
, 

BU-513-M 

MULTIDIMENSIONAL BALANCED DESIGNS* 

by 

D. A. Anderson*'~ and w. T. Federer 

Cornell University 

Abstract 

June, 1974 

If v = 4A + 3 is a prime or prime power, then the k = 2A + 1 quadratic 

residues in GF(v) form a (v,k,A) difference set. A general construction is given 

for m-way comPletely variance balanced designs where each factor has v levels, m 

is any integer less than or equal to k, and N = vk. The construction gives rise 

to a variety of designs, easily enumerated, with the same parameters pairwise but 

with differing variance properties. For m = 3 there are only two distinct designs 

possible, and their relative efficiency is shown to be 2X2/(2~2 - 1). 
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1. Introduction ~ Background. Consider an experiment involving m factors 

at s1, s2, ···, sm levels, and suppose that all interactions between factors can 

be neglected. A design T for the experiment of size N is the specification of N 

combinations. Denote by B. . the si X sj incidence matrix of factors i and j for 
:LJ 

the design T. That is, the element in Bij corresponding to level x of factor i 

and level y of factor j is the number of combinations which have factors i and j 

at levels x and y, respectively. The elements of Bij are integers greater than or 

equal to zero. In an obvious wa.y we let B11 = Diag[r1, 

information matrix for the design T is the block matrix 

r 2, ···, r ]. Then, the 
St 

(<Bij)) i,j = 1, 2, ···, m, 

where we have already adjusted for the mean. If the design T is connected, 

M = ((B .. >) + DiagL-J , J , • • •, J J is nonsingular and M-l is a conditional 
l.J sl sl. SaBz sill sm 

inverse of (<Bij)), (<Bij))- = M-l = (<vij)). 

Definition 1.1. The design T is said to be 

(i) variance balanced with respect to factor i if Vii = a .. I + b.J , and 
J. st J. s1s1 

(ii) completely variance balanced if it is variance balanced with respect to 

every i = 1, 2, ···, m. 
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We illustrate the above "\·lith the folloiling construction. Suppose for a given 

n we haxe a set of t orthogonal Latin squares of order n, O(n,t), which we will 

assume to be arranged so that each has first row (0, 1, 2, ···, n- 1). Cut off 

the first row from each of the t squares, and consider the t + 1 factors corre-

spending to the column effects and the t treatments of the t Latin squares. It is 

apparent that for any pair of factors each level x of one occurs exactly one time 

with each level of the second except x. The combination (x,x) occurs zero times. 

Thus the incidence matrix for itn and jth factors, Bij' is 

= Jnn I 
n if J = 1, 2, ···, t + 1. (1.1) 

Since the matrices I and J - I are closed with respect to multiplication, com-n nn n 

plete variance balance is obvious if the design is connected. It is important to 

observe that if we have a design with m factors each at n levels in N observations, 

an obvious necessary condition for connectedness is 

N ~ 1 + m(n - 1). (1.2) 

Thus if n is a prime or prime power and t = n - 1, we may use any t (not t + 1) of 

the factors to obtain a t-way variance balanced design in N = n(n - 1) runs. If 

n is a prime power or not and t < n - 1, we have (t + 1)-way complete variance 

balanced designs. 

The purpose of this paper is to produce families of m-way completely variance 

balanced designs each with the same parameters pairwise, but which give rise to 

designs with different efficiencies. The constructions are based on difference 

sets of the form (v,k,~) = (4).. + 3, 2~ + 1, ).) where 4). + 3 is a prime or prime 

power, The complete variance balance follow·s from the fact (Theorem 2.1) that 

the matrices I, B, B' form a basis for a linear associative commutative algebra 

where B is the incidence matrix of the corresponding symmetric balanced incomplete 

block design. 
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Hedayat and Raghavarao (1973) have obtained sufficient conditions for the 

existence of three-way pair.·rlse balanced designs, but not necessarily variance 

balanced, based on difference sets. Their construction when applied to the (v,k,~) 

difference set above is one of the possible constructions in this paper for m = 3. 

Afsarinejad and Hedayat (1972) have given constructions for multistage Youden 

designs from difference sets in a manner similar to the constructions here; 

however, the complete variance balance and the differences in variance properties 

were not observed. Preece (1966) has given several Youden designs for two sets 

of treatments obtained by cutting rows from Graeco-Latin squares. For the case 

v = 4~ + 3, a prime or prime power, his designs are essentially those of the pres­

ent paper for m = 3, and he has noted the different variance properties of the 

different possibl~ designs. The present paper might be regarded as an extension 

of these constructions to m-way completely variance balance which easily provide 

all possible combinatorial configurations of the given type. 

