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Abstract

Multi-dimensional backward stochastic Riccati differential equations (BSRDEs
in short) are studied. A closed property for solutions of BSRDEs with respect to
their coefficients is stated and is proved for general BSRDEs, which is used to obtain
the existence of a global adapted solution to some BSRDEs. The global existence
and uniqueness results are obtained for two classes of BSRDEs, whose generators
contain a quadratic term of L (the second unknown component). More specifically,
the two classes of BSRDEs are (for the regular case N > 0)

dK = —[A*K+KA+Q—LD(N+D*KD)"'D*L)dt + Ldw,
K(T) = M

and (for the singular case)

dK = —-[A*K+KA+C*KC+Q+C*'L+LC
—(KB+ C*KD + LD)(D*KD) Y (KB + C*KD + LD)*|dt + L dw,
K(T) = M.

This partially solves Bismut-Peng’s problem which was initially proposed by Bis-
mut (1978) in the Springer yellow book LNM 649. The arguments given in this
paper are completely new, and they consist of some simple techniques of algebraic
transformations and direct applications of the closed property mentioned above.
We make full use of the special structure (the nonnegativity of the quadratic term,
for example) of the underlying Riccati equation. Applications in optimal stochastic
control are exposed.
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1 Introduction

Let (Q, F, P,{F,}i>0) be a fixed complete probability space on which is defined a standard
d-dimensional Fi-adapted Brownian motion w(t) = (wy(t),---,wq(t))*. Assume that
F; is the completion, by the totality N of all null sets of F, of the natural filtration
{Fp} generated by w. Denote by {F?,0 < ¢ < T} the P-augmented natural filtration
generated by the (d — dp)-dimensional Brownian motion (wg,11,--.,wy). Assume that
all the coefficients A, B, C;, D; are JF;-progressively measurable bounded matrix-valued
processes, defined on Q x [0,T], of dimensions n X n,n X m,n X n,n X m respectively.
Also assume that M is an Fr-measurable nonnegative bounded n x n random matrix, and
@ and N are F;-progressively measurable, bounded, nonnegative and uniformly positive,
n X n and m X m matrix processes, respectively.
Consider the following backward stochastic Riccati differential equation

(BSRDE in short):

( d d
dK = —[A'K+KA+Y C/KCi+Q+ Y (CiL; + LiCy)

=1 =1

d d d
—(KB+Y_ C;KD;+ Y L;D;)(N+>_ D;KD;)™"' (1)
=1 =1 =1

d d d
X(KB+ > CiKD;+> L;D)*dt+> Lidw;, 0<t<T,
=1 =1 =1
| K(T) = M.

It will be called the BSRDE (A, B; C;, D, i = 1,...,d;Q, N, M) in the following for conve-
nience of indicating the associated coefficients. When the coefficients A, B, C;, D;, Q, N, M
are all deterministic, then L; = --- = Ly = 0 and the BSRDE (1) reduces to the following
nonlinear matrix ordinary differential equation:

( d d
dK = —[A*K+KA+) C/KC;+Q— (KB+ ) C;KD;)
i=1 i=1
d d
x(N + S D;KD;) (KB + Y. C:KD;)" dt, (2)
i=1 i=1
0<t<T,
| K(T) = M,

which was completely solved by Wonham [28] by applying Bellman’s principle of quasi-
linearization and a monotone convergence approach. Bismut [2, 3] initially studied the
case of random coefficients, but he could solve only some special simple cases. He always
assumed that the randomness of the coefficients only comes from a smaller filtration {F?},
which leads to Ly = -+- = Ly, = 0. He further assumed in his paper [2] that

Cop41="-=C4=0, Dgyy1=--=Dy=0, (3)



under which the BSRDE (1) becomes the following one:

( dO

dK = —[A'K+KA+> C/KC;i+Q
i—1

do do do
—(KB+Y_ C;KD;)(N+Y D:KD;)"(KB+Y_ C;/KD;)"]dt (1)
i=1 i=1 i=1

d
+ > Lidw, 0<t<T,
i=dp+1

K(T) = M,

and the generator does not involve L at all. In his work [3] he assumed that
Djt1=---=D;=0, (5)
under which the BSRDE (1) becomes the following one

( d d
dK = —[A*K+KA+Y C/KCi+Q+ Y (CfL; + LiCy)
i—1 i=do+1
do do do
—(KB+)>_C:KD;)(N+>_D:KD;)"(KB+>_ C:KD;)*]dt (6)
i=1 i=1 i=1
d
i=dp+1
| K(T) = M,
and the generator depends on the second unknown variable (Lg .1, ...,Lg)" in a linear

way. Moreover his method was rather complicated. Later, Peng [18] gave a nice treat-
ment on the proof of existence and uniqueness for the BSRDE (6), by using Bellman’s
principle of quasi-linearization and a method of monotone convergence—a generalization
of Wonham'’s approach to the random situation.

As early as in 1978, Bismut [3] commented on page 220 that:” Nous ne pourrons pas
démontrer I'existence de solution pour I’équation (2.49) dans le cas général.” (We could
not prove the existence of solution for equation (2.49) for the general case.) On page
238, he pointed out that the essential difficulty for solution of the general BSRDE (1) lies
in the integrand of the martingale term which appears in the generator in a quadratic
way. Two decades later in 1998, Peng [19] included the above problem in his list of open
problems on BSDEs. Recently, Kohlmann and Tang [13] solved the one dimensional case
of the above Bismut-Peng’s problem.

In this paper, we prove the global existence and uniqueness result for BSRDE (1)
for the following special multi-dimensional case:

d=1, B=C=0.
That is, we solve the following BSRDE

dK = —[A*K+KA+Q— LD(N+ D*KD) 'D*L]dt + L dw,
0<t<T, (7)
K(T) = M.



This BSRDE is special but typical, for the generator contains a quadratic term on L.
This result is stated as Theorem 2.3.

