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abstract: The complexity of biotic and abiotic environmental con-

ditions is such that the fitness of individuals is likely to depend on

multiple traits. Using a synthetic framework of phenotypic evolution

that draws from adaptive dynamics and quantitative genetics ap-

proaches, we explore how the number of traits under selection in-

fluences convergence stability and evolutionary stability in models

for coevolution in multidimensional phenotype spaces. Our results

allow us to identify three different effects of trait dimensionality on

stability. First are (i) a “combinatorial effect”: without epistasis and

genetic correlations, a higher number of trait dimensions offers more

opportunities for equilibria to be unstable; and (ii) epistatic inter-

actions, that is, fitness interactions between traits, which tend to

destabilize evolutionary equilibria; this effect increases with the di-

mension of phenotype space. These first two effects influence both

convergence stability and evolutionary stability, while (iii) genetic

correlations (due, e.g., to pleiotropy or linkage disequilibrium) can

affect only convergence stability. We illustrate the general prediction

that increased dimensionality destabilizes evolutionary equilibria us-

ing examples drawn from well-studied classical models of frequency-

dependent competition for resources, adaptation to a spatially het-

erogeneous environment, and antagonistic coevolution. In addition,

our analyses show that increased dimensionality can favor diversi-

fication, for example, in the form of local adaptation, as well as

evolutionary escape.

Introduction

In nature, the fitness of an individual will generally depend

on local abiotic conditions, on interactions with other in-

dividuals from the same species, and on interactions with

other individuals from different species. The complexity

of both abiotic and biotic conditions, as well as the com-

plexity of individual organisms themselves, make it very

likely that many different individual traits will affect fitness

(Blows 2007).

Even though models of quantitative trait evolution often
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consider the evolution of a single trait in a single species,

seminal formulations of both evolutionary quantitative ge-

netics (Lande 1979; Lande and Arnold 1983; Phillips and

Arnold 1989) and adaptive dynamics (Dieckmann and Law

1996) are multidimensional, that is, describe simultaneous

evolutionary dynamics of several traits. Moreover, these

formulations can incorporate interactions between co-

evolving species, for instance in predator-prey systems

(Dieckmann and Law 1996) or to study resource parti-

tioning, character displacement, and ranges of coevolving

species (Pacala and Roughgarden 1982; Taper and Case

1985; Case and Taper 2000). Recently, a few studies spe-

cifically looked at the effect of dimensionality in evolu-

tionary and coevolutionary models and concluded that

adding traits favors diversification (Doebeli and Ispolatov

2010, with an adaptive dynamics model) or the evolu-

tionary escape of prey or hosts from an exploiter (Gilman

et al. 2012, with a quantitative genetics approach). What

is common to both these conclusions is that adding traits

destabilizes evolutionary equilibria.

In this article, we present a general framework for an-

alyzing the effect of the dimensionality of phenotype space

on (co)evolutionary stability. Technically, this framework

bridges the gap between quantitative genetics and adaptive

dynamics—and thereby extends links already identified by

Abrams et al. (1993) and Abrams (2001) to multiple di-

mensions. Using x* to denote combinations of traits at

which fitness gradients vanish (i.e., x* is an evolutionary

equilibrium), we investigate how dimensionality influ-

ences two types of stability, illustrated in figure 1: (i) con-

vergence stability (Eshel and Motro 1981; Geritz et al.

1998), which refers to the question of whether x* is an

attractor or a repellor for the evolutionary dynamics and

relates to the direction of selection in the vicinity of x*

(see fig. 1a, 1b), and (ii) evolutionary stability, which refers

to the question of whether selection at x* is stabilizing or

diversifying, that is, whether the trait variances tend to

increase or decrease once the trait means are at x* (see fig.

1c, 1d). In the adaptive dynamics literature, evolutionary

stability is defined as noninvadability (Geritz et al. 1998).
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Effect on the trait means: Convergence stability

(a) Attractor (CS)
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Figure 1: The different types of stability, illustrated when there are
n p 2 traits under selection, focusing on one species. The initial
population is plotted with gray points, and the postselection distri-
bution is plotted with black points. The point x* is located at the
intersection of the two axes. a and b correspond to the direction of
selection near x*; c and d correspond to whether selection is stabilizing
at x*.

We will see that the conditions for noninvadability in an

adaptive dynamics context match the conditions for se-

lection to be stabilizing (as shown, e.g., by Sasaki and

Dieckmann 2011; Débarre et al. 2013, with one trait). In

addition, we will show that the impact of the number of

traits under selection on (co)evolutionary stability can be

dissected into three discrete effects that differently affect

convergence stability and evolutionary stability. Finally, we

illustrate the effects of dimensionality with specific ex-

amples of evolutionary dynamics due to frequency-

dependent competition and to victim-exploiter

interactions.

Models and Results

Evolutionary Model

We consider a community of m coevolving species and

assume that ni quantitative traits are under selection in

species i. Each individual of species i is characterized by

the values of its ni traits and is represented by a column

vector , where xi,j is the individual’sTx p {x , … , x }i i,1 i,ni

phenotype at the jth trait. We neglect features such as age

structure or sex differences, that is, any within-species dif-

ference other than those due to differences in the traits

under consideration. For simplicity, we also ignore the

effects of environmental variation on traits and assume

that we can identify phenotype and genotype.

We are interested in the effect of selection on the dis-

tributions of traits in each species. In particular, we will

describe how the means and variances of each trait in each

species are affected by selection between two time steps.

A time step typically corresponds to one generation (t ′
p

t � 1) in models with discrete generations and to an

infinitesimal time step (t ′
p t � dt) in continuous-time

models. We will use flexible definitions that allow us to

deal with the two kinds of models simultaneously.

We denote by fi the multivariate distribution of phe-

notypes in species i at time t (for notational convenience

the time dependence is omitted). For each species i, the

distribution fi is a function of ni variables, corresponding

to the ni traits under selection in species i. We denote by

wi(xi) the relative fitness of individuals of species i with

phenotype xi, given the current state of the community.

This fitness measure is standardized such that the popu-

lation average is equal to unity:w̄

w̄ p w (x )f (x )dx p 1.� i i i i i

ni�

The fitness of an individual can depend directly on its own

phenotype through adaptation to its abiotic environment

as well as on the effects of interactions with other indi-

viduals; the strength of these interactions generally de-

pends on the phenotypes of interacting individuals. Thus,

in general, the fitness is a func-w (x ) p w (x , f , … , f )i i i i 1 m

tion not only of xi, but also of the trait distributions fj

for j p 1, ..., m, in the m coevolving species. We will derive

explicit expressions for the fitness wi in “Illustrations” (eqq.

[10], [13], [17]), but for the general arguments a specific

expression of wi is not required.

Given the various fitness functions wi, the change in the

distribution of phenotypes due to selection, between two

time steps is given by

Df (x ) p (w (x ) � 1)f (x ). (1)i i i i i i

In a discrete-time model, Df (x ) p f (x ; t � 1) �i i i i

, and in a continuous-time model,f (x ; t) Df (x ) pi i i i

. To describe the evolutionary change in the phe-df (x )/dti i

notype distributions, we focus on summary variables such

as means and variances. The mean of trait j in species i,

, is given byx̄ij
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x̄ p x f (x )dx . (2a)ij � i,j i i i

niR

The covariance matrix Gi contains terms Gi,kl that are the

covariances between traits k and l in species i:

¯ ¯G p (x � x )(x � x )f (x )dx . (2b)i,kl � i,k i,k i,l i,l i i i

ni�

We note that covariance matrices Gi are real, symmetric

(Gi,kl p Gi,lk), and positive-semidefinite (all their eigen-

values are positive or null). We assume that the covariance

matrices that we consider are positive-definite (all their

eigenvalues are strictly positive); that is, we ignore the very

particular case where some traits can be exactly expressed

as linear combinations of the others (assuming that trait

dimensionality has been reduced beforehand if this was

the case; Lande and Arnold 1983). We further assume that

this assumption remains correct even when covariance

matrices evolve.

