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Abstrat

Multi-dimensional bakward stohasti Riati di�erential equations (BSRDEs

in short) are studied. A losed property for solutions of BSRDEs with respet to

their oeÆients is stated and is proved for general BSRDEs, whih is used to obtain

the existene of a global adapted solution to some BSRDEs. The global existene

and uniqueness results are obtained for two lasses of BSRDEs, whose generators

ontain a quadrati term of L (the seond unknown omponent). More spei�ally,

the two lasses of BSRDEs are (for the regular ase N > 0)(
dK = �[A�K +KA+Q� LD(N +D�KD)�1D�L℄ dt+ Ldw;

K(T ) = M

and (for the singular ase)8><>:
dK = �[A�K +KA+ C�KC +Q+ C�L+ LC

�(KB + C�KD + LD)(D�KD)�1(KB + C�KD + LD)�℄ dt+ Ldw;

K(T ) = M:

This partially solves Bismut-Peng's problem whih was initially proposed by Bis-

mut (1978) in the Springer yellow book LNM 649. The arguments given in this

paper are ompletely new, and they onsist of some simple tehniques of algebrai

transformations and diret appliations of the losed property mentioned above.

We make full use of the speial struture (the nonnegativity of the quadrati term,

for example) of the underlying Riati equation. Appliations in optimal stohasti

ontrol are exposed.
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1 Introdution

Let (
;F ; P; fFtgt�0) be a �xed omplete probability spae on whih is de�ned a standard

d-dimensional Ft-adapted Brownian motion w(t) � (w1(t); � � � ; wd(t))
�. Assume that

Ft is the ompletion, by the totality N of all null sets of F , of the natural �ltration

fFw
t g generated by w. Denote by fF2

t ; 0 � t � Tg the P -augmented natural �ltration

generated by the (d � d0)-dimensional Brownian motion (wd0+1; : : : ; wd). Assume that

all the oeÆients A;B;Ci; Di are Ft-progressively measurable bounded matrix-valued

proesses, de�ned on 
 � [0; T ℄; of dimensions n � n; n � m;n � n; n � m respetively.

Also assume thatM is an FT -measurable nonnegative bounded n�n random matrix, and

Q and N are Ft-progressively measurable, bounded, nonnegative and uniformly positive,

n� n and m�m matrix proesses, respetively.

Consider the following bakward stohasti Riati di�erential equation

(BSRDE in short):8>>>>>>>>>>>><>>>>>>>>>>>>:

dK = �[A�K +KA +
dX

i=1

C

�

iKCi +Q+
dX

i=1

(C�

i Li + LiCi)

�(KB +
dX

i=1

C

�

iKDi +
dX

i=1

LiDi)(N +
dX

i=1

D

�

iKDi)
�1

�(KB +
dX

i=1

C

�

iKDi +
dX

i=1

LiDi)
�℄ dt+

dX
i=1

Li dwi; 0 � t < T;

K(T ) = M:

(1)

It will be alled the BSRDE (A;B;Ci; Di; i = 1; : : : ; d;Q;N;M) in the following for onve-

niene of indiating the assoiated oeÆients. When the oeÆients A;B;Ci; Di; Q;N;M

are all deterministi, then L1 = � � � = Ld = 0 and the BSRDE (1) redues to the following

nonlinear matrix ordinary di�erential equation:8>>>>>>>>><>>>>>>>>>:

dK = �[A�K +KA+
dX

i=1

C

�

iKCi +Q� (KB +
dX

i=1

C

�

iKDi)

�(N +
dX

i=1

D

�

iKDi)
�1(KB +

dX
i=1

C

�

iKDi)
�℄ dt;

0 � t < T;

K(T ) = M;

(2)

whih was ompletely solved by Wonham [28℄ by applying Bellman's priniple of quasi-

linearization and a monotone onvergene approah. Bismut [2, 3℄ initially studied the

ase of random oeÆients, but he ould solve only some speial simple ases. He always

assumed that the randomness of the oeÆients only omes from a smaller �ltration fF2
t g,

whih leads to L1 = � � � = Ld0 = 0. He further assumed in his paper [2℄ that

Cd0+1 = � � � = Cd = 0; Dd0+1 = � � � = Dd = 0; (3)
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under whih the BSRDE (1) beomes the following one:8>>>>>>>>>>>>><>>>>>>>>>>>>>:

dK = �[A�
K +KA+

d0X
i=1

C

�

iKCi +Q

�(KB +
d0X
i=1

C

�

iKDi)(N +
d0X
i=1

D

�

iKDi)
�1(KB +

d0X
i=1

C

�

iKDi)
�℄ dt

+
dX

i=d0+1

Li dwi; 0 � t < T;

K(T ) = M;

(4)

and the generator does not involve L at all. In his work [3℄ he assumed that

Dd0+1 = � � � = Dd = 0; (5)

under whih the BSRDE (1) beomes the following one8>>>>>>>>>>>>><>>>>>>>>>>>>>:

dK = �[A�
K +KA+

dX
i=1

C

�

iKCi +Q +
dX

i=d0+1

(C�

i Li + LiCi)

�(KB +
d0X
i=1

C

�

iKDi)(N +
d0X
i=1

D

�

iKDi)
�1(KB +

d0X
i=1

C

�

iKDi)
�℄ dt

+
dX

i=d0+1

Li dwi; 0 � t < T;

K(T ) = M;

(6)

and the generator depends on the seond unknown variable (Ld0+1; : : : ; Ld)
� in a linear

way. Moreover his method was rather ompliated. Later, Peng [18℄ gave a nie treat-

ment on the proof of existene and uniqueness for the BSRDE (6), by using Bellman's

priniple of quasi-linearization and a method of monotone onvergene|a generalization

of Wonham's approah to the random situation.

As early as in 1978, Bismut [3℄ ommented on page 220 that:"Nous ne pourrons pas

d�emontrer l'existene de solution pour l'�equation (2.49) dans le as g�en�eral." (We ould

not prove the existene of solution for equation (2.49) for the general ase.) On page

238, he pointed out that the essential diÆulty for solution of the general BSRDE (1) lies

in the integrand of the martingale term whih appears in the generator in a quadrati

way. Two deades later in 1998, Peng [19℄ inluded the above problem in his list of open

problems on BSDEs. Reently, Kohlmann and Tang [13℄ solved the one dimensional ase

of the above Bismut-Peng's problem.

In this paper, we prove the global existene and uniqueness result for BSRDE (1)

for the following speial multi-dimensional ase:

d = 1; B = C = 0:

That is, we solve the following BSRDE8><>:
dK = �[A�

K +KA +Q� LD(N +D

�
KD)�1D�

L℄ dt+ Ldw;

0 � t < T;

K(T ) = M:

(7)
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This BSRDE is speial but typial, for the generator ontains a quadrati term on L.

This result is stated as Theorem 2.3.

