
— —< <
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ABSTRACT: A new adaptive umbrella sampling technique for molecular
dynamics simulations is described. The high efficiency of the technique renders
multidimensional adaptive umbrella sampling possible and thereby enables
uniform sampling of the conformational space spanned by several degrees of
freedom. The efficiency is achieved by using the weighted histogram analysis
method to combine the results from different simulations, by a suitable
extrapolation scheme to define the umbrella potential for regions that have not
been sampled, and by a criterion to identify simulations during which the
system was not in equilibrium. The technique is applied to two test systems, the
alanine dipeptide and the threonine dipeptide, to sample the configurational
space spanned by one or two dihedral angles. The umbrella potentials applied at
the end of each adaptive umbrella sampling run are equal to the negative of the
corresponding potentials of mean force. The trajectories obtained in the
simulations can be used to calculate dynamical variables that are of interest. An
example is the distribution of the distance between the HN and the H b proton
that can be important for the interpretation of NMR experiments. Factors
influencing the accuracy of the calculated quantities are discussed. Q 1997
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MULTIDIMENSIONAL ADAPTIVE UMBRELLA SAMPLING

Introduction

Ž .olecular dynamics MD simulations areM well established as an approach that com-
plements experimental studies of macro-
molecules.1, 2 Although it is possible to obtain de-
tailed information concerning picosecond to
nanosecond dynamics with current computer tech-
nology, many system properties cannot be derived
from standard simulations. In general, barriers to
transitions that are too high to be frequently
crossed during the simulation lead to nonergodic
results. For example, whereas it is possible to char-
acterize the motions of the major conformation of
an amino acid side chain for a protein of known
structure, it is difficult to assess the relative popu-
lations of other conformations and to determine

Ž .the effective potential potential of mean force for
the transition from one conformer to another. A
number of approaches have been developed to
study such problems. They include free energy
simulation methods3 and umbrella sampling tech-
niques.4, 5 In umbrella sampling the Hamiltonian
of the system is changed by adding an ‘‘umbrella’’
potential that is chosen to direct the system into
the regions of interest that are not adequately
sampled in a standard simulation. After the simu-
lations the calculated distributions are corrected
for the effect of the applied umbrella potential. To
define the umbrella potential one usually identi-
fies one or a small number of degrees of freedom
that contribute to the ‘‘reaction’’ coordinate most
relevant for the evaluation of the desired property.
Approximate uniform sampling along the reaction
coordinate is achieved by applying umbrella po-
tentials to shift the system along the coordinate in
a series of simulations. An early example of the
application of this method to proteins is the tyro-
sine ring rotation in the bovine trypsin inhibitor.6

However, it is often difficult to define a priori a set
of umbrella potentials for achieving the goal of
uniform sampling, particularly for problems in
which the reaction coordinate has to be described
with more than 1 degree of freedom.7, 8 An alterna-
tive is the adaptive umbrella sampling method7, 9, 10

where suitable umbrella potentials are chosen and
updated in a series of simulations. In addition to
its convenience and generality, the adaptive um-
brella sampling technique has other advantages.
Instead of restraining the system successively to
different regions of space, the free energy barriers

along the important degrees of freedom are re-
duced and the likelihood that different local min-
ima of the system are sufficiently sampled is in-
creased.

In the existing adaptive umbrella sampling
papers7, 9, 10 the general approach is similar, in
principle, to the one used in this work, but there is
a difference in procedure and the systems that can
be treated most effectively. Paine and Scheraga9

were interested in the prediction of native confor-
mations of small peptides. For this purpose they
derived rough estimates of the potentials of mean
force for all backbone dihedral angles of the pep-
tide and used these potentials to concentrate a
further search in the low energy parts of conforma-
tional space. Hooft et al.10 and Mezei7 were con-
cerned with uniform sampling along a single de-
gree of freedom. The method presented here is
applicable to uniform sampling of the conforma-
tional space spanned by several degrees of free-
dom. This is made possible by properly combining
the results from successive simulations by using
the weighted histogram analysis method
Ž .11 ] 13WHAM augmented by a new criterion to
monitor the convergence. Further, the umbrella
potential for regions that were not yet sampled is
defined by a simple extrapolation scheme that is
applicable to multidimensional umbrella poten-
tials. Finally, a new criterion is derived to identify
simulations during which the system was not in
equilibrium and which should be discarded to
obtain improved convergence.

The sampling of selected degrees of freedom
with an iterative approach is not unique to adap-
tive umbrella sampling. In entropic sampling,14 ] 16

multicanonical simulations,17 ] 20 and related meth-
ods21 the acceptance criterion in Monte Carlo sim-
ulations is changed to obtain uniform sampling of
the potential energy. The same result can be
achieved in MD simulations with the present tech-
nique by choosing the potential energy as the
degree of freedom along which to apply the adap-
tive umbrella potential. This approach has been
implemented and tested on peptides including an
explicit solvent environment22 ; to treat such sys-
tems by a Monte Carlo method is problematic.

We describe the new adaptive umbrella sam-
pling technique and present the details of the cal-
culations. The technique is assessed first by calcu-
lating potentials of mean force for the x1 dihedral
angle of the threonine dipeptide, N-acetyl-L-
threoninamide. As a 2-dimensional example and to
investigate the influence of other degrees of free-
dom on the potential of mean force for x1, we
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determine the free energy of the threonine dipep-
tide as a function of the dihedrals angles x1 and
f. We choose f as second degree of freedom,
because the probability of side chain conforma-
tions have been shown to depend on the protein
backbone conformation23, 24; we find a correlation
between the x1 and f dihedral angles. It is further
demonstrated how the resulting trajectories can be
used to derive other quantities, for example, the
expected distribution of the values of the 3JH aH b

coupling constant and the distribution of the dis-
tance between the HN and H a protons. To enable
comparison with existing simulation results,25, 26

we also apply the method to determine the vac-
uum free energy as a function of the dihedral
angles f and c for the alanine dipeptide, N-
acetyl-L-alanine methylamide. A concluding dis-
cussion, that describes possible extensions and ap-
plications of the method is given.

