). 

Another desirable property of the model given by (1) is that the item parameters are 

unaffected by the distribution of ability. Thus the probability of a correct response 

depends only on ai, bi ,  c i and 00, and not on the joint distribution of 0. 
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Note that the item response function given by (I) possesses a single difficulty 

parameter, rather than separate difficulty parameters for each dimension. Although 

separate difficulty parameters are conceptually plausible, they are indeterminate and 

thus cannot be estimated from observed response data. 

Throughout this development, we make the assumption of local independence. 

This assumption states that the probability of a set of observed responses u l,  u2, • • • ,  

u n for an examinee of ability 0 is equal to the product of the probabilities associated 

with the response to each item 

n 

P ( U 1  = u l ,  U 2  = u 2 ,  . .  . , U n  = unlO)= 1--I P i ( O ) U ' (  I - P i ( O ) )  l - u ' .  

i=l  

This assumption implies that the probability of a correct response to a specific item is 

a function of only the vector of abilities 0 and the item parameters. Additional infor- 

mation about the probability of a correct response will not be provided from knowledge 

of performance on any other test item. 

Multidimensional adaptive testing, like its unidimensional counterpart requires two 

complementary procedures. One is an estimation procedure used to obtain a provi- 

sional ability estimate after each administered item. The objective of ability estimation 

is to specify the ability parameters 0 from a set of observed binary responses u = {u l, 

u 2 ,  • • • , Un}  from a single examinee. A second required procedure in MAT is an item 

selection algorithm which provides an efficient choice of items based on the examinees 

provisional ability estimate. 

Two commonly used methods of ability estimation in unidimensional IRT, maxi- 

mum likelihood and Bayesian estimation, have direct multidimensional counterparts. 

Associated with each of the two estimation procedures are methods for quantifying the 

level of uncertainty in the ability estimates, and adaptive item selection methods. 

Maximum Likelihood Estimation and Item Selection 

Maximum likelihood estimation begins with a specification of the likelihood func- 

tion. The likelihood of a vector of observed responses u given ability 0 is expressed by 

L(ulO) ~ L(uv~, uv2, . . .I O) = l-I Pi(O)U'Qi(O) 1-u', 

i~v 

(3) 

where P i ( O )  is defined by (1), Qi(O)  = 1 - P i ( O ) ,  and v is a vector containing the 

identifiers of the adaptively administered items. The vector of values { bl,  02 . . . . .  Op } 

that maximize the likelihood function given by (3) is taken as the estimator of 0. Tam 

(1992) has provided expressions based on the normal ogive model for obtaining ML 

estimators of 0 in the two-dimensional latent space. Here we extend this work to the 

p-dimensional logistic item response model given by (1). 

The ML estimates are the solution to the set o f p  simultaneous equations given by 

0 
--Int(ulO ) = O, (4) 
o0 

where 
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0 
In L(nl0) = 

00 

In L(ul0)[ 
001 

0 
In L(ul0) 

002 

0 
In L(ul0) 

o0p 

(5) 

Explicit expressions for these partial derivatives can be obtained by first noting that the 

natural logarithm of the likelihood function (3) is 

In L(ul0) = ~ [ui In e i (o)  + (1 - ui) In Qi(0)]. 
iEv 

The derivative of the log likelihood with respect to Ok (for k = 1, 2, . . .  , p) takes on 

a form similar to the univariate 3PL model (Lord, 1980, p. 58): 

0 P~(0) (1 - ui) 
--00k In L(ul0) = EiEv Ui ei(o----- ~ - Q,(0)J (6) 

[ e~(°) l 
= E i E v  [Ui -- P i ( 0 ) ]  Pi(O)Qi(O) ' 

where P[(O) = oei(o)/aO k. The explicit form for P[(0) is given by 

OPi(O) DakiQi(O)[Pi(O) - ci] 
: (7) 

OOk 1 - -  Ci 

Substituting (7) into (6) and simplifying, we have 

0 a k i [ e i ( o )  -- c i ] [ u i  -- e i ( 0 ) ]  
In L(nl0) = D 

OOk iEv (1 -- c i ) e i ( o )  
(8) 

f o r k =  1, 2, . . . , p .  

Since the likelihood equations (4) have no closed form solutions, an iterative nu- 

merical procedure must be used. One popular method is the Newton-Raphson proce- 

dure. Let 0 (j) denote the j-th approximation to the value of 0 that maximizes L(ul0). 

Then provided 0 (j) is in the neighborhood of the maximum, an approximation with an 

even higher likelihood is given by 

0(J +1) = 0(J) _ ~(J), 

where 8 (j) is the p x 1 vector 

(9) 

0 
8(J) = [ H ( 0 ( J ) ) ] - I  × 0"-0 In L ( u l 0 ( J ) ) .  (10)  

The matrix H(0 (j)) is the p x p matrix of second derivatives evaluated a t  0 (j) . The 

elements of H(0) can be expressed by the p × p symmetric matrix 
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f 
0 

H(0) = 

2 In LIOO 2 02 In L/O01OO 2 

02 In LIO0~ 

q 
• • • 02 In L/OOlOOp| 

::: 
! 

0 2 In LtO0~ ] 

The diagonal elements of H(0) take the form 

0 2 

002 I n L = D  2 ~'~ 
iEv 

a~iQi(O)[Pi(O ) - c i ] [ c i u  i - p2(o)]  

e (o)(1 - 2 
(11) 

and the off-diagonal elements are of the form 

0 2 akialiQi(O)[Pi(O) -- C i ] [C iUi  -- e2(0) ]  
In L = D 2 ~ p/2(0)(1 _ ci)2 

OOkOOt i~, 
(12) 

In (10), O/O0 In L(u[0 (j)) is the p × 1 vector partial derivatives (evaluated at 0 (j)) 

defined by (5). Successive approximations are repeatedly obtained using (9) and (10) 

until the elements of 6 (j) become sufficiently small. 
Note that if the initial values of 0 (j) are not close to the true maximum, then the 

algorithm given by (9) and (10) may not converge. Convergence can be ensured (at the 

possible expense of increasing the number of iterations) by using Fisher's method of 
scoring. This method replaces H(0 (j)) in (10) with E[H(0(J))] = - I (0 ,  ()) where I(0, 6) 

is the Fisher information matrix, defined by (13). As with the Newton-Raphson method, 

successive approximations are repeatedly obtained until the elements of B (j) become 

sufficiently small. 