Consider then the case where the control weight matrix /V reduces to zero. Kohlmann
and Zhou [14] discussed such a case. However, their context is rather restricted, as they
make the following assumptions: (a) all the coefficients involved are deterministic; (b)
Ci=---=Cq=0,Dy=---=Dy=Ium, and M = I;(c) A+ A* > BB*. Their argu-
ments are based on applying a result of Chen, Li and Zhou [4]. Kohlmann and Tang [12]
considered a general framework along those analogues of Bismut [3] and Peng [18], which
has the following features: (a) the coefficients A, B, C, D, N, Q, M are allowed to be ran-
dom, but are only F?-progressively measurable processes or Fa-measurable random vari-
able; (b) the assumptions in Kohlmann and Zhou [14] are dispensed with or generalised,;
(c) the condition (5) is assumed to be satisfied. Kohlmann and Tang [12] obtained a
general result and generalised Bismut’s previous result on existence and uniqueness of a
solution of BSRDE (6) to the singular case under the following additional two assump-
tions:

d
M > el un, Z D;D;(t) > el for some deterministic constant £ > 0. (8)
i=1
Kohlmann and Tang [13] proved the existence and uniqueness result for the one-dimensional
singular case N = 0 under the assumption (8), but for a more general framework of the
following features: the coefficients A, B,C, D, N,Q, M are allowed to be F;-progressively
measurable processes or Fr-measurable random variable, and the coefficient D is not nec-
essarily zero. In this paper we obtain the global existence and uniqueness for the following
multi-dimensional singular case:

d=1, D*D >c¢l,m, M > cl,,,, for some deterministic constant £ > 0.

That is, we solve the following BSRDE:

dK = —[A*K+ KA+ C*KC+Q+C*L+LC
—~(KB+C*KD+ LD)(D*KD) (KB +C*KD + LD)*]dt + L dw,
(9)
0<t<T,
K(T) = M.

This result is stated as Theorem 2.2.
The BSRDE (1) arises from solution of the optimal control problem

inf J(u; 0, 10
u(-)EﬁilrlgO,T;Rm) (u:0,2) (10

where for t € [0,7] and x € R",
T
J(u;t,z) = E7 [/ [(Nu,u) + (QX5", X4 ds + (M X55"(T), X"**(T))]  (11)
t

and X%*(-) solves the following stochastic differential equation

d
dX = (AX +Bu)ds+ )Y (CiX + Diu)dw;, t<s<T,

=1

(12)
X(t) = =



The following connection is well known: if the BSRDE (1) has a solution (K, L), the
solution for the above linear-quadratic optimal control problem (LQ problem in
short) has the following closed form (also called the feedback form):

u(t) = —(N + zdj DIKD,) \[B*K + zdj DIKC; + zdj DiLX (1) (13)

and the associated value function V' is the following quadratic form

V(t,z) = ueﬁzfi(rtl,g“;}zm) J(ust,x) = (K(t)x, x), 0<t<T,xeR" (14)

In this way, on one hand, solution of the above L(Q problem is reduced to solving the
BSRDE (1). On the other hand, the formula (14) actually provides a representation—of
Feynman-Kac type— for the solution of BSRDE (1). The reader will see that this kind
of representation plays an important role in the proofs given here for Theorems 2.1, 2.2
and 2.3.

The arguments given in this paper are completely new. They results from two
observations. The first one is that in the following simple case

A=B=C=0,d=1,m = n, (15)
D is nonsingular, and D and N are constant matrices,

the difficult quadratic term of L can be removed by doing some simple algebraic transfor-
mation, and the resulting BSRDE is globally solvable in view of the result of Bismut [3]
and Peng [18]. As a consequence, the above simple case is globally solvable. However, this
case is too restricted. Then comes out the second observation: by using some other tricks
and by applying the closedness theorem 2.1, some more general cases can be attacked.
Specifically, the following restrictions

A =0,m=mn, and D is nonsingular (16)
are all removed, and the restricted assumption
D and N are constant matrices (17)

is improved. For the singular case, we only have the one restriction d = 1 remained.
Theorem 2.1 provides a way to obtain the solvability of more general BSRDEs from that
of simple ones. We hope that Bismut-Peng’s problem will be completely solved in the
near future, by using the above-mentioned methodology.

The rest of the paper is organized as follows. Section 2 contains a list of notation
and two preliminary propositions, and the statement of the main results which consist of
Theorems 2.1-2.3. The proofs of these three theorems are given in Sections 3-5, respec-
tively. Finally, in Section 6, application of Theorems 2.2 and 2.3 is given to the regular
and singular stochastic L.QQ problems, both with and without constraints.



2 Preliminaries and the Main Results

Let (Q, F, P,{F,}i>0) be a fixed complete probability space on which is defined a standard
d-dimensional Fi-adapted Brownian motion w(t) = (wy(t),---,wq(t))*. Assume that
F; is the completion, by the totality N of all null sets of F, of the natural filtration
{F} generated by w. Denote by {F?,0 < ¢ < T} the P-augmented natural filtration
generated by the (d — dy)-dimensional Brownian motion (wg,11,.-.,wy). Assume that
all the coefficients A, B, C;, D; are JF;-progressively measurable bounded matrix-valued
processes, defined on Q x [0,T], of dimensions n X n,n X m,n X n,n X m respectively.
Also assume that M is an Fr-measurable, nonnegative, and bounded n x n random
matrix. Assume that () and N are F;-progressively measurable, bounded, nonnegative

and uniformly positive, n X n and m X m matrix processes, respectively.

Notation. Throughout this paper, the following additional notation will be used:

M* :  the transpose of any vector or matrix M;

| M| = ,/Xi;mg; for any vector or matrix M = (my;);

(M, My) : the inner product of the two vectors M; and Mo;

R" : the n-dimensional Euclidean space;

Ry :  the set of all nonnegative real numbers;

S” . the Euclidean space of all n x n symmetric matrices;

St :  the set of all n x n nonnegative definite matrices;

C([0,T);H) . the Banach space of H-valued continuous functions on [0, 77,
endowed with the maximum norm for a given Hilbert space H;

£2(0,T; H) . the Banach space of H-valued F;-adapted square-integrable

stochastic processes f on [0, 7], endowed with the norm
(E [I'|£(t)|? dt)"/? for a given Euclidean space H;
LE(0,T;H) : the Banach space of H-valued, F;-adapted, essentially
bounded stochastic processes f on [0, 7], endowed with the
norm esssup; , | f(t)| for a given Euclidean space H;
L*(Q,F,P;H) : the Banach space of H-valued norm-square-integrable random
variables on the probability space (2, F, P) for a given
Banach space H;
and L>(Q2, F,P;C([0,T]; R")) is the Banach space of C([0,T]; R")-valued, essentially
maximum-norm-bounded random variables f on the probability space (2, F, P), endowed
with the norm esssup,,.q maxo<;<7 | f(¢,w)]|.