To obtain analytical results on the effect of selection,

we assume that phenotypic variation in all m species is

small, so that the difference between the trait value of an

individual and the mean trait within its species is small,

of the order d. This assumption, although limiting, is cru-

cial to the derivation of our results (see “Discussion”).

This allows us to Taylor-expand each fitness function wi

around the mean traits in species i, so that a twice-x̄i

differentiable fitness function can be approximated by a

quadratic function:

T¯ ¯ ¯w (x ) p w (x ) � (x � x ) 7 Dw (x )i i i i i i i i (3a)

1
T 2 3¯ ¯ ¯� (x � x ) 7 D w (x ) 7 (x � x ) � O(d ),i i i i i i

2

where is the gradient vector¯ ¯Dw (x ) p Dw (x , f , … , f )i i i i 1 m

of wi, and is the Hessian2 2¯ ¯D w (x ) p D w (x , f , … , f )i i i i 1 m

matrix of wi:

�wi¯(Dw (x )) p , (3b)i i j F
�x ¯ij x pxi i

2
� wi2 ¯(D w (x )) p . (3c)i i kl F

�x �x ¯i,k i,l x pxi i

We note that in general, the arguments in both these func-

tions are the mean trait in species i, , as well as thex̄i

distributions fj ( j p 1, ..., m). If these distributions are

Gaussian with a fixed variance, they can be replaced by

their means and covariances as arguments in the selection

gradient and the Hessian. We also note that the selection

gradient vector is commonly denoted by the Greek¯Dw (x )i i

letter b in quantitative genetics studies, while the Hessian

matrix , also called matrix of quadratic and cor-2 ¯D w (x )i i

relational selection gradients (Blows et al. 2004), is denoted

by g (Arnold 1992).

Because the Taylor expansion in equation (3a) is of

second order, the expressions for the changes in each mo-

ment k of the distributions fi will also depend on the

moments k � 1 and k � 2. Thus, changes in the means

will depend on the covariance matrices and the third mo-

ments, and changes in the covariances will depend on third

and fourth moments. Hence, our system of equations is

not dynamically closed, as there are more variables than

equations. We need to make moment closure assumptions,

that is, assumptions about the shape of the trait distri-

butions fi. As is classically done in quantitative genetics,

we assume that the trait distributions fi are multivariate

Gaussian. Gaussian distributions are symmetric: their third

central moment is 0, and their fourth moments can be

expressed as functions of covariances. Full expressions

without the Gaussian approximation are presented in ap-

pendix A (apps. A–D available online), and simplified ex-

pressions are presented in the main text.

Changes in Mean Traits

Directional Change. To analyze directional evolution, we

assume that the distributions fj, (j p 1, ... ,m), are Gaus-

sian; hence, the fitness functions wi are functions of the

trait xi, the mean trait values , and covariance¯ ¯x , … , x1 m

matrices G1, ..., Gm. Using the Taylor expansion (3a), the

change in the vector of mean traits in species i is

4¯ ¯Dx p G 7 Dw (x ) � O(d ). (4)i i i i

The derivation of equation (4) is presented in appendix

A. This equation is the coevolutionary equivalent of tra-

ditional quantitative genetics equations (Lande 1979; Bar-

ton and Turelli 1987; Phillips and Arnold 1989; Abrams

et al. 1993): the change in the vector of mean traits in

species i ( ) is equal to the product of the covariance¯Dxi

matrix Gi in species i times the selection gradient

.¯Dw (x )i i

Equilibrium Points. An equilibrium of the evolutionary

dynamics is a point at which the left-* * *x p (x , … , x )1 m

hand side of equation (4) is 0 for all species i (where *x i

is an ni-dimensional vector corresponding to species i):

for all i, . Using the fact that the covari-¯G 7 Dw (x ) p 0i i i

ance matrices Gi are positive definite, this expression sim-

plifies into for all i: equilibria for the evo-*Dw (x ) p 0i i

lutionary dynamics (4) are given as those points x* in

phenotype space at which the selection gradients vanish.
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Convergence Stability. The convergence stability of an

equilibrium x* of the evolutionary dynamics (4) is given

by the eigenvalues of the Jacobian matrix J, whose ex-

pression is given below in equations (5). We already as-

sumed that phenotypic distributions are Gaussian; we now

briefly assume that their covariance matrices are constant.

This is a safe assumption because changes in the mean

traits (eq. [4]) and changes in the covariance matrices (eq.

[6] below) occur at different timescales. Hence, we can

consider here that fitnesses wi are functions of the mean

traits in all species (j p 1, ..., m) and we can treatx̄j

covariance matrices Gj as parameters—this assumption

will be relaxed in the section “Changes in Trait Covari-

ances.” With this, the Jacobian matrix J is made up of

blocks of size ni by nh, Jih:

J p (J ) . (5a)ih i,h�{1, …, m}

Each block Jih can be written as a product:

J p G 7 C , (5b)ih i ih

where Gi is the genetic covariance matrix of species i (de-

fined in eq. [2b]), and Cih is a matrix that describes the

effect of a change in the mean traits of species h on the

selection gradient acting on species i:

�(Dw )i j
C p . (5c)ih,jl F¯�x *¯hl xpx

The equilibrium x* is convergent stable if all eigenvalues

of the Jacobian J have negative real parts (see fig. 1a).

Once x* is reached, mean traits in all species are at

equilibrium, but this does not necessarily imply that the

distributions of traits are frozen: higher moments can still

change, and in particular, the covariance matrices Gi may

still evolve (Steppan et al. 2002). In the next section, we

look at the effect of selection on trait (co)variances in each

species.

Changes in Trait Covariances

Using the Taylor expansion (3a) around an equilibrium

x* and the assumption that distributions are multivariate

Gaussian, we find that the changes in trait covariances in

species i due to selection can be written as

2 5DG p G 7 D w 7 G � O(d ). (6)i i i i

The derivation of equation (6) is presented in appendix

A. A similar expression, when only m p 1 species is evolv-

ing, can be found in, for example, Phillips and Arnold

(1989, their eq. [2], and references therein; note that since

we are at the equilibrium x*, the selection gradient b p

Dwi is equal to 0).

We say that x* is evolutionarily stable if selection reduces

trait variances in all species (i.e., selection is stabilizing).

In contrast, we say that the equilibrium x* is evolutionarily

unstable if there is at least one (composite) direction in

phenotype space along which the genetic variance increases

(i.e., selection is diversifying, which means that a wider

range of phenotypes will coexist). In terms of equation

(6), this means that x* is evolutionarily stable if all eigen-

values of are negative; otherwise, x* is evo-2G 7 D w 7 Gi i i

lutionarily unstable.

The matrix D2wi appearing in equation (6) is the Hessian

matrix of second derivatives of wi, evaluated at x* (see eq.

[3b]); by definition, it is symmetric (D2wi,kl p D2wi,lk). As

noted previously, covariance matrices Gi are also sym-

metric, and all their eigenvalues are real and positive. As

a result, the signs of the eigenvalues of are2G 7 D w 7 Gi i i

the same as the signs of the eigenvalues of D2wi (Coppel

2009, pp. 238–239). Therefore, evolutionary stability of x*

is completely determined by the Hessian matrices D2wi: x*

is evolutionarily stable if and only if all eigenvalues of D2wi

are negative (see fig. 1c). Similar conclusions are reached

using an adaptive dynamics framework (Leimar 2009), a

framework in which evolutionary stability refers to

noninvadability.