Methodology

ADAPTIVE UMBRELLA SAMPLING
TECHNIQUE

General Description

A series of simulations i are carried out with a
Ž .potential H s H8 q U l , l , . . . where the um-i i 1 2

Ž .brella potential U l , l , . . . is added to thei 1 2
Hamiltonian H8 of the system and l , l , . . . de-1 2
note the degrees of freedom along which uniform

Ž .sampling is desired. If p8 l , l , . . . is the proba-1 2
bility density for a conformation with l , l , . . .1 2
from a simulation with H8, the corresponding

Ž .probability density p l , l , . . . for a simulationi 1 2
with H is proportional toi

Ž . Ž .p l , l , . . . A p8 l , l , . . .i 1 2 1 2

1
Ž .= exp y U l , l , . . . .i 1 2RT

Ž .1

Uniform sampling along the degrees of freedom
l , l , . . . can be obtained, therefore, by setting1 2

Ž . Ž . Ž .U l , l , . . . s RT ln p8 l , l , . . . , 21 2 2 2

which is just the negative of the potential of mean
Ž .force. Because the probability density p8 l , l , . . .1 2

is usually not known at the beginning, an iterative
procedure is used to obtain successively improved

Ž .approximations, U l , l , . . . , to the ideal um-i 1 2

Ž .brella potential U l , l , . . . . The following ap-1 2
proach is employed:

Ž .1. Initially set i to 1 and U l , l , . . . s 0.1 1 2

2. Perform N simulation steps using H andi i
collect statistics for the region in which the
system is found. For this purpose the degrees
of freedom l , l , . . . are partitioned into bins1 2

Ž xwith indices k, l, . . . and l g j , j , l1 k kq1 2
Ž xg j , j , . . . , where the j denote thel lq1

boundaries betw een the bins and
Ž .p8 l , l , . . . is replaced by p8 . The num-1 2 k l? ? ?

ber of times n in which the system isi, k l? ? ?

found in a particular bin is determined from
the simulation.

Ž3. The statistics from all the simulations i.e.,
.the numbers n with j s 1, 2, . . . , i arej, k l

combined to obtain an estimate p8 for the˜ k l? ? ?

probability p8 of finding the unperturbedk l? ? ?

Ž .system in a particular bin see below .
4. A discrete version of the umbrella potential

for the next simulation, U , is calculatedk l? ? ?

Ž .from p8 using eq. 2 and a suitable ex-˜ k l? ? ?

trapolation scheme for the bins k, l, . . . for
Ž .which no statistics were obtained see below .

5. The continuous umbrella potential for the
next simulation,

Ž .U l , l , . . . , liq1 1 2 L

Ž1. Ž .s . . . a f lÝÝ Ý a a ? ? ?a a 11 2 L 1
a a a1 2 L

Ž2. Ž . Ž L. Ž . Ž .= f l ??? f l , 3a 2 a L2 L

is represented as a linear combination of
products of continuous basis functions,
� Žd .Ž . Žd .Ž . 4 Ž .f l , f l , . . . d s 1, 2, . . . , L that is,1 d 2 d
trigonometric or polynomial functions of l ,d
which have to be defined by the user for each
of the L degrees of freedom. The coefficients
a are determined by a linear leasta a ? ? ?a1 2 L

squares fit to U using singular value de-k l? ? ?

composition.27

6. Increment i and continue starting with step
2, or stop if the conformational space has
been sampled adequately.

To simplify notation we omit indices on U ,k l? ? ?
˜p8 or f for the number of the current simula-˜ k l? ? ? j

Ž . Ž .tion and for the number of times eqs. 7 , 8 , or
Ž .10 were applied; that is, the values of these

Ž .variables change after each application of eqs. 7 ,
Ž . Ž . Ž .8 , 9 , or 10 .
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Combination of Statistics from Different
Simulations

The estimate p8 for the probability p8 of˜ k l? ? ? k l? ? ?

finding the unperturbed system in a particular bin
k, l, . . . is derived from the number of times

Ž .n j s 1, 2, . . . , i in which the system wasj, k l? ? ?

found in a particular bin during the i simulations
Ž .carried out so far. According to eq. 1 the proba-

bility p of finding the system during simula-j, k l? ? ?

tion j in a particular bin, kl . . . , can, for sufficiently
small bins, be approximated by

p s f c p8j , k l? ? ? j j , k l? ? ? k l? ? ?

where

1 1 1
� 4 � 4c s exp y U j q j , j q j ,j , k l? ? ? j k kq1 1 lq1žRT 2 2

Ž .. . . 4/
and

1
Ž .f s 5j Ý c p8k l? ? ? j , k l? ? ? k l? ? ?

is a normalization factor to ensure Ý p s 1;k l? ? ? j, k l? ? ?

summations are over all bins. In general, the maxi-
mum likelihood method28, 29 can be used to derive
the required estimates, such as p8 . For this˜ k l? ? ?

purpose one has to first define the conditional
Ž� 4 � 4.probability p n N p8 of observing a par-j, k l? ? ? k l

� 4ticular set of counts n when the probabilitiesj, k l? ? ?