Proposition 2.1. Assume that all the coefficients A, B, C;, D; are F}?-progressively
measurable bounded matriz-valued processes, defined on Qx[0,T], of dimensions nxn,nx
m,n X n,n X m respectively. Also assume that M is an FZ-measurable, nonnegative, and
bounded n x n random matriz. Assume that Q and N are F?-progressively measurable,

bounded, nonnegative and uniformly positive, n X n and m X m matriz processes, respec-
tively. Then, the BSRDE (6) has a unique F?-adapted global solution (K, L) with

Proposition 2.1 is due to Bismut [3] and Peng [18], and the reader is referred to
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Bismut [3] and Peng [18] for the proof.
Consider the optimal control problem

inf J(u;0,x) (18)

u(-)eLZ(0,T;R™)

where for t € [0,7] and x € R",
T
J(ust,x) := E7 [/ [(Nu,u) + (QX5%, X5 ds + (MX55(T), X"**(T))]  (19)
t

and X%*(.) solves the following stochastic differential equation

d
dX = (AX + Bu)ds+ Z(C’iX + Dju)dw;, t<s<T,

~ (20)
X(t) = =

Proposition 2.2. Let (K, L) be an F;-adapted solution of the BSRDE (1) with
K € LF(0,T;8") N L>(Q, Fr, P;C([0,T];8™), L€ L3(0,T;5),
and N(t) + XL, DK Dy(t) being uniformly positive. Then,

(K(t)z,x) =V (t,z) := inf J(u;t,x), Ve R"

ue L (t,T;R™)

This proposition is a special case of Theorem 6.1, and the reader is referred to
Section 6 for the proof.

The main results of this paper are stated by the following three theorems.

Theorem 2.1. Assume that Vy > 0 the coefficients A7, BY,C], D], Q7, and N are
Fi-progressively measurable matriz-valued processes, defined on Q x [0,T], of dimensions
nXmn,mxXm,nxnmnxmmnXn, and m X m, respectively. Assume that M7 is an Fpr-
measurable and nonnegative nxn random matriz. Assume that Q)7 is a.s.a.e. nonnegative.
Assume that there are two deterministic positive constants e, and o which are independent
of the parameter v, such that

[AT@)], BT (@)1, [CT ()], DI Q@) INY(B)], [M7] < &1

and
N7 > ol wm.

Assume that as v — 0, AV(t), B'(t),C;(t), D] (t),Q7(t), and N7(t) converge uniformly
n (t,w) to A°(t), B(t),C?(t), DY(t),Q°(t) and N°(t), respectively. Assume that M" uni-
formly in w converges to M° as~y — 0. Assume thatV~y > 0 the BSRDE (A?, B";C], D] ,i =

1,...,d; Q", N7, M7) has a unique Fi-adapted global solution (K7, L") with

K7 € LF(0,T;S") N L¥(Q, Fr, P;C([0,T);S™)), L7 € L£%(0,T;S").
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Then, there is a pair of processes (K, L) with
K € LF(0,T;87) N L¥(Q, Fr, P;C([0,T];8Y)), L e L%(0,T;8"),
such that

lim K7 = K strongly in L5 (0,T;S%) N L®(Q, Fr, P;C([0,T]; SY)),

0 o n (21)
lim LY = L strongly in L5(0,T;8"),

v—0

and  such  that (K,L) is a unique Fy-adapted  solution  of  the
BSRDE (A°, B°,C°, D° Q° N° M?Y).
If the above assumption of uniform convergence of (AY,C7,Q7, M") is replaced with
the following one:
T
limesssup [ (|JA7 — A% +|C" = C°P + Q" — Q°|) ds + |[M" — M°| — 0. (22)
0

=0 e

then the above assertions still hold.

Remark 2.1. When the assumption of uniform positivity on the control weight ma-
triz N is relaxzed to nonnegativity, Theorem 2.1 still holds with the additional assumption
that there is a deterministic positive constant €3 such that

d
Z(DZ)*D;Y 2 63Im><ma M’y Z 63In><n-

i=1
Theorem 2.2. (the singular case) Assume that d = 1 and Q(t) > 0. Also
assume that there is a deterministic positive constant €3 such that
M > e3l,xp (23)
and
D*D(t) > e3lnxm- (24)
Then, the BSRDE (9) has a unique Fi-adapted global solution (K, L) with
K € L¥(0,T;87) N L®(Q, Fr, P;C([0,T);S})), L€ L3F0,T;8"),
and K (t,w) being uniformly positive w.r.t. (t,w).

Theorem 2.3. (the regular case) Assume thatd = 1,M > 0,Q(t) > 0 and
N(t) > e3lpxm for some positive constant €3 > 0. Further assume that B = C = 0, and
D and N satisfy the following

hlir(% esiggp tl,tze[o,r%l’]%{l—tzlgh D) = Dle)l = 0, (25)
lim esssup max N(t;) = N(ty)] = 0.

h—=0+ Q" t1,t2€[0,T]; [t1—t2|<h
Then, the BSRDE (7) has a unique F;-adapted global solution (K, L) with
K € L2(0,T;8T) N L®(Q, Fr, P;C([0,T);8T)), L€ L%0,T;8").

The proofs of the above three theorems are given in Sections 3, 4, and 5, respectively.
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3 The Proof of Theorem 2.1.
For V(t,K,L) € [0,T] x 8 x (8™)4, write
F'(t,K,L):= —[KB"(t +ZC7 )*KD](t +Zd:LiD3(t)]

Z D] (t)*KD] ()] * (26)

d
x[KB(t +ZC7 V*KD](t)+ > L;D] ()]

i=1
The generator of the BSRDE (A7, B7; C’], DZ,@' =1,...,d;Q", N7, M") is
d
G'(t,K,L) = (A)'K+ KA+ (C])'KC] + Q"
d = (27)
+3°((CHYLi + LiCY) + F'(1, K, L).

i=1
We have the following a priori estimates.