Dispersion Matrix 

A useful property of ML estimates, denoted by t~, is that they tend under regularity 

conditions to a multivariate normal distribution, with dispersion matrix whose inverse 

is given by the p x p information matrix, denoted by I(0, 0). The {r-th, s-th} element 

of this matrix is given by 

E[02 In L] 
Its(0, 0)= - [~]. (13) 

Talcing the expectation of(I I), we see that the diagonal elements ofl(0, 0) take the form 

aXriQi(O)[Pi(O) - ci][ciPi(O) - P~(0)] 

I r r ( O ,  O) = - 0  2 E i C v  e2(0) (  1 __ Ci )2  

OPi(O)] 

-' Cr J 
-" ~is,: Pi(O)Qi(O)" 

Similarly, from the expectation of (12) we see that the off-diagonal elements are 

ariasiQi(O)[Pi(O) - ci][ciPi(O) - e/2(0)] 
Irs(O, 0) = - D  2 ~ i~v  p/2(0)( 1 _ ci)2 
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OPi(O)/O0~ x OPi(O)/aOs 
= E i e v  Pi(O)Qi(O) 

Note that since each element of the matrix I(0, 0) is formed from item level summands, 

we can define an item information matrix, denoted by I(0, ui), with diagonal elements 

[ oP,(O)] 

Irr(O, ui)=- (14) 
Pi(o)Oi(O) ' 

and off-diagonal elements 

OPi(O) OPi(O) 
X 

OOr OOs 
I,,(0, ui)= (15) 

Pi(O)Qi(O) 

Adaptive Item Selection 

In unidimensional adaptive testing, items can be selected on the basis of item 

information. The provisional ability estimate bj obtained after answering the j-th item 

is used to evaluate the item information function (Lord, 1980, p. 72): 

Ic)Pk'(Oj)] 2 

i(o, , ,k ,)-  t 1 
Pk' (Oj)Qk' (O j)" 

(for k' q~ v). In general, the greatest reduction in the sampling variance of b is achieved 

by administering the item with the largest information value. 

A multivariate item-selection analog is motivated by the expression for the volume 

of the multivariate normal ellipsoid (Anderson, 1984, p. 263). Since the provisional 

ability estimate {)j (obtained from the first j responses) is distributed asymptotically 

according to a multivariate normal distribution N0)0, Xj), then 

Pr[6) 2~flOj --< Xp2(a)] = I - a .  

That is, the probability is 1 - a that 0j will fall inside the ellipsoid 

x ' X ; ' x  = x ~ ( o , ) .  

The volume of this ellipsoid is 

where 

x IXjl 1/2, 

2~p/2[x~(~)]p/2 
q = , (16) 

pr(½p) 

and F(') denotes the gamma function. 

When considering items for administration, the multivariate analog to the univari- 

ate procedure selects the item that achieves the largest decrement in the volume of the 
confidence ellipsoid. We denote the volume decrement achieved by the administration 
of item k' by 
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v, ,  =  lXjl 1/2 _ ¢jlXj+k, 11/2, (17) 

where l j  is the dispersion matrix of the p x 1 vector of provisional estimates 0j 

obtained after the j-th response, and l j+k '  is the dispersion matrix of provisional 

estimates obtained after administration of the firstj items and the administration of item 

k ' .  Since 0j are ML estimates, ~j  can be approximated by the inverse of the informa- 

tion matrix, given by 

1 ~j = {I(O, ~ j ) } - t  = I(0, Ui) • (18) 

The covariance matrix of provisional estimates which includes the administration of 

item k' is given by 

~j+k' = [I(0, 0j) + I(0, Uk,)] -1. (19) 

Substituting (18) and (19) into (17), we obtain 

V k, = ~1[I(0, 0 j ) ] - l l  1/2 - -  ~[[I(0, 0j) + I(0, Uk,)]-ll 1/2 

The expression for the volume decrement can be further simplified by noting that the 

determinant of the inverse of I is the reciprocal of the determinant (Scare,  1982, p. 

130): 

Vk, = ~lI(O, 6j)l -u2 - ~lI(0, Oj) + I(0, uk,)1-1/2.  

Note that the first term is a constant across items, since ~ depends only on p and or, and 

II(0, 0j)l is based on previously administered items. Since in the second term ~ remains 
constant over candidate items, V k, can be maximized by selecting the item that max- 

imizes the quantity 

II(0, 0j) + I(0, u,,)l. (20) 

The ML approach to estimation and item selection has two undesirable qualities. 

First, towards the beginning of the adaptive test, the ability estimates contained in the 

p-element vector l}y will be either undefined or poorly defined. Consequently, some 
heuristic procedure is needed to define particular elements in  0j in the absence of 

sufficient data. Second, the ML item selection based on the volume of the confidence 
ellipsoid does not consider prior knowledge about the joint distribution of 0. However,  

these shortcommings can be remedied by applying Bayesian methodology to the prob- 

lems of item selection and ability estimation. 

Bayesian Estimation and Item Selection 

According to Bayes theorem, the posterior density function of 0 is expressed by 

f (o)  
f(olu) = L(u[O) f ( u ) '  (21) 

where L(u[0) is the likelihood function given by (3), f(0) is the prior distribution of 0, 
and f(u) is the marginal probability of u. Here, we shall consider the case in which the 

prior distribution of 0 is multivariate normal with mean vector Ix and covariance matrix 
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[1 ] 
f(O) = (2¢r)-P/2l~ 1-1/2 exp -- ~ (0 -- IX)'~-l(O -- I x) . 

Once the prior density has been specified, then the posterior density contains all nec- 

essary information about 0. However, in the form given by (21), this information is not 

readily usable. Point estimates of ability are usually defined as the mean or the mode of  

the posterior distribution. Since the mode of the posterior distribution (modal estimate) 

requires far fewer computations than the posterior mean for problems of higher dimen- 

sionality, we focus on its application to the problem of multidimensional adaptive 

estimation. 

The modal estimates are those values of the parameters that correspond to the 

maximum of the posterior density function. These can be obtained by maximizing the 

natural logarithm of the posterior distribution. The modal estimates, denoted by 0", are 

the values of 0 that satisfy the set of p simultaneous equations given by 

0 
- -  In f ( 0 l u  ) = 0 ,  
00 

where 

° 

0 
In f(01u) 

0 
0 In f(Olu) 
oo In f(Olu) = ( 2 2 )  

0 
In f(0lu)  

Explicit expressions for these partial derivatives can be obtained by noting that the 

natural logarithm of the posterior density function (21) is 

in f(0lu) = In L(ul0) + In f(0) + constant 

= I n  L ( u l 0 )  - ½(0 - i , ) ' ~ - ~ ( 0  - ~) + constant .  

