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Abstra
t

Multi-dimensional ba
kward sto
hasti
 Ri

ati di�erential equations (BSRDEs

in short) are studied. A 
losed property for solutions of BSRDEs with respe
t to

their 
oeÆ
ients is stated and is proved for general BSRDEs, whi
h is used to obtain

the existen
e of a global adapted solution to some BSRDEs. The global existen
e

and uniqueness results are obtained for two 
lasses of BSRDEs, whose generators


ontain a quadrati
 term of L (the se
ond unknown 
omponent). More spe
i�
ally,

the two 
lasses of BSRDEs are (for the regular 
ase N > 0)(
dK = �[A�K +KA+Q� LD(N +D�KD)�1D�L℄ dt+ Ldw;

K(T ) = M

and (for the singular 
ase)8><>:
dK = �[A�K +KA+ C�KC +Q+ C�L+ LC

�(KB + C�KD + LD)(D�KD)�1(KB + C�KD + LD)�℄ dt+ Ldw;

K(T ) = M:

This partially solves Bismut-Peng's problem whi
h was initially proposed by Bis-

mut (1978) in the Springer yellow book LNM 649. The arguments given in this

paper are 
ompletely new, and they 
onsist of some simple te
hniques of algebrai


transformations and dire
t appli
ations of the 
losed property mentioned above.

We make full use of the spe
ial stru
ture (the nonnegativity of the quadrati
 term,

for example) of the underlying Ri

ati equation. Appli
ations in optimal sto
hasti



ontrol are exposed.
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1 Introdu
tion

Let (
;F ; P; fFtgt�0) be a �xed 
omplete probability spa
e on whi
h is de�ned a standard

d-dimensional Ft-adapted Brownian motion w(t) � (w1(t); � � � ; wd(t))
�. Assume that

Ft is the 
ompletion, by the totality N of all null sets of F , of the natural �ltration

fFw
t g generated by w. Denote by fF2

t ; 0 � t � Tg the P -augmented natural �ltration

generated by the (d � d0)-dimensional Brownian motion (wd0+1; : : : ; wd). Assume that

all the 
oeÆ
ients A;B;Ci; Di are Ft-progressively measurable bounded matrix-valued

pro
esses, de�ned on 
 � [0; T ℄; of dimensions n � n; n � m;n � n; n � m respe
tively.

Also assume thatM is an FT -measurable nonnegative bounded n�n random matrix, and

Q and N are Ft-progressively measurable, bounded, nonnegative and uniformly positive,

n� n and m�m matrix pro
esses, respe
tively.

Consider the following ba
kward sto
hasti
 Ri

ati di�erential equation

(BSRDE in short):8>>>>>>>>>>>><>>>>>>>>>>>>:

dK = �[A�K +KA +
dX

i=1

C

�

iKCi +Q+
dX

i=1

(C�

i Li + LiCi)

�(KB +
dX

i=1

C

�

iKDi +
dX

i=1

LiDi)(N +
dX

i=1

D

�

iKDi)
�1

�(KB +
dX

i=1

C

�

iKDi +
dX

i=1

LiDi)
�℄ dt+

dX
i=1

Li dwi; 0 � t < T;

K(T ) = M:

(1)

It will be 
alled the BSRDE (A;B;Ci; Di; i = 1; : : : ; d;Q;N;M) in the following for 
onve-

nien
e of indi
ating the asso
iated 
oeÆ
ients. When the 
oeÆ
ients A;B;Ci; Di; Q;N;M

are all deterministi
, then L1 = � � � = Ld = 0 and the BSRDE (1) redu
es to the following

nonlinear matrix ordinary di�erential equation:8>>>>>>>>><>>>>>>>>>:

dK = �[A�K +KA+
dX

i=1

C

�

iKCi +Q� (KB +
dX

i=1

C

�

iKDi)

�(N +
dX

i=1

D

�

iKDi)
�1(KB +

dX
i=1

C

�

iKDi)
�℄ dt;

0 � t < T;

K(T ) = M;

(2)

whi
h was 
ompletely solved by Wonham [28℄ by applying Bellman's prin
iple of quasi-

linearization and a monotone 
onvergen
e approa
h. Bismut [2, 3℄ initially studied the


ase of random 
oeÆ
ients, but he 
ould solve only some spe
ial simple 
ases. He always

assumed that the randomness of the 
oeÆ
ients only 
omes from a smaller �ltration fF2
t g,

whi
h leads to L1 = � � � = Ld0 = 0. He further assumed in his paper [2℄ that

Cd0+1 = � � � = Cd = 0; Dd0+1 = � � � = Dd = 0; (3)
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under whi
h the BSRDE (1) be
omes the following one:8>>>>>>>>>>>>><>>>>>>>>>>>>>:

dK = �[A�
K +KA+

d0X
i=1

C

�

iKCi +Q

�(KB +
d0X
i=1

C

�

iKDi)(N +
d0X
i=1

D

�

iKDi)
�1(KB +

d0X
i=1

C

�

iKDi)
�℄ dt

+
dX

i=d0+1

Li dwi; 0 � t < T;

K(T ) = M;

(4)

and the generator does not involve L at all. In his work [3℄ he assumed that

Dd0+1 = � � � = Dd = 0; (5)

under whi
h the BSRDE (1) be
omes the following one8>>>>>>>>>>>>><>>>>>>>>>>>>>:

dK = �[A�
K +KA+

dX
i=1

C

�

iKCi +Q +
dX

i=d0+1

(C�

i Li + LiCi)

�(KB +
d0X
i=1

C

�

iKDi)(N +
d0X
i=1

D

�

iKDi)
�1(KB +

d0X
i=1

C

�

iKDi)
�℄ dt

+
dX

i=d0+1

Li dwi; 0 � t < T;

K(T ) = M;

(6)

and the generator depends on the se
ond unknown variable (Ld0+1; : : : ; Ld)
� in a linear

way. Moreover his method was rather 
ompli
ated. Later, Peng [18℄ gave a ni
e treat-

ment on the proof of existen
e and uniqueness for the BSRDE (6), by using Bellman's

prin
iple of quasi-linearization and a method of monotone 
onvergen
e|a generalization

of Wonham's approa
h to the random situation.

As early as in 1978, Bismut [3℄ 
ommented on page 220 that:"Nous ne pourrons pas

d�emontrer l'existen
e de solution pour l'�equation (2.49) dans le 
as g�en�eral." (We 
ould

not prove the existen
e of solution for equation (2.49) for the general 
ase.) On page

238, he pointed out that the essential diÆ
ulty for solution of the general BSRDE (1) lies

in the integrand of the martingale term whi
h appears in the generator in a quadrati


way. Two de
ades later in 1998, Peng [19℄ in
luded the above problem in his list of open

problems on BSDEs. Re
ently, Kohlmann and Tang [13℄ solved the one dimensional 
ase

of the above Bismut-Peng's problem.

In this paper, we prove the global existen
e and uniqueness result for BSRDE (1)

for the following spe
ial multi-dimensional 
ase:

d = 1; B = C = 0:

That is, we solve the following BSRDE8><>:
dK = �[A�

K +KA +Q� LD(N +D

�
KD)�1D�

L℄ dt+ Ldw;

0 � t < T;

K(T ) = M:

(7)
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This BSRDE is spe
ial but typi
al, for the generator 
ontains a quadrati
 term on L.

This result is stated as Theorem 2.3.