� 4p8 are given, that is, the distribution of thek l? ? ?

n that one would expect in independent simu-j, k l? ? ?

lations with the Hamiltonian H . We assume thatj
the n follow a multinomial29 distribution, thatj, k l? ? ?

is, that

Ž .Ý gn !k l? ? ? j , k l? ? ? g n j , k l? ? ?� 4 � 4p n N p8 s p .Ž . Łj , k l? ? ? k l j , k lŽ .Ł gn ! kl ???k l? ? ? j , k l? ? ?

Ž .6

Ž .In eq. 6 the factor g F 1 accounts for the correla-
tion of the position of the system in subsequent
time steps of a simulation, and kl . . . runs over all
bins. Estimates p are then determined thatk̃ l? ? ?

Ž� 4.maximize the likelihood function L p8 sk l
Ž Ž� 4 � 4..Ý ln p n N p8 subjected to the normal-j j, k l? ? ? k l

Ž .ization condition Ý p s 1 j s 1, 2, . . . , i .k l? ? ? j, k l? ? ?

Using the Lagrange multipliers a for the normal-j
ization conditions, this results in the following

˜system of equations for the estimates p8 and f :˜ k l? ? ? j

˜; j: p s f c p s 1˜ ˜Ý Ýj , k l? ? ? j j , k l? ? ? k l? ? ?
kl ??? kl ???

Ý gnj j , k l? ? ? ˜;kl ??? : q a f c s 0Ý j j j , k l? ? ?p8̃k l? ? ? j

Ý gnk l j , k l? ? ?
; j: q a c p8 s 0.˜Ýj j , k l k l? ? ?f̃ klj

This can be simplified by eliminating the Lagrange
multipliers a and using N s Ý n to denotej j k l j, k l? ? ?

the number of time steps in simulation j. One
obtains

Ý nj j , k l? ? ? Ž .p8 s 7˜ k l? ? ? ˜Ý N f cj j j j , k l? ? ?

and

1˜ Ž .f s . 8j Ý c p8̃k l? ? ? j , k l? ? ? k l? ? ?

Ž . Ž .Equations 7 and 8 are commonly referred to as
Ž .WHAM Weighted Histogram Analysis Method

equations. Alternative derivations of the WHAM
equations can be found in the literature.11, 12 In the
same publications a convenient iterative scheme is
proposed to solve this set of coupled, nonlinear

˜equations to obtain the estimates p8 and f :˜ k l? ? ? j
˜ Ž .starting from initial estimates for the f , eqs. 7j

Ž .and 8 are iteratively applied until convergence is
˜achieved. For the initial estimate we use the f , j sj

1, 2, . . . , i y 1, obtained after the previous simula-
˜ ˜ ˜tion i y 1 and set f s f for i ) 1, or f s 1 fori iy1 i

i s 1. To monitor the convergence after the appli-
Ž .cation of eq. 8 , we compare the deviation of the

total number of counts Ý n for each bin fromj j, k l? ? ?
˜Ý N p8 with p s f c p8 . For the˜ ˜ ˜j j j, k l? ? ? j, k l? ? ? j j, k l? ? ? k l? ? ?

Žexact solution this deviation is zero for all bins eq.
.7 . We consider the result as converged if the mean

square deviation for all bins is smaller than a
threshold. We have set this threshold to 1. For the
calculations presented in the Results section, this

Ž . Ž .yields satisfactory results and eqs. 7 and 8 with
the exception of the first few simulations, gener-
ally had to be applied less than 10 times to obtain
converged results.

Extrapolation of Umbrella Potential

From the estimates p8 the umbrella potential˜ k l? ? ?

for the next simulation

Ž .U s RT ln p8 9˜k l? ? ? k l? ? ?
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is obtained for the bins k, l, . . . g S which were
visited at least once in at least one of the simula-
tions. For the remaining bins, k, l, . . . g S, the um-
brella potential has to be extrapolated. The result-
ing potential should direct the system into regions
that were not sampled so far, and it should be
sufficiently smooth such that no local minima are
introduced. The following scheme works for multi-
dimensional umbrella potentials applied to dihe-
dral angle degrees of freedom: first, the umbrella
potential of all bins, k, l, . . . g S that were not
sampled is set to U s min U , i.e., to ak l? ? ? k 9l9g S k 9l9? ? ?

small value that will direct the system into these
regions. Setting the potential of these bins to even
smaller values would increase the sampling but
would also increase the danger of introducing ad-
ditional local minima. In a second step the discon-
tinuities of the potential and its derivative that
were introduced in the first step are smoothed out.

Ž .For this purpose each U k, l, . . . g S is re-k l? ? ?

placed by

1
X ŽU s y0.3U q1.3U qUk l? ? ? ky2, l? ? ? ky1, l? ? ? k , l? ? ?3

. Ž .q1.3U y0.3U , 10kq1, l? ? ? kq2, 1,? ? ?

that is an average of the potential of the bin itself
Ž .U with a weight of 1r3, the potentials of itsk l? ? ?

Ž .neighboring bins U and U that eachkq1, l? ? ? ky1, l? ? ?

have a weight of 0.7r3, and the potentials
2U yU and 2U yU thatky1, l,? ? ? ky2, l,? ? ? kq1, l,? ? ? kq2, l,? ? ?

each have a weight of 0.3r3, which are linear
extrapolations for bin k, l, . . . from the potentials
of the two adjacent bins, U , U andkq1, l,? ? ? kq2, l,? ? ?