Lemma 3.1. Let the set of coefficients (A7, BY;C}, D], i = 1,...,d;Q", N7, M")
satisfy the assumptions made in Theorem 2.1, and let (K7 LV) be a global adapted solution
to the BSRDE (AY, B";C],D},i=1,...,d;Q", N7, M") with

K" € LF(0,T;8") N L®(Q, Fr, P;C([0,T];8™)), L € L3(0,T;8"),

and N(t)+X% | Di K D;(t) being uniformly positive. Then, there is a deterministic positive
constant g which is independent of v, such that ¥y > 0, the following estimates hold:
p

T
0 < K'(t) < eolprn, E” (/ |L7|2ds> <y Vp>1. (28)
t

Proof of Lemma 3.1. From Proposition 2.2, we see that K7 > 0. Note that
(K7, L") satisfies the BSRDE:

/

dK7 = [(AV) K"+ KA 4 Z (CIYKCY + Q7 + Z VLI + LICY)
z 1 =1
(29)
+F7(t, K", LV)] dt + ZLZ dw;, 0<t<T,
=1
| K(T) = M.
Using 1t6’s formula, we get
( d
K72 = _[m (B4 + 3 200 [K(C7)K7CI) + 2t (K7Q)
i=1
d
YTYCY 8 nal YOI — |72

+Y 4dtr (K'L]CY) +2tr [KYF(t, K", L")] — |L7| (30)

ijl
+> 2tr (K'L)) dw;, 0<t<T,
LI = AP




We observe that since
F'(t, K", L") <0, K>0,

we have
2tr [KTF(t, K7, L7)] = 2tr [(K")? F'(t, K", L") (K")?] <0, (31)
Hence,
T d
2 +/ LPds < P+ [ {4tr [(K7)220) + 3 20 [K(C7) K¢
t i=1

+2tr (K7Q7) +§d:4tr (KVLZCJ)} ds (32)

=1

/ZQtr (K'LY) dw;,  0<t<T.

Using the elementary inequality
2ab < a® + b

and taking the expectation on both sides with respect to F, for r > t, we obtain that
1 T T
EZ K1) + 5 B / L2 ds < &4+ 54/ E5|K(s)ds, 0<r<t<T. (33)
t t

Using Gronwall’s inequality, We derive from the last inequality the first one of the esti-
mates (28). In return, we derive from the second last inequality that

T T T d
/ |L7|2ds§55+65/ |L7|ds—/ S 2tr (K7LY) duy. (34)
t 0 t i=1
Therefore,

T p T d
E7 (/ |L7|2ds> <3P / > 2tr K7L dw;
¢ to=1

We have from the Burkholder-Davis-Gundy inequality the following

T p
AN (/ |L7|ds> + EFt
t

,,] . (35)

p/2

T d p T
E7t > 2tr (K'LY) dwi‘ S / |K7 | L)? ds
. t

’
t

while from the Cauchy-Schwarz inequality, we have

T p T
E7 (/ |L7|ds> < TP2pT (/ |L7|2ds>
t t

p/2

Finally, we get

p/2

T P T
E7 ( / |L7|2ds> < 3P + [3PTP/%L + 6P nP/ef| BT (/ |L7|2ds> : (36)
t t

10



which implies the last estimate of the lemma.

Now, consider the optimal control problem

Problem P, inf J(u; 0, )

u(-)€LL(0,T;R™)

where for t € [0,7] and x € R",

(37)

J'(ust,x) == B /t (N ) + (QVX, X ds 4 (MYX(T), X47(T))] (38)

and X;‘“‘() solves the following stochastic differential equation

d
dX = (A'X+Bu)ds+ > (C7X + Du)dw;, t<s<T,
i=1
X(t) = =z
The associated value function V7 is defined as

V(t,x) = inf J(u;t, x).

u(-)ELL(t,T;R™)
Then, from Proposition 2.2, we have
(K7 (t)x,z) =V (t,z), V(t,z)€[0,T]x R".
From the a prior: estimates result Lemma 3.1, we have
V(t,x) < sgolzf?, VY(tz)€[0,T] x R™
So, the optimal control u” for the problem P, satisfies
N /tT @2 ds = EF /tT(NW,m) ds < zolz[?.

Set

T
Uyt T) := {u € L%(t, T; R™) : 52Eft/ lul? ds < 50|x|2} , VreR"
t

Then, we have

VI(t,x):= inf  J7(ust, ).

u(-)eur (t,1)
Define

K7 :=K'—-K", L":=L]—-Lj, X5 :.=Xbw_Xbo
AT =AY — AT BY:=BY-B", C]":=C]-C],
D7:=D"—-D", Q7 :=Q"—-Q7, N :=N7"-NT,

MY = MY — M.

11
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Lemma 3.2. Let the assumptions of Theorem 2.1 be satisfied. Then, there are three
deterministic positive constants g, 7, and g, which are independent of the parameters
and T such that the following three estimates hold. (i) For each x € R",

T
Ft t,ziu 2 2 Fi 2
E Joax | X7 (s)]® < eelz]” + e B /t |u|”ds. (44)

(i1) For each (t,x) € [0,T] x R",

T
7 max XS ()P < BT [ (JAT] 4 (07 P) X0 (s)[2 ds
t

1<s<T (45)

T
+ecB7 (BT |+ D) lul(s) ds.
t
(iii) For each (t,x) € [0,T] x R",
|7 (us b, ) — T (u;t, )|
< 68Ef'f[|M”jf|IXé’“‘(T)|2 + [ X5 (D) (1 X7 ()] + [ X7 (T)])]
+eaB7 [ X107 ()]| + X (5) | ds (46)
t

T T
e B7 [ QXS (5) ds + =g BT [N uf?(s) ds.
t t

Proof of Lemma 3.2. Note that X" satisfies the following stochastic differen-
tial equation:

d
dX,r = (A™X,, + A7X, 4+ Bu)ds + Y _(CT X, + CI" X, + D]"u) dw;,
i=1

X,.(t) = 0.

