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ABSTRA CT

The inverse scattering problem for an acoustic medium is

considered within the approximate direct inversion frame-

work. As opposed to iterative methods, the direct inversion

approach gives an estimate of the medium velocities by

operating on the observed scattered field without repeated

solutions of the forward problem. Previous solutions to the

multidimensional Born velocity inversion problem require

either collocated source and receiver arrays or plane wave

sources. In both cases an array of point sources is required to

collect the proper data for inversion. In this paper, the solu-

tion to the single point source problem is derived. It is shown

that by extrapolating and imaging the observed scattered field

appropriately, the projections of the velocity function at all

angles can be obtained. The velocities are, then, recon-

structed by the inverse Radon transform method of tomogra-

phy.



-2-

Introduction

The general inverse scattering problem can be stated as follows. The

medium of interest is probed by sources located outside the medium and

the scattered field is recorded at various locations. The problem is to

obtain the properties of the medium such as the propagation velocity or

the material density from the observed data. Similar inverse scattering

problems arise in areas such as acoustics, electromagnetics and optics

although the corresponding physical phenomenon are somewhat different.

In this paper, an acoustic medium probed by sound waves is considered.

The medium velocity may vary in all directions, but the density is assumed

to be constant. We also assume that the velocity does not depend on fre-

quency; i.e., a non-dispersive medium.

The differential equation governing the multidimentional wave propa-

gation in an inhomogeneous medium can be transformed into an integral

equaLion known as Lhe Lippiann-Schwinger equalioin from which we obLain

the following integral representation of the scattered field, (Taylor [1]),

P, (, ) = k2 f dr' 7(1') P(r',c) Go0(r.',w). (1)

Here P and PS are the total and scattered fields and Go is the free space

Green's function. The velocity function 7 is related to the medium veloci-

ties v (r) by

7(r) = n2(T) -1, (2)

where 71 (r_) : c ce .
where n (.) = (_) and c = ,-is a reference velocity. Since P(r.,c) is

also a function of the unknown velocities the scattered field is a nonlinear

function of the medium parameters. In the approximate direct inversion

approach, the total field in the integrand in equation (1) is replaced by a

known incident field. The resulting equation is, then, inverted to obtain the

velocity function. Here, the Lippmann-Schwinger equation is considered

within the first Born approximation; that is, the total field is replaced by

P-0 (r,c), the background field computed by assuming that 7(L:) = O. This is

a very common linearization in inverse scattering problems; physically it
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corresponds to assuming that the scattered field inside the medium is

small compared to the incident field.

Direct velocity inversion within the Born approximation has been an

active research topic in recent years. This problem has been investigated

for various dimensions, observation geometries and background velocity

models, although most solutions assume an homogeneous background velo-

city model. The simplest problem, namely, that of a one dimensional

medium probed by a broadband plane wave was considered by Cohen and

Bleistein [2], who showed that the velocities can be obtained by an inverse

Fourier transform. over wavenumber. This solution was extended by Gray et.

al. [3] to the case of scattering from a layered medium probed by a point

source. Here again the Born inversion can be done with one receiver, and

the inversion is obtained via Fourier transforms and a change of variables.

Most solutions for the multidimensional case assume .an observation

geometry consisting of coincident sources and receivers (zero-offset). One

reason for the interest in the zero-offset problem is that for this geometry'

the Lippmann-Schwinger integral representation becomes simpler, in that

the second and the third terms in the integrand of equation (1) become

identical. This leads to a one to one mapping between the observed data

and the velocity function in the two (or three) dimensional Fourier

transform domain. Cohen and Bleistein [4] describe a time domain method

for zero-offset (homogeneous) Born inversion in seismic application, while

Norton and Linzer [5] describe similar methods for ultrasonic reflectivity

imaging.