Dimensionality and Stability

An evolutionary equilibrium x* is a point in the space of

all traits of all species at which the fitness gradients of all

species vanish. As explained above, two different kinds of

stability need to be considered for such equilibria. On the

one hand, x* is convergent stable if it is a (local) attractor

for evolutionary dynamics (4), that is, if the real parts of

all eigenvalues of the Jacobian (5b) are negative. Denoting

by l(A) the eigenvalue with the largest real part of a square

matrix A and by Re(z) the real part of a complex number

z, this condition can be rewritten as

Re(l(J)) ! 0. (7a)

On the other hand, x* is evolutionarily stable if trait

variances decrease once the population means have

reached the equilibrium x*, that is, if all eigenvalues of the

Hessians D2wi are negative:

2
Gi, l(D w ) ! 0 (7b)i

(note that Hessians are symmetric real matrices and that

all eigenvalues of symmetric real matrices are real). The

main goal of this article is to determine the effects of the

dimensionality of phenotype space on these two types of

stability. Thus, we are interested in determining the effect

of dimensionality on the occurrence of eigenvalues with

positive real part in the Jacobian matrix J (eq. [5]) and

the Hessian matrices D2wi (eq. [3c]).
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Table 1: The three effects of dimensionality (as lines) and

whether they affect (Yes when they do) the two types of stability

(as columns)

Convergence stability Noninvadability

Combinatorial effect Yes Yes

Epistasis Yes Yes

Trait correlations (Yes) No

Note: (Yes) means that there is no effect in symmetric competition models.

To tease apart different effects of dimensionality, we

make the distinction of whether different traits are inde-

pendent or not. Nonindependence can be due to epistatic

interactions among traits or to trait correlations. Trait cor-

relations correspond to off-diagonal elements in the co-

variance matrices Gi; in the absence of correlations in spe-

cies i, Gi is a diagonal matrix. Epistatic interactions occur

when the effect of one phenotypic component on fitness

depends on other phenotypic components. Formally, epis-

tasis can be defined through the second derivative of the

fitness function wi: for two traits k and l ( k, epistatic

interactions occur if the second derivative 2D w pi,kl

is nonzero. In the absence of epistatic in-2
� w /(�x �x )i i,k i,l

teractions, D2wi is a diagonal matrix. Keeping this defi-

nition in mind, we can identify three classes of effects of

dimensionality on stability. These effects are described be-

low and summarized in table 1.

Combinatorial Effect. The first effect of dimensionality oc-

curs even when all traits are independent, that is, when

there are no epistatic interactions and no correlations

among traits; we call it “combinatorial effect.” The com-

binatorial effect can most easily be seen in the context of

evolutionary stability. When all traits are independent, the

Hessian matrices D2wi are diagonal: their eigenvalues are

their diagonal elements. Stability conditions can therefore

be formulated separately in each phenotypic dimension.

The more traits there are, the more likely it becomes that

at least one diagonal element in D2wi will be positive, which

destabilizes the entire system of multidimensional phe-

notypes in the direction of the corresponding trait. Thus,

evolutionary instability becomes more likely as the di-

mension of phenotype space increases.

A similar effect occurs for convergence stability. Even

when all traits are independent, that is, in the absence of

epistatic interactions, the Jacobian matrix J determining

convergence stability is in general not diagonal, and de-

stabilization, when it occurs, is generally along composite

phenotypic directions instead of single traits. However, the

same reasoning still applies. Traits being independent, the

more dimensions there are, the more eigenvalues of J there

will be, and the higher the chance that at least one of them

is positive.

Epistasis. The second effect of dimensionality is due to

epistatic interactions. Such interactions lead to correla-

tional selection (Schluter and Nychka 1994; Brodie et al.

1995; Blows and Brooks 2003) and correspond to Arnold’s

(1992) third horizon of selective constraints. Assuming

that a high-dimensional system without epistasis is stable

(either convergent stable or evolutionarily stable), we can

ask how introducing epistatic interactions into such a sys-

tem affects stability. This effect can be most easily seen by

considering evolutionary stability, that is, the Hessian ma-

trices D2wi. In these matrices, epistatic interactions cor-

respond to nonzero off-diagonal elements. Let us consider

a “full” Hessian matrix D2wi and a corresponding diagonal

matrix , whose diagonal elements are the same as2 (0)D wi

the diagonal elements of D2wi but whose off-diagonal el-

ements are 0. A linear algebra theorem (the eigenvalue

interlacing theorem; Cauchy 1891) tells us that the largest

eigenvalue of D2wi (which is a symmetric matrix) is greater

than (or equal to) its largest diagonal element:

2 (0) 2l(D w ) ≤ l(D w ). (8)i i

This means that starting from a system that is evolution-

arily stable in the absence of epistasis (i.e., 2 (0)l(D w ) ! 0i

by condition [7]), adding epistasis can lead to a situation

where . This mechanism is gen-2 2 (0)l(D w ) 1 0 1 l(D w )i i

eral: epistatic interactions increase the likelihood of evo-

lutionary instability. We will illustrate this in our examples,

and we will see that the magnitude of the destabilizing

effect of epistasis increases with the dimension of phe-

notype space.

Convergence stability is also affected by epistasis, since

epistatic interactions also affect the Jacobian matrix. In

general, the J matrix is too complex for any general state-

ment to be made. However, as we will see in “Illustrations,”

in some particular and classical models it can be shown

that epistatic interactions tend to render an equilibrium

x* convergence unstable (i.e., turn x* into a repeller) and

that this effect is again larger in higher dimension.

Trait Correlations. The third effect of dimensionality is due

to correlations among traits, that is, to nonzero off-

diagonal elements in the covariance matrices Gi (see fig.

2c). Such correlations can, for instance, be due to plei-

otropy and correspond to Arnold’s (1992) second horizon

of genetic constraints. As mentioned above, covariance

matrices affect only the Jacobian matrix J at an equilibrium

x* and not the Hessian matrices. Hence, covariance ma-

trices can affect only convergence stability of x* but not

evolutionary stability.

In some situations, correlations do not have an effect

on convergence stability. For example, if a single species

is evolving, the Jacobian matrix is of the form J p
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Figure 2: Dissecting the effects of dimensionality, illustrated with
two dimensions. The dots are individual trait values, and the ellipses
are fitness contour lines. In a, there is no epistasis (fitness contour
lines are oriented along the trait axes) and no correlations among
individuals. Epistasis is added in the right column, and correlations
among traits are added in the second line. The symbols in the corners
are the legends used in subsequent figures.

, where G is the covariance matrix and C is theG 7 C

Jacobian of the selection gradient. If the matrix C is sym-

metric, which as is the case for symmetric competition

models (see “Illustrations” and Matessi and Schneider

2009; Doebeli and Ispolatov 2013), then multiplying it by

G has no effect on the sign of the eigenvalues, because G

is positive definite. Therefore, genetic covariances have no

effect on convergence stability if C is symmetric. In par-

ticular, if a symmetric C matrix has only negative eigen-

values, then the equilibrium x* is convergent stable re-

gardless of correlations between phenotypic components.

This situation was termed “strong convergence stability”

by Leimar (2009).

When C is not symmetric, however, or if there are more

than one coevolving species, trait correlations can affect

convergence stability. For a single species and an asym-

metric C, this effect is actually weak (see fig. D1, available

online). When multiple species coevolve, it is not possible

to draw general conclusions about the magnitude and di-

rection of this effect, except for some special cases where

C is simple enough (as in Gilman et al. 2012). In the

example of coevolution in victim-exploiter systems given

in the next section, genetic covariances tend to destabilize

convergent stable equilibria.

Illustrations

We illustrate the effects of the dimensionality of phenotype

space on convergence stability and evolutionary stability

using three examples: a model of competition for re-

sources, a model of adaptation to two different habitats

under soft selection (the Levene model; Levene 1953;

Christiansen 1975; Kisdi 2001; Débarre and Gandon 2011),

and a model of victim-exploiter coevolution. These models

correspond to classical models in evolutionary ecology that

were either published before with only one dimension or

published in less general forms (i.e., with specific func-

tions, often Gaussian, or with more restrictive assump-

tions). The first two examples can be grouped into a

broader class of models, symmetric competition models,

which we now describe.