Consider then the ase where the ontrol weight matrixN redues to zero. Kohlmann

and Zhou [14℄ disussed suh a ase. However, their ontext is rather restrited, as they

make the following assumptions: (a) all the oeÆients involved are deterministi; (b)

C1 = � � � = Cd = 0; D1 = � � � = Dd = Im�m; and M = I;() A + A
� � BB

�. Their argu-

ments are based on applying a result of Chen, Li and Zhou [4℄. Kohlmann and Tang [12℄

onsidered a general framework along those analogues of Bismut [3℄ and Peng [18℄, whih

has the following features: (a) the oeÆients A;B;C;D;N;Q;M are allowed to be ran-

dom, but are only F2
t -progressively measurable proesses or F2

T -measurable random vari-

able; (b) the assumptions in Kohlmann and Zhou [14℄ are dispensed with or generalised;

() the ondition (5) is assumed to be satis�ed. Kohlmann and Tang [12℄ obtained a

general result and generalised Bismut's previous result on existene and uniqueness of a

solution of BSRDE (6) to the singular ase under the following additional two assump-

tions:

M � "In�n;

dX
i=1

D

�

iDi(t) � "Im�m for some deterministi onstant " > 0: (8)

Kohlmann and Tang [13℄ proved the existene and uniqueness result for the one-dimensional

singular ase N = 0 under the assumption (8), but for a more general framework of the

following features: the oeÆients A;B;C;D;N;Q;M are allowed to be Ft-progressively

measurable proesses or FT -measurable random variable, and the oeÆient D is not ne-

essarily zero. In this paper we obtain the global existene and uniqueness for the following

multi-dimensional singular ase:

d = 1; D

�
D � "Im�m; M � "In�n for some deterministi onstant " > 0:

That is, we solve the following BSRDE:8>>><>>>:
dK = �[A�

K +KA+ C

�
KC +Q+ C

�
L+ LC

�(KB + C

�
KD + LD)(D�

KD)�1(KB + C

�
KD + LD)�℄ dt+ Ldw;

0 � t < T;

K(T ) = M:

(9)

This result is stated as Theorem 2.2.

The BSRDE (1) arises from solution of the optimal ontrol problem

inf
u(�)2L2

F
(0;T ;Rm)

J(u; 0; x) (10)

where for t 2 [0; T ℄ and x 2 Rn,

J(u; t; x) := E

Ft[
Z T

t
[(Nu; u) + (QX t;x;u

; X

t;x;u)℄ ds+ (MX

t;x;u(T ); X t;x;u(T ))℄ (11)

and X t;x;u(�) solves the following stohasti di�erential equation8>><>>:
dX = (AX +Bu) ds+

dX
i=1

(CiX +Diu) dwi; t � s � T;

X(t) = x:

(12)
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The following onnetion is well known: if the BSRDE (1) has a solution (K;L), the

solution for the above linear-quadrati optimal ontrol problem (LQ problem in

short) has the following losed form (also alled the feedbak form):

u(t) = �(N +
dX

i=1

D

�

iKDi)
�1[B�

K +
dX

i=1

D

�

iKCi +
dX

i=1

D

�

iLi℄X(t) (13)

and the assoiated value funtion V is the following quadrati form

V (t; x) := inf
u2L2

F
(t;T ;Rm)

J(u; t; x) = (K(t)x; x); 0 � t � T; x 2 Rn
: (14)

In this way, on one hand, solution of the above LQ problem is redued to solving the

BSRDE (1). On the other hand, the formula (14) atually provides a representation|of

Feynman-Ka type| for the solution of BSRDE (1). The reader will see that this kind

of representation plays an important role in the proofs given here for Theorems 2.1, 2.2

and 2.3.

The arguments given in this paper are ompletely new. They results from two

observations. The �rst one is that in the following simple ase

A = B = C = 0; d = 1; m = n;

D is nonsingular, and D and N are onstant matries,
(15)

the diÆult quadrati term of L an be removed by doing some simple algebrai transfor-

mation, and the resulting BSRDE is globally solvable in view of the result of Bismut [3℄

and Peng [18℄. As a onsequene, the above simple ase is globally solvable. However, this

ase is too restrited. Then omes out the seond observation: by using some other triks

and by applying the losedness theorem 2.1, some more general ases an be attaked.

Spei�ally, the following restritions

A = 0; m = n; and D is nonsingular (16)

are all removed, and the restrited assumption

D and N are onstant matries (17)

is improved. For the singular ase, we only have the one restrition d = 1 remained.

Theorem 2.1 provides a way to obtain the solvability of more general BSRDEs from that

of simple ones. We hope that Bismut-Peng's problem will be ompletely solved in the

near future, by using the above-mentioned methodology.

The rest of the paper is organized as follows. Setion 2 ontains a list of notation

and two preliminary propositions, and the statement of the main results whih onsist of

Theorems 2.1-2.3. The proofs of these three theorems are given in Setions 3-5, respe-

tively. Finally, in Setion 6, appliation of Theorems 2.2 and 2.3 is given to the regular

and singular stohasti LQ problems, both with and without onstraints.
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2 Preliminaries and the Main Results

Let (
;F ; P; fFtgt�0) be a �xed omplete probability spae on whih is de�ned a standard

d-dimensional Ft-adapted Brownian motion w(t) � (w1(t); � � � ; wd(t))
�. Assume that

Ft is the ompletion, by the totality N of all null sets of F , of the natural �ltration

fFw
t g generated by w. Denote by fF2

t ; 0 � t � Tg the P -augmented natural �ltration

generated by the (d � d0)-dimensional Brownian motion (wd0+1; : : : ; wd). Assume that

all the oeÆients A;B;Ci; Di are Ft-progressively measurable bounded matrix-valued

proesses, de�ned on 
 � [0; T ℄; of dimensions n � n; n � m;n � n; n � m respetively.

Also assume that M is an FT -measurable, nonnegative, and bounded n � n random

matrix. Assume that Q and N are Ft-progressively measurable, bounded, nonnegative

and uniformly positive, n� n and m�m matrix proesses, respetively.

Notation. Throughout this paper, the following additional notation will be used:

M
� : the transpose of any vetor or matrix M ;

jM j : =
qP

ijm
2
ij for any vetor or matrix M = (mij);

(M1;M2) : the inner produt of the two vetors M1 and M2;

R
n : the n-dimensional Eulidean spae;

R+ : the set of all nonnegative real numbers;

Sn : the Eulidean spae of all n� n symmetri matries;

Sn
+ : the set of all n� n nonnegative de�nite matries;

C([0; T ℄;H) : the Banah spae of H-valued ontinuous funtions on [0; T ℄,

endowed with the maximum norm for a given Hilbert spae H;

L2
F
(0; T ;H) : the Banah spae of H-valued Ft-adapted square-integrable

stohasti proesses f on [0; T ℄, endowed with the norm

(E
R T
0 jf(t)j

2
dt)1=2 for a given Eulidean spae H;

L1
F
(0; T ;H) : the Banah spae of H-valued, Ft-adapted, essentially

bounded stohasti proesses f on [0; T ℄, endowed with the

norm ess supt;! jf(t)j for a given Eulidean spae H;

L
2(
;F ; P ;H) : the Banah spae of H-valued norm-square-integrable random

variables on the probability spae (
;F ; P ) for a given

Banah spae H;

and L
1(
;F ; P ;C([0; T ℄;Rn)) is the Banah spae of C([0; T ℄;Rn)-valued, essentially

maximum-norm-bounded random variables f on the probability spae (
;F ; P ), endowed

with the norm ess sup!2
max0�t�T jf(t; !)j.

Proposition 2.1. Assume that all the oeÆients A;B;Ci; Di are F
2
t -progressively

measurable bounded matrix-valued proesses, de�ned on 
�[0; T ℄; of dimensions n�n; n�

m;n� n; n�m respetively. Also assume that M is an F2
T -measurable, nonnegative, and

bounded n � n random matrix. Assume that Q and N are F2
t -progressively measurable,

bounded, nonnegative and uniformly positive, n� n and m�m matrix proesses, respe-

tively. Then, the BSRDE (6) has a unique F2
t -adapted global solution (K;L) with

K 2 L1
F2(0; T ;S

n
+) \ L

1(
;F2
T ; P ;C([0; T ℄;S

n
+)); L 2 L2

F2(0; T ;S
n):

Proposition 2.1 is due to Bismut [3℄ and Peng [18℄, and the reader is referred to
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Bismut [3℄ and Peng [18℄ for the proof.