So, in view of the assumptions of Theorem 2.1, the first two estimates are actually a con-
sequence of the continuous dependence upon the parameters of the solution of a stochastic
differential equation, and the proof is standard. The last estimate results from an imme-
diate application of the mean-value formula for a differential function.

Lemma 3.3. Let the assumptions of Theorem 2.1 be satisfied. Then, we have the
following three inequalities. (i) For each x € R™ Nu € UZ%(t,T),

B i | X077 < 2o(1+ 25" 0) af” (47)

(i1) For each (t,x) € [0,T] x R™Yu € UL(¢t,T),
T
E7t max | XPP(s)P < ereg(l 425 'eg)|x]? esssup/ (AT + |C77?) ds
w 0

t<s<T (48)
+676;160|x|2 esssup(|B"7| + |D77|2)(s).
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(i1i) For each (t,x) € [0,T] x R™,Yu € UZ(t,T),

|J7(U,t,$) o JT(u,t, fL')|
£5 eSS | M| BT XLT(T))?
1/2 |:

IN

1/2

es [BRX(T) 2] (BT (2] X05(T) P 4 2| X (T)P)]

1/2 172 (49)
T [Eﬂ sup |X;’$;“<s>|2] [Eﬂ sup [2|X;*“*“<s>|2+2|X¢m;“<s>|21]

!
t<s<T t<s<T

T
+es esssup/ Q7| ds E7t sup |X55(s)]? + ese; 'eoz| esssup [N (s).
w 0 t<s<T S,w

Proof of Lemma 3.3. Since u € U%(t,T), we have
T
Eﬂ/ uf? ds < &5 o2 (50)
t

Putting (50) into the first estimate of Lemma 3.2, we get the first inequality of Lemma 3.3.
Putting (50) and the first inequality of Lemma 3.3 into the second estimate of Lemma
3.2, we get the second one. The last one is a combination of (50) and applying the
Cauchy-Schwarz inequality in the third estimate of Lemma 3.2.

Combining the first and the last inequalities of Lemma 3.3, we conclude that for
each (t,z) € [0, T] x R",VYu € U%(t,T),

|J7(u7 12 .I') - JT(U’ t fL')|

< egee(1 465 ep)|w|* esssup | M7 |
w

1/2
+2|z)2s(T + 1)\/e6(1 + &5 '&p) lEft sup |X§f;u(s)|2] (51)

t<s<T

T
teges(1 4+ 25 o) || esssup / Q7| ds + ese; eo|z|? esssup [N77|(5).
w 0 s,w

Putting the second inequality of Lemma 3.3 into this, we have that

|J7(u’ t ZL') o JT(U’ t fL')|
< egeg(l + ey teg) @ F esssup [M7| + 2|z|es(T + 1)y/e6(1 + 5 ')
w
T
x |e7e6(1 + 25 tep) |z esssup/0 (JAT| + |C7?) ds (52)
v 1/2
+e7ey teg|m|? esssup (| BT | + |D7T|2)(s)}

T
+eges(1 + €5 0)| 7| esssup / |Q"7| ds + ege, Mo || esssup [NT7|(s)
w 0

S,w
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hold for each (¢,z) € [0,T] x R",Vu € UZ(t,T). Therefore, we have

|V7(t7 ZL') o VT(tJ ZL')|
< egeg(1 425 teg) P esssup [M7| + 2|z|es(T + 1)y/e6(1 + &5 o)

T

x |e7e6(1 + 25 tep) |z esssup/o (JAT| + |C77?) ds
¢ 1/2

+eres soloesssup(|B77] + 1D )(s)

T
+eges(1 + €5 0)| 7| esssup / |Q"7| ds + ege, Mo || esssup [NT7|(s)
w 0 S,w

hold for each (¢,x) € [0,T] x R".

In view of the assumptions of Theorem 2.1, (53) implies that for each (¢,z) €
[0, T]x R™, V(t, x) converges to V°(¢,x) as 7 — 0. Moreover, this convergence is uniform
in (t,w). Hence, K7 converges to some K in the Banach space

LF(0,T;8%) N L>(Q, Fr, P;C([0,T]; S})).

In the following, we show the strong convergence of L?. Note that (K7, L77) satisfies
the BSDE

d
YT — _ o Y Y\ T T T ’}’T .
dK"(t) [G"(t, K",L") - G"(t, K", L")] dt+;Lz dw;, (54)
K7™(T) = M.
Using It0’s formula, we have
T
BIKTR() + B [ 117 (s) ds
7 (55)
— E|MTP +E/ K76 (s, K7, L") — G7(t, K7, L™)] ds.
t
Since
|G7(s, K", L") — G™(t, K", L")| < e(1 4+ |L"* + |L7|?) (56)

for some deterministic constant € which is independent of v and 7, we have
T T
E/ L7 [2(s) ds < E|M"[? + £ esssup |K7T(s)|E/ 1+ [P+ L) ds.  (57)
t S,w t
From the second a priori estimate of Lemma 2.1, we conclude that L converges to some
LY strongly in £%(0,T;S8"). By passing to the limit in the BSRDE (A", B"; C], D} ,i =

1,...,d;Q7",N",M"), we show that (K° L°) solves the BSRDE (A° B% C? DY,
i=1,...,d;Q° N, MY).
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4 The Proof of Theorem 2.2.

This section gives the proof of Theorem 2.2. The main idea is to do the inverse transfor-
mation:

K=K (58)

which turns out to satisfy a Riccati equation whose generator depends on the martingale
term in a linear way.
First, since D is inversable, we can rewrite the BSRDE (9) as

+KBK™'L+ LK~'B*K]dt + L dw, (59)

dK = —[-A'K -KA+Q-KBK 'B'K — LK 'L
K(T) = M,

where

A:=—-A+BD'C, B:=-BD.