Symmetric Competition Models

Consider a single species (m p 1) in which competition

for resources determines the evolutionary dynamics of

an n-dimensional phenotype (for notational convenience

we drop the species subscript i in the following). The n-

dimensional phenotype is assumed to determine both the

strength of competition and resource availability. The

strength of competition between individuals with phe-

notypes x p {x1, ..., xn}
T and y p {y1, ..., yn}

T is described

by a function a(x, y), called the competition kernel. For

symmetric competition, it is assumed that the strength of

competition increases with phenotypic similarity of com-

peting individuals, and hence that the competition kernel

a(x, y) is maximal along the diagonal x p y (we also

assume a(x, x) p 1 for all x). The amount of resources

available to individuals of phenotype x is described by the

carrying capacity function K(x).

If N(x, t) denotes the density distribution of the phe-

notype x at time t, then for a given competition kernel

a(x, y) and a given carrying capacity function K(x), the

dynamics of this density distribution is given by the fol-

lowing equation:

n a(x, y)N(y)dy∫��N(x)
p N(x) 1 � (9)( )�t K(x)

(where we have suppressed the dependence of the distri-

bution N(x, t) on t for notational convenience). If f(x, t)

is the frequency distribution of the trait x at time t and

if is the total density of the populationN (t) { N(x)dx∫f

at time t, the dynamics of f(x, t) is given by
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�f(x) f(z)N a(z, y)f(y)dyf
p dydz��[�t K(z) (10)

a(x, y)f(y)N dy∫ f

� f(x).]K(x)
\

w(x)�1

Here the term w(x) is the relative fitness of phenotype x

(we have again suppressed the time dependency of Nf, f,

and w for notational convenience). Note that w(x) is both

frequency and density dependent, since it depends on both

f and Nf. We also note that if the trait variance is small,

we can approximate Nf by , which corresponds to the¯K(x)

total population density at equilibrium, in a monomorphic

population of individuals having trait .x̄

Using the fact that competition is symmetric, that is,

that a(x, y) is maximal for x p y, the selection gradient,

defined by equation (3b), is given by

¯DK(x)
¯Dw(x) p , (11)

¯K(x)

where is the gradient of the carrying capacity func-¯DK(x)

tion K(x) (i.e., ). Thus, the dynam-¯DK(x) p �K(x)/�x F ¯j j xpx

ics of the mean trait value is essentially given by the gra-

dient field defined by the carrying capacity function. In

particular, the evolutionary equilibrium points are points

x* where the gradient is 0. At such an equilibrium, the

Jacobian matrix of the selection gradient is given by the

Hessian matrix HK*
p HK(x*), whose (ij)th element is

. Because this matrix is symmetric, con-2 *(� K/�x �x )(x )i j

vergence stability is not affected by the covariance matrix

G, and hence an equilibrium x* is convergent stable when

HK* is negative definite (i.e., has negative eigenvalues

only). It follows that the convergent stable equilibria are

exactly the local maxima of the carrying capacity function

K.

Evolutionary stability of a convergent stable equilibrium

x* is determined by the Hessian matrix

*HK
2 * *D w(x ) p � Ha , (12)

*K

where HK* is as above, K*
p K(x*), and Ha*

p Ha(x*)

is the Hessian matrix whose (kl)th element is

.2
� a(x, y)/�x �x F *k l xpypx

We note that equation (12) implies that HK* can be

written as

* * 2 * *HK p K # (D w(x ) � Ha ).

If x* is evolutionarily stable, then the largest eigenvalue of

D2w(x*) is negative (i.e., l[D2w(x*)] ! 0). Moreover, since

we assume that the competition kernel a(x, y) is maximal

along the diagonal x p y, the largest eigenvalue of the

Hessian Ha* is also negative (i.e., l(Ha*) ! 0). In addition,

these matrices are symmetric. Because the largest eigen-

value of the sum of two symmetric matrices is smaller

than the sum of the largest eigenvalues of both matrices

(Tao 2012), this implies that the largest eigenvalue of the

sum D2w(x*) � Ha* is also negative (i.e., *l(HK ) ≤

), and hence that x* is* 2 * *K # [l(D w(x )) � l(Ha )] ! 0

convergent stable. Thus, in symmetric competition models

evolutionary stability always implies convergence stability:

there are no “Garden of Eden” strategies (Hofbauer and

Sigmund 1990) in symmetric competition models.

Unimodal Carrying Capacity. We first consider symmetric

competition models under the assumption that the car-

rying capacity function K has a unique, global maximum,

which, without loss of generality, is located at 0. Therefore,

the only equilibrium for the dynamics defined by the se-

lection gradient equation (3b) is x*
p 0. This equilibrium

is always convergent stable, because by definition HK(x*)

is negative definite (maximum at x*). This allows us to

focus on the evolutionary stability of this equilibrium, that

is, on the Hessian matrix (12). We consider a situation

where all traits are independent; in particular, there are

no epistatic interactions so that the Hessian matrices of

the carrying capacity function HK(0) and of the compe-

tition function Ha(0) are both diagonal, with diagonal

elements kjj and ajj, respectively. Then by assumption kjj ≤

0 for all j, reflecting the fact that 0 is a maximum of the

carrying capacity function K, but also ajj ≤ 0, because the

competition function a(x, y) reaches a maximum when

x p y. In this case, the equilibrium x*
p 0 is evolutionarily

stable if and only if ajj 1 kjj/K(0) for all phenotypic di-

mensions j, since this is the requirement for the Hessian

(12) to be negative definite.

If we assume that in the space of all possible symmetric

competition models with independent traits, the coeffi-

cients kjj and ajj are drawn from some suitable distribution

for each phenotypic dimension j, we immediately see that

the chance that evolutionary instability occurs in at least

one phenotypic dimension, that is, the chance that ajj !

kjj/K(0) for at least one j, increases as the total dimension

n of phenotype space increases. For instance, if we draw

both the a and k terms from a uniform distribution on

the interval (�1,0) and choose K(0) p 1, for each di-

mension there is a 1/2 chance of destabilization, so that

overall the probability that x* is evolutionarily stable is (1/

2)n. This is the combinatorial effect: with independent

traits, increasing the dimension n increases the likelihood

of evolutionary instability. This effect is represented in

figure 3a; the R code to run the simulations is available

on Dryad (http://dx.doi.org/10.5061/dryad.vg7sr), and a

more human-readable description of the sampling pro-

cedure is presented in appendix C.
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Unimodal distribution of resources

(a) Combinatorial effect (b) Epistasis

Levene model

(c) Combinatorial effect (d) Epistasis
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Figure 3: Dimensionality and stability in symmetric competition
models: estimated effect of each component of dimensionality on
destabilizing the x* equilibrium. Black p evolutionary stability (ES);
gray p convergence stability (CS). a, c, Proportion of simulations
where x* is stable, all traits being independent (no epistasis). b, d,
proportion of simulations where x* is stable when there are epistatic
interactions given that x* is stable in their absence. Trait correlations
do not influence stability in this class of models and are therefore
not shown. The x* equilibrium is always convergent stable in the
model with a unimodal distribution of resources K, as a direct con-
sequence of the shape of K, so the gray dots are not displayed in a
and b. There are 106 replicates for each dot of each figure.

We know from equation (8) that adding diagonal ele-

ments to the Hessian matrix, that is, adding epistatic in-

teractions among traits while keeping the same diagonal

elements (ajj and kjj terms), increases the range of eigen-

values. This means that x* can be evolutionarily stable if

the traits are independent but may become evolutionarily

unstable if epistatic interactions are added. To numerically

investigate how frequently epistasis destabilizes x*, we draw

random negative definite HK and Ha matrices (“full” ma-

trices, with off-diagonal elements corresponding to epi-

static interactions), and derive from them equivalent di-

agonal matrices HK(0) and Ha(0), which have the same

diagonal elements and correspond to the cases where all

traits are independent (no epistasis); and as previously, we

set K(0) p 1. Figure 3b represents the proportion of sim-

ulations where x* is stable with epistatic interactions given

that it is stable in the absence of epistatic interactions. The

decrease in this proportion as the number of phenotypic

dimensions increases represents the destabilizing effect of

epistasis, controlling for the combinatorial effect. This gen-

eralizes the results of Doebeli and Ispolatov (2010) to any

well-behaved (twice-differentiable) competition and car-

rying capacities functions, and shows the links between

their adaptive dynamics approach and the moment-based

quantitative genetics approach used here (Abrams et al.