U , U , respectively. This smoothing isky1, l,? ? ? ky2, l,? ? ?

done for each dimension and is repeated several
times until a satisfactory potential is obtained; in
practice it turned out that it is sufficient to apply
the smoothing 2 times in each dimension.

Identification of Outliers in Statistics

Due to the finite number of simulations steps
the number of times, n , that the system isj, k l? ? ?

found in a particular bin can deviate by several
Žmagnitudes from its expected value see a later fig.

.and the Results section . In particular, several local
minima can exist along the degrees of freedom
l , l , of which only one or a few are sampled1 2, . . .
during the first few simulations. For the other local
minima, which were not sampled, the extrapolated
potential is likely to be wrong, possibly by several
kilocalories per mole, relative to the actual range

Ž .of barriers 0]20 kcalrmol in most cases . The way

in which the possible deviations are handled has
an important effect on the convergence behavior
Ž .see Results section , although less so on the final
results obtained after very long simulations. It has
been found that the convergence is accelerated
when data that appear to involve large deviations
are discarded. If prior to simulation j the system
was never found in a particular bin; this bin is
most likely in a region of high energy or it is
separated by a barrier from the current position of
the system and is not properly sampled. Assuming
the latter, the results obtained for all bins k, l, . . .
in simulation j with n s 0 for j9 s 1, 2, . . . , jj9k l

Ž .are removed by setting c s 0 in eqs. 7 andj, k l? ? ?

Ž . Ž . Ž .8 and evaluating eqs. 7 and 9 only for bins
visited at least once. Further, the results of an
entire simulation j are discarded if they are signif-
icantly different from those obtained in all other
simulations. For this purpose we define a measure

2Ž .n ymj , k l? ? ? j , k l? ? ?Ž . Ž .d j s 11Ý mj , k l? ? ?kl

with

˜ Ž .m s N f c p8 12˜j , k l? ? ? j j j , k l? ? ? k l? ? ?

for the deviation of the results, n , of simula-j, k l? ? ?

tion j from the estimates of their expectation val-
Ž .ues, m . Equation 11 is based on approximat-j, k l? ? ?

Ž .ing the multinomial distribution of eq. 6 for g s 1
by a product of normal distributions with mean
m and standard deviation m . If for a'j, k l? ? ? j , k l? ? ?

Ž .given simulation j, d j is 10 times larger than the
average over all other simulations, the results from
this simulation are discarded.

Using this criterion assumes that exceptionally
Ž .large deviations d j are due to improper sam-

pling of the degrees of freedom l , l . This could1 2, . . .
cause problems in systems for which exceptionally

Ž .large deviations d j are due to rare transitions
between local minima along other degrees of free-
dom. Application of the exclusion criterion might
prevent convergence of the algorithm to the cor-
rect value in this case. In the examples studied
here, only a few of the early simulations were
discarded and all the simulations were kept that
were acquired after every bin had been sampled at
least once. Thus, the problem apparently did not
arise. If outliers continue to appear during the
entire simulation process, an examination could be
made as to whether essential degrees of freedom
are not being considered explicitly.
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Calculation of Observables to Which No
Umbrella Potential Was Applied

MD simulations of large systems like solvated
proteins are intrinsically slow. Therefore, it is de-

Žsirable that many different observables i.e., de-
grees of freedom or functions of the Cartesian

.coordinates can be derived from a single adaptive
umbrella sampling run. Here we show that it is
sufficient to collect the statistics for the degrees of
freedom along which an umbrella potential is ap-
plied. Distributions of other degrees of freedom
can then be obtained by weighting each of the
structures in a simulation by an appropriate factor.
Clearly, reliable estimates can be derived only for
the observables that have been sampled suffi-
ciently. This is the case not only for degrees of
freedom along which an umbrella potential was
applied, but also for degrees of freedom along
which only a single relevant local minimum exists,
if the simulations started from a well equilibrated
structure and if they were long enough to provide
reasonable sampling. In most cases, convergence
of the adaptive umbrella technique requires rela-

Ž .tively long simulations several nanoseconds so
that the simulations are suitable to derive other
quantities.

We consider the simplest case with 2 degrees of
freedom k and l in which the umbrella potential

w Ž .xdepends only on k. Then one can set eq. 4

1 1
� 4 Ž .c ' c s exp y U j q j . 13j , k j , k l j k kq1ž /RT 2

The projections of p8 and n onto the first or˜ k l j, k l
second dimension are given by

p8 s p8 , p8 s p8 ,˜ ˜ ˜ ˜Ý Ýk k l l k l
l k

Ž .n s n , n s n 14Ý Ýj , k j , k l j , l j , k l
l k

Ž . Ž .Equations 13 and 14 hold independent of
whether or not the 2 degrees of freedom k and l
are perpendicular to each other. Therefore, the
following derivation is valid for all choices of the
degree of freedom l, as long as the umbrella po-
tential can be written as a function of the degree of

Ž . Ž .freedom k alone. From eqs. 13 and 14 the
Ž . Ž .WHAM equations, eqs. 7 and 8 , can be written

as

Ý n 1j j , k ˜ Ž .p8 s and f s , 15˜ k j˜ Ý c p8̃Ý N f c k j , k kj j j j , k

that is, to obtain the probabilities of finding the
system in a particular bin along the degree of
freedom for which the umbrella potential is ap-
plied, it is not necessary to obtain statistics for
degrees of freedom along which there is no um-
brella potential.