Consider then the 
ase where the 
ontrol weight matrixN redu
es to zero. Kohlmann

and Zhou [14℄ dis
ussed su
h a 
ase. However, their 
ontext is rather restri
ted, as they

make the following assumptions: (a) all the 
oeÆ
ients involved are deterministi
; (b)

C1 = � � � = Cd = 0; D1 = � � � = Dd = Im�m; and M = I;(
) A + A
� � BB

�. Their argu-

ments are based on applying a result of Chen, Li and Zhou [4℄. Kohlmann and Tang [12℄


onsidered a general framework along those analogues of Bismut [3℄ and Peng [18℄, whi
h

has the following features: (a) the 
oeÆ
ients A;B;C;D;N;Q;M are allowed to be ran-

dom, but are only F2
t -progressively measurable pro
esses or F2

T -measurable random vari-

able; (b) the assumptions in Kohlmann and Zhou [14℄ are dispensed with or generalised;

(
) the 
ondition (5) is assumed to be satis�ed. Kohlmann and Tang [12℄ obtained a

general result and generalised Bismut's previous result on existen
e and uniqueness of a

solution of BSRDE (6) to the singular 
ase under the following additional two assump-

tions:

M � "In�n;

dX
i=1

D

�

iDi(t) � "Im�m for some deterministi
 
onstant " > 0: (8)

Kohlmann and Tang [13℄ proved the existen
e and uniqueness result for the one-dimensional

singular 
ase N = 0 under the assumption (8), but for a more general framework of the

following features: the 
oeÆ
ients A;B;C;D;N;Q;M are allowed to be Ft-progressively

measurable pro
esses or FT -measurable random variable, and the 
oeÆ
ient D is not ne
-

essarily zero. In this paper we obtain the global existen
e and uniqueness for the following

multi-dimensional singular 
ase:

d = 1; D

�
D � "Im�m; M � "In�n for some deterministi
 
onstant " > 0:

That is, we solve the following BSRDE:8>>><>>>:
dK = �[A�

K +KA+ C

�
KC +Q+ C

�
L+ LC

�(KB + C

�
KD + LD)(D�

KD)�1(KB + C

�
KD + LD)�℄ dt+ Ldw;

0 � t < T;

K(T ) = M:

(9)

This result is stated as Theorem 2.2.

The BSRDE (1) arises from solution of the optimal 
ontrol problem

inf
u(�)2L2

F
(0;T ;Rm)

J(u; 0; x) (10)

where for t 2 [0; T ℄ and x 2 Rn,

J(u; t; x) := E

Ft[
Z T

t
[(Nu; u) + (QX t;x;u

; X

t;x;u)℄ ds+ (MX

t;x;u(T ); X t;x;u(T ))℄ (11)

and X t;x;u(�) solves the following sto
hasti
 di�erential equation8>><>>:
dX = (AX +Bu) ds+

dX
i=1

(CiX +Diu) dwi; t � s � T;

X(t) = x:

(12)
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The following 
onne
tion is well known: if the BSRDE (1) has a solution (K;L), the

solution for the above linear-quadrati
 optimal 
ontrol problem (LQ problem in

short) has the following 
losed form (also 
alled the feedba
k form):

u(t) = �(N +
dX

i=1

D

�

iKDi)
�1[B�

K +
dX

i=1

D

�

iKCi +
dX

i=1

D

�

iLi℄X(t) (13)

and the asso
iated value fun
tion V is the following quadrati
 form

V (t; x) := inf
u2L2

F
(t;T ;Rm)

J(u; t; x) = (K(t)x; x); 0 � t � T; x 2 Rn
: (14)

In this way, on one hand, solution of the above LQ problem is redu
ed to solving the

BSRDE (1). On the other hand, the formula (14) a
tually provides a representation|of

Feynman-Ka
 type| for the solution of BSRDE (1). The reader will see that this kind

of representation plays an important role in the proofs given here for Theorems 2.1, 2.2

and 2.3.

The arguments given in this paper are 
ompletely new. They results from two

observations. The �rst one is that in the following simple 
ase

A = B = C = 0; d = 1; m = n;

D is nonsingular, and D and N are 
onstant matri
es,
(15)

the diÆ
ult quadrati
 term of L 
an be removed by doing some simple algebrai
 transfor-

mation, and the resulting BSRDE is globally solvable in view of the result of Bismut [3℄

and Peng [18℄. As a 
onsequen
e, the above simple 
ase is globally solvable. However, this


ase is too restri
ted. Then 
omes out the se
ond observation: by using some other tri
ks

and by applying the 
losedness theorem 2.1, some more general 
ases 
an be atta
ked.

Spe
i�
ally, the following restri
tions

A = 0; m = n; and D is nonsingular (16)

are all removed, and the restri
ted assumption

D and N are 
onstant matri
es (17)

is improved. For the singular 
ase, we only have the one restri
tion d = 1 remained.

Theorem 2.1 provides a way to obtain the solvability of more general BSRDEs from that

of simple ones. We hope that Bismut-Peng's problem will be 
ompletely solved in the

near future, by using the above-mentioned methodology.

The rest of the paper is organized as follows. Se
tion 2 
ontains a list of notation

and two preliminary propositions, and the statement of the main results whi
h 
onsist of

Theorems 2.1-2.3. The proofs of these three theorems are given in Se
tions 3-5, respe
-

tively. Finally, in Se
tion 6, appli
ation of Theorems 2.2 and 2.3 is given to the regular

and singular sto
hasti
 LQ problems, both with and without 
onstraints.
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2 Preliminaries and the Main Results

Let (
;F ; P; fFtgt�0) be a �xed 
omplete probability spa
e on whi
h is de�ned a standard

d-dimensional Ft-adapted Brownian motion w(t) � (w1(t); � � � ; wd(t))
�. Assume that

Ft is the 
ompletion, by the totality N of all null sets of F , of the natural �ltration

fFw
t g generated by w. Denote by fF2

t ; 0 � t � Tg the P -augmented natural �ltration

generated by the (d � d0)-dimensional Brownian motion (wd0+1; : : : ; wd). Assume that

all the 
oeÆ
ients A;B;Ci; Di are Ft-progressively measurable bounded matrix-valued

pro
esses, de�ned on 
 � [0; T ℄; of dimensions n � n; n � m;n � n; n � m respe
tively.

Also assume that M is an FT -measurable, nonnegative, and bounded n � n random

matrix. Assume that Q and N are Ft-progressively measurable, bounded, nonnegative

and uniformly positive, n� n and m�m matrix pro
esses, respe
tively.

Notation. Throughout this paper, the following additional notation will be used:

M
� : the transpose of any ve
tor or matrix M ;

jM j : =
qP

ijm
2
ij for any ve
tor or matrix M = (mij);

(M1;M2) : the inner produ
t of the two ve
tors M1 and M2;

R
n : the n-dimensional Eu
lidean spa
e;

R+ : the set of all nonnegative real numbers;

Sn : the Eu
lidean spa
e of all n� n symmetri
 matri
es;

Sn
+ : the set of all n� n nonnegative de�nite matri
es;

C([0; T ℄;H) : the Bana
h spa
e of H-valued 
ontinuous fun
tions on [0; T ℄,

endowed with the maximum norm for a given Hilbert spa
e H;

L2
F
(0; T ;H) : the Bana
h spa
e of H-valued Ft-adapted square-integrable

sto
hasti
 pro
esses f on [0; T ℄, endowed with the norm

(E
R T
0 jf(t)j

2
dt)1=2 for a given Eu
lidean spa
e H;

L1
F
(0; T ;H) : the Bana
h spa
e of H-valued, Ft-adapted, essentially

bounded sto
hasti
 pro
esses f on [0; T ℄, endowed with the

norm ess supt;! jf(t)j for a given Eu
lidean spa
e H;

L
2(
;F ; P ;H) : the Bana
h spa
e of H-valued norm-square-integrable random

variables on the probability spa
e (
;F ; P ) for a given

Bana
h spa
e H;

and L
1(
;F ; P ;C([0; T ℄;Rn)) is the Bana
h spa
e of C([0; T ℄;Rn)-valued, essentially

maximum-norm-bounded random variables f on the probability spa
e (
;F ; P ), endowed

with the norm ess sup!2
max0�t�T jf(t; !)j.