Note that we have the following rule for the first and the second differentials of the inverse
of a positive matrix as a matrix-valued function:

d(K™") = -K'(dK)K™", & (K™")=2K""(dK)K~"(dK)K™". (60)
Using [t0’s formula, we can write the equation for the inverse K of K:

{ dK = —|KA*+ AK — KQK + BKB* + BL + LB*]dt + L duw,
K

N(T) — M_l, (61)

where

L:=-K'LK™"
From Proposition 2.1, the above BSRDE (/T, QY2: B,0;0, Iysm, M‘l) has a unique global
adapted solution (K, L) with

K € LF(0,T;8") N L®(Q, Fr, P;C([0,T);8")), L e L0,T;8"),

which implies that K 1(¢) is uniformly positive in (¢,w). Moreover, from the fact that
K(T) =M "> 7' I,xn, we derive that K is uniformly positive. This shows that K !(t)
is uniformly bounded. Therefore (K, L) is a global adapted solution to the BSRDE (9)
with -

K:=K'eLP0,T;8")NL>(Q, Fr, P;C([0,T]; ST)),

L:=—-K 'LK'e£%(0,T;S").

The uniqueness results from the Feynman-Kac representation result Proposition 2.2.

In fact, assume that (f(\, f/) also solves the BSRDE (9). Then, from Proposition 2.2, we
see that

o~

(K(t)z,x) =V (t,z) = (K(t)z,z), a.s., Y(t,x) € [0,T] x R".
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So, we have K (t) = K (t) almost surely for V(t,z) € [0,T] x R™. Set
K =K —-K, 6Li:=L;—L; 0G:=G(tK,L) —GtK,L).

Then, we have 0 K = 0. Note that (0K, L) satisfies the following BSDE:

d
dSK(t) = —6Gdt+ Y 0L;(t)dw;(t), 0<t<T, (62)
i=1
SK(T) = 0.

From this, proceeding identically as in the last paragraph of Section 3, we have
T T ~
E/ I6L|%(s) ds < E|5K(T)|2+5esssup|6K(s)|E/ (1+|L*+|L]*) ds =0. (63)
t S,w t

Hence, 0L = L — L=0.

5 The Proof of Theorem 2.3

For the regular case, the situation is a little complex: we easily see that the above inverse
transformation on the first unknown variable can not eliminate the quadratic term of the
second unknown variable. However, we can still solve some classes of BSRDEs with the
help of doing some appropriate transformation.

Proposition 5.1.  Assume that Q > A*(D™Y)*ND™' + (D"Y)*ND7'A,m = n,
and D and N are positive constant matrices. Then, Theorem 2.3 holds.

Proof of Proposition 5.1. Write

—

N:= (D Y*ND (64)
Then, the BSRDE (7) reads
dK = —[A*K+KA+Q—L(N+ K)™'L]dt + L dw,
0<t<T, (65)
K(T) = M.

The equation for K:=N+K is

dK = —[A*K+KA+Q—A*"N—NA— LK 'L]dt+ Ldw,
0<t<T, (66)
K(I) = N+ M.

Note that N + M is uniformly positive. From Theorem 2.2, we see that the BSRDE (66)
has a unique global adapted solution (K, L). Therefore (K — N, L) is a global adapted
solution to the BSRDE (7).

Proposition 5.2. Assume that A =0 and D and N are constant matrices. Then,
Theorem 2.3 holds.
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Proof of Proposition 5.2. First assume m = n. Consider the following approx-
imating BSRDEs:

{ dK = —[Q — LD.(N + D;KD,)™'D;L]dt + L dw, (67)

K(T) = M
where
D, :=D+ aly,ym>0,a>0.

From Proposition 5.1, we see that the BSRDE (67) has a unique global adapted solution
(Kq, Ly) for every o > 0. From Proposition 2.2, K, can be represented as

(Ko(D)a, ) = Vi(t,z), V(t,z) €[0,T] x R". (68)

From Theorem 2.1, we see that K, uniformly converges to some K € LF(0,7;87) N
L>(Q, Fr, P;C([0,7];8%})) and L, strongly converges to some L € £%(0,7;8"), and
that (K, L) is an adapted solution of the BSRDE (7) when A = 0.

Consider the case n > m. Then consider the n xn matrices D whose first m columns
are D and whose last (n — m) columns are zero column vectors, and N which is defined

as P
N = ( 0 ?)
The BSRDE (7) when A = 0 is rewritten as
{ dK = —[Q— LD(N + D*KD)"'D*L]dt+ Lduw,
K(T) = M

From the preceding result, we obtain the desired existence result.
Consider the case n < m. Then, there is a m X m orthogonal transformation matrix
T such that . .
D =[D,0]T, D € R™" and is non-singular.

Write P

N := (T~Y)*NT™! = ( ]/V\il J/VJZ ) > 0.

Niy  Nao

Then, Ny; > 0. The BSRDE (7) when A = 0 is rewritten as

dK = —[Q— LD(Ny, + D*KD)™'D*L]dt + L dw,
K(T) = M

From the preceding result, we obtain the desired existence result.

Proposition 5.3. Assume that A = 0, and D and N are piece-wisely constant
Fi-adapted bounded matriz processes. Then, Theorem 2.3 holds.

Proof of Proposition 5.3. Since D and N are piece-wisely constant F;-adapted
bounded matrix processes, there is a finite partion:

O=tto<t; <---<ty;:=T
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such that on each interval [t;, t;+1] C [0, T], D and N are constant F;,-measurable bounded
random matrices. From Proposition 5.2, the BSRDE

dK = —[Q—LD(N + D*KD) 'D*L]dt+ L dw,
ti_1 <t< T, (69)
K(T) = M
has a unique Fj-adapted solution (K7, L7) with
K7 € LE(tyj_1, T; ST) N L®(Q, Fr, P;C([t-1,T); ST)), L7 € L¥(tj-1,T;S™).

Assume that for some i = 2,...,.J, the BSRDE

dK = —[Q— LD(N + D*KD) 'D*L]dt + L duw,
tion <t <ty (70)
K(t;) = K"'(t)

has a unique F;-adapted solution (K*?, L?) with
K" € LE(tior, t58T) N L=(Q, F,, Py C([ti1, 4:);ST)), L' € Lo(ti1, i3 S™).