Consider the optimal ontrol problem

inf
u(�)2L2

F
(0;T ;Rm)

J(u; 0; x) (18)

where for t 2 [0; T ℄ and x 2 R
n,

J(u; t; x) := E

Ft[
Z T

t
[(Nu; u) + (QX t;x;u

; X

t;x;u)℄ ds+ (MX

t;x;u(T ); X t;x;u(T ))℄ (19)

and X t;x;u(�) solves the following stohasti di�erential equation8>><>>:
dX = (AX +Bu) ds+

dX
i=1

(CiX +Diu) dwi; t � s � T;

X(t) = x:

(20)

Proposition 2.2. Let (K;L) be an Ft-adapted solution of the BSRDE (1) with

K 2 L1
F
(0; T ;Sn) \ L1(
;FT ; P ;C([0; T ℄;Sn)); L 2 L2

F
(0; T ;Sn);

and N(t) +
Pd

i=1D
�

iKDi(t) being uniformly positive. Then,

(K(t)x; x) = V (t; x) := inf
u2L2

F
(t;T ;Rm)

J(u; t; x); 8x 2 R

n
:

This proposition is a speial ase of Theorem 6.1, and the reader is referred to

Setion 6 for the proof.

The main results of this paper are stated by the following three theorems.

Theorem 2.1. Assume that 8 � 0 the oeÆients A
; B


; C


i ; D


i ; Q


; and N are

Ft-progressively measurable matrix-valued proesses, de�ned on 
� [0; T ℄; of dimensions

n � n; n �m;n � n; n �m;n � n; and m �m; respetively. Assume that M is an FT -

measurable and nonnegative n�n random matrix. Assume that Q is a:s:a:e: nonnegative.

Assume that there are two deterministi positive onstants "1 and "2 whih are independent

of the parameter , suh that

jA(t)j; jB(t)j; jC
i (t)j; jD


i (t)j; jQ

(t)j; jN(t)j; jMj � "1

and

N

 � "2Im�m:

Assume that as  ! 0, A(t); B(t); C
i (t); D


i (t); Q

(t), and N
(t) onverge uniformly

in (t; !) to A0(t); B0(t); C0
i (t); D

0
i (t); Q

0(t) and N0(t), respetively. Assume that M uni-

formly in ! onverges toM0 as  ! 0. Assume that 8 > 0 the BSRDE (A
; B

;C

i ; D


i ; i =

1; : : : ; d;Q
; N


;M

) has a unique Ft-adapted global solution (K
; L

) with

K

 2 L1
F
(0; T ;Sn

+) \ L
1(
;FT ; P ;C([0; T ℄;Sn

+)); L

 2 L2
F
(0; T ;Sn):
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Then, there is a pair of proesses (K;L) with

K 2 L1
F
(0; T ;Sn

+) \ L
1(
;FT ; P ;C([0; T ℄;S

n
+)); L 2 L2

F
(0; T ;Sn);

suh that

lim
!0

K

 = K strongly in L1
F
(0; T ;Sn

+) \ L
1(
;FT ; P ;C([0; T ℄;S

n
+));

lim
!0

L

 = L strongly in L2
F
(0; T ;Sn);

(21)

and suh that (K;L) is a unique Ft-adapted solution of the

BSRDE (A0
; B

0
; C

0
; D

0
; Q

0
; N

0
;M

0).

If the above assumption of uniform onvergene of (A
; C


; Q


;M

) is replaed with

the following one:

lim
!0

esssup
!2


Z T

0
(jA � A

0j+ jC � C

0j2 + jQ �Q

0j) ds+ jM �M

0j ! 0: (22)

then the above assertions still hold.

Remark 2.1. When the assumption of uniform positivity on the ontrol weight ma-

trix N is relaxed to nonnegativity, Theorem 2.1 still holds with the additional assumption

that there is a deterministi positive onstant "3 suh that

dX
i=1

(D
i )
�
D


i � "3Im�m; M

 � "3In�n:

Theorem 2.2. (the singular ase) Assume that d = 1 and Q(t) � 0. Also

assume that there is a deterministi positive onstant "3 suh that

M � "3In�n (23)

and

D

�
D(t) � "3Im�m: (24)

Then, the BSRDE (9) has a unique Ft-adapted global solution (K;L) with

K 2 L1
F
(0; T ;Sn

+) \ L
1(
;FT ; P ;C([0; T ℄;S

n
+)); L 2 L2

F
(0; T ;Sn);

and K(t; !) being uniformly positive w.r.t. (t; !):

Theorem 2.3. (the regular ase) Assume that d = 1;M � 0; Q(t) � 0 and

N(t) � "3Im�m for some positive onstant "3 > 0: Further assume that B = C = 0, and

D and N satisfy the following

lim
h!0+

esssup
!2


max
t1;t22[0;T ℄; jt1�t2j�h

jD(t1)�D(t2)j = 0;

lim
h!0+

esssup
!2


max
t1;t22[0;T ℄; jt1�t2j�h

jN(t1)�N(t2)j = 0:
(25)

Then, the BSRDE (7) has a unique Ft-adapted global solution (K;L) with

K 2 L1
F
(0; T ;Sn

+) \ L
1(
;FT ; P ;C([0; T ℄;S

n
+)); L 2 L2

F
(0; T ;Sn):

The proofs of the above three theorems are given in Setions 3, 4, and 5, respetively.
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3 The Proof of Theorem 2.1.

For 8(t;K; L) 2 [0; T ℄� Sn
+ � (Sn)d, write

F
(t;K; L) := �[KB(t) +

dX
i=1

C


i (t)

�
KD


i (t) +

dX
i=1

LiD

i (t)℄

�[N(t) +
dX

i=1

D


i (t)

�
KD


i (t)℄

�1

�[KB(t) +
dX

i=1

C


i (t)

�
KD


i (t) +

dX
i=1

LiD

i (t)℄

�
:

(26)

The generator of the BSRDE (A
; B

;C
i ; D


i ; i = 1; : : : ; d;Q

; N

;M

) is

G
(t;K; L) := (A)�K +KA

 +
dX

i=1

(C

i )
�
KC


i +Q



+
dX

i=1

((C
i )
�
Li + LiC


i ) + F

(t;K; L):

(27)

We have the following a priori estimates.