For the other degree of freedom, again using
Ž . Ž . Ž .eqs. 7 , 13 , and 14 , we obtain

Ý nj j , k l
p8 s˜ Ýl ˜Ý N f ck j j j j , k

1
Ž .s a n with a s . 16Ý k j , k l k ˜Ý N f cjk j j j j , k

The number of counts n can be written asj, k l

Ž . Ž . Ž .n s d K t , k d L t , l , 17Ž . Ž .Ýj , k l j j
tj

where the summation runs over all time steps t ofj
Ž . Ž .simulation j and K t and L t denote the indexj j

of the bin for the first and second degree of free-
dom, respectively, in which the system is found in

Ž . Ž .time step t . Using eq. 17 , eq. 16 can be rewrit-j
ten as

Ž . Ž .p8 s a d K t , k d L t , l˜ Ž . Ž .Ý Ýl k j j
jk tj

Ž . Ž .s a d K t , k d L t , lŽ . Ž .Ý Ý k j j½ 5
jt kj

Ž . Ž .s a d L t , l 18Ž .Ý K Ž t . jj
jtj

Ž .where a is defined as in eq. 16 and the lastK Ž t .j
summation runs over all steps in all of the simula-

Ž .tions. Equation 18 shows that once statistics have
been obtained for the degrees of freedom along
which an umbrella potential has been applied, the

Ždistributions for other degrees of freedom i.e., any
.observable that is a function of the coordinates

can be extracted by simply weighting each of the
conformations with the factor a . IndependentK Ž t .j
of the chosen degree of freedom l, the effect that
the umbrella potential for k has on the sampling of
l is incorporated into the factor a .K Ž t .j

CALCULATION DETAILS

MD simulations were performed at 303 K using
the program CHARMM30 with the all-hydrogen
parameter set PARAM22.31, 32 The time step for the
integrator was set to 1 fs and the SHAKE al-
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gorithm33 was used to fix the lengths of bonds
involving hydrogen atoms.

Threonine Dipeptide

For the isolated threonine dipeptide, a
distance-dependent dielectric was used and all

˚nonbonded interactions were truncated at 9 A with
a shift function.30 The threonine dipeptide was
prepared by 50 steps of steepest descent minimiza-
tion, 2000 steps of dynamics at 1000 K, and cooling
the system down to 303 K in a further 2000 steps
of dynamics. The high temperature dynamics was
needed to achieve proper equilibration. Without
high temperature dynamics the threonine dipep-
tide had a conformation with f ; 608 after equili-

Žbration. Because this is one of the minima not the
.global minimum that is at f ; y708 , the struc-

ture had a tendency to remain there rather than
sampling different values of f when the adaptive
umbrella sampling was done for x1. This resulted
in slower convergence for the adaptive umbrella
sampling runs. For runs with internal coordinate

Žconstraints and thermodynamic perturbation for
which this structure would be stored as the refer-

.ence, see below , it led to results that were wrong
by several kilocalories per mole. Potentials of mean
force for the dihedral angle x1 were determined
using adaptive umbrella sampling with the dihe-
dral x1 as the degree of freedom l along which1
umbrella potentials were applied to obtain uni-

Žform sampling. One hundred iterations i s
.1, 2, . . . , 100 of the adaptive umbrella sampling

algorithm were performed: each consisted of 1000
steps of equilibration and 9000 steps for the acqui-
sition of the statistics, followed by the update of
the umbrella potential. Statistics for x1 were col-
lected using 180 bins of 28 each. Twelve trigono-

Ž . Ž . Žmetric functions, sin ln and cos ln n s
.1, 2, . . . , 6 plus a constant were used as basis func-

tions to represent the continuous umbrella poten-
w Ž .xtial eq. 3 .
For comparison the same potential of mean

force was determined with internal coordinate
constraints and thermodynamic perturbation the-
ory.26 The system was prepared without applying
any constraints by 500 steps of steepest descent
minimization, 20,000 steps of dynamics at 1000 K,
and cooling the system down to 303 K in a further
20,000 steps of dynamics. The resulting structure
was stored as the reference structure. Starting from
the reference structure, a series of simulations were
performed with the dihedral angle x1 constraint at
y1808, y1788, y1768, . . . , q1788. Each of these

simulations consisted of 500 steps of conjugated
gradient minimization, 5000 steps of MD for equi-
libration, and 10,000 steps of MD to calculate the
free energy difference for the system in which the
dihedral angle was 28 larger. The increment of 28
between subsequent x1 angle constraints was cho-
sen to obtain a data set that could be easily com-
pared to the results of the adaptive umbrella sam-
pling; meaningful results can be obtained with
larger angle increments.26

A 2-dimensional potential of mean force of the
space spanned by the x1 and f dihedral angle in
the threonine dipeptide was determined using the
adaptive umbrella sampling technique with the
dihedrals x1 and f as the two degrees of freedom
l and l along which an umbrella potential was1 2
applied. One hundred iterations were used; each
consisted of 3000 steps of equilibration and 27,000
steps for the acquisition of the statistics followed
by the update of the umbrella potential. To collect
the statistics 36 = 36 bins were used with a size of
108 = 108. For both dimensions, the 12 trigonomet-

Ž . Ž . Ž .ric functions, sin ln and cos ln n s 1, 2, . . . , 6 ,
plus a constant were used as basis functions to

wrepresent the continuous umbrella potential eq.
Ž .x3 .

Alanine Dipeptide

For the alanine dipeptide system, two sets of
calculations were done: one with a distant depen-
dent dielectric and one with a constant dielectric
Ž .e s 1 . All nonbonded interactions were trun-

˚ 30cated at 9 A with a shift function. In each case a
2-dimensional potential of mean force of the space
spanned by the C and f angle was determined
using the adaptive umbrella sampling technique
with the dihedrals C and f as the 2 degrees of
freedom l and l . The system was prepared by1 2
50 steps of steepest descent minimization followed
by 5000 steps of dynamics at 303 K. Otherwise the
same parameters were used as for the acquisition
of the 2-dimensional potential of mean force of the
threonine dipeptide system. The same functions
were also used to represent the adaptive umbrella
potential.

