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ABSTRACT

We describe an adaptive procedure that approximates a function of many
variables by a sum of (univariate) spline functions Sy of selected linear
combinations a X of the coordinates

o(x) = 22 s (a_-x)
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The procedure is nonlinear in that not only the spline coefficients but
also the Tinear combinations are optimized for the particular probiem.
The sample need not Tie on a regular grid, and the approximation is affine
invariant, smooth, and lends itself to graphical interpretation. Function
values, derivatives, and integrals are cheap to evaluate.
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1. Introduction

- Mukidimensional surface approximation is récognized as an important prob-
lem for which several methodologies have been developed. The aim is to con-
struct an approximation ¢(x) to a p-dimensional surface y = f(x) on the basis
of (possibly noisy) observati_oﬁs {{yi,%0) }; << Most existing methods, such as
tensor product splines, kernels, and thin pla—te—:splines (for a survey, see Schumaker
[1976]), are linear in that .
| p(x)= ) wy,

1<i<n
where the weights { w,} depend only on x and { x;}; ¢ ;< ., but not on {yi }; < ;< -
These methods have the advantage that they are str—;ig—htforward' to compute and
their theory ».is‘tr‘actable. In practice, however, they are limited because they
cannot take advantage of special properties of the surface. Due to the inherent
sparsity of high-dimensional sampling, procedures successful in high dim_ensions

must be adaptive and thus nonlinear.

In this paper we describe an adaptive procedure that approximates f(x) by a
sum of (univariate) spline functions s,, of selected linear combinations a,, - x of
“the coordinates : ' :
¢(x) = Z Sm{am * X). o | (1)

1<m<M ,
The procedure is nonlinear in that not only the spline coefficients but also the

linear combinations are optimized for the particular problem.
2. The algorithm

The spline function s,, along a,, - x is represented as a sum of j,, B-splines
[de Boor, 1979] of order ¢

Smldm %)= Pm;Bmj(am " x). ‘_ (2)

1€5<im
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" The appré)ximation ¢(x) (given by equations (1) and (2)) is specified by the direc-
tions {8m}; <, < pr» the knot sequences along ap, - x for 1 <m < M, and the
B-épline‘coeﬂ:l—cier—lts {Bmiti<cm< M,ISjSJ'm: For particular { a,, }, the knots are
placed heuristically and then the { 8,,; } are determined by (linear) least squares.
The residual sum of squares from this fit is taken to be the inverse figure of merit

for {am}i<cmam-

Following Friedman, Jacobson, and Stuetzle [1980], the approximation is con-
structed in a stepwise manner: given {8m }, < m< pr—y1, O0d aar to optimize the
figure of merit of {amticmem Términa‘o—t: when the figure of merit is not

" significantly improved.
3. Implementation

The most difficult part of the algorithm is finding each direction a,,. We per-
form a numerical search using a Rosenbrock method [Rosenbrock, 1966] modified
for the unit sphere, starting at the best coordinate direction. On any given search,
there is no guarantee that the global optimum will be found. If the local optimum
is insignificant, the search is restarted at random directions. This guards against
premature termination. If the local optimum is significant but not identical to
the global optimum, no great harm is done because a new search is performed
in the next iteration on an object function for which the previous optima have
been deflated. Each iteration of the optimizer requires 3.5 p' function evaluations,
on the average, where p is the dimension of x. Two iterations are nearly always '

sufficient.

For high dimensionality, the computation is dominated by the evaluations
of the object function. Since it is not crucial to find the precise optimum, con-
siderable savings can be achieved by substituting a similar, but much less ex-
pensive figure of merit during the search fof a new direction. For this figure of
merit not onfy the previously found directions but also the corresponding spline
coefficients are held fixed. The new direction can thus be found by considering

the residuals from the model of the previous iteration. For a given direction, the
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residuals are modelled by a smooth based on local linear fits [Cleveland, 1979],
[Friedman, Jacobson, and Stuetzle, 1980]. The characteristic bandwidth (that is,
the ave?age fraction of observations used in each local fit) is taken to be inversely
proportional to the number of knots. The residual sum of squares from the smooth
is the figure of merit used for the smooth. Solving the least squares problem for

the original figure of merit requires

o5,

1<m< M

operations, while the new figure of merit can be evaluated in roﬁghly n operations
using updating formulas for the moving average. The least squares problem has
to be solved only once for each iteration to determine the new model after a,, has

been found.