Then we have 

0 In f(Olu) a 1 0 
- In  L ( u l 0 )  

OOk 00~ 2 OOk 
-- [(0 - ~)'~-I(0 - V.)]. (23) 

Expressions for the first term, 0 In L(ulO)/OOk, are provided by (8). The explicit ex- 

pression for the second term takes the form 

ook [(o - ~)'a,-~(o - ~)] = 2 × ~ (o - ~)' ~-~(o - ~), 

where 

(24) 

0 
- -  ( 0  - ~)'  
0Ok 
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denotes a 1 x p vector with the k-th element set equal to 1 and all other elements equal 

to zero. Substituting (8) and (24) into (23), we have 

0 In f(Olu ) aki[ei(o) -- Ci][Ui -- Pi(O)] 

OOk iEv ( 1  -- c i ) e i ( o  ) 

( fork = 1, 2, . . .  , p ) .  

[0~--~ (0 p,)' ]¢I~-1(0 p,) 

(25) 

As with the likelihood equations, the equations given by (25) have no explicit 

solutions, so an iterative numerical procedure such as the Newton-Raphson procedure 

must be used. Accordingly, if we let 0 U) denote thej- th  approximation to the value of 

0 that maximizes In f(0lu), then a better approximation is generally given by 

o ( J  +1) = o(J )  -- ~(J) ,  (26) 

where ~(J) is t h e p  x 1 vector 

0 

i~(j ) = [ j ( o ( j ) ) ]  -1  X 0"--0 In f(O(Y)lu). (27) 

The matrix J(0 (y)) is the p x p matrix of second derivatives evaluated at 0 U). The 

elements of J(0) are expressed by the p x p symmetric matrix 

J(O) = [~2 lnf(Olu)/O02 02 ln f(Olu)/OOlaO 2 
0 2 lnf(Olu)/O02 

D • # 

O I I 

0 2 lnf(Olu)/OOlOOp] 
02 In f(Ol?)/OO2OOp]" 

0 2 lnf(Olu)/002 J 

Taking the derivative of (23), we see that the diagonal elements of J(0) take the form 

0 2 0 2 1 0 2 

0 0 2  In f ( O l u )  = 2 In L ( u l O )  - [ (O - -- p, ) ] .  ( 2 8 )  

The first term on the right hand side of (28) is given by (11). The explicit expression for 

the second term is given by 

t90~ [ ( 0  --  ~ ) ' t I ~ - l ( 0  --  IJI,)] = 2 x (0 - IL) ~ -  (0 - I~) • 

Substituting (11) and (29) into (28) we have 

(29) 

0 2 a 2 i Q i  ( O ) [ P i  ( 0 )  - c i ] [ c i u  i - P ? ( O ) ]  

002 In f(olu) = D 2 ~ p2(0)( 1 _ Ci)2  -- ~t) kk, (30) 
iEv 

where qb kk is the k-th diagonal element of O-1 .  The off-diagonal elements of J(0) take 

the form 

0 2 

OOkO0l  

0 2 1 0 2 
- - -  In L(ule) 

- -  In f(O[u) OOkOO1 200kO01 

From (12) and by evaluating the second term we have 

- -  [ ( o  - - g ) ] .  
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02 akialiQi(O)[Pi(O) --  C i ] [CiUi  --  P/2(0)] 
- -  In f(0lu) = D 2 ~ p2(0)( 1 _ _  Ci)2 - -  th kl, (31) 
OOkOOl iEv 

w h e r e  ~kl is the {k-th, l-th} dement of ~ - 1  The vector of elements 0 In f (0  (j) lu)/00 in 

(27) is the p × 1 vector of partial derivatives (evaluated at 0 (j)) defined by (25). Modal 

estimates can be obtained through successive approximations using (26) and (27). Ad- 

ditional approximations are obtained until the elements of 0 (j) change very little from 

one iteration to the next. 

If the initial values of 0 (j) are not in the neighborhood of the maximum, then the 

iterative procedure given by (26) and (27) may not converge. This problem can be 

avoided by using Fisher's method of scoring, where E[J(0 (j))] -- - W  is substituted for 

J(0 (j)) in (27). The matrix W has special application to item selection and its derivation 

is presented below. 

Adaptive I tem Selection 

Here we consider a Bayesian approach to multidimensional item selection, where 

the next item is chosen to provide the largest decrement in the volume of the credibility 

ellipsoid. For a normal posterior density function, the volume decrement achieved by 

the administration of item k' is given by 

c k ,  =  lwj-ll 1/2 1/2 
--  91 vVj+k' , 

where Wj -1 is the covariance matrix of the posterior distribution computed from the 

firstj items, W ~ ,  is the covariance matrix incorporating j + 1 items (the firstj items 

plus item k'), and ~" is defined by (16). For the purpose of item selection, we approx- 

imate the posterior density functionf(01u) by a multivariate normal density with cova- 

riance matrix W - l ,  where 

W = -EI-J(0)], 

and where -E[J(0)] is evaluated at the mode of the posterior distribution 0". Taking the 

expectation of (30), we see that the diagonal elements of W take the form 

a2iai(o)[Pi(O) - ci][c,Pi(O) - p2(0)] 

Wr r = _ 0  2 ~ e/2(0)( 1 __ Ci)  2 _}_ ~ r r  ( 3 2 )  
iEv 

while the off-diagonal elements from (31) are 

a r i a s i Q i ( O ) [ e i ( o )  - c i ] [ c i P i ( O )  - e ? ( o ) ]  

Wrs = - D 2  ~ P~(0)(1 --  Ci)  2 q. ¢~rs. ( 3 3 )  
iEv 

The matrix Wj is computed from (32) and (33) where the summands are taken over the 

j adaptively administered items v = {vl, v2, . . .  , vj}, whereas the matrix Wj+k, is 

computed from the summands v = {v 1, v2 . . . .  , vj,  Vk,}. 
The expression for the volume decrement can be simplified by noting that the 

determinant of the inverse of W is the reciprocal of the determinant (Searle, 1982, p. 
130): 

ck, =  1wj1-1/2 _  lwj+k, 1-1': (34) 

Note that the first term is a constant across candidate items, since q depends only on p 

and a, and Iwjl is based on previously administered items. The second term is a 
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TABLE 1 

CAT-ASVAB Characteristics 

Subtest 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Content Area Test-Length Pool-Size 

General Science (GS) 15 110 

Arithmetic Reasoning (AR) 15 209 

Word Knowledge (WK) 15 228 

Paragraph Comprehension (PC) 10 88 

Auto Information (AI) 10 104 

Shop Information (SI) 10 103 

Math Knowledge (MK) 15 103 

Mechanical Comprehension (MC) 15 103 

Electronics Information (EI) 15 97 

function of both s and the determinate of the matrix Wj+k,. Since q remains constant 

over candidate items, Ck, can be maximized by selecting the item k' which maximizes 

IWj+k, I. We can note the relation between [Wj+k, I and the criterion used in the ML 

procedure (20) from the equation 

Iwj+k,I = II(0, 6j) + I(o, uk,) + (35) 

The equivalence of the right and left hand sides of (35) can be easily verified from the 

definitions of I(0, t}) and I(0, u k,) given by (13), (14) and (15), and from the definition 

of W given by (32) and (33). Note that the criterion for the ML item selection (20) and 

the criterion for the Bayesian item selection based on IWj+k' I differ only by the term 

which consists of the inverse of the covariance matrix of the prior distribution of 

abilities ~ - 1 .  