Results

Figure 1 shows different potentials of mean
force for the dihedral angle x1 of the threonine
dipeptide. These potentials are equal to the nega-
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FIGURE 1. Potentials of mean force for the dihedral
( )angle x 1 in the threonine dipeptide. A Comparison of

the potentials obtained with different techniques: gray
line, adaptive umbrella sampling technique; black line,
internal coordinate constraints combined with

( )thermodynamic perturbation. B Reproducibility of
results from adaptive umbrella sampling. The results are
shown from three runs using different random seeds for

( )the assignment of the initial velocities. C Convergence
( )of the adaptive umbrella sampling technique: + Result

(after 10 updates of the umbrella potential 100 ps of
)simulation time ; no symbols are plotted in the region

where no sampling occurred. Gray line, dashed black
line, and continuous black line are the results after 20,

(50, and 100 updates of the umbrella potential 200, 500,
) ( )and 1000 ps of simulation time , respectively. D Effect

of discarding the data of the fourth simulation: gray and
black lines show the results after 14 updates with and
without the data from the fourth simulation, respectively.

tive of the adaptive umbrella potentials from eq.
Ž .9 . In Figure 1A the adaptive umbrella sampling
results are validated by comparing them to the
result obtained with internal coordinate con-
straints and thermodynamic perturbation theory.
The calculated potentials are virtually indistin-

guishable, except that there is a slight difference
Ž .for the trans rotamer x1 s y1808 . The difference

in this region might arise from the necessity of
sampling local minima along degrees of freedom
along which no adaptive umbrella potential is ap-

Ž .plied see below . Figure 1B demonstrates that
independent runs of the adaptive umbrella sam-
pling technique converge to the same final poten-
tial of mean force; Figure 1C shows the conver-
gence to the final result for a single run of the
adaptive umbrella sampling technique. The crosses
indicate the potential of mean force after 10 up-

Ž .dates 100-ps simulation time where the statistics
of all 10 simulations were used. After another 10
updates the potential became virtually indistin-
guishable from the final result. The dramatic im-
provement of the latter was due partly to addi-
tional sampling and partly to the elimination of
the data from the fourth simulation that violated

Ž .the criterion in eq. 11 . The improvement due to
the elimination of the data from the fourth simula-
tion is particularly obvious after the 14th update
Ž .Fig. 1D . Without this elimination, the potential in
the region between y1808 and y908 is distorted
and comparatively low in energy. To correct this
distortion, additional sampling of this region
would be required. However, the umbrella poten-
tial that would be applied in subsequent simula-

Žtions derived from the negative of the potential of
.mean force would be too high in this region. It

would therefore direct the system away from this
region, prevent additional sampling of it, and slow
down the convergence of the potential. The events
that led to the bad sampling in the fourth simula-
tion are illustrated in Figure 2. In the first three
simulations only the trans rotamer was sampled.
The umbrella potential resulting from these three
simulations had similarities to the final potential
of mean force for the trans rotamer and was flat
otherwise. The effective potential for the fourth

Ž .simulation, H s H8 q U l , l had three local4 4 1 2, . . .
minima at y1428, y468 and 568, and an energy
difference between the first and last of 9 kcalrmol.
During most of the fourth simulation, the system
was in the first of these minima, that is, in a
location where it was unlikely to be according to
the effective potential and that was separated from
the rest of the conformational space by significant
free energy barriers. In the last few MD steps the
systems crossed the barrier at 1748 and ended up
in the third minimum. As a result, bins in the high
energy regions of conformational space around
y1428 were sampled much too often compared to
bins in the low energy regions around 568. For
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FIGURE 2. Illustration of the events leading to the bad
sampling during the fourth simulation of the adaptive
umbrella sampling run shown in Figure 1C, D. The x’s

( )and the black continuous line left scale are the umbrella
potential for the fourth simulation before and after

[ ( )]extrapolation eq. 10 and fitting to the set of continuous
[ ( )] ( )functions eq. 3 ; long dashes left scale indicate the

( )effective potential, H = H8 + U l , l , . . . ; gray4 4 1 2
( )continuous lines right scale are the statistics, n , of4k

(the fourth simulation. Values larger than 50 are not
)shown, the highest count was 860 for the bin at y1528.

example, the bins at y1428 and at 568 were sam-
pled 520 and 39 times, respectively, whereas ac-
cording to the effective potential, the bin at 568
should have been sampled about 4,000,000 times
more often than the one at y1428.

Further insight into the problem of obtaining
correct potentials of mean force is offered by the
2-dimensional potential of mean force for the dihe-

Ž .drals x1 and f Fig. 3 . Note that along f several
local minima exist, so it is likely that the sampling
of f influences the outcome of the 1-dimensional
potential of mean force of x1. This conclusion is
supported by Figure 4 where the data from Figure
3 is shown as 1-dimensional cross sections along
x1 at different values of f and is compared to the
1-dimensional potential of mean force of x1 ob-
tained as the average over all the cross sections.
The average 1-dimensional potential of mean force
is almost identical to the final potentials of mean
force obtained from 1-dimensional adaptive um-

Ž .brella sampling Fig. 1 . It is also similar to the
cross section at f s y758. However, for the region

Ž .between the trans x1 s y180 and gauche plus
Ž .x1 s y60 rotamers, conformations exist with
f ; y1458 that are lower in energy than those
with f ; y758 . These conformations lead to a
decrease of the average 1-dimensional potential by

FIGURE 3. Two-dimensional potential of mean force
for the two dihedral angles x 1 and f in the threonine
dipeptide obtained with 2-dimensional adaptive umbrella
sampling. Contour lines are plotted every 2.5 kcal / mol;
local minima are shown as black areas. The convergence
of the calculations toward the final result was slightly
slower than for the example of Figure 7; it required 43
updates of the umbrella potential until all the bins had
been sampled. We note that for this simple system the
potential of mean force is similar to the corresponding
adiabatic potential energy map.