Proposition 2.1. Assume that all the 
oeÆ
ients A;B;Ci; Di are F
2
t -progressively

measurable bounded matrix-valued pro
esses, de�ned on 
�[0; T ℄; of dimensions n�n; n�

m;n� n; n�m respe
tively. Also assume that M is an F2
T -measurable, nonnegative, and

bounded n � n random matrix. Assume that Q and N are F2
t -progressively measurable,

bounded, nonnegative and uniformly positive, n� n and m�m matrix pro
esses, respe
-

tively. Then, the BSRDE (6) has a unique F2
t -adapted global solution (K;L) with

K 2 L1
F2(0; T ;S

n
+) \ L

1(
;F2
T ; P ;C([0; T ℄;S

n
+)); L 2 L2

F2(0; T ;S
n):

Proposition 2.1 is due to Bismut [3℄ and Peng [18℄, and the reader is referred to
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Bismut [3℄ and Peng [18℄ for the proof.

Consider the optimal 
ontrol problem

inf
u(�)2L2

F
(0;T ;Rm)

J(u; 0; x) (18)

where for t 2 [0; T ℄ and x 2 R
n,

J(u; t; x) := E

Ft[
Z T

t
[(Nu; u) + (QX t;x;u

; X

t;x;u)℄ ds+ (MX

t;x;u(T ); X t;x;u(T ))℄ (19)

and X t;x;u(�) solves the following sto
hasti
 di�erential equation8>><>>:
dX = (AX +Bu) ds+

dX
i=1

(CiX +Diu) dwi; t � s � T;

X(t) = x:

(20)

Proposition 2.2. Let (K;L) be an Ft-adapted solution of the BSRDE (1) with

K 2 L1
F
(0; T ;Sn) \ L1(
;FT ; P ;C([0; T ℄;Sn)); L 2 L2

F
(0; T ;Sn);

and N(t) +
Pd

i=1D
�

iKDi(t) being uniformly positive. Then,

(K(t)x; x) = V (t; x) := inf
u2L2

F
(t;T ;Rm)

J(u; t; x); 8x 2 R

n
:

This proposition is a spe
ial 
ase of Theorem 6.1, and the reader is referred to

Se
tion 6 for the proof.

The main results of this paper are stated by the following three theorems.

Theorem 2.1. Assume that 8
 � 0 the 
oeÆ
ients A

; B



; C



i ; D



i ; Q



; and N
 are

Ft-progressively measurable matrix-valued pro
esses, de�ned on 
� [0; T ℄; of dimensions

n � n; n �m;n � n; n �m;n � n; and m �m; respe
tively. Assume that M
 is an FT -

measurable and nonnegative n�n random matrix. Assume that Q
 is a:s:a:e: nonnegative.

Assume that there are two deterministi
 positive 
onstants "1 and "2 whi
h are independent

of the parameter 
, su
h that

jA
(t)j; jB
(t)j; jC

i (t)j; jD



i (t)j; jQ


(t)j; jN
(t)j; jM
j � "1

and

N


 � "2Im�m:

Assume that as 
 ! 0, A
(t); B
(t); C

i (t); D



i (t); Q


(t), and N

(t) 
onverge uniformly

in (t; !) to A0(t); B0(t); C0
i (t); D

0
i (t); Q

0(t) and N0(t), respe
tively. Assume that M
 uni-

formly in ! 
onverges toM0 as 
 ! 0. Assume that 8
 > 0 the BSRDE (A

; B


;C


i ; D



i ; i =

1; : : : ; d;Q

; N



;M


) has a unique Ft-adapted global solution (K

; L


) with

K


 2 L1
F
(0; T ;Sn

+) \ L
1(
;FT ; P ;C([0; T ℄;Sn

+)); L


 2 L2
F
(0; T ;Sn):

7



Then, there is a pair of pro
esses (K;L) with

K 2 L1
F
(0; T ;Sn

+) \ L
1(
;FT ; P ;C([0; T ℄;S

n
+)); L 2 L2

F
(0; T ;Sn);

su
h that

lim

!0

K


 = K strongly in L1
F
(0; T ;Sn

+) \ L
1(
;FT ; P ;C([0; T ℄;S

n
+));

lim

!0

L


 = L strongly in L2
F
(0; T ;Sn);

(21)

and su
h that (K;L) is a unique Ft-adapted solution of the

BSRDE (A0
; B

0
; C

0
; D

0
; Q

0
; N

0
;M

0).

If the above assumption of uniform 
onvergen
e of (A

; C



; Q



;M


) is repla
ed with

the following one:

lim

!0

esssup
!2


Z T

0
(jA
 � A

0j+ jC
 � C

0j2 + jQ
 �Q

0j) ds+ jM
 �M

0j ! 0: (22)

then the above assertions still hold.

Remark 2.1. When the assumption of uniform positivity on the 
ontrol weight ma-

trix N is relaxed to nonnegativity, Theorem 2.1 still holds with the additional assumption

that there is a deterministi
 positive 
onstant "3 su
h that

dX
i=1

(D

i )
�
D



i � "3Im�m; M


 � "3In�n:

Theorem 2.2. (the singular 
ase) Assume that d = 1 and Q(t) � 0. Also

assume that there is a deterministi
 positive 
onstant "3 su
h that

M � "3In�n (23)

and

D

�
D(t) � "3Im�m: (24)

Then, the BSRDE (9) has a unique Ft-adapted global solution (K;L) with

K 2 L1
F
(0; T ;Sn

+) \ L
1(
;FT ; P ;C([0; T ℄;S

n
+)); L 2 L2

F
(0; T ;Sn);

and K(t; !) being uniformly positive w.r.t. (t; !):

Theorem 2.3. (the regular 
ase) Assume that d = 1;M � 0; Q(t) � 0 and

N(t) � "3Im�m for some positive 
onstant "3 > 0: Further assume that B = C = 0, and

D and N satisfy the following

lim
h!0+

esssup
!2


max
t1;t22[0;T ℄; jt1�t2j�h

jD(t1)�D(t2)j = 0;

lim
h!0+

esssup
!2


max
t1;t22[0;T ℄; jt1�t2j�h

jN(t1)�N(t2)j = 0:
(25)

Then, the BSRDE (7) has a unique Ft-adapted global solution (K;L) with

K 2 L1
F
(0; T ;Sn

+) \ L
1(
;FT ; P ;C([0; T ℄;S

n
+)); L 2 L2

F
(0; T ;Sn):

The proofs of the above three theorems are given in Se
tions 3, 4, and 5, respe
tively.
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3 The Proof of Theorem 2.1.

For 8(t;K; L) 2 [0; T ℄� Sn
+ � (Sn)d, write

F

(t;K; L) := �[KB
(t) +

dX
i=1

C



i (t)

�
KD



i (t) +

dX
i=1

LiD


i (t)℄

�[N
(t) +
dX

i=1

D



i (t)

�
KD



i (t)℄

�1

�[KB
(t) +
dX

i=1

C



i (t)

�
KD



i (t) +

dX
i=1

LiD


i (t)℄

�
:

(26)

The generator of the BSRDE (A

; B


;C

i ; D



i ; i = 1; : : : ; d;Q


; N


;M


) is

G

(t;K; L) := (A
)�K +KA


 +
dX

i=1

(C


i )
�
KC



i +Q




+
dX

i=1

((C

i )
�
Li + LiC



i ) + F


(t;K; L):

(27)

We have the following a priori estimates.