Simulation Study 

Reliability values for the multidimensional Bayesian ability estimates were com- 

pared to their unidimensional counterparts using simulated test sessions. In addition, 

the relative contribution of the multivariate item selection and scoring algorithms to the 

increased efficiency of MAT was also examined. The simulated tests were based on the 

nine adaptive power tests of the CAT-ASVAB (Segall, Moreno, & Hetter, 1987). For 

these simulations, item parameters of Form 1 of the CAT-ASVAB were used. The nine 

tests, along with test-lengths and pool sizes are listed in Table 1. Form I consists of 1145 

items which span nine content areas. 

Item parameter estimates used in the operational CAT-ASVAB were treated as 

population values in the simulation study. Although the parameter estimates were 

obtained using the unidimensional 3PL model, they were adapted for use in the mul- 

tidimensional model given by (I). A nine dimensional model was used, one dimension 

for each of the nine content areas contained in the CAT-ASVAB. Each of the nine 

elements contained in the vector of discrimination parameters a~ corresponded to a 

different content area. Each item was allowed to possess one nonzero discrimination 

parameter. Using this convention, the position of the nonzero element corresponds to 

the content area of the item. For example, the vectors of discrimination parameters for 

GS items were of the form a~ = {ali, O, O, O, O, O, O, O, 0} ,  where ali > 0 .  Similarly, 

the vectors of discrimination parameters for AR items (the second test in the battery) 

took the form a~ = {0, a2i, O, O, O, O, O, O, 0}, and so forth for the remaining seven 
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TABLE 2 

Covariance Matrix of Latent Abilities 
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Dimension 

Dimension GS AR WK PC AI SI MK MC EI 

GS 1.000 

AR .645 1,000 

WK .908 .611 1.000 

PC .808 .847 .880 1.000 

AI .486 .332 .326 .349 

SI .676 .424 .566 .514 

MK .564 .846 .516 .711 

MC .739 .758 .644 .800 

EI .808 .639 .724 .743 

1.000 

.824 1.000 

.150 .218 1.000 

.623 .725 .625 1.000 

.642 .724 .536 .822 1.000 

content areas. From a factor analytic viewpoint, this formulation provides a simple 

structure, where each item loads on a single dimension. The values of the difficulty, 

guessing, and non-zero discrimination parameters for each item corresponded to their 

estimated values obtained in the unidimensional 3PL calibration (Prestwood, Vale, 

Massey, & Welsh, 1985). 

The population covariance matrix (I) was specified from the disattenuated corre- 

lation matrix of the nine adaptive power tests contained in the CAT-ASVAB. These 

disattenuated correlations were estimated from data obtained in an alternate forms 

reliability study of the CAT-ASVAB (Moreno & Segall, 1992). The covariance matrix 

of latent abilities (I) is given in Table 2. 

Multidimensional Simulations 

A total of 15 conditions were simulated using the MAT Bayesian item selection and 

scoring algorithm. These conditions varied in the total number of items administered to 

each simulated examinee. These ranged from a low of 9 items (for Condition MAT-9) 

to a high of 120 items (for Condition MAT-120). Test-lengths for each condition are 

provided in Table 3. Each of the 15 conditions provided restrictions on the total number 

of items administered from each of the nine content areas. For example, as indicated in 

Table 3, only one item was administered from each of the nine content areas in the first 

condition (MAT-9). In the second condition (MAT-17), one item was administered from 

PC and SI, three items from MK, and two items were administered from each of the 

remaining six content areas. Note that the proportion of items administered from each 

content area in the MAT simulation differs from the corresponding proportions admin- 

istered in the simulation of the unidimensional battery (as indicated by a comparison of 

Conditions MAT-120 and OAT in Table 3). In the multidimensional simulations, the 

proportion of items for AI and MK are larger, while the proportion of items from GS, 

PC, MC, and EI are slightly smaller. These proportions of items provide a pattern of 

reliabilities that is similar across the MAT and OAT approaches, which facilitates 

comparisons at different battery lengths. The dependent measures in each condition 

were reliability values for the nine content areas, estimated from the squared correla- 

tions between the true and estimated ability parameters. 

Several steps were involved in the simulation process. A sample of 1000 vectors of 

true abilities were generated from a multivariate normal distribution with mean vector 
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TABLE 3 

Simulation Study Test-Lengths 

Number of Administered Items 

Condition GS AR WK PC AI SI MK MC EI Total 

MAT-9 1 1 1 1 1 1 1 1 1 9 

MAT-17 2 2 2 1 2 1 3 2 2 17 

MAT-24 2 3 3 2 2 2 4 3 3 24 

MAT-32 3 4 4 2 3 3 5 4 4 32 

MAT-40 4 5 5 3 4 3 6 5 5 40 

MAT-50 5 6 6 4 5 4 8 6 6 50 

MAT-58 6 7 7 4 6 5 9 7 7 58 

MAT-62 6 8 8 5 6 5 10 7 7 62 

MAT-70 7 9 9 5 7 6 11 8 8 70 

MAT-80 8 10 10 6 8 7 13 9 9 80 

MAT-88 9 11 11 7 " 9 7 14 10 10 88 

MAT-96 10 12 12 7 10 8 15 11 11 96 

MAT-103 10 13 13 8 10 9 16 12 12 103 

MAT-111 11 14 14 8 11 9 18 13 13 111 

MAT-120 12 15 15 9 12 10 19 14 14 120 

OAT 15 15 15 10 10 10 15 15 15 120 

0 and covariance matrix 4 .  These vectors were generated using the IMSL subroutines 

CHFAC and RNMVN. The provisional ability estimates for each simulated examinee 

were initialized to zero. Using the criterion given by (35), the item providing the largest 

decrement in the volume of the credibility ellipsoid was selected for administration. 

Simulated responses to selected items were obtained by evaluating the item response 

function (1) at the true ability level and comparing the probability value to a pseudo 

random uniform number. After each response, a vector of provisional Bayesian modal 

ability estimates were obtained using the Newton-Raphson procedure given by (26). 