1.9 kcalrmol relative to the potential of the cross
section at f s y758.

From these considerations it is clear that to
obtain a good estimate of the potential of mean
force of x1 from 1-dimensional umbrella sam-
pling, it is necessary that different f values are
sampled correctly. In particular it is indispensable
to explore conformations with f ; y758 and f ;

Ž .y1458 Figs. 3, 4 . That this is actually the case is

FIGURE 4. One-dimensional cross sections along x 1
through the 2-dimensional potential of mean force of

( )Figure 3 thin lines , and the 1-dimensional potential of
( )mean force thick line for the dihedral angle x 1 obtained

as the projection of the 2-dimensional potential of mean
[ ( )]force eq. 14 . The gray lines are the cross section at

f = y1458; the short dashes are the cross section at
f = 758; long dashes are the cross section at f = y758.
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FIGURE 5. Sampling of the dihedral angles x 1 and f
during the 1-dimensional adaptive umbrella sampling
run of Figures 1C, 1D and 2. Dihedral angles of

( )conformations taken every 0.5 ps are shown as dots. A
( )Correlation between x 1 and f. B,C Time evolution of

x 1 and f, respectively.

shown in Figure 5, where the f and x1 angles are
plotted that were taken from conformations sam-
pled every 0.5 ps during the 1-dimensional adap-
tive umbrella sampling run of Figures 1C, 1D and
2. In some of the adaptive umbrella sampling runs,
transitions did occur to the region with f ; 758;
for example, the potential shown as a dashed line
in Figure 1B is from a run in which one such
transition occurred. From Figure 5 it can also be
seen that the aim of the adaptive umbrella sam-
pling is achieved; that is, there is uniform sam-
pling of the dihedral angle x1, and transitions
between the important regions of conformational
space occur fairly often.

From the trajectories, it is possible to derive
properties other than the potentials of mean force.
As an illustration, the expected distribution of the
3J coupling constant and of the distance be-H aH b

tween the HN and H b protons is shown in Figure
Ž .6. These distributions were obtained using eq. 18

from the trajectory recorded when the potential of
mean force for x1 shown in Figure 1C was deter-
mined. Both of the distributions are dominated by
conformations with x1 ; 608 with small coupling

Ž3 .constants J ; 2.8 Hz and relatively longH aH b
˚Ž .distances d ; 3.8 A between the HN and H b

protons. A second smaller maximum correspond-
Ž3 .ing to larger coupling constants J ; 12.8 HzH aH b

˚Ž .and smaller distances d ; 2.9 A due to other
conformations is present in both distributions.

Figure 7 illustrates the potentials of mean force
for the conformational space spanned by the two
dihedral angles f and C in the alanine dipeptide.

Ž .The potential Fig. 7A obtained with the constant
Ž .dielectric e s 1 can be compared to the work of

Tobias and Brooks.26 Although they used a polar
Ž .hydrogen model PARAM19 and an all-hydrogen

Ž .model PARAM22 is used here, the relative free
energies for four alanine dipeptide conformations
given in their work are in good agreement with

Ž .those obtained here Table I . In addition to the use
of different parameter sets, the differences can be
attributed to the fact that with adaptive umbrella
sampling an average free energy for each of the
bins is determined whereas with internal coordi-
nate constraints and thermodynamic perturbation
theory one obtains free energy differences between
points in f, C space. It is interesting to note that
the potential obtained with the distant dependent

( ) 3FIGURE 6. Distributions of the A J couplingHaH b

( )constant and B the distance between the HN and Hb
protons in the threonine dipeptide system when it is not
perturbed by any umbrella potential. The distributions
were determined from the trajectory written during an
adaptive umbrella sampling run with the umbrella
potential applied along the dihedral angle x 1 and eq.
( )18 was used to correct for the effect of the applied
umbrella potentials. The coupling constants were
calculated from the Karplus relation 3J =HaH b

2 ( ) ( )9.5 cos x 1 y 1208 y 1.6 cos x 1 y 1208 + 1.8.
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FIGURE 7. Two-dimensional potentials of mean force
for the two dihedral angles f and C in the alanine
dipeptide obtained with 2-dimensional adaptive umbrella
sampling. Contour lines are plotted every 2.5 kcal / mol;
local minima are shown as black areas. Shown are the

( )results obtained with a constant dielectric after A 100
updates of the umbrella potential and the results obtained

( ) ( )with distant dependent dielectric after B 100, C 10,
( )and D 20 updates of the umbrella potential

(corresponding to 3000, 300, and 600 ps of simulation
)time, respectively .

Ž .dielectric Fig. 7B is much more similar to the
potential calculated by Anderson and Hermans25

using explicit water than that obtained with the
Ž .constant dielectric Fig. 7A .