Note that when i = J, we use the convention K7*1(¢;) := M. Then, we conclude from
Proposition 5.2 that the BSRDE

dK = —[Q— LD(N + D*KD)™'D*L]dt + L dw,
Ctig St <, (71)
K(ti1) = K'(tia)

has a unique Fi-adapted solution (K*~!, L*=1) with

K"l e LP(tig,ti 1;8T) N LX(Q, Foy, PsC([tio,ti 1] 8Y)), L1 € Lx(ti ot 1;8™),

i—17

In this both inductive and backward way, we may define .J paires of processes {(K*, L*)}/_,.
Define on the whole time interval [0, 7] the pair of F;-adapted processes (K, L) as follows:

ZKl tz 1,t; ()7 ZLz tz 1,t; )

We see that (K, L) satisfies the BSRDE (7). We then obtain the desired existence result.
Proposition 5.4. Assume that A = 0. Then, Theorem 2.3 holds.

Proof of Proposition 5.4. For an arbitrary positive integer k, consider the
2F_partion of the time interval. Define
Dk(t):D<i_1T> Vte{z_lT iT) i=1,2,...,2"
2k Y 2 Y 2k Y Y >ttt J
and - . )
N =N (), Ve[ g T) =12
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For each k, D¥ and N* are are piece-wisely constant, F;-adapted, bounded matrix pro-
cesses. Further, in view of (25), D*(t) and N¥(¢) converge respectively to D and N,
uniformly in (¢, w). That is, we have

Jim esssup max [DM(t) = D(t)| =0, lim esssup max INF(t) — N(#)] = 0.

From Proposition 5.3, we see that the BSRDE (0, 0,0, D*; Q, N*; M) has a global adapted
solution (K%, L*), and then from Theorem 2.1, we see that Theorem 2.3 holds.

Proof of Theorem 2.3. The case A = 0 is solved by Proposition 5.4. For the
case A # 0, consider the following transformation

K:=®K®, L:=®Ld
where ® solves the differential equation
dd
) = AW, te 0T,
®(0) = Iixn
Using It6’s formula, we get the BSDE for (ﬁ, f,);

dK(t) = —[Q— LD(N + D*KD) 'DL]dt+ Ldw(t), te (0,T),
K(T) = M
where Q := ®*Q®, M := &(T)*M®(T), D := &~'D. Note that the trajectories of D are
still uniformly continuous like D. From Proposition 5.4, we see that the
BSRDE (0,0,0, D;Q, N, M) has a global adapted solution (K, L), and thus the pair
(@) "'Ke™', (e)7'La™)
solves the original BSRDE (A, 0,0, D;Q, N, M).

The uniqueness can be proved in the same way as in the proof of Theorem 2.2.

6 Application to Stochastic LQ Problems

6.1 The unconstrainted case

Assume that
£ e L*(Q,Fr,P;R"), q,f gi€ L%0,T;R"). (72)
Consider the following optimal control problem (denoted by Py):

min  J(u;0,x) (73)

weL%(0,T;R™)
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with

J(uit,x) = E7(M(X""(T) =€), X""(T) - ¢)

Fi r t,zu t,xu (74)
+B7 [T [(QUXM — g), X1 — ) + (Nu,u)] d
t
and Xb%% solving the equation
d
dX = (AX+Bu+ f)ds+ > (C;:X + Diu+g;)dw;, t<s<T, (75)
i=1
X(@t) = =z, weLl%(tT;R™).
The value function V' is defined as
V(t,x):= uecﬁ%g;Rm)J(u;t,x), (t,xz) € [0,T] x R". (76)
Define I : [0,7] x 8" x R"™ — R™*" by
d d d
(S, L)y=—-(N+> D;SD;) Y(B*S + > D;SC;+> D;L;). (77)
i=1 i=1 i=1
and
A:=A+BI(,K,L),C; :=C;+D;l'(-,K,L), i=1,....d. (78)
Let (¢, ¢) be the Fi-adapted solution of the following BSDE
R d d d
dp(t) = —[AY+> CH(di—Kg;) — Kf —>_ Ligi+ Qqldt +>_ ¢; dw;, (79)
i=1 i=1 i=1

o(T) = Mg

where (K, L) is the unique Fi-adapted solution of the BSRDE (1). The following can be
verified by a pure completion of squares.

Theorem 6.1 Suppose that the assumptions of Theorem 2.2 or Theorem 2.3 are
satisfied. Let (K, L) be the unique Fy-adapted solution of BSRDE (1). Then, the optimal
control u for the non-homogeneous stochastic LQ) problem Py exists uniquely and has the
following feedback law

d d d
i@ = —(N+Y_D!KD) '[(B*K +>_ D:KC;+ > D:L)X
i=1 i=1 i=1 (80)
d
—B*Y+ Y Di(Kgi — ¢)].
i=1

The value function V (t,x), (t,x) € [0,T] x R™ has the following explicit formula

V(t,z) = (K(t)x, o) — 2((t),2) + VO(t), (t,2) € [0,T] x B" (81)

20



with
T T
VO(t) i=  ET(ME, £)+Eft | (Qa.qyds—2E7 [ (v, f)ds
+Eft/ Z Kgugz _2(d)igi)]d3

_E7 / (N + ZD;‘KDi)uo,uo) ds
t i=1
and

d

= (N + Xd:D;‘KDi)‘I[B*w +Y Di(¢; — Kg;)], t<s<T.

i=1 i=1
Proof Set
vt=u—-T(,K L)X.

Then the system (75) reads

d
dX = (AX—l—Bﬁ+f)ds+Z(CiX+Dﬂ—|—gi)dwi, t<s<T,

=1

X(t) = =z, weLl%(tT;R™).
Applying It6’s formula, we have the equation for X =: X X*:

([ dx = [AX+XA*+X(Ba+f) + (B + f)X*]ds
+ZCXC’*+C’X(Du+gZ) + C; X (Dt 4 ¢;,)X*C
(Du+gl)(Du+gl)]ds

1=1

X(t) = xz*, uweLi(t,T;R™).