Lemma 3.1. Let the set of oeÆients (A
; B

;C

i ; D


i ; i = 1; : : : ; d;Q

; N

;M

)

satisfy the assumptions made in Theorem 2.1, and let (K
; L

) be a global adapted solution

to the BSRDE (A
; B

 ;C

i ; D


i ; i = 1; : : : ; d;Q

; N

;M

) with

K

 2 L1
F
(0; T ;Sn) \ L1(
;FT ; P ;C([0; T ℄;S

n)); L

 2 L2
F
(0; T ;Sn);

and N(t)+
Pd

i=1D
�

iKDi(t) being uniformly positive. Then, there is a deterministi positive

onstant "0 whih is independent of ; suh that 8 � 0; the following estimates hold:

0 � K

(t) � "0In�n; E

Ft

 Z T

t
jL j2 ds

!p

� "0; 8p � 1: (28)

Proof of Lemma 3.1. From Proposition 2.2, we see that K � 0. Note that

(K
; L

) satis�es the BSRDE:8>>>>>>><>>>>>>>:

dK
 = �

�
(A)�K +K


A

 +
dX

i=1

(C
i )
�
K


C


i +Q

 +
dX

i=1

((C
i )
�
L


i + L


iC


i )

+F (t;K
; L

)

�
dt+

dX
i=1

L


i dwi; 0 � t < T;

K

(T ) = M

:

(29)

Using Itô's formula, we get8>>>>>>>>>>>><>>>>>>>>>>>>:

djKj2 = �

�
4 tr

h
(K)2A

i
+

dX
i=1

2 tr [K(C

i )
�
K


C


i ℄ + 2 tr (K

Q

)

+
dX

i=1

4 tr (K
L


iC


i ) + 2 tr [K

F

(t;K
; L

)℄� jL j2
�
dt

+
dX

i=1

2 tr (K
L


i ) dwi; 0 � t < T;

jKj2(T ) = jMj2:

(30)
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We observe that sine

F

(t;K
; L

) � 0; K

 � 0;

we have

2 tr [K
F

(t;K
; L

)℄ = 2 tr
h
(K)

1

2
F

(t;K
; L

) (K)
1

2

i
� 0: (31)

Hene,

jKj2(t) +
Z T

t
jLj2 ds � jM j2 +

Z T

t

�
4 tr

h
(K)2A

i
+

dX
i=1

2 tr [K(C

i )

�
K


C


i ℄

+2 tr (K
Q

) +
dX

i=1

4 tr (K
L


iC


i )

�
ds

�

Z T

t

dX
i=1

2 tr (K
L


i ) dwi; 0 � t < T:

(32)

Using the elementary inequality

2ab � a

2 + b

2

and taking the expetation on both sides with respet to Fr for r � t, we obtain that

E

Fr jK j2(t) +
1

2
E

Fr

Z T

t
jL j2 ds � "4 + "4

Z T

t
E

Fr jKj2(s) ds; 0 � r � t < T: (33)

Using Gronwall's inequality, We derive from the last inequality the �rst one of the esti-

mates (28). In return, we derive from the seond last inequality that

Z T

t
jLj2 ds � "5 + "5

Z T

0
jL j ds�

Z T

t

dX
i=1

2 tr (K
L


i ) dwi: (34)

Therefore,

E

Ft

 Z T

t
jLj2 ds

!p

� 3p
"
"

p
5 + "

p
5E

Ft

 Z T

t
jLj ds

!p

+ E

Ft

���� Z T

t

dX
i=1

2trK
L


i dwi

����p
#
: (35)

We have from the Burkholder-Davis-Gundy inequality the following

E

Ft

���� Z T

t

dX
i=1

2 tr (K
L


I ) dwi

����p� 2pEFt

���� Z T

t
jKj2jLj2 ds

����p=2;
while from the Cauhy-Shwarz inequality, we have

E

Ft

 Z T

t
jL j ds

!p

� T

p=2
E

Ft

 Z T

t
jL j2 ds

!p=2

:

Finally, we get

E

Ft

 Z T

t
jL j2 ds

!p

� 3p"
p
5 + [3pT p=2

"

p
5 + 6pnp=2

"

p
0℄E

Ft

 Z T

t
jLj2 ds

!p=2

; (36)
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whih implies the last estimate of the lemma.

Now, onsider the optimal ontrol problem

Problem P inf
u(�)2L2

F
(0;T ;Rm)

J

(u; 0; x) (37)

where for t 2 [0; T ℄ and x 2 R
n,

J

(u; t; x) := E

Ft [
Z T

t
[(N

u; u) + (Q
X

t;x;u
 ; X

t;x;u
 )℄ ds+ (M

X

t;x;u
 (T ); X t;x;u

 (T ))℄ (38)

and X t;x;u
 (�) solves the following stohasti di�erential equation8>><>>:

dX = (A
X +B


u) ds+

dX
i=1

(C
i X +D


i u) dwi; t � s � T;

X(t) = x:

(39)

The assoiated value funtion V  is de�ned as

V

(t; x) := inf
u(�)2L2

F
(t;T ;Rm)

J

(u; t; x): (40)

Then, from Proposition 2.2, we have

(K(t)x; x) = V

(t; x); 8(t; x) 2 [0; T ℄�R

n
:

From the a priori estimates result Lemma 3.1, we have

V

(t; x) � "0jxj
2
; 8(t; x) 2 [0; T ℄� R

n
:

So, the optimal ontrol bu for the problem P satis�es

"2E
Ft

Z T

t
jbuj2 ds = E

Ft

Z T

t
(N bu; bu) ds � "0jxj

2
:

Set

U x
ad(t; T ) :=

(
u 2 L2

F
(t; T ;Rm) : "2E

Ft

Z T

t
juj2 ds � "0jxj

2

)
; 8x 2 R

n
: (41)

Then, we have

V

(t; x) := inf
u(�)2U x

ad
(t;T )

J

(u; t; x): (42)

De�ne

K
� := K

 �K
�
; L

�
i := L


i � L

�
i ; X

t;x;u
� := X

t;x;u
 �X

t;x;u
� ;

A
� := A

 � A
�
; B

� := B
 � B

�
; C

�
i := C


i � C

�
i ;

D
� := D

 �D
�
; Q

� := Q
 �Q

�
; N

� := N
 �N

�
;

M
� :=M

 �M
�
:

(43)
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Lemma 3.2. Let the assumptions of Theorem 2.1 be satis�ed. Then, there are three

deterministi positive onstants "6; "7, and "8, whih are independent of the parameters 

and � suh that the following three estimates hold. (i) For eah x 2 R
n,

E

Ft max
t�s�T

jX t;x;u
 (s)j2 � "6jxj

2 + "6E
Ft

Z T

t
juj2 ds: (44)

(ii) For eah (t; x) 2 [0; T ℄�R
n,

E

Ft max
t�s�T

jX t;x;u
� (s)j2 � "7E

Ft

Z T

t
(jA� j+ jC� j2)jX t;x;u

 (s)j2 ds

+"7E
Ft

Z T

t
(jB� j+ jD� j2)juj2(s) ds:

(45)

(iii) For eah (t; x) 2 [0; T ℄� R
n,

jJ(u; t; x)� J

� (u; t; x)j

� "8E
Ft[jM� jjX t;x;u

 (T )j2 + jX t;x;u
� (T )j(jX t;x;u

 (T )j+ jX t;x;u
� (T )j)℄

+"8E
Ft

Z T

t
jX t;x;u

� (s)j[jX t;x;u
 (s)j+ jX t;x;u

� (s)j℄ ds

+"8E
Ft

Z T

t
jQ� jjX t;x;u

 (s)j2 ds+ "8E
Ft

Z T

t
jN� jjuj2(s) ds:

(46)

Proof of Lemma 3.2. Note that X t;x;u
� satis�es the following stohasti di�eren-

tial equation:8>><>>:
dX� = (A�

X� + A
�
X +B

�
u) ds+

dX
i=1

(C�
i X� + C

�
i X +D

�
i u) dwi;

X� (t) = 0:

So, in view of the assumptions of Theorem 2.1, the �rst two estimates are atually a on-

sequene of the ontinuous dependene upon the parameters of the solution of a stohasti

di�erential equation, and the proof is standard. The last estimate results from an imme-

diate appliation of the mean-value formula for a di�erential funtion.