Agrawal (1966} has given constructions for three-way designs which are related 

to those of Hedayat and Raghavarao (1973), and of this paper for m = 3· Potthoff 

(1962a.,b, 1963) has given a number of specific designs of three and four dimensions 

which can be obtained by one of the constructions. Causey (1968) with a related 

construction produces some designs for t~e case discussed in this paper of up to 

five dimensions, but does not obtain a. construction for the maximwn number of 

factors. 

2. On (4~ + 3, 2A + 1, \) Difference Sets. If v = 4~ + 3 is a prime or prime 

power and k = (v - 1)/2 = 2A + 1, then it is well-known that the quadratic residues 

in GF(v) form a {v,k,A) differeuce set. Let the quadratic residues be arranged in 

some arbitrary but fixed order (for convenience we take the first element to be 

the multiplicative identity denoted by 1) asS= (1, d2, d3, ···, ~). We observe 
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that the v- l vectors XS = (x, xd2, xd3, ···, x~), x € GF(v), are (v- 1)/2 

permutations of the vector Q as x ranges over the k quadratic residues of GF(v), 

and (v - 1)/2 permutations of nonquadratie residues as x ranges over the non­

quadratic residues. In particular, since if xis a quadratic residue, then (-x) 

is nonquadratic and -g, is a permutation of the nonquadratic residues. Further, 

xg, - yg, = (x - y)g, is a permutation of quadratic or nonquadratic residues as (x - y) 

is or is not a. quadratic residue. Thus with the ordering of ~' we have specified 

(v - 1) ordered vectors xg, x € GF(v), x f o; such that the vectors together with 

(0, o, ···, 0) are closed with respect to vector addition over GF(v). 

Corresponding to this (v,k,A) difference set, we can construct a symmetric 

balanced incomplete block design v = b, r = k, X, whose oth block is ~ and whose 

xt ~'~ block ia Q + (x x • • • - ' ' ' x) = (1 + x, d2 + x, d3 + x, ···, ~ + x), x ranging 

over the nonzero elements of GF'( v). Let B denote the v X v incidence matrix of 

this design so that 

B'B = BB' = (2X + l)I + X(J - I ), v vv v (2.1) 

and 

BJ = B'J = (2A + l)J • (2.2) 

We prove the following theorem of central importance in our constructions of 

multidimensional balanced designs. 

Theorem 2.1. !f. B ~ ~ incidence matr.;.x of the cyclic balanced incomplete ~ 

design~ initial block Sl' then~~ matrices I, B, and B' form~ basis~ 

a linear associative and co~~tative algebra. 

Proof. Since S and -S are permutations of the quadratic and nonquadratic residues, 

respectively, and 0 is neither inS nor in -~, it follows that Iv + B + B' = J and 

the three matrices are linearly independent. From (2.1) 

B'B = BB' = (2X + l)I + XB + AB'. v (2.3) 
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so that 
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(2f.. + l)J = J3J 

= B[I + B + B 1 ] 

= B + B2 + BB 1 

= B + B2 + (2~ + l)I + f..B + XB' 
= (2A + l)I + (f.. + l)B + A.B 1 + B2 , 

B2 = A.B + (X + l)B 1 • 

(B I )2 = (A. + l)B + ~B I • 

(2.4) 

(2.6) 

Thus we have shown closure with respect to multiplication, and the commutativity 

is obvious. The proof is complete. 

C'C = CC 1 = ai + b(J - I), 

is a balanced matrix. 

Proof. Since C1C and CC 1 are obviously symmetric, the coefficients of Band B' 

in the product must be the same. 

Corollary 2.2. B-l = __ -l [f..I + A.B - (f.. + l)B']. 
(21- + 1) (f.. + 1) v 

-1 The proof is by direct multiplication of B by B. 