To solve the least squares problem, we form the normal equations and use a
pseudo-inverse, since the désign matrix might not:have full rank. The singularity
which arises form the inclusion of a constant term for each direction is remedied
by simply dropping one column per direction from the design matrix. Higher
order singularities caused, for example, by the linear terms for three co-planar
directions, are not explicitly taken care of, but are handléd by the pseu’dvo-inverse.

Our knot placement procedure is motivated by the sequential nature of the
algorithm. At each iteration, the knot positions are required for the least squares
fit, after the new direction has been found. Our model at this point is the spline fit
~ of the previous iteration, plus the moving average smooth along the newly found
direction. The knot placement is based on the residuals {r;} from this model. |
Multidimensional structure in these residuals due to i-ncomplétenes's of the model
manifests itself as high local variability in the scatterplots of r; against a,, - X;.
In order to preserve the ability of fitting this structure in further iterations, it is
important to avoid accounting for it by spurious fits along existing directions. For
this reason we place fewer knots in regions of higher local variability. Since the
residuals change, the knots are replaced along all directions at each iteration.
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The knots along a direction a,, are placed as follows: the smooth described
above is applied to { (ri, am"X:) }; <;<, and the local variability v; at each point is
taken to be the average squared residual from its local linear fit. The Winsorized

local variabilities are defined by

20 if g > 20
wy=(40 ify; <30
vy otherwise

(where § = 4 Y1<icn Yi), and then are scaled so that D2y <<y & =1 The
knots {¢;} are placed to divide the line into intervals with equal content of &-:

, 1 ' 1
for eachl, T T Z w;
: Jm—q+1 8 XiE[tLti41] wi

4. Examples

In this section we present and discuss the results of applying the
Multidimensional Spline Approximation method (MASA) to four examples. (A
FORTRAN program implementing MASA is available {from the authors.) The
first three examples were suggested elsewhere for testing surface approximation
procedures. The function in the fourth example was studied in connection with

a problem in mathematical genetics.

The first example is taken from Friedman [1979]. In this example uniformly
distributed random points {z; | 1 < ¢ < 200} were generated in the six-
dimensional hypercube [0,1)8. Associated with each point z; was a surface value

yi = 10 sm(m,-(m;(z)) + 20[1;';-(3) — 0.5]2 4 10z(4) 4 524(5) -+ 0z(8) + €5,

where the {¢;} were independent identically distributed standard normal. The
inverse figures of merit for the approximation with M = 1,...,4 terms were
6.71,4.29,1.87,0.97. In three restarts, the figure of merit did not decrease below
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0.86, so M = 4 was chosen. The four linear combinations and the corresponding
spline functions are shown in figures 1.1-1.4. (For completeness, the program
pa{rame?e_rs are also listed; see the program comments for a detailed explanation.)
The spline along the first linear combination (figure 1.1) is seen to model the linear
part of the surface. The second term in the approximation (figure 1.2) models
the additive quadratic dependence on z(3). The final two terms (figures 1.3, 1.4)
| model the interaction between (1) and z(2). The Ly norm of the error || f — ||z
was 0.57. '

Although the full advantages of MASA compared to other procedures are
realized in higher dimensional or noisy settingAs, we appliea it to two bivariate
examples used by Franke [1979] to compare a number of interpolatory surface
approximation schemes. For both examples 100 uniformly distributed random
points in the unit square [0,1]? were generated. The function in Franke’s first

example is 9 e N
fay) = 075exp|— 2 :r( y— 2,
' 9z +1) 9y41 -
+0.75 expl— - — L
AV Y
+0.5exp[—(9x 7) i'(g!/ - 3) ]

+ 0.2 exp[—(9z — 4)2 — (9y — T)3).

Considerations similar to those in the previous example led to an approximation
with three terms. The linear combinations and corresponding spline functions are

shown in figures 2.1-2.3.

The function in Franke’s second example is

1(2,9) = 5 ltanh(9y — 92) + 1]

" For this case the approximation used only one term, shown in figure 3.1.