Lemma 3.3. Let the assumptions of Theorem 2.1 be satis�ed. Then, we have the

following three inequalities. (i) For eah x 2 R
n
; 8u 2 U x

ad(t; T );

E

Ft max
t�s�T

jX t;x;u
 (s)j2 � "6(1 + "

�1
2 "0)jxj

2
: (47)

(ii) For eah (t; x) 2 [0; T ℄�R
n
; 8u 2 U x

ad(t; T );

E

Ft max
t�s�T

jX t;x;u
� (s)j2 � "7"6(1 + "

�1
2 "0)jxj

2 esssup
!

Z T

0
(jA� j+ jC� j2) ds

+"7"
�1
2 "0jxj

2 esssup
s;!

(jB� j+ jD� j2)(s):
(48)
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(iii) For eah (t; x) 2 [0; T ℄� R
n
; 8u 2 U x

ad(t; T );

jJ(u; t; x)� J

� (u; t; x)j

� "8 esssup
!

jM� j EFtjX t;x;u
 (T )j2

+"8
h
E

FtjX t;x;u
� (T )j2

i1=2 h
E

Ft(2jX t;x;u
 (T )j2 + 2jX t;x;u

� (T )j2)
i1=2

+"8T

"
E

Ft sup
t�s�T

jX t;x;u
� (s)j2

#1=2 "
E

Ft sup
t�s�T

[2jX t;x;u
 (s)j2 + 2jX t;x;u

� (s)j2℄

#1=2
+"8 esssup

!

Z T

0
jQ� j ds EFt sup

t�s�T

jX t;x;u
 (s)j2 + "8"

�1
2 "0jxj

2 esssup
s;!

jN� j(s):

(49)

Proof of Lemma 3.3. Sine u 2 U x
ad(t; T ), we have

E

Ft

Z T

t
juj2 ds � "

�1
2 "0jxj

2
: (50)

Putting (50) into the �rst estimate of Lemma 3.2, we get the �rst inequality of Lemma 3.3.

Putting (50) and the �rst inequality of Lemma 3.3 into the seond estimate of Lemma

3.2, we get the seond one. The last one is a ombination of (50) and applying the

Cauhy-Shwarz inequality in the third estimate of Lemma 3.2.

Combining the �rst and the last inequalities of Lemma 3.3, we onlude that for

eah (t; x) 2 [0; T ℄� R
n
; 8u 2 U x

ad(t; T );

jJ(u; t; x)� J

� (u; t; x)j

� "8"6(1 + "

�1
2 "0)jxj

2 esssup
!

jM� j

+2jxj"8(T + 1)
q
"6(1 + "

�1
2 "0)

"
E

Ft sup
t�s�T

jX t;x;u
� (s)j2

#1=2
+"8"6(1 + "

�1
2 "0)jxj

2 esssup
!

Z T

0
jQ� j ds+ "8"

�1
2 "0jxj

2 esssup
s;!

jN� j(s):

(51)

Putting the seond inequality of Lemma 3.3 into this, we have that

jJ(u; t; x)� J

� (u; t; x)j

� "8"6(1 + "

�1
2 "0)jxj

2 esssup
!

jM� j+ 2jxj"8(T + 1)
q
"6(1 + "

�1
2 "0)

�

�
"7"6(1 + "

�1
2 "0)jxj

2 esssup
!

Z T

0
(jA� j+ jC� j2) ds

+"7"
�1
2 "0jxj

2 esssup
s;!

(jB� j+ jD� j2)(s)

�1=2
+"8"6(1 + "

�1
2 "0)jxj

2 esssup
!

Z T

0
jQ� j ds+ "8"

�1
2 "0jxj

2 esssup
s;!

jN� j(s)

(52)
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hold for eah (t; x) 2 [0; T ℄�R
n
; 8u 2 U x

ad(t; T ): Therefore, we have

jV (t; x)� V

� (t; x)j

� "8"6(1 + "

�1
2 "0)jxj

2 esssup
!

jM� j+ 2jxj"8(T + 1)
q
"6(1 + "

�1
2 "0)

�

�
"7"6(1 + "

�1
2 "0)jxj

2 esssup
!

Z T

0
(jA� j+ jC� j2) ds

+"7"
�1
2 "0jxj

2 esssup
s;!

(jB� j+ jD� j2)(s)

�1=2
+"8"6(1 + "

�1
2 "0)jxj

2 esssup
!

Z T

0
jQ� j ds+ "8"

�1
2 "0jxj

2 esssup
s;!

jN� j(s)

(53)

hold for eah (t; x) 2 [0; T ℄�R
n
:

In view of the assumptions of Theorem 2.1, (53) implies that for eah (t; x) 2

[0; T ℄�Rn, V (t; x) onverges to V 0(t; x) as  ! 0. Moreover, this onvergene is uniform

in (t; !). Hene, K onverges to some K0 in the Banah spae

L1
F
(0; T ;Sn

+) \ L
1(
;FT ; P ;C([0; T ℄;S

n
+)):

In the following, we show the strong onvergene of L . Note that (K�
; L

� ) satis�es

the BSDE8>><>>:
dK

� (t) = � [G(t;K
; L

)�G

� (t;K�
; L

� )℄ dt+
dX

i=1

L

�
i dwi;

K
� (T ) = M

�
:

(54)

Using Itô's formula, we have

EjK� j2(t) + E

Z T

t
jL� j2(s) ds

= EjM� j2 + E

Z T

t
K

� [G(s;K
; L

)�G

� (t;K�
; L

� )℄ ds:
(55)

Sine

jG(s;K
; L

)�G

� (t;K�
; L

� )j � "(1 + jLj2 + jL� j2) (56)

for some deterministi onstant " whih is independent of  and � , we have

E

Z T

t
jL� j2(s) ds � EjM� j2 + " esssup

s;!
jK� (s)jE

Z T

t
(1 + jL j2 + jL� j2) ds: (57)

From the seond a priori estimate of Lemma 2.1, we onlude that L onverges to some

L
0 strongly in L2

F
(0; T ;Sn). By passing to the limit in the BSRDE (A

; B
;C

i ; D

i ; i =

1; : : : ; d;Q
; N


;M

), we show that (K0
; L

0) solves the BSRDE (A0
; B

0;C0
i ; D

0
i ;

i = 1; : : : ; d;Q0
; N

0
;M

0).
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4 The Proof of Theorem 2.2.

This setion gives the proof of Theorem 2.2. The main idea is to do the inverse transfor-

mation:

f
K := K

�1
; (58)

whih turns out to satisfy a Riati equation whose generator depends on the martingale

term in a linear way.

First, sine D is inversable, we an rewrite the BSRDE (9) as8><>:
dK = �[� e

A

�
K �K

e
A +Q�K

e
BK

�1 e
B

�
K � LK

�1
L

+K e
BK

�1
L + LK

�1 e
B
�
K℄ dt+ Ldw;

K(T ) = M;

(59)

where e
A := �A +BD

�1
C;

e
B := �BD�1

:

Note that we have the following rule for the �rst and the seond di�erentials of the inverse

of a positive matrix as a matrix-valued funtion:

d

�
K

�1
�
= �K�1(dK)K�1

; d

2
�
K

�1
�
= 2K�1(dK)K�1(dK)K�1

: (60)

Using Itô's formula, we an write the equation for the inverse fK of K:(
d
f
K = �[fK e

A

� + e
A
f
K � f

KQ
f
K + e

B
f
K
e
B

� + e
B
e
L+ e

L
e
B

�℄ dt+ e
Ldw;f

K(T ) = M
�1
;

(61)

where e
L := �K�1

LK

�1
:

From Proposition 2.1, the above BSRDE
� e
A;Q

1=2; eB; 0; 0; Im�m;M�1
�
has a unique global

adapted solution (fK; eL) with
f
K 2 L1F (0; T ;S

n
+) \ L

1(
;FT ; P ;C([0; T ℄;S
n
+));

e
L 2 L2F(0; T ;S

n);

whih implies that fK�1(t) is uniformly positive in (t; !). Moreover, from the fat thatf
K(T ) = M

�1 � "

�1
1 In�n, we derive that fK is uniformly positive. This shows that fK�1(t)

is uniformly bounded. Therefore (K;L) is a global adapted solution to the BSRDE (9)

with
K := f

K
�1 2 L1

F
(0; T ;Sn+) \ L

1(
;FT ; P ;C([0; T ℄;S
n
+));

L := �fK�1 e
L
f
K
�1 2 L2

F
(0; T ;Sn):

The uniqueness results from the Feynman-Ka representation result Proposition 2.2.