3· Construction of Multidimensional Balanced Designs~ (v,k,A.) ~· 

RetainL~g the notation developed in section 2, consider an experiment with m ~ k 

factors each at v levels. Specify an initial set of treatments by the m X k matrix 

whose rows (corresponding to the m factors) are: 
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xls 
1 

To(xl, x2, ••• X ) = x2s m ' 
• • . 

x,J 

and each of the k colllmns corresponds to a treatment combination • Let additional 

treatments Tx(x1, x2, • • •, xm) be obtained cyclically from the initial set by 

adding x to every element of the matrix of (3.1) as x ranges over GF(v). The 

design depends only on (x1, x2, •••, xm)' and we may denote it by 

(3.2) 

Theorem 3.1. ~~design T(x1, x2, • .. , xm) ~ (3.2), the incidence matrix for 

ith and jth factors - , 
residue in GF(v). 

Proof. This follows directly from the observation that xJ9 - xiS= (xj - xi)S is 

a permutation of the quadratic or nonquadratic residues as (xj - xi) is a quadratic 

or nonquadratic residue. For example, consider only the i tb and jth rows of 

T0(x1, x2, •••, xm) and subtract {in GF(v)) xiS from each. Considering the ith 

factor as blocks and the j"' factor as treatments, the cyclic development (3.2) 

will generate an incidence matrix which is e:i,ther B or B'. 

Theorem 3.2. The design T(x1, x2, • ••, x ) is m-way ba.l.anced. 
- m --- -

Proof. The information matrix contains only matrices I, B, and B'. Thus the 

information matrix of the reduced normal equations is a linear combination of I, 

B, and B ', and since it is necessarily syu~~~etric by Corollary 2.1, it must be of 

the form ai + bJ. 



- 7 -

To the initial set T0(x1, x2, •••, xm) we may adjoin p columns of (o, o,···,O)' 

and develop the design as in (3.2). The resultant design has N = v(k + p) and 

incidence matrices either pi+ B or pi+ B'. The closure of I, B, B' is sufficient 

to show that the designs are still m-way balanced. We have the following: 

Theorem 3. 3. .!! v = 4A. + 3 ,!! ~ prime 9.:: prime power, ~ always exists ~ m­

way balanced design if m ~ (v - 1)/2 = k with N = v(k + p). - - -
~le 3.1. Let m = 4, v = 11, and Q = (1, 3, 4, 5, 9). Take the initial set 

to be 

The full design is 

l 3 4 5 9 2 

2 6 8 10 7 3 
T(l, 2, 5, 6) = 5 4 9 3 1 6 

6 7 2 8 10 7 

5 7 8 9 2 6 

6 10 1 3 0 7 
9 8 2 7 5 10 

10 0 6 1 3 0 

9 0 1 2 6 10 

10 3 5 7 4 0 

2 1 6 0 9 3 

3 4 10 5 7 4 

Since (2 - 1), (5 - l), (6 - 1), {5 

residues, the information matrix is 

4 

7 

l 3 4 5 9 

2 6 8 10 7 

5 4 9 3 1 

6 7 2 8 10 

5 6 10 3 5 6 

9 0 8 4 8 10 

5 10 4 2 7 6 0 

7 
1 

5 
8 3 9 0 8 9 4 10 

8 9 10 3 7 9 10 0 

0 2 4 l 8 l 3 5 

9 3 8 6 0 10 4 9 
1 7 2 4 1 2 8 3 

1 2 3 7 0 2 3 4 
4 6 8 5 1 5 7 9 
2 7 110 4 3 8 2 

5 0 6 8 5 6 1 7 

0 4 6 7 8 1 

9 5 9 0 2 10 

3 8 7 1 6 4 

1 9 10 5 0 2 

4 8 10 0 1 5 
2 7 2 4 6 3 

7 1 0 5 10 8 

5 2 3 9 4 6 

8 

6 

0 

9 

- 2), (6- 2), and (6- 5) are,all quadratic 
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i-
I 5I B B B l 

B' 5I B B 
B' B' 5I B 

l B' B' B' 5I 

A five-dimensional design T(l, 2, 5, 6, 10} can be formed by adding the row 

(10, 8, 7, 6, 2) to the initial set above. The differences (10- 1), (10- 5), 

and (10 - 6) are quadratic residues so the corresponding incidence matrices are 

each B. The difference 10- 2 = 8 is a nonquadratic residue so B25 = B'. It is 

easy to see the effect of adjoining p columns of zeros to the initial sets. The 

following table gives vectors {x1 , x2, x3 , x4) for the various possible designs 

of dimension 4 when v = 11. We have taken the block corresponding to factors one 

and two to be B. There are five other ~airs of factors giving rise to a total of 

32 possible designs. Considering all possible vectors (1, 2, x, y) and (1, 2, y, x) 

it is easy to generate all 32 such designs. They are listed in order of increasing 

number of B' blocks, and the design obtained by reversing the order of factors 

three and four is not listed. A similar procedure may be followed to generate 

the possible five-dimensional designs. 