To demonstrate the convergence properties of
the adaptive umbrella sampling technique for 2-di-
mensional umbrella potentials, we show results
obtained after 10, 20, and 100 updates of the um-
brella potential. The final potential obtained after
100 updates is shown in Figure 7B. For this result

3000 ps of MD were performed. However, after 10
Ž .updates Fig. 6C corresponding to only 300 ps of

simulation time, the low energy parts of the poten-
tial were already similar to the final result. Only
the high energy part of the potential was distorted
because the corresponding parts of the conforma-

Ž .tional space e.g., at f ; 58 and C ; 58 were not
Žsampled so far. After a further 10 updates 600 ps

.of simulation time, Fig. 7D these distortions dis-
appeared and the potential was virtually identical
to the final result.

Discussion

The adaptive umbrella sampling technique in-
troduced here has been shown to be an efficient
molecular dynamics method for uniformly sam-
pling the conformational space spanned by the
chosen degrees of freedom. Doing a simulation for
a single or a few dihedral angles with umbrella
potentials assumes that either the other degrees of
freedom are well sampled or that the potential of
mean force of the angles of interest is independent
of the other degrees of freedom. For the test sys-
tems studied here, the former is the case. To obtain
first estimates for the potentials the system must
diffuse through the entire conformational space
spanned by the corresponding degrees of freedom.
The time required depends on both the number
and the nature of these degrees of freedom. In the
present examples of dihedral angle potentials this
was achieved in the 1-dimensional case in about
200 ps and in the 2-dimensional case in about 600
ps. This suggests that with more than 3 or 4
degrees of freedom the required simulations may
be too long. The memory requirements of the tech-
nique impose corresponding limits on the size of
the problem. For each bin and for each iteration

Ž .two numbers s and n have to be stored.j, k l? ? ? j, k l? ? ?

TABLE I.
( )Relative Free Energies kcal ///// mol of Four Alanine Dipeptide Conformations in the Gas Phase.

Tobias and Brooks Adaptive Umbrella Sampling
a bConformation f C D A f C D Avac vac

b y80 120 0 y80 ]y 70 120 ]130 0
a y80 y60 9.1 y80 ]y 70 y60 ]y 50 4.6R
a 60 60 11.6 60 ]70 60 ]70 13.0L
C 60 y80 2.4 60 ]70 y80 ]y 70 1.37ax

aDetermined with thermodynamic integration along paths connecting the a and the b conformation, the a and the CR R 7a x
conformation, the C and the a conformation, and the b and the a conformation.7a x L L
bDifferences between the average free energies of conformations with f and C angles in the specified regions.
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This is not important for 2-dimensional dihedral
angle potentials for which in the present examples
about 200,000 numbers had to be stored, but with
current computer technology it becomes limiting
for a 3- or 4-dimensional problem because it in-
creases with the power of the number of degrees
of freedom. By contrast, the CPU time needed to
solve the WHAM equations does not become a
problem because it depends linearly on the num-
ber of bins and the number of iterations; in the
present examples it required only a few seconds to
obtain converged results.

Comparing the data obtained here to other work
in which potentials of mean force were obtained
for small systems indicates that the performance of
the adaptive umbrella sampling technique is at
least comparable to the performance of conven-
tional umbrella sampling7, 12, 24, 25, 34 ] 36 or that of
using internal coordinate constraints and thermo-
dynamic perturbation theory.26 When extending

Žsuch studies to larger systems e.g., solvated pro-
.teins , the sampling of degrees of freedom along

which no umbrella potential or internal coordinate
constraints are applied will become limiting. It
remains to be seen how the different existing
methods will perform. It might well be an advan-
tage of the adaptive umbrella sampling technique
that the applied potentials smooth out free energy
differences along the reaction coordinate. Thereby,
free energy barriers separating different parts of
the system are reduced in general and transitions
between them are facilitated. By contrast, the other
methods constrain the system to different posi-
tions along the reaction coordinate. This generally
leads to larger free energy barriers between differ-
ent parts of the system.

In the present case, the results are similar to
those obtained from an adiabatic potential map.
This suggests that the latter could be used in
defining the initial values of the adaptive umbrella

Žpotential. However, in other cases e.g., in the
.presence of solvent very different potentials of

mean force are expected.
While we were finishing this article a method

similar to ours was published by Kumar et al.37

They make use of the WHAM equations and show
that their method is applicable to multidimen-
sional umbrella potentials. An important differ-
ence is that their method is described for Monte
Carlo simulations that permit use of a discontinu-
ous umbrella potential while the present method
works for MD because a continuous differentiable
umbrella potential is derived. Also, they use a
different extrapolation scheme, and they do not

introduce means to identify outliers in the statis-
tics that we found to be important for the conver-
gence of the results. They report the performance
of their method for the ‘‘alanine tripeptide’’ sys-
tem. For a comparison with the present method,
we did an adaptive umbrella sampling run to
determine the free energy as a function of the f
and c angle of the central alanine residue in the
blocked trialanine peptide, acetyl-Ala-Ala-Ala-
methyl. We used the same parameters as for the
alanine dipeptide. Detailed comparison of the per-
formance of the two methods is difficult, because
neither the system nor the computers are identical
and the meaning of ‘‘converged results’’ is not
well defined. Nonetheless, it seems that the pre-
sent method is faster. It required only 4 h of CPU
time for 100 iterations on a Silicon Graphics Indigo

Ž2 with an R8000 2.2 processor after 45 iterations
.all bins were already sampled at least once

whereas Kumar et al. report that their method
required 14 h on a Silicon Graphics Indigo work-
station for the calculation of a similar map. We
believe that both methods are useful extensions of
earlier work and will make possible interesting
applications in the near future. Work is in progress
on the RGDW peptide using an explicit solvent
model.
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