In fat, assume that (K; bL) also solves the BSRDE (9). Then, from Proposition 2.2, we

see that

(K(t)x; x) = V (t; x) = (K(t)x; x); a:s:; 8(t; x) 2 [0; T ℄� R

n
:
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So, we have K(t) = 
K(t) almost surely for 8(t; x) 2 [0; T ℄� R

n
: Set

ÆK := K � 
K; ÆLi := Li �

b
Li; ÆG := G(t;K; L)�G(t; K; bL):

Then, we have ÆK = 0. Note that (ÆK; ÆL) satis�es the following BSDE:8>><>>:
dÆK(t) = �ÆG dt+

dX
i=1

ÆLi(t) dwi(t); 0 � t < T;

ÆK(T ) = 0:

(62)

From this, proeeding identially as in the last paragraph of Setion 3, we have

E

Z T

t
jÆLj2(s) ds � EjÆK(T )j2 + " esssup

s;!
jÆK(s)jE

Z T

t
(1 + jLj2 + jbLj2) ds = 0: (63)

Hene, ÆL = L� b
L = 0.

5 The Proof of Theorem 2.3

For the regular ase, the situation is a little omplex: we easily see that the above inverse

transformation on the �rst unknown variable an not eliminate the quadrati term of the

seond unknown variable. However, we an still solve some lasses of BSRDEs with the

help of doing some appropriate transformation.

Proposition 5.1. Assume that Q � A
�(D�1)�ND�1 + (D�1)�ND�1

A;m = n;

and D and N are positive onstant matries. Then, Theorem 2:3 holds.

Proof of Proposition 5.1. Write


N := (D�1)�ND�1

: (64)

Then, the BSRDE (7) reads8><>:
dK = �[A�

K +KA+Q� L(N +K)�1L℄ dt+ Ldw;

0 � t < T;

K(T ) = M:

(65)

The equation for K := 
N +K is8><>:

d

K = �[A�

K + 
KA +Q� A

�
N � 

NA� b
L

K

�1 b
L℄ dt+ b

Ldw;

0 � t < T;
K(T ) = 

N +M:

(66)

Note that N +M is uniformly positive. From Theorem 2.2, we see that the BSRDE (66)

has a unique global adapted solution (K; bL). Therefore (K � 
N;
b
L) is a global adapted

solution to the BSRDE (7).

Proposition 5.2. Assume that A = 0 and D and N are onstant matries. Then,

Theorem 2:3 holds.
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Proof of Proposition 5.2. First assume m = n. Consider the following approx-

imating BSRDEs:(
dK = �[Q� LD�(N +D

�

�KD�)
�1
D

�

�L℄ dt+ Ldw;

K(T ) = M

(67)

where

D� := D + �Im�m > 0; � > 0:

From Proposition 5.1, we see that the BSRDE (67) has a unique global adapted solution

(K�; L�) for every � > 0. From Proposition 2.2, K� an be represented as

(K�(t)x; x) = V�(t; x); 8(t; x) 2 [0; T ℄� R

n
: (68)

From Theorem 2.1, we see that K� uniformly onverges to some K 2 L1
F
(0; T ;Sn+) \

L
1(
;FT ; P ;C([0; T ℄;S

n
+)) and L� strongly onverges to some L 2 L2

F
(0; T ;Sn), and

that (K;L) is an adapted solution of the BSRDE (7) when A = 0.

Consider the ase n > m. Then onsider the n�n matries fD whose �rst m olumns

are D and whose last (n�m) olumns are zero olumn vetors, and f
N whih is de�ned

as f
N :=

 
R 0

0 I

!
:

The BSRDE (7) when A = 0 is rewritten as(
dK = �[Q� L

f
D(fN + f

D

�
K
f
D)�1fD�

L℄ dt+ Ldw;

K(T ) = M

From the preeding result, we obtain the desired existene result.

Consider the ase n < m. Then, there is a m�m orthogonal transformation matrix

T suh that

D = [D; 0℄T; 
D 2 Rn�n and is non-singular.

Write f
N := (T�1)�NT�1 :=

 
N11


N12

N
�

12

N22

!
> 0:

Then, N11 > 0: The BSRDE (7) when A = 0 is rewritten as(
dK = �[Q� L


D(fN11 + 

D

�
K

D)�1D�

L℄ dt+ Ldw;

K(T ) = M

From the preeding result, we obtain the desired existene result.

Proposition 5.3. Assume that A = 0; and D and N are piee-wisely onstant

Ft-adapted bounded matrix proesses. Then, Theorem 2:3 holds.

Proof of Proposition 5.3. Sine D and N are piee-wisely onstant Ft-adapted

bounded matrix proesses, there is a �nite partion:

0 =: t0 < t1 < � � � < tJ := T
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suh that on eah interval [ti; ti+1℄ � [0; T ℄, D and N are onstant Fti-measurable bounded

random matries. From Proposition 5.2, the BSRDE8><>:
dK = �[Q� LD(N +D

�
KD)�1D�

L℄ dt+ Ldw;

tJ�1 � t < T;

K(T ) = M

(69)

has a unique Ft-adapted solution (KJ
; L

J) with

K

J 2 L1F (tJ�1; T ;S
n
+) \ L

1(
;FT ; P ;C([tJ�1; T ℄;S
n
+)); L

J 2 L2
F(tJ�1; T ;S

n):

Assume that for some i = 2; : : : ; J; the BSRDE8><>:
dK = �[Q� LD(N +D

�
KD)�1D�

L℄ dt+ Ldw;

ti�1 � t < ti;

K(ti) = K
i+1(ti)

(70)

has a unique Ft-adapted solution (Ki
; L

i) with

K

i 2 L1
F
(ti�1; ti;S

n
+) \ L

1(
;Fti ; P ;C([ti�1; ti℄;S
n
+)); L

i 2 L2
F
(ti�1; ti;S

n):

Note that when i = J , we use the onvention K
J+1(tJ) := M . Then, we onlude from

Proposition 5.2 that the BSRDE8><>:
dK = �[Q� LD(N +D

�
KD)�1D�

L℄ dt+ Ldw;

ti�2 � t < ti�1;

K(ti�1) = K
i(ti�1)

(71)

has a unique Ft-adapted solution (Ki�1
; L

i�1) with

K

i�1 2 L1
F
(ti�2; ti�1;S

n
+)\ L

1(
;Fti�1 ; P ;C([ti�2; ti�1℄;S
n
+)); L

i�1 2 L2
F
(ti�2; ti�1;S

n):

In this both indutive and bakward way, we may de�ne J paires of proesses f(Ki
; L

i)gJi=1.