Since different random points were used in Franke’s and our tests, precise
comparisons are not possible. On the first example, MASA gave roughly an order
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of magnit'ude larger errors than the best methods in Franke’s trials (global basis
function methods) while on the second example, MASA gave an order of mag-
nitude smaller errors than the best methods. These results are not surprising since
the peak-shaped basis functions of the global basis methods are especially suited
for representing the peaks of the first example, whereas the ridge-shaped basis
functions of MASA are especially suited to the second example. Unfortunately,
peak-shaped basis functions are not appropriate for moderate or higher dimen-
sionality. The difficulty is that in order to achieve a smooth fit, the width of
the basis peaks needs to be comparable to the distance between data points. For
n uniformly distributed random points in a p-dimensional hypercube [0, 1}?, the
typical nearest neighbor distance is (%)% In particular for n = 1000 and p =
10, this distance’'is 0.5, and.for p = 20 is 0.7. Thus variation of the surface
over distances small compared to such large interpoint distances cannot be well

approximated with these global basis functions methods.

Our final example is a 19-dimensional function encountered by Carmelli and
Cavalli [1979]. An important question is the structure of this function near its
minimum. We sampled the function at 200 points uniformly distributed in a small
hypercube centered at the minimum found by numerical optimization and applied
MASA. The inverse ﬁguré of merit for the best constant fit was 13.3. The inverse
figure of merit for M = 1 was 0.78. In 30 restarts, the figure of merit did not
decrease below 0.42. Figure 4.1 gives the linear combination and corresponding
spline function. This picture shows considerable structure that was not revealed

in the original study.
5. Discussion

MASA can be expected to work well to the extent that the surface can be
approximated by a function of the form (1). Of course in the limit M — oo all
smooth surfaces can be represented by (1), but even for moderate M functions of

this form constitute a rich class.

As seen in the previous section, an advantage of using essentially one-
dimiensional basis functions is the possibility of graphical interpretation. The
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entire model can be represented by graphing sm(am - X) against a,, - x and by
. specifying { 8m }, « ,,< ar (Perhaps graphically for p = 2 or 3). Additionally, ade-
quacy of the knot pl;cement can be judged using the M plots of the residuals
from the final model against .am - x. Proper termination of the algorithm can be
assured by monitoring' at each iteration-the plot of the residuals from the model

of the previous iteration along the newly found direction.

" The problem of sparse sampling in high dimensions is not éncount.ered, since
MASA is fitting one-dimeﬁsonal projections of the entire sample. The sample need
not lie on a regular grid, and the approximation is affine invariant and smooth.
Function values, derivatives, and integrals are cheap to evaluate. In addition,
since the approximation is locally quadratic for ¢ = 3, optimization algorithms
can be expected to converge rapidly. '
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figure 1.1
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SPLINE FUNCTION AND KNOTS ALONG DIRECTION NR 3
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MULTIDIMENSTIONAL ADDITIVE SPLINE APPROXIMATION (4/19/89)
PARAMETERS FOR THIS RUN

NOBS 209
NPRED - 6
MODE 2
MAXTRY 4
MAXPRO 7
PPCONV « 150099
MAXIT 4
KORDER » 3
MAXKNO 9
BANFAC 2.90000
IPRINT 2
NPRINT 1

PLOTRM -9
QVERAGE SQUARED RESIDUAL AROCUND THE MEAN  26.7495
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SPLINE FUNCTION AND KNOTS ALONG DIRECTION NR 1
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SPLINE FUNCTION AND KNOTS ALONG DIRECTION NR 3
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PLOT STATISTICS = @. 2. g. / @. 11, . / @. g. a.
ON X

PROJ

ON Y
Eﬂﬂﬂﬁﬂgﬂﬂﬂglﬁ@@ﬂ@ﬂﬂﬁ}@@ﬂﬂﬁ@@@l@ﬁ@@@ﬂﬂﬁ@@g@@lﬂ@@l@@?@@@@@ﬂ@ﬂ3 AXIS

;*****
** **
* % *%
* *

** *%

* *
*%k *%*
* *

*%k *
* **%
* % *

P82
973

544

W
[

DUIAN~J OO ™| N
HOOUIN R~ = 00w

¢ & & o 8 8 & 0 0 8 & % 6 8 O ¢ 0 s s & 0 0 ¢

[STST TS T TS T I s T T Tas B T T Tos Tus Tas fos fus fus fus Bos Bas T
FNUWIBNINSIWO RN LW

2244
-0.0064
-2.0171
-2.0278
-3.2385
-7.0492
-2.0600
-2.9787
-3.9814
-0.9921
-0.1928
-0.1136
-0.1243
-2.1350
-2.1457