A slightly different approach to the study of the direct velocity inver-

sion problem has been developed by extending x-ray tomographic tech-

niques to ultrasonic imaging. In this case, the acoustic medium is probed

from various directions by plane waves and the scattered field is recorded

for each plane wave separately. At a fixed frequency, plane waves incident

on the medium from all directions are required for complete inversion of

the velocities. Mueller ct al. [6] discuss the diffraction cffccts of

ultrasound tomography and derive the volume integral representation

within the Born and Rytov approximations. Greenleaf [7] gives some
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examples of images reconstructed with this approach. In diffraction tomog-

raphy, with plane-wave sources, the incident field in equation (1) become a

complex exponential, providing a Fourier transform relation. In fact, the

scattered field due to each plane wave gives the velocity function along a

circular trajectory in the Fourier transform domain as first pointed out by

Wolf [8]. Velocities can be reconstructed by interpolating the available

data over a rectangular grid and then taking the inverse Fourier transform

in rectangular coordinates. Devaney [9] introduced the backpropagation

method for reconstruction as an alternative to the interpolation in the fre-

quency domain. Examples of velocity reconstructions with both complete

and incomplete sets of plane waves are given by Devaney [10], while Deva-

ney and Beylkin [11] describe the theoretical extension to a point source

or "fan beam" geometry.

As was mentioned above, most multidimensional velocity inversion

methods assume either zero-offset geometry or plane-wave sources. In this

paper, the following problem is considered. The three (or two) dimensional

acoustic medium is excited by a point (or line) source located outside the

inhomogeneous region and the scattered field is observed at all frequen-

cies on the surface surrounding the region. The single-source problem is

interesting for several reasons. First, unlike in the zero-offset case both

reflected and transmitted data can be used for inversion. This problem

differs also from diffraction tomography in that the information in the fre-

quency content of a single experiment replaces many experiments each

involving monochromatic plane waves. The single-source problem, there-

fore, may help to better understand and relate the other methods of inver-

sion. Second, the problem is obviously important in applications where the

zero-offset configuration is either impractical or physically impossible and

where the number and the location of the sources may not be sufficient to

produce virtual plane sources. Finally, understanding the single source

problem will help to develop direct inversion methods for more realistic

problems, such as for multiple bandlimited sources.



-5-

Data processing efforts for single source experiments have mainly con-

centrated on reflector imaging or migration. The two main approaches to

migration - the finite difference method (Claerbout [12], Claerbout and

Doherty [13]) and the Kirchhoff integral method (Schneider [14], Jain and

Wren [15]) - are readily applicable to a single-source experiment. A review

of wavefield extrapolation methods for migration can be found in Berkhout

[16]. In general, the purpose of migration is to map the locations of the

sharp velocity changes in the medium rather than, e.g., to obtain quantita-

tive estimates of the velocities. Kirchhoff migration can be viewed as a

delay and sum array processing. To image a given point in the medium the

receiver array is focused on that point by appropriate phase delays, and

the image at the point is obtained by integrating over the receivers. The

imaged quantity is obviously a function of the amount of scattering from

that point but it is also a function of the relative positions of the source,

the receiver array and the image point. Therefore, the imaged quantity is

not a direct measure of the velocity changes at the image point. fetter

images of the discontinuities can be obtained by employing a weighted

delay and sum operation for focusing, where a different receiver weight is

used for each point in the medium Miller et. al. [17] describe the focusing

weights with examples of the migrated synthetic data for the case of homo-

geneous background. A formal derivation of the receiver weights for a vari-

able background within the geometrical optics approximation is given by

Beylkin [18].

In this paper a different approach to the inversion problem is taken.