De�ne on the whole time interval [0; T ℄ the pair of Ft-adapted proesses (K;L) as follows:

K(t) :=
JX

i=1

K

i(t)�[ti�1;ti)(t); L(t) :=
JX

i=1

L

i(t)�[ti�1;ti)(t):

We see that (K;L) satis�es the BSRDE (7). We then obtain the desired existene result.

Proposition 5.4. Assume that A = 0: Then, Theorem 2:3 holds.

Proof of Proposition 5.4. For an arbitrary positive integer k, onsider the

2k-partion of the time interval. De�ne

D

k(t) = D

�
i� 1

2k
T

�
; 8t 2

�
i� 1

2k
T;

i

2k
T

�
; i = 1; 2; : : : ; 2k;

and

N

k(t) = N

�
i� 1

2k
T

�
; 8t 2

�
i� 1

2k
T;

i

2k
T

�
; i = 1; 2; : : : ; 2k:
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For eah k, Dk and N
k are are piee-wisely onstant, Ft-adapted, bounded matrix pro-

esses. Further, in view of (25), Dk(t) and N
k(t) onverge respetively to D and N ,

uniformly in (t; !): That is, we have

lim
k!1

esssup
!2


max
t2[0;T ℄

jDk(t)�D(t)j = 0; lim
k!1

esssup
!2


max
t2[0;T ℄

jNk(t)�N(t)j = 0:

From Proposition 5.3, we see that the BSRDE (0; 0; 0; Dk;Q;Nk;M) has a global adapted

solution (Kk
; L

k), and then from Theorem 2.1, we see that Theorem 2.3 holds.

Proof of Theorem 2.3. The ase A = 0 is solved by Proposition 5.4. For the

ase A 6= 0, onsider the following transformation

f
K := ��K�; e

L := ��L�

where � solves the di�erential equation8<:
d�

dt

(t) = A(t)�(t); t 2 (0; T ℄;

�(0) = In�n:

Using Itô's formula, we get the BSDE for (fK;
e
L):(

d
f
K(t) = �[ eQ� e

L
f
D(N + f

D
�f
K
f
D)�1f

D
e
L℄ dt+ e

Ldw(t); t 2 (0; T ℄;f
K(T ) = f

M

where e
Q := ��Q�; fM := �(T )�M�(T );fD := ��1

D. Note that the trajetories of fD are

still uniformly ontinuous like D. From Proposition 5.4, we see that the

BSRDE (0; 0; 0;fD; eQ;N; fM) has a global adapted solution (fK;
e
L), and thus the pair

((��)�1f
K��1

; (��)�1 e
L��1)

solves the original BSRDE (A; 0; 0; D;Q;N;M).

The uniqueness an be proved in the same way as in the proof of Theorem 2.2.

6 Appliation to Stohasti LQ Problems

6.1 The unonstrainted ase

Assume that

� 2 L

2(
;FT ; P ;R
n); q; f; gi 2 L

2
F
(0; T ;Rn): (72)

Consider the following optimal ontrol problem (denoted by P0):

min
u2L2

F
(0;T ;Rm)

J(u; 0; x) (73)
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with

J(u; t; x) = E

Ft(M(X t;x;u(T )� �); X t;x;u(T )� �)

+EFt

Z T

t
[(Q(X t;x;u � q); X t;x;u � q) + (Nu; u)℄ ds

(74)

and X t;x;u solving the equation8>><>>:
dX = (AX +Bu+ f) ds+

dX
i=1

(CiX +Diu+ gi) dwi; t < s � T;

X(t) = x; u 2 L2
F
(t; T ;Rm):

(75)

The value funtion V is de�ned as

V (t; x) := min
u2L2

F
(t;T ;Rm)

J(u; t; x); (t; x) 2 [0; T ℄�R

n
: (76)

De�ne � : [0; T ℄� Sn
+ � R

n�d ! R
m�n by

�(�; S; L) = �(N +
dX

i=1

D

�

i SDi)
�1(B�

S +
dX

i=1

D

�

i SCi +
dX

i=1

D

�

iLi): (77)

and

b
A := A+B�(�; K; L); bCi := Ci +Di�(�; K; L); i = 1; : : : ; d: (78)

Let ( ; �) be the Ft-adapted solution of the following BSDE8>><>>:
d (t) = �[ bA� +

dX
i=1

b
C

�

i (�i �Kgi)�Kf �
dX

i=1

Ligi +Qq℄ dt+
dX

i=1

�i dwi;

 (T ) = M�

(79)

where (K;L) is the unique Ft-adapted solution of the BSRDE (1). The following an be

veri�ed by a pure ompletion of squares.

Theorem 6.1 Suppose that the assumptions of Theorem 2.2 or Theorem 2.3 are

satis�ed. Let (K;L) be the unique Ft-adapted solution of BSRDE (1). Then, the optimal

ontrol bu for the non-homogeneous stohasti LQ problem P0 exists uniquely and has the

following feedbak law

bu = �(N +
dX

i=1

D

�

iKDi)
�1[(B�

K +
dX

i=1

D

�

iKCi +
dX

i=1

D

�

iLi)X
�B�

 +
dX

i=1

D

�

i (Kgi � �i)℄:

(80)

The value funtion V (t; x); (t; x) 2 [0; T ℄� R
n has the following expliit formula

V (t; x) = (K(t)x; x)� 2( (t); x) + V

0(t); (t; x) 2 [0; T ℄�R

n (81)
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with

V
0(t) := E

Ft(M�; �) + E

Ft

Z T

t
(Qq; q) ds� 2EFt

Z T

t
( ; f) ds

+EFt

Z T

t

dX
i=1

[(Kgi; gi)� 2(�igi)℄ ds

�EFt

Z T

t
((N +

dX
i=1

D

�

iKDi)u
0
; u

0) ds

(82)

and

u

0 := (N +
dX

i=1

D

�

iKDi)
�1[B�

 +
dX

i=1

D

�

i (�i �Kgi)℄; t � s � T: (83)

Proof Set

eu = u� �(�; K; L)X: (84)

Then the system (75) reads8>><>>:
dX = ( bAX +Beu+ f) ds+

dX
i=1

( bCiX +Dieu+ gi) dwi; t < s � T;

X(t) = x; u 2 L2
F
(t; T ;Rm):

(85)

Applying Itô's formula, we have the equation for X =: XX�:8>>>>>>>>>>>><>>>>>>>>>>>>:

dX = [ bAX + X b
A

� +X(Beu+ f)� + (Beu+ f)X�℄ ds

+
dX

i=1

[ bCiX
b
C

�

i +
b
CiX(Dieu+ gi)

� + b
CiX(Dieu+ gi)X

� b
C

�

i

+(Dieu+ gi)(Dieu+ gi)
�℄ ds

+
dX

i=1

[ bCiX + X b
C

�

i +X(Dieu+ gi)
� + (Dieu+ gi)X

�℄ dwi; t < s � T;

X (t) = xx
�
; u 2 L2

F
(t; T ;Rm):

(86)

Note that the BSRDE (1) an be rewritten as8>>>>>>><>>>>>>>:

�dK =

� b
A

�
K +K

b
A+

dX
i=1

b
C

�

iK
b
Ci +

dX
i=1

( bC�

i Li + Li
b
Ci) +Q

+�(t;K; L)�N�(t;K; L)

�
dt�

dX
i=1

Li dwi;

K(T ) = M:

(87)
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So, appliation of Itô's formula gives