1993; Abrams 2001).

Levene Models. In its simplest form, the Levene model

(Levene 1953) describes the evolution of a population of

individuals divided into two demes in proportions c and

(1 � c) (with 0 ! c ! 1) with different selective conditions

and under soft selection (Christiansen 1975). Generations

are discrete and nonoverlapping, and all the individuals

are pooled and redistributed at the end of each generation.

There are no explicit density dynamics, but selection is

frequency dependent. We again assume a single evolving

species (m p 1) and drop the species index for conve-

nience. The n-dimensional phenotype x determines fe-

cundity in the two habitats, denoted by qh(x), h p 1, 2.

With these assumptions, the postselection distribution of

phenotypes is

q (x) q (x)1 2′f (x) p c � (1 � c) f(x), (13)[ ]q q1 2
\

w(x)

where the term in brackets, w(x), is the relative fitness of

phenotype x, and where

q p q (x)f(x)dxh � h

n�

is the mean fecundity in habitat h (h p 1, 2).

It was shown previously that Roughgarden’s competi-

tion model (Roughgarden 1972, 1979; Doebeli and Dieck-

mann 2000) and the Levene model (Levene 1953) can be

seen as two ends of a continuum (Débarre 2012). Here

we go one step further and show that the Levene model

is in fact equivalent to a symmetric competition model of

the form (9), with suitable competition kernel a and car-

rying capacity K. The derivation of K and a is explained

in more detail in appendix B. Here we note that the cor-

responding carrying capacity function is

c 1�cK(x) p q (x) 7 q (x) . (14)1 2

We refer to equation (B8b) for the expression of the cor-

responding competition kernel. The multidimensional Le-

vene model is hence a symmetric competition model. It

follows that the covariance matrix G has no effect on con-

vergence stability and that the convergent stable equilib-

rium points x* are exactly the local maxima of the function

K(x) given by equation (14). Note, however, that contrary

to the previous example with unimodal carrying capacity
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functions, an equilibrium x* is not necessarily a local max-

imum of K (it could be a saddle point or a local minimum)

and hence is not necessarily convergent stable.

Whether derived directly using w(x) given in equation

(13), or via the equivalent K and a functions and the

expressions (11) and (12), we find that the matrix C con-

trolling convergence stability is

1 � c 1
* * TC p � [Dq 7 (Dq ) ]2 2* 2c q (x )2 (15a)

c 1 � c
* *

� Hq � Hq ,1 2* *q q1 2

where is the gradient of the fecundity function q2 in*Dq2

habitat 2, evaluated at x*, and where are the corre-*Hqh

sponding Hessian matrices, also evaluated x*. Similarly, the

Hessian matrix D2w determining evolutionary stability is

c 1 � c
2 * *D w p Hq � Hq . (15b)1 2* *q q1 2

To illustrate the effects of dimensionality on conver-

gence and evolutionary stability in the Levene model, we

make the further symmetry assumptions that both habitats

are in equal frequencies (c p 1/2) and that the fecundity

functions are symmetric (q2(x) p q1(�x)); this ensures

that the point x*
p 0 is an equilibrium. Epistatic inter-

actions are then present if and only if �
2q1/�xk�xl ( 0 for

at least one pair k ( l. The consequences of the combi-

natorial effect and of epistatic interactions on the desta-

bilization of x*, estimated from our simulations, are il-

lustrated in figure 3c and 3d, respectively. Random

diagonal Hq1 and Hq2 matrices are drawn to assess the

combinatorial effect, and figure 3c represents the propor-

tion of simulations where x* is evolutionarily stable (black

dots) or convergent stable (gray dots). As previously, we

then control for the combinatorial effect when assessing

the magnitude of the effect of epistasis on stability; figure

3d represents the proportion of simulations where x* is

evolutionary (black) or convergent (gray) stable in the

presence of epistatic interactions, given that it is stable in

their absence. We see that both the combinatorial effect

and epistasis tend to generate both convergence instability

and evolutionary instability, and the likelihood of desta-

bilization increases with increasing dimension of pheno-

type space.

We note that x* is a generalist strategy; when x* is not

evolutionarily stable, the population diversifies and spe-

cializes to the local habitats. Hence, because increasing the

number of dimensions makes selection more diversifying

at x*, it also increases the potential for local adaptation.

Victim-Exploiter Coevolution

In our last example, we consider the coevolution of two

different species, a victim and an exploiter, so that the

community contains m p 2 species, labelled 1 (victim)

and 2 (exploiter). In each species i, ni traits are either under

stabilizing selection and/or involved in interspecific inter-

actions. We use a classical Lotka-Volterra formulation of

the model, as presented, for instance, in Doebeli (2011).

The variables n1(x1) and n2(x2) represent the densities of

individuals of species 1 and 2 with traits x1 and x2, at time

t. We assume that species 1 grows logistically in the absence

of species 2, and that the carrying capacity, K(x1), depends

on the phenotype x1 (first term in eq. [16a]). Interactions

between the two species affect the fitness of individuals of

both species, with functions bi describing the effects of

interactions (second term in eq. [16a] for the effect on

the victims and first term in eq. [16b] for the effect on

the exploiters). In the absence of interactions, the indi-

viduals of species 2 (exploiter) die at a constant rate d

(second term in eq. [16a]). This model is expressed in

continuous time, and interactions are density dependent:

�n (x ) N1 1 1
p n (x ) 1 �1 1 ( )�t K(x )1

� b (x , y )n (y )dy n (x ), (16a)� 1 1 2 2 2 2 1 1( )
n2�

�n (x )2 2
p b (x , y )n (y )dy n (x ) � d n (x ), (16b)� 2 2 1 1 1 1 2 2 2 2( )�t

n1�

where denotes the total population size ofN p n(x )dx∫i i i

species i; it is a function of time, but as previously the

dependence on time has been dropped for simplicity. As

in the previous examples, we first have to rewrite the model

to focus on the frequencies of the different types within

each species, and as before we denote by fi(xi) the fraction

of individuals of species i that have traits xi: fi(xi) p ni(xi)/

Ni, so that the model can be rewritten as

�f (x ) f (y ) 11 1 1 1
p N dy �1 � 1[ ( )�t K(y ) K(x )1 1

� N b (x , y )f (y )dy2 � 1 1 2 2 2 2(
� b(y , y )f (y )f (y )dy dy f (x ),� � 1 1 2 2 2 1 1 2 1 1 1)]
\

w (x )�11 1

(17a)
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�f (x )2 2
p N b (x , y )f (y )dy1 � 2 2 1 1 1 1[ (�t

� b (y , y )f (y )f (y )dy dy f (x ),� � 2 2 1 2 2 1 1 2 1 2 2)]
\

w (x )�12 2

(17b)

where the terms within the brackets identify the relative

fitnesses w1 and w2.

As before, we can define the gradient vectors (DK*,

, and ) and Hessian matrices (HK*, , and* * *Db Db Hb1 2 1

) of the functions K and bi (with the asterisk meaning*Hb2

they are evaluated at x*). In particular, is a block*Hbi

matrix:

* *Hb Hb* i11 i12Hb p ,i * *( )Hb Hbi21 i22

where

2
� bi*Hb pi12,kl F

�x �x *1,k 2,l xpx

is the interaction effect on bi of changes in the kth trait

in species 1 and lth trait in species 2.

We assume that the strength of the interaction between

individuals of species 1 and 2 depends on the phenotypic

distance between them and reaches a maximum when the

traits values match. Without loss of generality, we assume

that the carrying capacity of species 1 reaches a maximum

when . With these assumptions, the point*x p x p 01 1

is a potential evolutionarily stable* * *x p (x , x ) p (0, 0)1 2

strategy.