Instead of operating directly on the observed scattered data, we consider

the field extrapolated by the wave equation from the receivers into the

medium. The volume integral representation of the extrapolated field was

first derived by Porter [19] and then by Bojarski [20] for homogeneous

Green's functions in the context of holographic imaging and the inverse

source problem. A derivation of the volume integral representation for

arbitrary Green's functions is given in the following section. Although

extrapolated field does not contain more information than the observed

scattered field, there is more flexibility in the type of operations that can
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be performed with it. For example, for a two dimensional problem the

observed scattered field P s (j,o) is a function of two variables, namely,

receiver location and frequency (or time). On the other hand the extrapo-

lated field P, (x,z,t) is a function of two space variables and time or fre-

quency. Therefore, there is one more free parameter in this domain. More-

over, the extrapolated field and the unknown velocity function -(zx,z)

share the same spatial parameters. In fact, in this domain migration is an

operation where the time variable of the extrapolated field is simply set

equal to the travel time corresponding to each point. In the next section

the extrapolated field is defined and its volume integral representation in

terms of the medium velocities is derived. In section 3, the exact analytical

solution of the velocities is obtained from the extrapolated field within the

Born approximation.

1. The Extrapolated Field

Consider the wave propagation operator D for a constant density

acoustic medium with refraction index n (m).

D = V2 + k 2 n 2 (). (3)

A variety of volume integral representations for the scattered field can be

obtained by decomposing this operator into a background operator and a

residual. Let

D = D0 + 7(r,)

Do = V2 + k 2 n2 ()

whr n) = k2 [ n2(ts) - co2 r (_) ] ,

where no(z) represents the background model which incorporates any a
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priori knowlegde of the medium. Since it does not complicate the following

discussion an arbitrary varying background is considered in this section.

For the homogeneous background case no(r_) = 1. Define the volume V

surrounded by the closed surface S to be a domain containing the values

of r such Lhat

n () no0() - (5)

Let P(L,o),x EC V be the total field (incident plus scattered) and

P, (r_,), r_ E S be the observed scattered field due to sources located out-

side V. Then,

DoP- (P,w) = (--m(,w) P(:,w) ;r El V, (6)

and an integral solution for Ps is

PJ(r.,c) = f dr' y(',) P(x',c) Go0 (r,.), (7)

where the Green's function is given by

Do G0(xz',c) = -6(r -r') . (8)

The extrapolated field is obtained by solving the homogeneous wave equa-

tion for the background velocity model with Dirichlet boundary conditions

given by the complex conjugate of the scattered field on the observation

surface, i.e.

Do, (r,) = O ; CV,

P, (,-,w) = P(r_,o) x; rE S. (9)

In the time-domain, this can be interpreted as running the homogeneous



wave equation "backwards" in time with boundary conditions given by the

time-reversed scattered field. The solution of this boundary value problem

is (Morse and Feshbach [21])

P.(r=c) =-f ds [ P.(V,w) V.G&(rc) -
S V.o

Go* (mC, c') VCPs ( )] i t) X (10)

where A is the unit vector outward normal to the surface S. For inversion,

we want to represent the extrapolated field in terms of the velocity func-

tion. From equations (7) and (10), it follows that

P, (m ) = - dr' y(r',w) P(n', ) f d4 [ Go0 ('z',c) VCGC (i,C) -

Go (7X,c) VGO(~m',j) ] · ). (11V)

By applying Green's theorem (Morse and Feshbach [21]) to the surface

integral in equation (11), we obtain

f da [ G 0 (4,',oc) DoGo x:X,w) - G;(X4,cj) DOGC0 4r;',Gc) I

-Go(L:',w) + G(,r:',c) ; c EV. (12)

Therefore, the volume integral representation of the extrapolated field in

terms of the velocity function y is given by

P.(r,c) = f dar' 7(-',w) P(2',w) 2i Im[ Go(r_._',c) ]. (13)

Comparing equations (7) and (13), the extrapolated field has the same form

as the scattered field except that the Green's function is replaced by its
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imaginary part. Since the imaginary part of the Green's function is odd

symmetric in time, the extrapolated field consists of scattered waves pro-

pagating in positive and negative time directions. This property will be used

in the next section to invert equation (13) in the case of homogeneous

background.