Only items that had not been previously administered to the simulated examinee were 

considered for administration. An additional requirement was that the item must belong 

to a content area that had not reached its maximum number of administered items. The 

process of item-selection and provisional ability estimation was repeated for each sim- 

ulated examinee until the target test-length had been reached for the condition. For 

each condition (MAT-9 through MAT-120) the squared correlation between the true 

abilities and final modal estimates were calculated (see Table 4). As indicated, these 

squared correlations were calculated separately for each of the nine content areas. 

Unidimensionat Simulations 

For comparison purposes, an additional simulation was performed for the OAT 

approach. This simulation used the same item pools (Table 1) and item parameters used 

in the MAT simulations. A sample of 2000 vectors of true abilities were generated from 

a multivariate normal distribution with mean vector 0 and covariance matrix 4 .  These 

vectors were generated using the IMSL subroutines CHFAC and RNMVN. Simula- 

tions were conducted separately for each of the nine content areas. Each simulated 

examinee's initial ability estimate was set to zero. Items were selected on the basis of 

maximum item information (evaluated at the provisional ability estimate). Responses 
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TABLE 4 

Simulated Reliability Estimates 
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Content Area 

Condition GS AR WK PC AI SI MK MC EI 

MAT-9 .719 . 6 7 5  . 6 7 6  . 7 1 2  .588  . 6 4 5  . 6 2 4  . 6 8 5  .679 

MAT-17 .800 . 7 8 5  . 7 6 2  . 7 9 8  .683  . 7 1 7  . 7 9 1  . 7 8 0  .776 

MAT-24 .837 . 8 4 4  . 8 1 8  . 8 6 5  .702  . 770  . 8 4 0  . 8 2 6  .826 

MAT-32 .863 . 8 7 0  . 8 6 4  . 882  .785  . 8 4 6  . 8 7 1  . 8 5 4  .841 

MAT-40 .884 . 8 9 7  . 8 8 5  . 9 0 0  .838  . 835  . 8 9 6  . 8 7 5  .867 

MAT-50 .904 . 9 0 9  . 9 0 5  . 911  .852  . 8 6 7  . 9 0 8  . 8 8 2  .874 

MAT-58 .911 . 9 1 3  . 9 1 9  . 9 1 5  .888  . 8 8 5  . 9 2 3  . 8 9 4  .885 

MAT-62 .915 . 9 2 7  . 9 3 1  . 9 2 9  . 877  . 871  . 9 2 9  . 8 9 6  .889 

MAT-70 .915 . 9 2 3  . 9 2 9  . 9 2 8  . 894  . 880  . 9 3 9  . 9 0 7  .890 

MAT-80 .914 . 9 3 3  . 9 3 9  . 9 4 0  .899  . 8 9 9  . 9 3 8  . 9 1 1  .897 

MAT-88 .929 . 935  . 9 4 5  . 9 3 4  .915  . 893  . 9 4 9  . 9 1 6  .896 

MAT-96 .931 . 9 3 7  . 9 4 9  . 9 4 3  .926  . 910  .951 .919 .894 

MAT-103 .933 . 9 4 4  . 9 5 2  . 945  .927  . 9 2 0  . 9 4 9  . 9 2 2  .899 

MAT-111 .936 . 9 4 6  . 9 5 7  . 943  .928  . 916  . 9 5 6  . 9 2 6  .916 

MAT-120 .934 . 9 4 9  . 9 5 4  . 948  .933  . 9 2 2  . 9 5 6  . 9 2 7  .909 

OAT-UME .904  . 9 2 8  . 9 3 8  . 8 5 6  .902  . 876  . 9 4 3  . 8 7 6  .879 

OAT-MME .938  . 9 3 8  . 9 5 3  . 9 3 9  .914  . 916  . 9 4 4  . 9 1 9  .914 

were generated by evaluating the 3PL item response function at the examinees true 

ability and comparing the value to a pseudo random uniform number. The unidimen- 

sional provisional ability estimate was updated by setting it equal to the mode of the 

posterior distribution. This was done using a Newton-Raphson procedure which as- 

sumed a normal (0, 1) prior. The item-selection and ability-updating process was re- 

peated for each simulated examinee until the target test-length had been reached. 

Two methods of computing final scores were applied to the data of each simulated 

examinee: (a) the unidimensional modal estimator (UME), and (b) the multidimensional 

modal estimator (MME). (These estimates were obtained at the end of the adaptive test 

and did not influence item selection.) The unidimensional modal estimator was calcu- 

lated by setting the ability estimate equal to the mode of the univariate posterior 

distribution, for each of the nine content areas. The squared correlations between the 

2000 true and estimated abilities were calculated for each of the nine content areas (see 

Condition "OAT-UME" in Table 4). The multidimensional modal estimator (contain- 

ing a vector of nine estimated abilities) was obtained using the Newton-Raphson pro- 

cedure given by (26). The squared correlations between the 2000 true and estimated 

abilities were calculated for each content area (see Condition "OAT-MME" in the last 

row in Table 4). 

Results 

Scatterplots between true and estimated ability parameters for conditions MAT-9, 

MAT-40, MAT-80, MAT-120, and OAT-UME were generated for each of the nine 

content areas to verify the assumption of linearity. No departures from linearity were 

evident, indicating that the squared correlations are suitable measures of reliability. 

The reliability values are presented in Table 4. As indicated, the reliability values 
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TABLE 5 

Correlation Matrix: ( l t t -  @) x 1000 Residual 

Dimension 

Dimension GS AR WK PC AI SI MK MC EI 

GS - -  030 037 054 049 052 011 050 060 

AR -077 - -  031 031 053 032 027 040 052 

WK -077 -040 - -  022 055 050 021 055 062 

PC -090 -110 -085 - -  063 057 034 044 066 

AI -038 -011 -009 -002 - -  056 016 062 066 

SI -057 -047 -040 -049 -083 - -  000 053 076 

MK -049 -062 -018 -077 -015 -024 - -  015 023 

MC -068 -089 -055 -113 -072 -074 -062 - -  063 

EI -066 -051 -053 -075 -047 -053 -043 -097 - -  

Note. Below the diagonal: OAT-UME. Above the diagonal: MAT-120. 

for each content-area tend to increase as a function of battery test length. The principal 

finding is made by a comparison of the reliability values of the OAT-UME approach 

with those of the MAT approach--specifically with MAT-80. The OAT-UME approach 

(which administered 120 items) has reliability values less than or about equal to those 

of MAT-80, in which a total of 80 items were administered. Consequently, MAT 

achieved greater or comparable precision with one-third fewer items. 