Gilman et al. (2012) focused on a matching type of

interaction, such that the exploiter (species 2) benefits

from being more similar. In this case, b2 reaches a max-

imum when all traits are matching and hence in particular

at x*, whereas b1 reaches a minimum when traits are

matching. This implies that is negative definite and*Hb2

is positive definite. Note that we could also consider*Hb1

the opposite case where the exploiter wins by being more

different. This could for instance be the case for within-

host dynamics, where the exploiter (or, in this case, the

pathogen) benefits from being different, that is, not rec-

ognizable by its host, as in Bedford et al. (2012). Conse-

quently, we will see that the type who wins due to increased

dimensionality is not necessarily the victim: it is the one

that benefits from being more different.

Given model (17), the C matrix involved in determining

whether x* is convergent stable is a block matrix:

*N1 * * * *HK * �N Hb N Hb2 1,11 2 1,12*2C p . (18)K * * * *( )N Hb N Hb1 2,21 1 2,22

Contrary to our previous examples, this C matrix is in

general not symmetric even when there are no epistasic

interactions among traits in the K and bi functions. As a

result, the signs of the eigenvalues of the Jacobian J given

by equation (5b) depend both on C and on the covariance

matrices G1 and G2. In particular, correlations among traits

(i.e., nonzero off-diagonal elements in the Gi matrices)

will play a role in whether x* is convergent stable. To

investigate the magnitude of this effect numerically, we

randomly draw Gi matrices (positive definite matrices

whose elements are drawn from uniform distributions),

and compare the stability of J with full G matrices to the

stability of J with equivalent diagonal G(0) matrices—all

the off-diagonal elements being set equal to 0; then, we

assess the effect of trait covariances while controlling for

the combinatorial effect.

Figure 4 confirms that the three effects of dimensionality

that we identified are at work (see gray dots). All effects

(combinatorial effect, epistasis, trait correlations) affect

convergence stability and increase with the number of di-

mensions. In particular, and as already noted by Gilman

et al. (2012) with a more limited model, trait correlations

affect convergence stability (fig. 4c): an equilibrium that

is an attractor (CS) in the absence of trait correlations may

become a repellor (non-CS) with trait correlations, leading

to the evolutionary escape of the species that benefits from

being different; it is the victim (species 1) with this par-

ticular interaction function, although, as emphasized pre-

viously, this could as well be the exploiter (species 2) with

another type of interaction function.

We now consider evolutionary stability. The Hessian

matrices of fitness for each species are

*N12 * * *D w p HK � N Hb , (19a)1 2 1,11*2K

2 * *D w p N Hb . (19b)2 1 2,22

By assumption in this example, is negative definite*Hb2

(this reflects the fact that exploiters benefit from matching

the victims), and hence so is D2w2: selection on the ex-

ploiters’ traits is stabilizing when the victims and exploiters

match.

The situation for evolutionary stability in the victim as

described by D2w1 is similar to the situation in one-species

competition models. In the absence of epistatic interac-

tions between the different traits, D2w1 is a diagonal matrix,

and selection is diversifying if at least one of the diagonal

elements is positive (combinatorial effect; see black points

in fig. 4a). Even if all these diagonal elements are negative,

epistatic interactions between traits, obtained by adding
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Victim-exploiter model

(a) Combinatorial effect (b) Epistasis

(c) Trait correlations
(d) Epistasis ×

correlations
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Figure 4: Dimensionality and stability in the victim-exploiter model:
estimated effect of each component of dimensionality on destabiliz-
ing the x* equilibrium. Black p evolutionary stability (ES); gray p

convergence stability (CS). a, Proportion of simulations where x* is
stable, all traits being independent (no epistasis nor correlations). b,
Proportion of simulations where x* is stable when there are still no
correlations but there are epistatic interactions, given that x* is stable
in their absence. c, Proportion of simulations where x* is stable when
there are no epistatic interactions but there are trait correlations,
given that x* is stable in their absence. d, Proportion of simulations
where x* is stable when there are epistatic interactions and there are
trait correlations, given that x* is stable in both cases independently
(i.e., stable with epistasis and no correlations, and stable with cor-
relations and no epistasis). There are 106 replicates for each dot in
each figure.

nondiagonal elements to D2w1, expand the range of the

eigenvalues and increase the chance that at least one of

the eigenvalues is positive (fig. 4b). Again, the strength of

this effect increases with the dimensionality of phenotype

space, so that evolutionary instability, and hence diversi-

fication, becomes more likely in higher dimensions. Such

diversification in species 1 may in turn favor diversification

in species 2 (Doebeli and Dieckmann 2000; Doebeli 2011).

We note that Gilman et al. (2012) focused on convergence

stability and did not investigate the effect of the dimen-

sionality of phenotype space on evolutionary stability; they

also did not consider the effect of epistatic interactions.

Discussion

Three Effects of Dimensionality

In this article, we used a moment-based approach to in-

vestigate the effect of dimensionality of phenotype space

on the coevolutionary stability of a community of m spe-

cies when selection acts on quantitative traits. Each species

i is characterized by a multivariate distribution fi of traits,

and we focus on the effect of frequency-dependent selec-

tion on the first two moments of these distributions,

namely, their means and covariance matrices Gi. Co-x̄i

evolutionary equilibria x* are points in the space of all

traits of all species at which fitness gradients of all species

vanish. Two types of stability must be considered. On the

one hand, an equilibrium x* is convergent stable (Eshel

and Motro 1981) if it is a local attractor for the

(co)evolutionary dynamics. On the other hand, an equi-

librium x* is evolutionarily stable (Geritz et al. 1998) if

selection is stabilizing, and hence phenotypic variances are

decreasing, once the population means are at the equilib-

rium point. Figure 1 illustrates these two types of equi-

libria. Our analysis shows that, generally, increased di-

mensionality of phenotype space destabilizes equilibria in

both senses: x* is more likely to be a repeller for the evo-

lutionary dynamics, and selection at x* is more likely to

be disruptive as the number of phenotypic dimensions

increases. We specifically pinpointed which features of di-

mensionality are responsible for this and summarize these

effects in table 1.

Dimensionality affects stability even when all traits are

independent (i.e., when there are no epistatic interactions

among them and when they are uncorrelated). We call this

first effect of dimensionality a “combinatorial effect”: in-

creasing the number of traits increases the chance of in-

stability in at least one phenotypic direction.

Epistatic interactions correspond to nonadditive inter-

actions between different traits and result in the addition

of off-diagonal terms in the Hessian matrices of the fitness

functions (i.e., there are epistatic interactions between two

different traits k and l in species i when �
2w/�xi,k�xi,l ( 0,

where w is the fitness function). Essentially, adding epis-

tasis terms offers new (composite) directions in phenotype

space along which equilibria can be unstable and hence

increases the likelihood of instability.

The effect of correlations among traits is more limited.

First, trait correlations never affect evolutionary stability.

Second, their effect on convergence stability is limited.

When the Jacobian of the selection gradient (i.e., the ma-

trix C defined in eq. [5c]) is symmetric, which, for ex-

ample, is the defining feature of symmetric competition

models (Doebeli and Ispolatov 2013), trait correlations

have no effect on convergence stability. Convergence sta-

bility with symmetric C matrices has therefore been called

“strong convergence stability” by Leimar (2009). When

only one species is evolving, and when C is not symmetric,

the destabilization due to trait correlations is rather limited

(see fig. D1). It is only when there are multiple species

coevolving, as in the example of victim-exploiter coevo-
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lution presented in the previous section, that trait corre-

lations can turn equilibria that are attractors in the absence

of correlations into repellers.

The Incomplete Tale of Vectors and Matrices

Technically speaking, it is interesting to note that our mo-

ment-based approach yields equations that are similar to

those used in evolutionary quantitative genetics (Lande

1979; Lande and Arnold 1983; Phillips and Arnold 1989,

for m p 1 species) and that the conditions we derived

for convergence stability and evolutionary stability are the

same as the ones obtained in adaptive dynamics models

(Dieckmann and Law 1996; Geritz et al. 1998; Leimar

2009). Indeed, we focused on the effect of selection on

trait distributions, an approach that is the same for clonal

or sexual organisms. These links between the quantitative

genetics and adaptive dynamics frameworks had already

been discussed in one-dimensional, single-species cases

(see, e.g., Abrams et al. 1993; Abrams 2001; Sasaki and

Dieckmann 2011; Débarre et al. 2013). Our results show

how to extend them to evolution of multiple species in

multiple phenotypic dimensions.