E

Ft(MX(T ); X(T )) + E

Ft

Z T

t
([Q+ �(s;K; L)�N�(s;K; L)℄X;X) ds

= (K(t)X(t); X(t)) + 2EFt

Z T

t
(K(Beu+ f); X) ds

+EFt

Z T

t

dX
i=1

2(K(Dieu+ gi);
b
CiX) ds

+EFt

Z T

t

dX
i=1

(K(Dieu+ gi); Dieu+ gi) ds

+2EFt

Z T

t

dX
i=1

(Li(Dieu+ gi); X) ds;

and

E

Ft

"
(M�;X(T )) +

Z T

t
(Qq;X) ds

#

= E

Ft

"
 (T )X(T ) +

Z T

t
QqX ds

#
= ( (t); X(t)) + E

Ft

Z T

t
( ;Beu+ f) ds

+EFt

Z T

t

dX
i=1

(�i; Dieu+ gi) ds

+EFt

Z T

t
(

dX
i=1

b
C

�

iKgi +Kf +
dX

i=1

Ligi; X) ds:
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Combining the last two equations, we get

J(u; t; x)

= E

Ft

"
(M(X(T )� �); X(T )� �) +

Z T

t
(Q(X � q); X � q) ds+

Z T

t
(Nu; u) ds

#

= E

Ft

"
(MX(T ); X(T )) +

Z T

t
([Q+ �(s;K; L)�N�(s;K; L)℄X;X) ds

#

�2EFt

"
(M�;X(T )) +

Z T

t
(Qq;X) ds

#
+ E

Ft

"
(M�; �) +

Z T

t
(Qq; q) ds

#
+EFt

Z T

t
[(N eu; eu) + 2(N�(s;K; L)X; eu)℄ ds

= (KX(t); X(t))� 2( (t); X(t)) + E

Ft

"
(M�; �) +

Z T

t
(Qq; q) ds

#

+EFt

Z T

t

dX
i=1

(K(Dieu+ gi); Dieu+ gi) ds+ E

Ft

Z T

t
(N eu; eu) ds

�2EFt

Z T

t
( ;Beu+ f) ds� 2EFt

Z T

t

dX
i=1

(�i; Dieu+ gi) ds

= (K(t)x; x)� 2( (t); x) + E

Ft

"
(M�; �) +

Z T

t
(Qq; q) ds

#

�2EFt

Z T

t
( ; f) ds+ E

Ft

Z T

t

dX
i=1

[(Kgi; gi)� 2(�i; gi)℄ ds

+EFt

Z T

t
((N +

dX
i=1

D

�

iKDi)(eu� u

0); eu� u

0) ds

�EFt

Z T

t
((N +

dX
i=1

D

�

iKDi)u
0
; u

0) ds:

This ompletes the proof.

6.2 The onstrainted ase

Fix xT 2 R
n. De�ne

Uad(t; x) := fu 2 L2
F
(t; T ;Rm) : EX t;x;u(T ) = xTg; 8(t; x) 2 [0; T ℄� R

n
; (88)

where X t;x;u solving the equation (75). Then, onsider the following onstrainted LQ

problem (denoted by P t;x
 ):

inf
u2Uad(0;x)

J(u; 0; x) (89)

where the ost funtional J(u; t; x) is de�ned by (74). Note that the set of admissible

ontrols Uad(t; x) ontains the terminal expeted onstraint.

Let 	(�; t) be the unique solution of the SDE:8>><>>:
dYs = A(s)Ys ds+

dX
i=1

Ci(s)Ys dwi(s); t � s � T;

Yt = In�n:

(90)
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To guarantee that Uad(t; x) is not empty, assume that the matrix

� := E

Z T

0
E

Fs	(T; s)B(s)B�(s)EFs	�(T; s) ds (91)

is nonsingular. Then, 8x 2 R
n, the following ontrol

u(s) := B

�(s)EFs	�(T; s)��1[xT � E

Z T

t
	(T; s)f(s) ds℄; s 2 (t; T ℄; (92)

belongs to Uad(t; x).

We have the following existene result.

Theorem 6.2. Let the assumptions of Theorem 2.2 or Theorem 2.3 be satis�ed.

Assume that Uad(0; x) is not empty. Then, the problem P0;x
 has a unique optimal ontol.

Proof of Theorem 6.2. The proof is similar to that of Kohlmann and Tang [12℄.

The main idea is to hoose a sequene fuk; k = 1; 2; : : :g suh that

u

k 2 Uad(0; x); lim
k!1

J(uk; 0; x) = inf
u2Uad(0;x)

J(u; 0; x):

Then, we prove that this sequene is a Cauhy sequene by using the uniform onvexity

of the ost funtional J(u; 0; x) in the ontrol u. This uniform onvexity is obvious for

the regular ase, and has been proved for the singular ase by Kohlmann and Tang [12℄.

The details are left to the reader.

Due to the limitation of spae, we will in what follows just sketh how to solve the

unique optimal ontrol of Theorem 6.2 in terms of the solution of the assoiated BSRDE.

Using the stohasti maximum priniple (see Peng [20℄, and Tang and Li [27℄, for

example), we have the following. Let eu be the optimal ontrol, and fX := X
0;x;eu. Then,

there is some � 2 Rn, and a pair of proesses (ep; eq), suh that8>><>>:
dep = �[A� ep+Q(fX � q) +

dX
i=1

C

�

i
eqi℄ ds+ dX

i=1

eqi dwi; 0 < s � T;

ep(T ) = M(fX(T )� �)� �

(93)

and

B

� ep+ dX
i=1

D

�

i
eqi +N eu = 0: (94)

Using Itô's formula and the equality (94), we get the equation for e := K
f
X � ep:8>><>>:

d
e
 (t) = �[ bA� e +

dX
i=1

b
C

�

i (
e
�i �Kgi)�Kf �

dX
i=1

Ligi +Qq℄ dt+
dX

i=1

e
�i dwi;e

 (T ) = M� + �

(95)
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where (K;L) is the unique Ft-adapted solution of the BSRDE (1), and the expliit formula

of the optimal ontrol:

eu = �(N +
dX

i=1

D

�

iKDi)
�1[(B�

K +
dX

i=1

D

�

iKCi +
dX

i=1

D

�

iLi)X
�B� e

 +
dX

i=1

D

�

i (Kgi �
e
�i)℄

(96)

where the Lagrange multiple � is determined suh that the terminal onstraint EfX(T ) =

xT is satis�ed.

6.3 A omment on appliation of the LQ theory in mathematial

�nane

One-dimensional singular LQ problems arise from mathematial �nane. The mean-

variane hedging problem and the dynami version of Markowitz's mean-variane portfolio

seletion problem, are one-dimensional singular LQ problems.

The mean-variane hedging problem was initially introdued by F�ollmer and Son-

dermann [7℄, and later was widely studied among others by DuÆe and Rihardson [5℄,

F�ollmer and Shweizer [8℄, Shweizer [23, 24, 25℄, Hipp [11℄, Monat and Striker [16℄,

Pham, Rheinl�ander and Shweizer [21℄, Gourieroux, Laurent and Pham [10℄, and Lau-

rent and Pham [15℄. All of these works are based on a projetion argument. Reently,

Kohlmann and Zhou [14℄ used a natural LQ theory approah to solve the ase of determin-

isti market onditions. Kohlmann and Tang [12, 13℄ used a natural LQ theory approah

to solve the ase of stohasti market onditions, and the optimal hedging portfolio and

the variane-optimal martingale measure are haraterized in terms of the solution of the

assoiated BSRDE.

The ontinuous time mean-variane portfolio seletion problem was initially onsid-

ered by Rihardson [22℄. The reader is referred to Zhou and Li [29℄ for reent developments

on this problem.
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