Lemma 3.1. Let the set of 
oeÆ
ients (A

; B


;C


i ; D



i ; i = 1; : : : ; d;Q


; N


;M


)

satisfy the assumptions made in Theorem 2.1, and let (K

; L


) be a global adapted solution

to the BSRDE (A

; B


 ;C


i ; D



i ; i = 1; : : : ; d;Q


; N


;M


) with

K


 2 L1
F
(0; T ;Sn) \ L1(
;FT ; P ;C([0; T ℄;S

n)); L


 2 L2
F
(0; T ;Sn);

and N(t)+
Pd

i=1D
�

iKDi(t) being uniformly positive. Then, there is a deterministi
 positive


onstant "0 whi
h is independent of 
; su
h that 8
 � 0; the following estimates hold:

0 � K


(t) � "0In�n; E

Ft

 Z T

t
jL
 j2 ds

!p

� "0; 8p � 1: (28)

Proof of Lemma 3.1. From Proposition 2.2, we see that K
 � 0. Note that

(K

; L


) satis�es the BSRDE:8>>>>>>><>>>>>>>:

dK

 = �

�
(A
)�K
 +K



A


 +
dX

i=1

(C

i )
�
K



C



i +Q


 +
dX

i=1

((C

i )
�
L



i + L



iC



i )

+F 
(t;K

; L


)

�
dt+

dX
i=1

L



i dwi; 0 � t < T;

K


(T ) = M


:

(29)

Using Itô's formula, we get8>>>>>>>>>>>><>>>>>>>>>>>>:

djK
j2 = �

�
4 tr

h
(K
)2A


i
+

dX
i=1

2 tr [K
(C


i )
�
K



C



i ℄ + 2 tr (K


Q


)

+
dX

i=1

4 tr (K

L



iC



i ) + 2 tr [K


F


(t;K

; L


)℄� jL
 j2
�
dt

+
dX

i=1

2 tr (K

L



i ) dwi; 0 � t < T;

jK
j2(T ) = jM
j2:

(30)
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We observe that sin
e

F


(t;K

; L


) � 0; K


 � 0;

we have

2 tr [K

F


(t;K

; L


)℄ = 2 tr
h
(K
)

1

2
F


(t;K

; L


) (K
)
1

2

i
� 0: (31)

Hen
e,

jK
j2(t) +
Z T

t
jL
j2 ds � jM
 j2 +

Z T

t

�
4 tr

h
(K
)2A


i
+

dX
i=1

2 tr [K
(C


i )

�
K



C



i ℄

+2 tr (K

Q


) +
dX

i=1

4 tr (K

L



iC



i )

�
ds

�

Z T

t

dX
i=1

2 tr (K

L



i ) dwi; 0 � t < T:

(32)

Using the elementary inequality

2ab � a

2 + b

2

and taking the expe
tation on both sides with respe
t to Fr for r � t, we obtain that

E

Fr jK
 j2(t) +
1

2
E

Fr

Z T

t
jL
 j2 ds � "4 + "4

Z T

t
E

Fr jK
j2(s) ds; 0 � r � t < T: (33)

Using Gronwall's inequality, We derive from the last inequality the �rst one of the esti-

mates (28). In return, we derive from the se
ond last inequality that

Z T

t
jL
j2 ds � "5 + "5

Z T

0
jL
 j ds�

Z T

t

dX
i=1

2 tr (K

L



i ) dwi: (34)

Therefore,

E

Ft

 Z T

t
jL
j2 ds

!p

� 3p
"
"

p
5 + "

p
5E

Ft

 Z T

t
jL
j ds

!p

+ E

Ft

���� Z T

t

dX
i=1

2trK

L



i dwi

����p
#
: (35)

We have from the Burkholder-Davis-Gundy inequality the following

E

Ft

���� Z T

t

dX
i=1

2 tr (K

L



I ) dwi

����p� 2pEFt

���� Z T

t
jK
j2jL
j2 ds

����p=2;
while from the Cau
hy-S
hwarz inequality, we have

E

Ft

 Z T

t
jL
 j ds

!p

� T

p=2
E

Ft

 Z T

t
jL
 j2 ds

!p=2

:

Finally, we get

E

Ft

 Z T

t
jL
 j2 ds

!p

� 3p"
p
5 + [3pT p=2

"

p
5 + 6pnp=2

"

p
0℄E

Ft

 Z T

t
jL
j2 ds

!p=2

; (36)
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whi
h implies the last estimate of the lemma.

Now, 
onsider the optimal 
ontrol problem

Problem P
 inf
u(�)2L2

F
(0;T ;Rm)

J


(u; 0; x) (37)

where for t 2 [0; T ℄ and x 2 R
n,

J


(u; t; x) := E

Ft [
Z T

t
[(N


u; u) + (Q

X

t;x;u

 ; X

t;x;u

 )℄ ds+ (M


X

t;x;u

 (T ); X t;x;u


 (T ))℄ (38)

and X t;x;u

 (�) solves the following sto
hasti
 di�erential equation8>><>>:

dX = (A

X +B



u) ds+

dX
i=1

(C

i X +D



i u) dwi; t � s � T;

X(t) = x:

(39)

The asso
iated value fun
tion V 
 is de�ned as

V


(t; x) := inf
u(�)2L2

F
(t;T ;Rm)

J


(u; t; x): (40)

Then, from Proposition 2.2, we have

(K
(t)x; x) = V


(t; x); 8(t; x) 2 [0; T ℄�R

n
:

From the a priori estimates result Lemma 3.1, we have

V


(t; x) � "0jxj
2
; 8(t; x) 2 [0; T ℄� R

n
:

So, the optimal 
ontrol bu
 for the problem P
 satis�es

"2E
Ft

Z T

t
jbu
j2 ds = E

Ft

Z T

t
(N
 bu
; bu
) ds � "0jxj

2
:

Set

U x
ad(t; T ) :=

(
u 2 L2

F
(t; T ;Rm) : "2E

Ft

Z T

t
juj2 ds � "0jxj

2

)
; 8x 2 R

n
: (41)

Then, we have

V


(t; x) := inf
u(�)2U x

ad
(t;T )

J


(u; t; x): (42)

De�ne

K

� := K


 �K
�
; L


�
i := L



i � L

�
i ; X

t;x;u

� := X

t;x;u

 �X

t;x;u
� ;

A

� := A


 � A
�
; B


� := B

 � B

�
; C


�
i := C



i � C

�
i ;

D

� := D


 �D
�
; Q


� := Q

 �Q

�
; N


� := N

 �N

�
;

M

� :=M


 �M
�
:

(43)
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Lemma 3.2. Let the assumptions of Theorem 2.1 be satis�ed. Then, there are three

deterministi
 positive 
onstants "6; "7, and "8, whi
h are independent of the parameters 


and � su
h that the following three estimates hold. (i) For ea
h x 2 R
n,

E

Ft max
t�s�T

jX t;x;u

 (s)j2 � "6jxj

2 + "6E
Ft

Z T

t
juj2 ds: (44)

(ii) For ea
h (t; x) 2 [0; T ℄�R
n,

E

Ft max
t�s�T

jX t;x;u

� (s)j2 � "7E

Ft

Z T

t
(jA
� j+ jC
� j2)jX t;x;u


 (s)j2 ds

+"7E
Ft

Z T

t
(jB
� j+ jD
� j2)juj2(s) ds:

(45)

(iii) For ea
h (t; x) 2 [0; T ℄� R
n,

jJ
(u; t; x)� J

� (u; t; x)j

� "8E
Ft[jM
� jjX t;x;u


 (T )j2 + jX t;x;u

� (T )j(jX t;x;u


 (T )j+ jX t;x;u
� (T )j)℄

+"8E
Ft

Z T

t
jX t;x;u


� (s)j[jX t;x;u

 (s)j+ jX t;x;u

� (s)j℄ ds

+"8E
Ft

Z T

t
jQ
� jjX t;x;u


 (s)j2 ds+ "8E
Ft

Z T

t
jN
� jjuj2(s) ds:

(46)

Proof of Lemma 3.2. Note that X t;x;u

� satis�es the following sto
hasti
 di�eren-

tial equation:8>><>>:
dX
� = (A�

X
� + A

�
X
 +B


�
u) ds+

dX
i=1

(C�
i X
� + C


�
i X
 +D


�
i u) dwi;

X
� (t) = 0:

So, in view of the assumptions of Theorem 2.1, the �rst two estimates are a
tually a 
on-

sequen
e of the 
ontinuous dependen
e upon the parameters of the solution of a sto
hasti


di�erential equation, and the proof is standard. The last estimate results from an imme-

diate appli
ation of the mean-value formula for a di�erential fun
tion.