The second significant finding of the simulations is observed from a comparison of 

the reliability values of MAT-120 with those of the OAT-UME simulation. Here we 

observe that with equivalent numbers items across the MAT and OAT-UME approach 

(120 items), MAT obtains substantially higher reliability values for most of the nine 

content areas. 

This higher reliability obtained by MAT can be attributed to increased efficiencies 

in: (a) item selection, and (b) ability estimation. Some insight into the relative contri- 

butions of the MAT scoring and item selection algorithms can be obtained by examining 

the reliabilities of the OAT-MME condition. The reliability of one-dimensional adaptive 

testing can be increased substantially by applying the multidimensional Bayesian scor- 

ing algorithm to the complete response pattern (as seen by a comparison of the OAT- 

UME and OAT-MME conditions in Table 4). From a comparison of the last three 

conditions in Table 4, it is evident that a substantial portion of the gain in reliability 

achieved by MAT (over OAT-UME) can be attributed to the use of the multidimen- 

sional Bayesian modal estimator--with the remaining gain in precision attributed to the 

multidimensional item selection algorithm. 

The 9 x 9 matrix of correlations among the observed ability estimates 1~ for both 

the MAT-120 and OAT-UME conditions was calculated and compared to the popula- 

tion matrix ~ .  Table 5 provides the residual correlation matrix 1~ - ~ .  As indicated, the 

two procedures provide estimated correlations with bias in opposite directions. The 

OAT-UME procedure provides estimated correlations that are consistently lower than 

the population values. This attenuation is most likely due to measurement error. The 

MAT procedure provides estimated correlations that are consistently higher than the 

population values. This inflation is most likely due to the bias in the estimates intro- 

duced by the prior covariance matrix. Because of these biases, caution should be 

exercised when making inferences about population correlations from values calculated 

from observed ability estimates. If these correlations are of interest, then a preferable 
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approach would be to estimate these parameters directly from examinee item responses 

using a procedure given by Mislevy (1984). 

In interpreting the results of the simulation analyses, it is useful to note that there 

is one special case of MAT that is functionally equivalent to OAT methodology. This 

case occurs when the items possess simple structure fload on only one dimension) and 

the prior distribution of abilities • is a diagonal matrix. In this case the solution to the 

p equations given by (22) can be solved for each Ok (for k = I, 2, . . . ,  p) separately. 

These equations reduce to a form that is identical to those used in unidimensional 

Bayesian modal estimation. In addition it can be shown that the item selection criterion 

given by (35) will provide an identical rank ordering of items as that provided by the 

evaluation of the univariate ML item information function. Thus when each item loads 

on a single dimension and the dimensions are uncorrelated, the MAT item selection and 

scoring procedures are equivalent to the univariate Bayesian modal estimator used in 

conjunction with maximum information item selection. One logical inference derived 

from this relation is that the gains in efficiency obtained by MAT depend on the cor- 

relations among the dimensions contained in O. In general, the larger the magnitude of 

these correlations, the higher the gains in efficiency over OAT. 

Issues in Multidimensional Adaptive Testing 

The results of the simulation study provide compelling evidence for one of the 

principal benefits of MAT that of greater measurement efficiency. This gain in effi- 

ciency can be manifested by either a reduction in test-length or by greater measurement 

precision. The results indicate that MAT can achieve equivalent or higher levels of 

precision with about one-third fewer items than OAT. The results also indicate that 

when the total number of items is held constant across the MAT and OAT approaches, 

MAT can provide a substantial increase in reliability. There are however several re- 

finements and unique applications of MAT that can provide additional benefits. These 

include the use of MAT to control the balance of item content among examinees, and 

further increases in efficiency influenced by the choice of alternative item selection and 

test-termination strategies. However, before MAT can be used on a routine basis, 

several issues require further consideration and investigation. These areas include item 

parameter estimation, exposure control, developing a common metric and orientation, 

and the affect of item-order on item functioning. 

Content Balancing 

In addition to providing greater measurement efficiency, MAT can also provide a 

mechanism for addressing issues of content balancing in computerized adaptive testing. 

One concern in CAT is that in general examinees do not receive equal numbers of items 

from important content areas---resulting in ability estimates based on different mixtures 

of contents. For example, a test of general science may consist of items from three 

content areas: (a) biology, (b) physical sciences, and (c) chemistry. One approach to 

content balancing in CAT is to allocate the presented items among the content areas in 

a way that ensures that each examinee receives a specified number of items from each 

content area. For example we may specify that each examinee receive 5 biological, 5 

physical, and 5 chemistry items. This approach to content balancing has an undesirable 

feature---the items administered from one or more content areas may be uninformative 

about the general level of proficiency for the examinee. That is, some items may be of 

inappropriate difficulty level. For example if the chemistry items were difficult relative 

to the other content areas, then administering these items to examinees of low or 
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moderate ability may provide little additional information about their level of scientific 

knowledge. 

An alternative approach to content balancing using MAT treats each of the three 

content areas as separate dimensions. Rather than fixing the number of items to be 

administered from each content area, items are selected based on the multivariate 

Bayesian item selection criterion given by (35). Using this criterion, the level of pro- 

ficiency on one dimension is used to help select informative items from the other two 

dimensions. At each step in the item selection process, the item which reduces the 

volume of the credibility ellipsoid by the largest amount is selected. For example, low 

or moderate ability examinees would likely receive primarily biological and physical 

science items, since the difficult chemistry items provide only small decrements in the 

volume of the credibility ellipsoid. On the other hand, high ability examinees would not 

only receive biological and physical science items, but also receive a number of chem- 

istry items, since these items reduce the level of uncertainty about the chemistry 

dimension for examinees at high ability levels. Using MAT, the balance of  content is 

based on the estimated level of proficiency---examinees at different levels receive an 

appropriately tailored mixture of item content. 

Note that since MAT provides separate ability estimates for each dimension, these 

values must be combined to form a single composite measure. In unidimensional CAT 

involving multiple content areas, there is an implicit weighting of each dimension re- 

suiting from content restrictions which are placed on item selection. In MAT these 

weights must be specified explicitly. Once specified, these values can be used to form 

a weighted linear composite of the separate ability estimates provided for each dimen- 

sion. 

Item Selection and Test Termination Strategies 

Within the general approach to multidimensional adaptive testing presented here, 

there are several constraints that can be placed on item selection and test termination. 