Two critical assumptions allowed us to derive our re-

sults. The first is the assumption of small phenotypic var-

iation in each species, which allowed us to write Taylor

expansions of the fitness functions and to neglect high

orders (see eq. [3a]). We could therefore express individual

fitnesses as a function of fitness of mean traits in each

species. But even with this assumption, the expressions for

the changes of particular moments of the phenotype dis-

tributions depend in general on the two next-higher

moments, leading to dynamic insufficiency. A moment-

closure approximation—here the assumption that all dis-

tributions are multivariate Gaussians—is needed to cir-

cumvent this problem. In a model with m coevolving

species, we thus arrive at a system of 2m equations: m

equations for the change in mean traits (see eq. [4]) and

m equations for the change in covariance matrices (see

eq. [6]).

It is important to keep in mind that these expressions

rely on our moment-closure approximation and that

higher moments of the trait distributions would matter

should the assumption of normality not hold, for example,

when spatially heterogeneous selection generates asym-

metric (skewed) trait distributions (Yeaman and Guil-

laume 2009; Débarre et al. 2013). Third moments, cor-

responding to asymmetries in trait distributions, do for

instance appear in the general expression for the change

in mean traits (see eq. [A8]; Rice 2004b; Brodie and

McGlothlin 2007). Information about third moments can-

not be represented in matrices but requires three-dimen-

sional arrays. Similarly, kurtoses (represented in four-

dimensional arrays) appear in the general expression for

the change in trait variances (see eq. [A9d]). Hence, se-

lection gradient vectors, covariance matrices, and matrices

of correlational selection, while extremely helpful, are in

general not sufficient to describe the effect of selection on

trait distributions (Rice 2004a). It remains to be seen

whether models including higher-order effects would cor-

roborate our results. Building on Blows and Walsh’s (2009)

analogy (“spherical cows grazing in flatland”), we can say

that not only are cows not spherical, but they are not just

ellipsoidal either: both their asymmetry (third moments)

and tails (fourth moments) potentially matter too.

Developmental Evolution: The Origin of Epistatic

Interactions and Trait Correlations

Our model takes ecological interactions within and be-

tween species into account. In particular, selection can be

both density and frequency dependent. We did not, how-

ever, specify how epistatic interactions or covariances

among traits could emerge—what corresponds to Arnold’s

(1992) fourth horizon of developmental and functional

constraints. Rice (2002, 2004b) integrated the effect of

complex developmental interactions in a population ge-

netics model. Extending this framework to coevolutionary

interactions may be particularly challenging, but it con-

stitutes an interesting avenue for future research.

Multidimensional Santa Rosalia

Our results show that increased dimensionality makes se-

lection more disruptive. A key motivation for our work,

as argued in the introduction, was that selection in nature

is likely to affect more than just one trait at a time. Yet,

our study is limited to the effect of selection on trait dis-

tributions, and it does not include the effect of sexual

reproduction, nor does it allow us to investigate the evo-

lution of reproductive isolation or the effect of genetic

constraints on speciation (Felsenstein 1981). In other

words, while we can conclude that increased dimension-

ality makes it more likely that selection will be disruptive

in at least one (composite) direction, it remains to be

investigated whether this would result in speciation. Nev-

ertheless, the consideration of trait dimensionality may

contribute to explaining the maintenance of phenotypic

variation in nature.
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Appendix A from F. Débarre et al., “Multidimensional

(Co)Evolutionary Stability”

(Am. Nat., vol. 184, no. 2, p. 158)

Changes in Means and Covariances

Additional Notation

In the main text, we define for each species i a vector of mean traits ( ; eq. [2a]) and a covariance matrix (Gi; eq. [2b]).x̄i

The derivation of the results requires two other structures, corresponding to third and fourth central moments.

The third moments of the distribution of traits in species i are described by a three-dimensional array Si, whose element

j, k, l (all in {1, ..., ni}), is given by

¯ ¯ ¯S p (x � x )(x � x )(x � x )f (x )dx . (A1)i, jkl � i, j i, j i,k i,k i,l i,l i i i

ni�

Similarly, the fourth moments of the distribution of traits in species i are described by a four-dimensional array Ki,

whose element j, k, l, r (all in {1, ... , ni}), is given by

¯ ¯ ¯ ¯K p (x � x )(x � x )(x � x )(x � x )f (x )dx . (A2)i, jklr � i, j i, j i,k i,k i,l i,l i,r i,r i i i

ni�

These expressions are simply the generalization of the different central moments of a distribution to a multidimensional

space.

Mean Fitness

Here we derive alternative expressions of the mean (relative) fitness in species i, :w̄i

w̄ p w (x )f (x )dx . (A3)i � i i i i i

ni�

By definition, wi corresponds to relative fitness and is standardized such that

w̄ p 1. (A4)i

Using Taylor expansion (3a), we can write asw̄i

T¯ ¯ ¯ ¯w p w (x ) � (x � x ) 7 Dw (x )i � i i i i i i[
ni�

1
T 2 3¯ ¯ ¯� (x � x ) 7 D w (x ) 7 (x � x ) � O(d ) f (x)dx (A5a)i i i i i i i i]2

n ni i1
2 4¯ ¯p w (x ) � 0 � G (D w (x )) � O(d ). (A5b)��i i i, jk i i kl

2 kp1 lp1

An equivalent expression, albeit in one dimension only, can be found in Sasaki and Dieckmann (2011).

Combining equations (A4) and (A5b), we obtain

n ni i1
2 4¯ ¯w (x ) � G (D w (x )) � 1 p O(d ). (A6)��i i i, jk i i kl

2 kp1 lp1

We note that is a shorthand notation for .2 2¯ ¯D w (x ) D w (x , f , … , f )i i i i i m
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Changes in the Means

The change in the mean trait in species i, using the definition of relative fitness given in equation (1), is defined as

¯Dx p x w (x )f (x )dx � x f (x )dx . (A7a)i � i i i i i i � i i i i

n ni i� �

Using Taylor expansion (3a) and focusing on a trait j, we get:

ni

T¯ ¯ ¯ ¯Dx p x w (x ) � (x � x ) 7 (Dw (x ))�i, j � i, j i i i,k i,k i i k[
kp1

ni�

n ni i1
T 2 3¯ ¯ ¯ ¯� (x � x ) 7 (D w (x )) 7 (x � x ) � O(d ) f (x)dx � x . (A7b)�� i,k i,k i i kl i,l i,l i i i, j]2 kp1 lp1

ni

¯ ¯ ¯p (w (x ) � 1)x � G (Dw (x ))�i i i, j i, jk i i k
kp1

n ni i1
2 2 4¯ ¯ ¯� [S (D w (x )) � x G (D w (x )) ] � O(d ). (A7c)�� i, jkl i i kl i, j i,kl i i kl

2 kp1 lp1

Using equation (A6), this expression simplifies to

n n ni i i1
2 4¯ ¯ ¯Dx p G 7 (Dw (x )) � S (D w (x )) � O(d ). (A7d)� ��i, j i, jk i i k i, jkl i i kl

2kp1 kp1 lp1

Using matrix notation, the change in the vector of mean traits in species i is then

2 4¯ ¯ ¯Dx p G 7 Dw (x ) � AS , D w (x )S � O(d ), (A8)i i i i i i i

where ASi,D
2wiS (which is of order d3) is a vector whose jth element is

n ni i

2 2¯ ¯(AS , D w (x )S) p S (D w (x )) .��i i i j i, jkl i i kl
kp1 lp1

The first term on the right-hand side of equation (A8) (which is of order d2) is the familiar product of a covariance

matrix (G) times a selection gradient (often denoted by b) in quantitative genetics (Lande 1979), and our equation (A8)

reduces to this term if we only expand the fitness functions to first order. The second term in equation (A8) includes the

third central moments of trait distributions (Barton and Turelli 1987; Kopp and Gavrilets 2006) and will therefore be 0 if

all trait distributions are symmetrical. In this case, all odd central moments are 0, and so are the terms in Si, the array of

third central moments in species i. This, for instance, is the case for multivariate Gaussian trait distributions, as assumed

in the main text. Note, though, that since the second term is of order d3 while the first is of order d2, the direction of

evolution in species i will be given by the first term (since d K 1).