Lemma 3.3. Let the assumptions of Theorem 2.1 be satis�ed. Then, we have the

following three inequalities. (i) For ea
h x 2 R
n
; 8u 2 U x

ad(t; T );

E

Ft max
t�s�T

jX t;x;u

 (s)j2 � "6(1 + "

�1
2 "0)jxj

2
: (47)

(ii) For ea
h (t; x) 2 [0; T ℄�R
n
; 8u 2 U x

ad(t; T );

E

Ft max
t�s�T

jX t;x;u

� (s)j2 � "7"6(1 + "

�1
2 "0)jxj

2 esssup
!

Z T

0
(jA
� j+ jC
� j2) ds

+"7"
�1
2 "0jxj

2 esssup
s;!

(jB
� j+ jD
� j2)(s):
(48)
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(iii) For ea
h (t; x) 2 [0; T ℄� R
n
; 8u 2 U x

ad(t; T );

jJ
(u; t; x)� J

� (u; t; x)j

� "8 esssup
!

jM
� j EFtjX t;x;u

 (T )j2

+"8
h
E

FtjX t;x;u

� (T )j2

i1=2 h
E

Ft(2jX t;x;u

 (T )j2 + 2jX t;x;u

� (T )j2)
i1=2

+"8T

"
E

Ft sup
t�s�T

jX t;x;u

� (s)j2

#1=2 "
E

Ft sup
t�s�T

[2jX t;x;u

 (s)j2 + 2jX t;x;u

� (s)j2℄

#1=2
+"8 esssup

!

Z T

0
jQ
� j ds EFt sup

t�s�T

jX t;x;u

 (s)j2 + "8"

�1
2 "0jxj

2 esssup
s;!

jN
� j(s):

(49)

Proof of Lemma 3.3. Sin
e u 2 U x
ad(t; T ), we have

E

Ft

Z T

t
juj2 ds � "

�1
2 "0jxj

2
: (50)

Putting (50) into the �rst estimate of Lemma 3.2, we get the �rst inequality of Lemma 3.3.

Putting (50) and the �rst inequality of Lemma 3.3 into the se
ond estimate of Lemma

3.2, we get the se
ond one. The last one is a 
ombination of (50) and applying the

Cau
hy-S
hwarz inequality in the third estimate of Lemma 3.2.

Combining the �rst and the last inequalities of Lemma 3.3, we 
on
lude that for

ea
h (t; x) 2 [0; T ℄� R
n
; 8u 2 U x

ad(t; T );

jJ
(u; t; x)� J

� (u; t; x)j

� "8"6(1 + "

�1
2 "0)jxj

2 esssup
!

jM
� j

+2jxj"8(T + 1)
q
"6(1 + "

�1
2 "0)

"
E

Ft sup
t�s�T

jX t;x;u

� (s)j2

#1=2
+"8"6(1 + "

�1
2 "0)jxj

2 esssup
!

Z T

0
jQ
� j ds+ "8"

�1
2 "0jxj

2 esssup
s;!

jN
� j(s):

(51)

Putting the se
ond inequality of Lemma 3.3 into this, we have that

jJ
(u; t; x)� J

� (u; t; x)j

� "8"6(1 + "

�1
2 "0)jxj

2 esssup
!

jM
� j+ 2jxj"8(T + 1)
q
"6(1 + "

�1
2 "0)

�

�
"7"6(1 + "

�1
2 "0)jxj

2 esssup
!

Z T

0
(jA
� j+ jC
� j2) ds

+"7"
�1
2 "0jxj

2 esssup
s;!

(jB
� j+ jD
� j2)(s)

�1=2
+"8"6(1 + "

�1
2 "0)jxj

2 esssup
!

Z T

0
jQ
� j ds+ "8"

�1
2 "0jxj

2 esssup
s;!

jN
� j(s)

(52)
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hold for ea
h (t; x) 2 [0; T ℄�R
n
; 8u 2 U x

ad(t; T ): Therefore, we have

jV 
(t; x)� V

� (t; x)j

� "8"6(1 + "

�1
2 "0)jxj

2 esssup
!

jM
� j+ 2jxj"8(T + 1)
q
"6(1 + "

�1
2 "0)

�

�
"7"6(1 + "

�1
2 "0)jxj

2 esssup
!

Z T

0
(jA
� j+ jC
� j2) ds

+"7"
�1
2 "0jxj

2 esssup
s;!

(jB
� j+ jD
� j2)(s)

�1=2
+"8"6(1 + "

�1
2 "0)jxj

2 esssup
!

Z T

0
jQ
� j ds+ "8"

�1
2 "0jxj

2 esssup
s;!

jN
� j(s)

(53)

hold for ea
h (t; x) 2 [0; T ℄�R
n
:

In view of the assumptions of Theorem 2.1, (53) implies that for ea
h (t; x) 2

[0; T ℄�Rn, V 
(t; x) 
onverges to V 0(t; x) as 
 ! 0. Moreover, this 
onvergen
e is uniform

in (t; !). Hen
e, K
 
onverges to some K0 in the Bana
h spa
e

L1
F
(0; T ;Sn

+) \ L
1(
;FT ; P ;C([0; T ℄;S

n
+)):

In the following, we show the strong 
onvergen
e of L
 . Note that (K
�
; L


� ) satis�es

the BSDE8>><>>:
dK


� (t) = � [G
(t;K

; L


)�G

� (t;K�
; L

� )℄ dt+
dX

i=1

L


�
i dwi;

K

� (T ) = M


�
:

(54)

Using Itô's formula, we have

EjK
� j2(t) + E

Z T

t
jL
� j2(s) ds

= EjM
� j2 + E

Z T

t
K


� [G
(s;K

; L


)�G

� (t;K�
; L

� )℄ ds:
(55)

Sin
e

jG
(s;K

; L


)�G

� (t;K�
; L

� )j � "(1 + jL
j2 + jL� j2) (56)

for some deterministi
 
onstant " whi
h is independent of 
 and � , we have

E

Z T

t
jL
� j2(s) ds � EjM
� j2 + " esssup

s;!
jK
� (s)jE

Z T

t
(1 + jL
 j2 + jL� j2) ds: (57)

From the se
ond a priori estimate of Lemma 2.1, we 
on
lude that L
 
onverges to some

L
0 strongly in L2

F
(0; T ;Sn). By passing to the limit in the BSRDE (A


; B

;C


i ; D


i ; i =

1; : : : ; d;Q

; N



;M


), we show that (K0
; L

0) solves the BSRDE (A0
; B

0;C0
i ; D

0
i ;

i = 1; : : : ; d;Q0
; N

0
;M

0).
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4 The Proof of Theorem 2.2.

This se
tion gives the proof of Theorem 2.2. The main idea is to do the inverse transfor-

mation:

f
K := K

�1
; (58)

whi
h turns out to satisfy a Ri

ati equation whose generator depends on the martingale

term in a linear way.