LEFT
BIN
EDGE

»*

A A A A

3

*
*k
*
* %
*
*
* %
*
*%* *kkkkk
* *kkkk * k%
* % *kkkk * k%
**% kkkk *%
kkkkkk %%
*

k%
* %

+ + + o+

*

*%*
* %k
*

*
* ok %k *

* %
R Ean L L R R L e o il e e L L R L e L e o L T ) e e e e e e e e L E e T Y e e e |

W

000000009000000090000200000000000000000000000002000000300000
p000ee111111225222333333424444555555866666777777888888595995
1346791246791246791246791 246791246791 246791 246791 24679124679

306396396296295295285285185185184184174174074073373@373063863
306284062840639517395173952840628406284173951739517306284062

figure 2.3

[l SIS I LT Ras T lus T fus hus T Ros Tus R s T Tue TS L Sos s B B T Tus Tus Tus Tan T Bas LS Tus R fus T Eus Jus o |

[



17

MULTIDIMENSIONAL ADDITIVE SPLINE APPROXIMATION (4/19/80)
PARAMETERS FOR THIS RUN

NOBS 109
NPRED 2
MODE~ - 2
MAXTRY 2
MAXPRO 1
PPCONV .150009
MAXIT 2
KORDER 3
MAXKNO 11
BANFAC 1.60000
IPRINT 3
NPRINT 1

PLOTRM .0
éVERAGE SQUARED RESIDUAL AROUND THE MEAN  .109703
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'

SPLINE FUNCTION AND KNOTS ALONG DIRECTION NR 1
2.7088 -0.7054

PLOT- STATESTICS = 4. g. 6. / @. 30. . / 0. 8. 2.
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MULTIDIMENSIONAL ADDITIVE SPLINE APPROXIMATION (4/19/8@)
PARAMETERS FOR THIS RUN

NOBS. - 199
NPRED 2
MODE 2
MAXTRY 2
MAXPRO 1
PPCONV 152000
MAXIT 4
KORDER

MAXKNO 30
BANFAC .807000
IPRINT 3
NPRINT 1

PLOTRM N’
%VERAGE SQUARED RESIDUAL AROUND THE MEAN .972118E-@2



PLOT STATISTICS =
PROJ

)

-0.0242
GQQ

ON X
AXIS

LEFT
BIN
EDGE

SPLINEngNCglgN AND KNOTS ALONG DIRECTION NR

2
-0

F A A e

A A A R e

+5

20

1
-0.5495

@.7222
B.9556
-2.0660

g. 0.

-3.2242
-3.0384
-3.9153

g.

-7.3383
-0.0141
-#.8235

2. 11.

g.2351

.G
.9039

/ . / 9. 0. @.

ON Y
ﬁ?@@@ﬂ@@ﬂﬂ?@ﬁﬂ@@ﬁ@ﬂl@@ﬂﬂ@@@ﬁﬂ@@@@@@lﬂ@@@@l@ﬂﬂ@@@@@?@ﬁ@ﬂ@@@@4 AXIS

*****l
*k% *%
** *%k
*%k *
*%
*
**
*
*
* %k
*
*%k
*
*
*%*
*
*
*k
*
*
**x
*
*
* %
*
*
* %k
*
* %
*
*
*%
*

*
g
e R Il e e e e e e e i o e e e el e N e o e e R L T T N ]

khkkkkkkkk *k%k
*kk *kkkk
*% *%

*% *%
*k kkk
*kk

bt et b b

+ + +
i3 I} Il 1 g

T T T T T

111111111111111111111111118000000009000000000000000000020000
111110000000000000090300589959999995550953559558883888888554
211009988777665544332211009988777665544332211009988877665544

272838394940505161627273838494950506161727283839495050616172
257025803580358036813681368146914691469247924792573257825793

{aY

figure 4.1
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MULTIDIMENSIONAL ADDITIVE SPLINE APPROXIMATION (4/19/80)
PARAMETERS FORzgSIS RUN

NOBS

NPRED 19
MODE~ - 2
MAXTRY 2
MAXPRO 2
PPCONV - 1500800
MAXIT 2
KORDER

MAXKNO 11
BANFAC 1.50900
IPRINT 3
NPRINT 1
PLOTRM

.g
QVERAGE SQUARED RESIDUAL AROUND THE MEAN  13.2975