2. Inversion for the Velocities

Consider an experiment where the two (three) dimensional medium V

is probed by a line (point) source and the scattered field is observed on the

surface S as shown in figure 1. From equation (13), for a source with fiat

frequency spectrum, the volume integral for the extrapolated field within

the Born approximation can be written as

PI* (IW) f dr= ' -y(ir,) Go(n'x ,c) 2i fn[ Go(,1.',co) , (14)

where xz is the location of the source. A geometric interpretation of the

extrapolated field is as follows. Let the travel time from the source to a

point r 0 be T0 . When the incident field reaches this point at time T0 the

waves scattered from the point propagate forward and backward in time. At

times 2T0 and zero, the extrapolated field due to scattering frommO lies on

a curve passing through the source location as shown in figure 2. The

shape of the curve is determined by the travel times of the background

velocity model For example with a homogeneous background the extrapo-

lated field maps onto circles in two dimensions and onto spherical surfaces

in three dimensions.

An analytical solution of equation (14) is possible when the back-

ground model is homogeneous. The procedure is the same for the two

dimensional medium with a line source and for the three dimensional

medium with a point source. The Green's function of a two dimensional
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homogeneous medium (i.e., line source) is given by

God(nnw)c= 4HA1)(k {r-z'{), (15)

and its imaginary part is

hn[Go(xr ',c)] = ¥ sgn(k) Jo(k Ir-r' ), (16)

where H' 1) (-) and J 0 (-) are the Hankel and Bessel functions of the first

kind and sgn (k) = ± 1 denotes the sign of k. Also, for homogeneous back-

ground the scattering potential is

7(r,o) = k 2ky() ; 7zC) = n 2 ()-1. (17)

Then, from equation (14) the extrapolated field can be written as

P.',CO-_ ki sgn(k) 4 dg' 7(') Hdla)(l Ipr' sx. )Jo(k Iro-'h). (18)

By taking the real parts of both sides, we have

EPi(GW) -G - 48 dr' y(2') Jo(k IL.T'-s- I) Jo(k Ir-_' I). (19)

Now consider the following function obtained from the extrapolated field

imaged at time zero

Sty) = -4 r -T-. I f df) a~ w ) . (20)

The function (m_) can be expressed as



9C)> = --6 Ir--~ I ° f dkar PBRC-1k1p.R(T,W)~(r)-8Ix-r.Idk 6

= [2-4 I f dr.'y(x.') fdk k Jo(kli'-j) Jo(k z.--r'I)
Y 0

I-x I- f dT-' x') ( -r- - -r'! ). (21)
V

The roots of the argument of the delta function above clearly lie along the

line perpendicular to the r_-m vector at its midpoint. To obtain the

appropriate weights for integrating along this line the variables in the

integral (21) can be changed from (x',z') to (p,:) by shifting the origin to

Lhe source location :r and by rotating as shown in figure 3. It follows that

GW(r) PA(X) 
?(f_,r) =rf d t f dp 7(p'c£) { (p 2+ t 2)-_[(p-r) 2+ 2]31 2)

~-) p1 )r (p2+ t2)? (22)

where r = Ir. and (p,; P) denotes the coordinates (p,:) for a given direc-

tion . as shown in figure 3. Noting that ?(._,O) = 0 for all directions M, for

r O this integral is evaluated as follows. Viewing ~ as a parameter, the

second integral is of the form

f dp b (p,t) 6[a(p,0)] = ; 11 I Pi<Po<P2
p(Z) 1Jp=P 0

= 0 ; otherwise, (23)

where po is the only root of a (p,t) for all 4. In equation (22) the only root

of the argument is po = r /2 and

Oa (p,t) P P - -r (24)

} =p (# + 12))# [E(p ~)2 + 42]~H n (24)
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Therefore, for T •0

i(xz)

= f d7(l'). (25)
(z, -).e= 

This simply means that ?(f,2r) for i fixed is the projection of -y(-') onto

the line defined by the unit vector f_ as shown in figure 4. Since the func-

tion %m(r) is known everywhere in the medium, projections at all angles

= - are obtained by equation (25). Recovering T(1-) from its projections

7(.,2r) is exactly the problem encountered in tomography and is accom-

plished by the inverse Radon transform (Ludwig [22]). From the

projeclion-slice theorem

(kf) = f dp ?(E,2p) e kP, (26)

where (k) ; k = A, is the Fourier transform of 7(r). From the Fourier

representation of 7(r_) and using equation (26) it can be shown that

( =T2 f if dk k e -f dp 1,2p) e P. (27)