First, sin
e D is inversable, we 
an rewrite the BSRDE (9) as8><>:
dK = �[� e

A

�
K �K

e
A +Q�K

e
BK

�1 e
B

�
K � LK

�1
L

+K e
BK

�1
L + LK

�1 e
B
�
K℄ dt+ Ldw;

K(T ) = M;

(59)

where e
A := �A +BD

�1
C;

e
B := �BD�1

:

Note that we have the following rule for the �rst and the se
ond di�erentials of the inverse

of a positive matrix as a matrix-valued fun
tion:

d

�
K

�1
�
= �K�1(dK)K�1

; d

2
�
K

�1
�
= 2K�1(dK)K�1(dK)K�1

: (60)

Using Itô's formula, we 
an write the equation for the inverse fK of K:(
d
f
K = �[fK e

A

� + e
A
f
K � f

KQ
f
K + e

B
f
K
e
B

� + e
B
e
L+ e

L
e
B

�℄ dt+ e
Ldw;f

K(T ) = M
�1
;

(61)

where e
L := �K�1

LK

�1
:

From Proposition 2.1, the above BSRDE
� e
A;Q

1=2; eB; 0; 0; Im�m;M�1
�
has a unique global

adapted solution (fK; eL) with
f
K 2 L1F (0; T ;S

n
+) \ L

1(
;FT ; P ;C([0; T ℄;S
n
+));

e
L 2 L2F(0; T ;S

n);

whi
h implies that fK�1(t) is uniformly positive in (t; !). Moreover, from the fa
t thatf
K(T ) = M

�1 � "

�1
1 In�n, we derive that fK is uniformly positive. This shows that fK�1(t)

is uniformly bounded. Therefore (K;L) is a global adapted solution to the BSRDE (9)

with
K := f

K
�1 2 L1

F
(0; T ;Sn+) \ L

1(
;FT ; P ;C([0; T ℄;S
n
+));

L := �fK�1 e
L
f
K
�1 2 L2

F
(0; T ;Sn):

The uniqueness results from the Feynman-Ka
 representation result Proposition 2.2.

In fa
t, assume that (
K; bL) also solves the BSRDE (9). Then, from Proposition 2.2, we

see that

(K(t)x; x) = V (t; x) = (
K(t)x; x); a:s:; 8(t; x) 2 [0; T ℄� R

n
:
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So, we have K(t) = 

K(t) almost surely for 8(t; x) 2 [0; T ℄� R

n
: Set

ÆK := K � 

K; ÆLi := Li �

b
Li; ÆG := G(t;K; L)�G(t; 
K; bL):

Then, we have ÆK = 0. Note that (ÆK; ÆL) satis�es the following BSDE:8>><>>:
dÆK(t) = �ÆG dt+

dX
i=1

ÆLi(t) dwi(t); 0 � t < T;

ÆK(T ) = 0:

(62)

From this, pro
eeding identi
ally as in the last paragraph of Se
tion 3, we have

E

Z T

t
jÆLj2(s) ds � EjÆK(T )j2 + " esssup

s;!
jÆK(s)jE

Z T

t
(1 + jLj2 + jbLj2) ds = 0: (63)

Hen
e, ÆL = L� b
L = 0.

5 The Proof of Theorem 2.3

For the regular 
ase, the situation is a little 
omplex: we easily see that the above inverse

transformation on the �rst unknown variable 
an not eliminate the quadrati
 term of the

se
ond unknown variable. However, we 
an still solve some 
lasses of BSRDEs with the

help of doing some appropriate transformation.

Proposition 5.1. Assume that Q � A
�(D�1)�ND�1 + (D�1)�ND�1

A;m = n;

and D and N are positive 
onstant matri
es. Then, Theorem 2:3 holds.

Proof of Proposition 5.1. Write



N := (D�1)�ND�1

: (64)

Then, the BSRDE (7) reads8><>:
dK = �[A�

K +KA+Q� L(
N +K)�1L℄ dt+ Ldw;

0 � t < T;

K(T ) = M:

(65)

The equation for 
K := 

N +K is8><>:

d


K = �[A�


K + 

KA +Q� A

�

N � 


NA� b
L


K

�1 b
L℄ dt+ b

Ldw;

0 � t < T;

K(T ) = 


N +M:

(66)

Note that 
N +M is uniformly positive. From Theorem 2.2, we see that the BSRDE (66)

has a unique global adapted solution (
K; bL). Therefore (
K � 

N;
b
L) is a global adapted

solution to the BSRDE (7).

Proposition 5.2. Assume that A = 0 and D and N are 
onstant matri
es. Then,

Theorem 2:3 holds.
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Proof of Proposition 5.2. First assume m = n. Consider the following approx-

imating BSRDEs:(
dK = �[Q� LD�(N +D

�

�KD�)
�1
D

�

�L℄ dt+ Ldw;

K(T ) = M

(67)

where

D� := D + �Im�m > 0; � > 0:

From Proposition 5.1, we see that the BSRDE (67) has a unique global adapted solution

(K�; L�) for every � > 0. From Proposition 2.2, K� 
an be represented as

(K�(t)x; x) = V�(t; x); 8(t; x) 2 [0; T ℄� R

n
: (68)

From Theorem 2.1, we see that K� uniformly 
onverges to some K 2 L1
F
(0; T ;Sn+) \

L
1(
;FT ; P ;C([0; T ℄;S

n
+)) and L� strongly 
onverges to some L 2 L2

F
(0; T ;Sn), and

that (K;L) is an adapted solution of the BSRDE (7) when A = 0.

Consider the 
ase n > m. Then 
onsider the n�n matri
es fD whose �rst m 
olumns

are D and whose last (n�m) 
olumns are zero 
olumn ve
tors, and f
N whi
h is de�ned

as f
N :=

 
R 0

0 I

!
:

The BSRDE (7) when A = 0 is rewritten as(
dK = �[Q� L

f
D(fN + f

D

�
K
f
D)�1fD�

L℄ dt+ Ldw;

K(T ) = M

From the pre
eding result, we obtain the desired existen
e result.

Consider the 
ase n < m. Then, there is a m�m orthogonal transformation matrix

T su
h that

D = [
D; 0℄T; 

D 2 Rn�n and is non-singular.

Write f
N := (T�1)�NT�1 :=

 

N11



N12


N
�

12


N22

!
> 0:

Then, 
N11 > 0: The BSRDE (7) when A = 0 is rewritten as(
dK = �[Q� L



D(fN11 + 


D

�
K


D)�1
D�

L℄ dt+ Ldw;

K(T ) = M

From the pre
eding result, we obtain the desired existen
e result.

Proposition 5.3. Assume that A = 0; and D and N are pie
e-wisely 
onstant

Ft-adapted bounded matrix pro
esses. Then, Theorem 2:3 holds.

Proof of Proposition 5.3. Sin
e D and N are pie
e-wisely 
onstant Ft-adapted

bounded matrix pro
esses, there is a �nite partion:

0 =: t0 < t1 < � � � < tJ := T

17



su
h that on ea
h interval [ti; ti+1℄ � [0; T ℄, D and N are 
onstant Fti-measurable bounded

random matri
es. From Proposition 5.2, the BSRDE8><>:
dK = �[Q� LD(N +D

�
KD)�1D�

L℄ dt+ Ldw;

tJ�1 � t < T;

K(T ) = M

(69)

has a unique Ft-adapted solution (KJ
; L

J) with

K

J 2 L1F (tJ�1; T ;S
n
+) \ L

1(
;FT ; P ;C([tJ�1; T ℄;S
n
+)); L

J 2 L2
F(tJ�1; T ;S

n):

Assume that for some i = 2; : : : ; J; the BSRDE8><>:
dK = �[Q� LD(N +D

�
KD)�1D�

L℄ dt+ Ldw;

ti�1 � t < ti;

K(ti) = K
i+1(ti)

(70)

has a unique Ft-adapted solution (Ki
; L

i) with

K

i 2 L1
F
(ti�1; ti;S

n
+) \ L

1(
;Fti ; P ;C([ti�1; ti℄;S
n
+)); L

i 2 L2
F
(ti�1; ti;S

n):

Note that when i = J , we use the 
onvention K
J+1(tJ) := M . Then, we 
on
lude from

Proposition 5.2 that the BSRDE8><>:
dK = �[Q� LD(N +D

�
KD)�1D�

L℄ dt+ Ldw;

ti�2 � t < ti�1;

K(ti�1) = K
i(ti�1)

(71)

has a unique Ft-adapted solution (Ki�1
; L

i�1) with

K

i�1 2 L1
F
(ti�2; ti�1;S

n
+)\ L

1(
;Fti�1 ; P ;C([ti�2; ti�1℄;S
n
+)); L

i�1 2 L2
F
(ti�2; ti�1;S

n):

In this both indu
tive and ba
kward way, we may de�ne J paires of pro
esses f(Ki
; L

i)gJi=1.