One possible stopping rule consists of a variable-length strategy where a desired level 

of precision is specified. Testing proceeds until the volume of the credibility ellipsoid is 

reduced to the desired value. Although this approach has the desirable property of 

achieving similar levels of precision across different levels of ability in the multidimen- 

sional space, it is likely to suffer from some of the same drawbacks suffered by its 

unidimensional counterpart. There may be some points in the multidimensional space 

in which very few items contain adequate levels of information. Examinees which fall 

in these regions may receive very long tests, with each new item providing very little 

additional information. This problem can be avoided by placing a maximum on the total 

number of administered items. According to this strategy, testing would continue until 

one of the following occurred: (a) th e target level of precision was achieved or (b) the 

maximum number of items was reached. Placing a maximum limit on the number of 

administered items can help increase measurement efficiency by restricting the test 

lengths of examinee's who might otherwise receive a substantial number of uninfor- 

mative items. For a given item pool, the specification of maximum test-lengths can be 

investigated through a series of MAT simulations. Using simulated administrations, the 

distribution of test-lengths can be examined for a target precision-level. Based in this 

distribution, the maximum limit can be chosen to eliminate the occurrence of extraor- 

dinarily long tests, while leaving the test-lengths for the majority of  examinees unaf- 

fected. 
Fixed-length testing provides an alternative stopping-rule, where the total number 

of administered items is fixed for each examinee. For example, we might fix the overall 

test-length to some specific value, and allow the numbers of items administered from 
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each content area to vary across examinees. Although this approach selects items in the 

most efficient manner, it may not emphasize important content areas. For example, we 

may desire a particular level of precision for math ability. If math items are less infor- 

mative than items of other content areas, the MAT algorithm is likely to administer 

primarily items of non-math content. Consequently, to achieve the desired level of 

precision for particular content areas, restrictions on the choice of item content may be 

required. 

One way to achieve a desired level of precision for particular dimensions is to place 

constraints on the total number of items administered from each content area. In 

general, a larger number of items would be administered from dimensions that required 

higher precision. Higher levels of precision might be required of a dimension used for 

selection or classification decisions. Conversely, lower precision levels might be sat- 

isfactory for dimensions which are always combined with others to form composites, 

upon which decisions are made. If for example math ability alone formed the basis of 

an important selection decision, we could fix the number of items administered from the 

math content area at 15, while limiting the number of administered items to 10 for each 

of the remaining content areas. Note that we would not constrain the order of item 

presentation. Using this approach the most informative items are selected from among 

those not already administered, subject to the requirement that the target number of 

items from the chosen content area has not been reached. Constraints placed in this 

manner could be used to adjust the relative level of precision for different dimensions 

of the battery. 

Another approach to increased efficiency incorporates expected response latency 

into the choice of items. By doing so we can select the item which provides the largest 

decrement in the volume of the credibility ellipsoid "per unit of time". This can be 

accomplished, for example, by using the index p~, = Ck,/tk,, where C~, is defined by 

(34), and tk, is the expected response time for item k'. By averaging across examinees 

to obtain an "expected response time" for individual items, we treat time as a dimen- 

sion along which items (rather than examinees) are ordered. Since the expected re- 

sponse time can vary greatly across items of different content areas (and among items 

within a content area), the rank-ordering of candidate items may vary greatly across the 

C k, and Pk' indices. For example, the average response time is generally much shorter 

for vocabulary items than for paragraph comprehension items, even though the dimen- 

sions measured by the two content areas are highly correlated. Using the ratio criterion 

Pk', more vocabulary items are likely to be administered (especially early in the adap- 

tive test) than would be administered using the Ck, criterion which does not consider 

expected response time. Although the expected response times tk, may not be readily 

available at the item level (and may actually depend on the level of examinee ability), 

significant savings in test time might be obtained by using the average response time (by 

content area) as an approximation for tk,. 

Note that for variable length tests where each examinee is allowed to test until the 

time-limit has expired, the use of Pk' would be expected to provide longer test-lengths 

and higher levels of precision than C~,. Conversely, for fixed test-lengths (without 

time-limits) the use of Pk' would be expected to provide shorter average completion 

time and lower reliabilities. Although for fixed length tests the use of Pk' may lead to 

ability estimates with lower precision, in some situations the savings in test-time may 
provide adequate compensation. 

Item Parameter Estimation 

A number of approaches for estimating multidimensional item response functions 

have been proposed (Carlson, 1987; Fraser, 1988; McDonald, 1985; McKinley & Reck- 
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ase, 1983; Muth6n, 1984). One approach to multidimensional item parameter estimation 

based directly on item response theory is that of  Full Information Factor Analysis 

(Bock, Gibbons, & Muraki, 1988). This approach specifies multidimensional estimates 

in which the underlying dimensions are rotated to simple structure. This rotation can be 

performed using either a varimax criterion (Kaiser, 1958) or the promax method (Hen- 

drickson & White, 1964). One undesirable feature of this approach (as with all explor- 

atory factor analytic methods) is that the dimensions of the final rotated solution may 

not correspond to readily interpretable factors. In addition, the computations increase 

exponentially with the number of factors, limiting the final solution to a maximum of 

five dimensions. 
One alternative consists of  using the unidimensional 3PL item parameter estimates 

to form a "multi-unidimensional" test using the strategy employed in the simulation 

analysis. Using this approach, each item would load on only one dimension. The 

loading on this dimension would correspond to the estimated discrimination parameter 

obtained in the unidimensional calibration. The correlation matrix ~ could be estimated 

from the disattenuated correlations among the tests, or directly from observed re- 

sponses (Mislevy, I984). Note that approximating a multidimensional battery with a 

multi-unidimensional test model might provide an adequate approximation for tests in 

which the loadings of items on secondary dimensions are small relative to the primary 

loadings. This approach has been used in appropriateness measurement to form indices 

which provide very high rates of detection of aberrant vectors using empirical response 

data (Drasgow, Levine, & McLaughlin, 1991). 

Although the multi-unidimensional approach is appealing in terms of its simple 

structure, it may suffer from at least two undesirable features. First the elements of 

may be poorly specified, depending on the method of estimation. Second, the assump- 

tion of simple structure may lead to some poorly specified loadings. However, a con- 

firmatory approach to multidimensional item-parameter estimation may offer one com- 

promise between the good fit to the data provided by the Full-Information approach and 

the simple structure obtained by the multi-unidimensional approach. A confirmatory 

approach, similar to the confirmatory factor analytic methods used in linear models 

(Bollen, 1989) would begin with a pre-specified set of zero and nonzero loadings, where 

the loading of each item on each dimension is based on item-content considerations. 

The placement of the free loadings (those allowed to differ from zero) would be made 

a priori, to approximate simple structure. In this way, the factor intercorrelations 

would have readily interpretable meanings and would be identified by the model with- 

out the need for a somewhat arbitrary rotation. In addition, the data could be used to 
alter the pattern of free and fixed discrimination parameters using a likelihood ratio test, 

where the fit of the model is obtained under constrained and unconstrained situations. 