Changes in the Covariances

The change in the covariance between traits j and k in species i is

¯ ¯DG p (x � x )(x � x )w (x )f (x )dx � G . (A9a)i, jk � i, j i, j i,k i,k i i i i i i, jk

ni�



Appendix A from F. Débarre et al., (Co)Evolutionary Stability

3

Using Taylor expansion (3a) of the fitness function as before, we get

ni

¯ ¯ ¯ ¯ ¯DG p (x � x )(x � x ) w (x ) � (x � x ) 7 (Dw (x ))�i, jk � i, j i, j i,k i,k i i i,l i,l i i l[
lp1

ni�

n ni i1
2 3¯ ¯ ¯� (x � x )(D w (x )) (x � x ) � O(d ) f (x )dx � G , (A9b)�� i,l i,l i i lr i,r i,r i i i i, jk]2 lp1 rp1

ni

¯ ¯p (w (x ) � 1)G � S (Dw (x ))�i i i, jk i, jkl i i l
lp1

n ni i1
2 5¯� K (D w (x )) � O(d ). (A9c)�� i, jklr i i lr

2 lp1 rp1

Using equation (A6), we obtain

n n ni i i1
2 5¯ ¯DG p S (Dw (x )) � (K � G G )(D w (x )) � O(d ). (A9d)� ��i, jk i, jkl i i l i, jklr i, jk i,lr i i lr

2lp1 lp1 rp1

Changes in mean traits (eq. [A8]) depend on mean traits, covariances, and third moments. Similarly, changes in variances

depend on covariances, third (S), and fourth (K) moments. In general, changes in the kth moment depend on moments up

to , because we used the Taylor expansion in equation (3a) to second order (the full general expressions actuallyk � 2

depend on all moments).

We need a moment-closure approximation to simplify equation (A9d), that is, we need to make assumptions about the

shape of the trait distributions that will allow us to express higher moments such as S and K in terms of lower moments.

In the main text, as is classically done in quantitative genetics, we assume that the distributions of all traits in all species

are multivariate Gaussian distributions, which leads to

S p 0i, jkl (A10)

K p G G � G G � G G Gi, j, k, l, r.i, jklr i, jk i,lr i, jl i,kr i, jr i,kl

Plugging these expressions back into equation (A9d) and simplifying the sums, we obtain

n ni i

2 5¯DG p G (D w (x )) G � O(d ), (A11a)��i, jk i, jl i i lr i,rk
lp1 rp1

Overall, we can this write the change on the entire covariance matrix of species i, Gi, as follows:

2 5¯DG p G 7 D w (x ) 7 G � O(d ). (A11b)i i i i i

This is equation (6) in the main text.
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Illustrations

Competition Model

Here we show how to derive the expression for relative fitness w given equation (10). We present only the simpler case

of the competition model, but the derivation is similar for the victim-exploiter model.

We denote by the total density of individuals in the population (at time t, dropped for notationalnN p N(z)dz∫�f

simplicity). Using equation (9), the dynamics of Nf are as follows:

n� N(z)dz∫��Nf
p (B1a)

�t �t

n a(z, y)f(y)N dy∫� f

p N 1 � f(z) dz . (B1b)f �( )K(z)
n�

The proportion of individuals with trait x is given by f(x) p N(x) /Nf. For the dynamics of f(x), we obtain using the

quotient rule:

�f(x) 1 �N(x) 1 �Nf
p � f(x) (B2a)

�t N �t N �tf f

n na(x, y)N f(y)dy a(z, y)f(y)N dy∫ ∫� �f f

p f(x) 1 � � f(x) 1 � f(z) dz (B2b)�( ) ( )K(x) K(z)
n�

n a(x, y)f(y)N dy∫�a(z, y)f(y)N dy ff
p f(z) dz � f(x). (B2c)��[ ]K(z) K(x)

n n� �

This is equation (10) in the main text.

Levene Model

The “recipe” to derive a symmetric competition model with competition kernel a and carrying capacity function K is

detailed in Doebeli and Ispolatov (2013). The method uses an adaptive dynamics framework. We first have to derive the

expression of the invasion fitness of mutants with phenotype y in a population monomorphic for phenotype x, which we

denote by f(y, x) and which is such that f(x, x) p 0 (because the competition model is expressed in continuous time).

From equation (13), we obtain

q (y) q (y)1 2
f (y, x) p ln c � (1 � c) . (B3)[ ]q (x) q (x)1 2

We want to find a and K such that we can rewrite f as

a(y, x)K(x)
f (y, x) p 1 � . (B4)

K(y)
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We denote by s(x) the selection gradient, which is a n-dimensional vector whose jth element is

�f (y, x)
(s(x)) p (B5a)j F

�yj ypx

(�q /�y )F (�q /�y )F1 j ypx 2 j ypx
p c � (1 � c) , (B5b)

q (x) q (x)1 2

which we can rewrite as

Dq (x) Dq (x)1 2
s(x) p c � (1 � c)

q (x) q (x)1 2

p cD ln (q (x)) � (1 � c)D ln (q (x)).1 2

Defining the function K(x) as

c 1�cK(x) p q (x) q (x) , (B6)1 2

it follows that

DK(x)
s(x) p , (B7)

K(x)

as it should be in a symmetric competition model with carrying capacity K(x).

Using equation (B4), we obtain the expression of the corresponding competition kernel a:

K(y)
a(y, x) p (1 � f (y, x)) (B8a)

K(x)

c 1�cq (y) q (y) q (y) q (y)1 2 1 2
p 1 � ln c � (1 � c) . (B8b)

c 1�c[ ( )]q (x) q (x) q (x) q (x)1 2 1 2

It can easily be checked that this competition kernel is symmetric, that is, that Da(x) p 0 and that with the carrying

capacity K(x), the competition kernel a(y, x) given above, the selection Jacobian and the Hessian of the fitness function

(B4) are given by expressions (15a) and (15b).
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Numerical Simulations: Drawing Random Matrices

We briefly describe here the sampling procedure used in our simulation code (available from the Dryad Digital

Repository, http://dx.doi.org/10.5061/dryad.vg7sr). The functions described here are defined in the functions.R script of

our code.1

Drawing a Random Matrix

The randmat function in our code draws a random n by n matrix, whose n2 coefficients are drawn from a uniform

distribution between �u and u (u p 1 is the default value in our simulations).

Quantitatively, the results presented in figures 3 and 4 will obviously depend on the distribution we choose to draw the

matrix coefficients from. Exploring the effects of different sampling distributions, however, is a technical question that is

beyond the scope of this article (random matrix theory is a discipline in itself). We therefore chose to draw the

coefficients from a uniform distribution U(�1,1) as this seems to be the simplest distribution we could draw parameters

from.

Drawing a Random Symmetric Matrix

The randsym function in our code draws a random symmetric n by n matrix. We first draw a random matrix A using the

randmat function, then return a matrix B p (A � AT)/2, where “T” denotes matrix transposition.

Drawing a Random Positive Definite Matrix

The posdef function in our code draws a random positive definite n by n matrix. We first draw a random symmetric

matrix B using the randsym function, then return a matrix , where the multiplication dot denotes matrixC p B 7 B

product. We can double-check that all the eigenvalues are positive using the checkpos function in our code.

http://dx.doi.org/10.5061/dryad.vg7sr
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Supplementary Figure
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Figure D1: Effect of the covariance matrix G on convergence stability, in a model with m p 1 species with asymmetric competition:

proportion of randomly drawn parameter combinations where G actually affects convergence stability.