TABLE 3.1 

Four-Dimensional Designs for v = ll 

(1, 2, 5, 6) (1, 2, 10, 3) 

(1, 2, 3, 6) (1, 2, 5, 8) 
(1, 2, 5, 3) (1, 2, 10, 4) 
(1, 2, 4, 5) (1, 2, 9, 7) 

(1, 2, 6, 4) (1, 2, 3, 8) 
(1, 2, 3, 7) (1, 2, 9, 10) 

(1, 2, 8, 6) (1, 2, 10, 8) 

(1, 2, 3, 4) (1, 2, 9, 8) 
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We would note that in e. c..:;:ubinatoria.l sense we have cnnstructed a ( v - 1)-

dimensiona.l pairwise balanced design. The design is obviously not connected, 

however, since the number of parameters is greater than the number of observations. 

4. On the Variance of Linear Coutrasts. The construction of section 3 per-

mits considerable variety in the designs as illustrated by example 3.1. Pairwise 

the designs are all symmetric balanced inccmplete block designs with parameters 

(v,k,A). However, it is not apparent how the designs T(x1 , x2, ···, xm) compare 

in terms of the variance of linear contrasts of treatment effects. 

Consider two three-dimensional designs given by T(l,2,x) and T(l,2,y) where 

(x - 1) and (x - 2) are both quadratic residues and (y - l) and (y - 2) are non-

quadratic and quadratic residues, respectively. The information matrices are, 

respectively, 

T(l,2,x) 

l-ri 

B' 

B' 

B 

ri 

B' 

B 

B 

ri 

and 

T(l,2,y) 

B 

ri 

B' 

B' 

B 

ri 

(4.1) 

After eliminating the first factor, the reduced normal equations for both designs 

have diagonal blocks of Av/k Iv (neglecting constant multiples of J) and for 

T(l,2,x) and T(l,2,y), respectively, off diagonal blocks of B - 1/r B'B and 

B - 1/r B'B'. On eliminating tJ.1e second factor we have, after some simplification, 

reduced normal equations of (2A - 1/f..)I for T(l,2,x) and 2AI for T(l,2,y). 
v v 

It is easy to show that for each of the designs all three factors have the 

same reduced normal equations. Thus for each factor the efficiency of design 

T(l,2,y) to T(l,2,x) is 

( ) 2f..2 
Eff T(l,2,y), T(l,2,x) = ---

2/..2 - 1 
(4.2) 
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When ~ = 1 this is an efficiency of 2; however, the efficiency rapidly approaches 

l as ~ increases. 

There is thus demonstrated a definite difference between the various possible 

designs. The problem becomes more complex for four- and higher-dimensional designs 

as the number of possibilities increases and not all factors have the same variance. 

A complete study of this phenomenon will be discussed in a later publication. 

It was noted in the introduction that three-dimensional designs similar to 

those constructed in section 3 had been given by Potthoff (1962a), Agrawal (1966), 

Causey {1968), and Hedayat and Raghavarao (1973). Without exception, the three-

dimensional designs given in their constructions correspond to the case here with 

larger variance, and the fact tha.t two constructions exist with different variance 

seems not to have been observed. Potthoff (1962b) and Causey (1968) provide some 

four- and higher-dimensional designs using a similar, but not identical, con-

struction which does not provide for a variety of designs as does the construction 

of this paper. Causey in fact remarks that no general way of determining the 

maximum number of factors that can be accommodated in the design was obtained. 

Here we have shown that this number is always m = 2~ + 1. 

The series of designs given by Anderson (1972) provide three-, four-, and 

five-dimensional designs with small values of N. These designs have all off-

diagonal blocks B .. = B = B' =B .. belonging to a linear associative algebra, but 
1J J1 

provide only partial balance rather than balance. The multistage designs given 

by Hedayat, Seiden, and Federer (1972) produce partially balanced designs when 

considered as m-dimensional designs, though some factors are in fact orthogonal 

to others. 
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