De�ne on the whole time interval [0; T ℄ the pair of Ft-adapted pro
esses (K;L) as follows:

K(t) :=
JX

i=1

K

i(t)�[ti�1;ti)(t); L(t) :=
JX

i=1

L

i(t)�[ti�1;ti)(t):

We see that (K;L) satis�es the BSRDE (7). We then obtain the desired existen
e result.

Proposition 5.4. Assume that A = 0: Then, Theorem 2:3 holds.

Proof of Proposition 5.4. For an arbitrary positive integer k, 
onsider the

2k-partion of the time interval. De�ne

D

k(t) = D

�
i� 1

2k
T

�
; 8t 2

�
i� 1

2k
T;

i

2k
T

�
; i = 1; 2; : : : ; 2k;

and

N

k(t) = N

�
i� 1

2k
T

�
; 8t 2

�
i� 1

2k
T;

i

2k
T

�
; i = 1; 2; : : : ; 2k:

18



For ea
h k, Dk and N
k are are pie
e-wisely 
onstant, Ft-adapted, bounded matrix pro-


esses. Further, in view of (25), Dk(t) and N
k(t) 
onverge respe
tively to D and N ,

uniformly in (t; !): That is, we have

lim
k!1

esssup
!2


max
t2[0;T ℄

jDk(t)�D(t)j = 0; lim
k!1

esssup
!2


max
t2[0;T ℄

jNk(t)�N(t)j = 0:

From Proposition 5.3, we see that the BSRDE (0; 0; 0; Dk;Q;Nk;M) has a global adapted

solution (Kk
; L

k), and then from Theorem 2.1, we see that Theorem 2.3 holds.

Proof of Theorem 2.3. The 
ase A = 0 is solved by Proposition 5.4. For the


ase A 6= 0, 
onsider the following transformation

f
K := ��K�; e

L := ��L�

where � solves the di�erential equation8<:
d�

dt

(t) = A(t)�(t); t 2 (0; T ℄;

�(0) = In�n:

Using Itô's formula, we get the BSDE for (fK;
e
L):(

d
f
K(t) = �[ eQ� e

L
f
D(N + f

D
�f
K
f
D)�1f

D
e
L℄ dt+ e

Ldw(t); t 2 (0; T ℄;f
K(T ) = f

M

where e
Q := ��Q�; fM := �(T )�M�(T );fD := ��1

D. Note that the traje
tories of fD are

still uniformly 
ontinuous like D. From Proposition 5.4, we see that the

BSRDE (0; 0; 0;fD; eQ;N; fM) has a global adapted solution (fK;
e
L), and thus the pair

((��)�1f
K��1

; (��)�1 e
L��1)

solves the original BSRDE (A; 0; 0; D;Q;N;M).

The uniqueness 
an be proved in the same way as in the proof of Theorem 2.2.

6 Appli
ation to Sto
hasti
 LQ Problems

6.1 The un
onstrainted 
ase

Assume that

� 2 L

2(
;FT ; P ;R
n); q; f; gi 2 L

2
F
(0; T ;Rn): (72)

Consider the following optimal 
ontrol problem (denoted by P0):

min
u2L2

F
(0;T ;Rm)

J(u; 0; x) (73)
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with

J(u; t; x) = E

Ft(M(X t;x;u(T )� �); X t;x;u(T )� �)

+EFt

Z T

t
[(Q(X t;x;u � q); X t;x;u � q) + (Nu; u)℄ ds

(74)

and X t;x;u solving the equation8>><>>:
dX = (AX +Bu+ f) ds+

dX
i=1

(CiX +Diu+ gi) dwi; t < s � T;

X(t) = x; u 2 L2
F
(t; T ;Rm):

(75)

The value fun
tion V is de�ned as

V (t; x) := min
u2L2

F
(t;T ;Rm)

J(u; t; x); (t; x) 2 [0; T ℄�R

n
: (76)

De�ne � : [0; T ℄� Sn
+ � R

n�d ! R
m�n by

�(�; S; L) = �(N +
dX

i=1

D

�

i SDi)
�1(B�

S +
dX

i=1

D

�

i SCi +
dX

i=1

D

�

iLi): (77)

and

b
A := A+B�(�; K; L); bCi := Ci +Di�(�; K; L); i = 1; : : : ; d: (78)

Let ( ; �) be the Ft-adapted solution of the following BSDE8>><>>:
d (t) = �[ bA� +

dX
i=1

b
C

�

i (�i �Kgi)�Kf �
dX

i=1

Ligi +Qq℄ dt+
dX

i=1

�i dwi;

 (T ) = M�

(79)

where (K;L) is the unique Ft-adapted solution of the BSRDE (1). The following 
an be

veri�ed by a pure 
ompletion of squares.

Theorem 6.1 Suppose that the assumptions of Theorem 2.2 or Theorem 2.3 are

satis�ed. Let (K;L) be the unique Ft-adapted solution of BSRDE (1). Then, the optimal


ontrol bu for the non-homogeneous sto
hasti
 LQ problem P0 exists uniquely and has the

following feedba
k law

bu = �(N +
dX

i=1

D

�

iKDi)
�1[(B�

K +
dX

i=1

D

�

iKCi +
dX

i=1

D

�

iLi)
X
�B�

 +
dX

i=1

D

�

i (Kgi � �i)℄:

(80)

The value fun
tion V (t; x); (t; x) 2 [0; T ℄� R
n has the following expli
it formula

V (t; x) = (K(t)x; x)� 2( (t); x) + V

0(t); (t; x) 2 [0; T ℄�R

n (81)
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with

V
0(t) := E

Ft(M�; �) + E

Ft

Z T

t
(Qq; q) ds� 2EFt

Z T

t
( ; f) ds

+EFt

Z T

t

dX
i=1

[(Kgi; gi)� 2(�igi)℄ ds

�EFt

Z T

t
((N +

dX
i=1

D

�

iKDi)u
0
; u

0) ds

(82)

and

u

0 := (N +
dX

i=1

D

�

iKDi)
�1[B�

 +
dX

i=1

D

�

i (�i �Kgi)℄; t � s � T: (83)

Proof Set

eu = u� �(�; K; L)X: (84)

Then the system (75) reads8>><>>:
dX = ( bAX +Beu+ f) ds+

dX
i=1

( bCiX +Dieu+ gi) dwi; t < s � T;

X(t) = x; u 2 L2
F
(t; T ;Rm):

(85)

Applying Itô's formula, we have the equation for X =: XX�:8>>>>>>>>>>>><>>>>>>>>>>>>:

dX = [ bAX + X b
A

� +X(Beu+ f)� + (Beu+ f)X�℄ ds

+
dX

i=1

[ bCiX
b
C

�

i +
b
CiX(Dieu+ gi)

� + b
CiX(Dieu+ gi)X

� b
C

�

i

+(Dieu+ gi)(Dieu+ gi)
�℄ ds

+
dX

i=1

[ bCiX + X b
C

�

i +X(Dieu+ gi)
� + (Dieu+ gi)X

�℄ dwi; t < s � T;

X (t) = xx
�
; u 2 L2

F
(t; T ;Rm):

(86)

Note that the BSRDE (1) 
an be rewritten as8>>>>>>><>>>>>>>:

�dK =

� b
A

�
K +K

b
A+

dX
i=1

b
C

�

iK
b
Ci +

dX
i=1

( bC�

i Li + Li
b
Ci) +Q

+�(t;K; L)�N�(t;K; L)

�
dt�

dX
i=1

Li dwi;

K(T ) = M:

(87)
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So, appli
ation of Itô's formula gives