This equation gives the reconstruction of 7(r_) from its projections and it

can be implemented by mapping the polar coordinates into cartesian coor-

dinates. An alternative implementation can be obtained by noting that

(--,--2p) -= 5(i,2p). Using this property equation (27) can be written as
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7(2:) = L.2 fd dk e'k 1k j dp %],2p)eP (28)

This shows that for reconstruction the projections are first filtered with

the filter Ik 1, then they are backprojected into the medium Equation

(28) can also be written in compact form

7() f edgeH a?(£1,s) , (29)
47r 0

where H denotes the Hilbert transform.

As was pointed out previously, the projections of 7(.-) along the lines

that go through the origin are not obtained, instead we have the constraint

that ?(±f,0) = O. Nevertheless, this has no effect on the reconstructed velo-

cities within the volume V. From equation (25)

(M,,2r) = f d 7 (r ,4; ) ; r # O

= ; r = 0. (30)

The integration limits are extended to infinity since 7(r ,; _) is zero out-

side [ l(m_) ; t2z(r) ]. Let the reconstructed velocity function y (r-) be the

sum of the true velocity function and an error term

7 (r) = 7(.) + 7. (-)

( f,2T) = f d t e(T ,t; I) (31)

It follows from equations (30) and (31) that the projections of the error
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term are given by

f d 7 ( ,C ; = -f d 7(r,'.; ) ; = O

= 0 ; otherwise. (32)

Therefore, the only region where the error term is nonzero is an infinitely

close neighbourhood of the source location. Since the source is located

outside the medium this does not effect the reconstruction and

r (7X):= 7( -- ) ; _ E V . (33)

In summary, the velocity function 7y(-) is obtained from the observed

scattered field in three steps;

1) Extrapolate the observed data to obtain P8 (z-,o). The extrapolation

can be done directly with equation (9) using a finite difference scheme.

Alternatively, the Kirchhoff integral form in equation (10) can be used.

2) Obtain the zero time image field 7(r) by equation (20). In the time

domain equation (20) can be implemented by integrating and Hilbert

transforming the observed traces before extrapolation. Then, the extrapo-

lated field is imaged at time zero and scaled at all image points by

4 I -- I I.
3) Reconstruct y(r) from its projections 7(q_,T). From equation (28)

the reconstruction can be done in two steps:

a) Filter the projections

F(k ) = 1 dp F(I,2p) ek-P,

f (* ) = 2, f d (kk ) F' (34)
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b) Backproject the filtered projections

2wr

7(2:L) = 4-fL fi(ty), f(35)

3. Conclusion

In this paper a new approach to the velocity inversion problem has

been presented. The problem was formulated in terms of the field extrapo-

lated from the receivers into the medium by the wave equation. The

volume integral representation of the extrapolated field was derived for an

arbitrary Green's function. It was shown that a complete set of projections

of the velocity function can be obtained by imaging the extrapolated field

at zero time. In the case of a homogeneous Born background the projection

trajectories become straight lines. Therefore, the single point source prob-

lem can be transformed into the classical tomography problem. The imaged

field is then inverted for the velocities by the inverse Radon transform.
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under Contract N00014-8Z-K-0055, and was done in part while a summer employee at
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Grant No. DAAG29-84-K-005, and by the National Science Foundation under Grant
ECS-83-12921.
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Figure 2.
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Figure 3.
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Figure 4.
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Fgure Captions

Figure 1. Single source scattering experiment.

Figure 2. Extrapolated field of a point scatterer imaged at times zero and

twice the source travel time.

Figure 3. Change of coordinates for a given source location and a point in

the medium.

Figure 4. One projection of the velocity function.