Using this approach, items with larg e nonzero secondary loadings could be identified, 

and values for these parameters could be estimated, thus improving the fit of the model 

to the data. McKinley (1989) has developed a confirmatory item parameter estimation 

procedure in which the factors are assumed to be uncorrelated (~  is constrained to an 

identity matrix). This procedure, like the full-information approach suggested by Bock 

et al. (1988), is limited to a moderate number of dimensions. More work is necessary to 

identify a confirmatory approach to parameter estimation that is suitable for large item 

pools that span many correlated dimensions. 

Exposure Control 
One requirement of most adaptive tests is an item selection algorithm that limits 

the usage of the tests most highly informative items to avoid over exposure. The MAT 

and OAT simulations provided here did .not incorporate exposure control algorithms. 
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However for operational use, an exposure control algorithm for MAT would need to be 

developed and implemented. 

One method used to successfully control the exposure of unidimensional adaptive 

test items (Sympson & Hetter, 1985) can be easily adapted for use in MAT. The 

algorithm is based on a probabilistic approach, where each item considered for admin- 

istration (using maximum information item-selection) must pass a screen. A random 

uniform number is generated and compared to an exposure control parameter associ- 

ated with each item. If the random number is less than the exposure control parameter, 

then the item is administered---otherwise the item is set aside and the next most infor- 

mative item is selected for consideration. This process is repeated until an item pass- 

es--then the item is administered and the response is used to update the ability after 

which the item selection process is repeated. 

For MAT, the exposure control parameters can be calculated through a series of 

simulations, similar to the approach used for unidimensional adaptive tests. In com- 

puting these parameters, it is important to model examinee performance using the same 

item pool, item-selection, and scoring procedures to be used operationally. 

Developing a Common Metric and Orientation 

In an ideal item pool development effort, all items would be calibrated in a single 

stage. Every item would be administered to each examinee in the sample, and all items 

would be calibrated jointly. This approach would in principle, provide item parameters 

among different items which possessed the same orientation in the latent space, and 

which were all on a common metric. 

However for multidimensional assessment, this ideal is unlikely to be achieved. 

When developing large pools that span several dimensions, it is often be necessary to 

divide the pools into small subsets of items which can be conveniently administered to 

examinees. Using this design however raises several issues concerning the metric and 

orientation of the latent dimensions. How can item parameter estimates obtained from 

different examinee groups be transformed to a common metric and orientation? 

One appealing approach for specifying orientation is to use a confirmatory item 

parameter estimation procedure in which the pattern of free and fixed loadings for each 

item on each dimensions is specified a priori. Free loadings (nonzero parameters) would 

provide an indication that the item was an observed indicator of the latent dimension--a 

fixed zero loading would indicate otherwise. The multi-unidimensional case provides 

one example of this approach, where each item is allowed to load on only a single 
dimension. 

Provided that the orientation is adequately specified, then the remaining issue for 

item parameter calibration involves ensuring that item parameters are placed on a 

common metric. Several unidimensional procedures have direct multidimensional 

counterparts. These procedures include: (a) random groups, (b) nonequivalent 

groups--joint calibration, and (c) nonequivalent groups---separate calibrations. 

Random groups. If examinee groups used in the calibration are randomly equiv- 

alent, then parameters can be placed on a common metric by using the same procedure 

to specify the metric for each calibration group. For example, the metric can be spec- 

ified by fixing the mean and variance for each dimension of the prior ability distribution. 

This is an extension of a method used in unidimensional marginal maximum likelihood 

estimation (Mislevy, 1989). By using the same specification of the prior means and 

variances for each calibration group, the parameters of each calibration will be placed 
on a common metric. 
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Nonequivalent groupsmjoint calibration. It may happen that the groups used in 

the calibration are not randomly equivalent. Then it is necessary for the item sets 

administered to each group to be linked through a series of common items. These 

common items provide a basis from which to perform a joint calibration of all items 

using all examinees. Care must be taken to ensure that the numbers of items loading on 

each dimension are sufficient to ensure that there is an adequate link for each dimension 

across all groups contributing to the calibration. Simulation studies may be required to 

determine the number of common items across groups necessary for linking multi- 

group data collection designs. 

Nonequivalent groups--separate calibrations. Another option for calibrating 

items collected from a non-equivalent groups design involves separate marginal max- 

imum likelihood calibrations for each group. Here the groups must be linked through a 

set of commonly administered items. The simplest design involves administering a 

common set of items to all groups. These common items would span all dimensions 

measured by the test. Then for one group, say Group 1, the unit and origin of each 

dimension can be identified though the specification of the mean and variance of the 

prior distribution of ability (i.e., mean vector equal to zero, and variances of each 

dimension equal to one). For other calibration groups, the parameters for common 

items are fixed at the values estimated from Group 1, and the mean vector and vari- 

ances of the latent distribution are treated as parameters to be estimated along with the 

parameters of items unique to each calibration group. 

Item Context Effects 

One additional concern about the usage of MAT arises from the possibility of item 

context effects. For example, verbal items may function differently when they are 

preceded by math items than when they are preceded by other verbal items. In MAT, 

items from one content area can be interspersed among items of other content areas. 

The model presented here makes the assumption of local independence which implies 

that the order of presentation has no affect on the discrimination and difficulty of the 

item. However, items may become more or less difficult (and discriminating) depending 

on the content of items that precede them. Even though the mixture of item content 

might not affect item functioning, it may raise the level of anxiety and discomfort among 

examinees. Unlike typical tests, MAT may administer items of radically different con- 

tent in an unpredictable sequence. On the other hand, for moderate to long tests, the 

mixture of item content in MAT may help break the monotony often associated with 

long test sessions, and help motivate the examinee. Empirical studies will be required 

to examine the magnitude of item context effect both in terms of its affect on examinee 

reactions, and its affect on MAT item selection and scoring algorithms. 

Conclusions 

The multidimensional Bayesian item selection and scoring procedures presented 

here demonstrate substantial gains in efficiency over unidimensional adaptive testing. 

These gains in efficiency are manifested by reduced test lengths and greater precision. 

In addition to increasing measurement efficiency, MAT can also be used as a tool for 

ensuring adequate and efficient coverage of content for examinees at different levels of 

proficiency. However, further study is needed before MAT can be routinely applied. 

This required work involves the development and refinement of item parameter esti- 

mation and exposure control methods, and the investigation of item context effects. If 

results are favorable, MAT may offer an attractive alternative to unidimensional CAT. 
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