E

Ft(MX(T ); X(T )) + E

Ft

Z T

t
([Q+ �(s;K; L)�N�(s;K; L)℄X;X) ds

= (K(t)X(t); X(t)) + 2EFt

Z T

t
(K(Beu+ f); X) ds

+EFt

Z T

t

dX
i=1

2(K(Dieu+ gi);
b
CiX) ds

+EFt

Z T

t

dX
i=1

(K(Dieu+ gi); Dieu+ gi) ds

+2EFt

Z T

t

dX
i=1

(Li(Dieu+ gi); X) ds;

and

E

Ft

"
(M�;X(T )) +

Z T

t
(Qq;X) ds

#

= E

Ft

"
 (T )X(T ) +

Z T

t
QqX ds

#
= ( (t); X(t)) + E

Ft

Z T

t
( ;Beu+ f) ds

+EFt

Z T

t

dX
i=1

(�i; Dieu+ gi) ds

+EFt

Z T

t
(

dX
i=1

b
C

�

iKgi +Kf +
dX

i=1

Ligi; X) ds:
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Combining the last two equations, we get

J(u; t; x)

= E

Ft

"
(M(X(T )� �); X(T )� �) +

Z T

t
(Q(X � q); X � q) ds+

Z T

t
(Nu; u) ds

#

= E

Ft

"
(MX(T ); X(T )) +

Z T

t
([Q+ �(s;K; L)�N�(s;K; L)℄X;X) ds

#

�2EFt

"
(M�;X(T )) +

Z T

t
(Qq;X) ds

#
+ E

Ft

"
(M�; �) +

Z T

t
(Qq; q) ds

#
+EFt

Z T

t
[(N eu; eu) + 2(N�(s;K; L)X; eu)℄ ds

= (KX(t); X(t))� 2( (t); X(t)) + E

Ft

"
(M�; �) +

Z T

t
(Qq; q) ds

#

+EFt

Z T

t

dX
i=1

(K(Dieu+ gi); Dieu+ gi) ds+ E

Ft

Z T

t
(N eu; eu) ds

�2EFt

Z T

t
( ;Beu+ f) ds� 2EFt

Z T

t

dX
i=1

(�i; Dieu+ gi) ds

= (K(t)x; x)� 2( (t); x) + E

Ft

"
(M�; �) +

Z T

t
(Qq; q) ds

#

�2EFt

Z T

t
( ; f) ds+ E

Ft

Z T

t

dX
i=1

[(Kgi; gi)� 2(�i; gi)℄ ds

+EFt

Z T

t
((N +

dX
i=1

D

�

iKDi)(eu� u

0); eu� u

0) ds

�EFt

Z T

t
((N +

dX
i=1

D

�

iKDi)u
0
; u

0) ds:

This 
ompletes the proof.

6.2 The 
onstrainted 
ase

Fix xT 2 R
n. De�ne

Uad(t; x) := fu 2 L2
F
(t; T ;Rm) : EX t;x;u(T ) = xTg; 8(t; x) 2 [0; T ℄� R

n
; (88)

where X t;x;u solving the equation (75). Then, 
onsider the following 
onstrainted LQ

problem (denoted by P t;x

 ):

inf
u2Uad(0;x)

J(u; 0; x) (89)

where the 
ost fun
tional J(u; t; x) is de�ned by (74). Note that the set of admissible


ontrols Uad(t; x) 
ontains the terminal expe
ted 
onstraint.

Let 	(�; t) be the unique solution of the SDE:8>><>>:
dYs = A(s)Ys ds+

dX
i=1

Ci(s)Ys dwi(s); t � s � T;

Yt = In�n:

(90)
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To guarantee that Uad(t; x) is not empty, assume that the matrix

� := E

Z T

0
E

Fs	(T; s)B(s)B�(s)EFs	�(T; s) ds (91)

is nonsingular. Then, 8x 2 R
n, the following 
ontrol

u(s) := B

�(s)EFs	�(T; s)��1[xT � E

Z T

t
	(T; s)f(s) ds℄; s 2 (t; T ℄; (92)

belongs to Uad(t; x).

We have the following existen
e result.

Theorem 6.2. Let the assumptions of Theorem 2.2 or Theorem 2.3 be satis�ed.

Assume that Uad(0; x) is not empty. Then, the problem P0;x

 has a unique optimal 
ontol.

Proof of Theorem 6.2. The proof is similar to that of Kohlmann and Tang [12℄.

The main idea is to 
hoose a sequen
e fuk; k = 1; 2; : : :g su
h that

u

k 2 Uad(0; x); lim
k!1

J(uk; 0; x) = inf
u2Uad(0;x)

J(u; 0; x):

Then, we prove that this sequen
e is a Cau
hy sequen
e by using the uniform 
onvexity

of the 
ost fun
tional J(u; 0; x) in the 
ontrol u. This uniform 
onvexity is obvious for

the regular 
ase, and has been proved for the singular 
ase by Kohlmann and Tang [12℄.

The details are left to the reader.

Due to the limitation of spa
e, we will in what follows just sket
h how to solve the

unique optimal 
ontrol of Theorem 6.2 in terms of the solution of the asso
iated BSRDE.

Using the sto
hasti
 maximum prin
iple (see Peng [20℄, and Tang and Li [27℄, for

example), we have the following. Let eu be the optimal 
ontrol, and fX := X
0;x;eu. Then,

there is some � 2 Rn, and a pair of pro
esses (ep; eq), su
h that8>><>>:
dep = �[A� ep+Q(fX � q) +

dX
i=1

C

�

i
eqi℄ ds+ dX

i=1

eqi dwi; 0 < s � T;

ep(T ) = M(fX(T )� �)� �

(93)

and

B

� ep+ dX
i=1

D

�

i
eqi +N eu = 0: (94)

Using Itô's formula and the equality (94), we get the equation for e := K
f
X � ep:8>><>>:

d
e
 (t) = �[ bA� e +

dX
i=1

b
C

�

i (
e
�i �Kgi)�Kf �

dX
i=1

Ligi +Qq℄ dt+
dX

i=1

e
�i dwi;e

 (T ) = M� + �

(95)
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where (K;L) is the unique Ft-adapted solution of the BSRDE (1), and the expli
it formula

of the optimal 
ontrol:

eu = �(N +
dX

i=1

D

�

iKDi)
�1[(B�

K +
dX

i=1

D

�

iKCi +
dX

i=1

D

�

iLi)
X
�B� e

 +
dX

i=1

D

�

i (Kgi �
e
�i)℄

(96)

where the Lagrange multiple � is determined su
h that the terminal 
onstraint EfX(T ) =

xT is satis�ed.

6.3 A 
omment on appli
ation of the LQ theory in mathemati
al

�nan
e

One-dimensional singular LQ problems arise from mathemati
al �nan
e. The mean-

varian
e hedging problem and the dynami
 version of Markowitz's mean-varian
e portfolio

sele
tion problem, are one-dimensional singular LQ problems.

The mean-varian
e hedging problem was initially introdu
ed by F�ollmer and Son-

dermann [7℄, and later was widely studied among others by DuÆe and Ri
hardson [5℄,

F�ollmer and S
hweizer [8℄, S
hweizer [23, 24, 25℄, Hipp [11℄, Monat and Stri
ker [16℄,

Pham, Rheinl�ander and S
hweizer [21℄, Gourieroux, Laurent and Pham [10℄, and Lau-

rent and Pham [15℄. All of these works are based on a proje
tion argument. Re
ently,

Kohlmann and Zhou [14℄ used a natural LQ theory approa
h to solve the 
ase of determin-

isti
 market 
onditions. Kohlmann and Tang [12, 13℄ used a natural LQ theory approa
h

to solve the 
ase of sto
hasti
 market 
onditions, and the optimal hedging portfolio and

the varian
e-optimal martingale measure are 
hara
terized in terms of the solution of the

asso
iated BSRDE.

The 
ontinuous time mean-varian
e portfolio sele
tion problem was initially 
onsid-

ered by Ri
hardson [22℄. The reader is referred to Zhou and Li [29℄ for re
ent developments

on this problem.
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