Note that the BSRDE (1) can be rewritten as

’ d d
_dK = {A*K + KA+ Y. CKC+ Y (CiLi + LiCy) + Q
i=1 i=1

d
+T(t, K, L)*NT(t, K, L)] dt — 3" Li dw;,
=1
K(T) = M.
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So, application of Ito’s formula gives
T
B (MX(T), X(T)) + B [ ([Q +T(s, K, L)' NT (s, K, )] X, X) ds
t
T
= (Kt)X(t), X(¢)) + 2B / (K(Bii + f), X) ds
t
T d ~
+EF / S 2(K(Djii + i), C:X) ds
t s
. ZEI
+ R /t N (K (Djii + g;), Diiii + g;) ds
i=1

T d
+2E7 / > (Li(Dju + g;), X) ds,
toi=1

and

w7 e x )+ [ (@ux) i
— B |(T)X(T) + /t TQqus]
= @O X0) + B [ (b, B+ p)ds
+E7 /tTé(qSi,Diﬂngi)ds

T d d
+Eft/ (S CiKgi+ Kf +Y Ligi, X) ds.
t =1 i=1
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Combining the last two equations, we get
J(u;t, x)
T
= E7 l(M(X(T)—é) —i—/ X —q), —q)ds+/ (Nu,u)ds]
t

— p* [(MX(T),X (T)) +/ [Q +T(s,K,L)*NI'(s, K, L)] X, X) ds]

_oE7 th X(T +/ (Qq, X ds] +E5( [ ME, €) +/ (Qq, ¢ dsl
+Eff/t (N, @) + 2(NT(s, K, L)X, @)] ds
= (X0, X(0) - 200, X0) + B 046.0+ [ Qo) s

T d T
+Eﬂ/ Z(K(Diﬂ+gz~),Diﬂ+gi) ds+Eft/ (Na, @) ds

t

—2Eft/ (¢, B+ f)d Eft/ Z éi, Diii + g;) ds

= ()0 - 20,0+ 7 [046,6) + [ (Qa.a)as
257 [ st B [ S A (K) ~ 206.00] 0
g (NS DIKD) (i — u), i — ) ds

=1

T d
—Eft/lt (N +>_D:KD;)u’,u°)ds.

=1

This completes the proof.

6.2 The constrainted case

Fix 7 € R™. Define
Una(t, ) == {u € LE(t,T; R™) : EX""*(T) = o7}, V(t,z) € [0,T] x R", (88)

where X% golving the equation (75). Then, consider the following constrainted LQ
problem (denoted by P5%):

inf  J(u;0 89
uEUlartll(O,:v) (U, ’ l') ( )
where the cost functional J(u;t,z) is defined by (74). Note that the set of admissible

controls Uyq(t, ) contains the terminal expected constraint.
Let W(-,¢) be the unique solution of the SDE:

dY, = A(s Yds+ZC )Y, dwi(s), t<s<T,

=1

(90)
Y;ﬁ = Inxn-

23



To guarantee that Uy(t, ) is not empty, assume that the matrix
A=E /OT ETU(T, $)B(s) B*(s) BT U*(T, 5) ds (91)
is nonsingular. Then, Vo € R", the following control
u(s) 1= B (s) 70 (T, 5)A oy — B | YT, ) f(s)ds], s e (4T, (92)

belongs to U,q(t, x).
We have the following existence result.

Theorem 6.2. Let the assumptions of Theorem 2.2 or Theorem 2.3 be satisfied.
Assume that Uaq (0, z) is not empty. Then, the problem P>* has a unique optimal contol.

Proof of Theorem 6.2. The proof is similar to that of Kohlmann and Tang [12].
The main idea is to choose a sequence {u*;k =1,2,...} such that

ub € Ung(0, 1), klggo J(u*;0,7) = ueUi:go,z) J(u; 0, ).
Then, we prove that this sequence is a Cauchy sequence by using the uniform convexity
of the cost functional J(u;0,z) in the control u. This uniform convexity is obvious for

the regular case, and has been proved for the singular case by Kohlmann and Tang [12].
The details are left to the reader.

Due to the limitation of space, we will in what follows just sketch how to solve the
unique optimal control of Theorem 6.2 in terms of the solution of the associated BSRDE.

Using the stochastic maximum principle (see Peng [20], and Tang and Li [27], for
example), we have the following. Let @ be the optimal control, and X = X0, Then,
there is some A € R", and a pair of processes (p, §), such that

d d
dp = —[AP+QX —q@)+ D Ciglds+> gdw;, 0<s<T, (93)
. i=1 i=1
pI) = MX(T)—-¢) —A
and
d
B*p+ > Dig+ Nu=0. (94)

=1

Using It6’s formula and the equality (94), we get the equation for ¢ := KX —

N 4 d d

dp(t) = —[A+> Cfdi— Kgi) — Kf =Y Ligi+Qqldt + > b; dw, (95)
=1 =1 =1

(T) = ME+ X
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where (K, L) is the unique F;-adapted solution of the BSRDE (1), and the explicit formula
of the optimal control:

d d d
i@ = —(N+Y_D!KD) '[(B*K+>_ DiKC;+ > D:L)X
=1 i=1 =1 (96)
~ d ~
—B*)+ > Di(Kgi — ¢;)]
i=1

where the Lagrange multiple ) is determined such that the terminal constraint EX (T) =
xp is satisfied.

6.3 A comment on application of the LQ theory in mathematical
finance

One-dimensional singular L.QQ problems arise from mathematical finance. The mean-
variance hedging problem and the dynamic version of Markowitz’s mean-variance portfolio
selection problem, are one-dimensional singular L) problems.

The mean-variance hedging problem was initially introduced by Follmer and Son-
dermann [7], and later was widely studied among others by Duffie and Richardson [5],
Follmer and Schweizer [8], Schweizer [23, 24, 25|, Hipp [11], Monat and Stricker [16],
Pham, Rheinldnder and Schweizer [21], Gourieroux, Laurent and Pham [10], and Lau-
rent and Pham [15]. All of these works are based on a projection argument. Recently,
Kohlmann and Zhou [14] used a natural LQ theory approach to solve the case of determin-
istic market conditions. Kohlmann and Tang [12, 13] used a natural LQ theory approach
to solve the case of stochastic market conditions, and the optimal hedging portfolio and
the variance-optimal martingale measure are characterized in terms of the solution of the
associated BSRDE.

The continuous time mean-variance portfolio selection problem was initially consid-
ered by Richardson [22]. The reader is referred to Zhou and Li [29] for recent developments
on this problem.
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