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Multidimensional Computerized

Adaptive Testing for Classifying

Examinees

Maaike M. van Groen, Theo J. H. M. Eggen and Bernard P. Veldkamp

Abstract Multidimensional computerized classification testing can be used when

classification decisions are required for constructs that have a multidimensional struc-

ture. Here, two methods for making those decisions are included for two types of

multidimensionality. In the case of between-item multidimensionality, each item is

intended to measure just one dimension. In the case of within-item multidimen-

sionality, items are intended to measure multiple or all dimensions. Wald’s (1947)

sequential probability ratio test and Kingsbury and Weiss (1979) confidence interval

method can be applied to multidimensional classification testing. Three methods are

included for selecting the items: random item selection, maximization at the current

ability estimate, and the weighting method. The last method maximizes information

based on a combination of the cutoff points weighted by their distance to the abil-

ity estimate. Two examples illustrate the use of the classification and item selection

methods.

14.1 Introduction

Computerized classification tests, like computerized adaptive tests, adapt some test

elements to the student. Test length and/or item selection is tailored during test admin-

istration. The goal of a computerized classification test is to classify the examinee

into one of two levels (e.g., master/nonmaster) or into one of multiple levels (e.g.,

basic/proficient/advanced). Classification methods stop testing when enough confi-
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dence has been established to make the decision. An item selection method selects

items for the examinee on the fly.

Computerized classification testing was developed several decades ago for tests

intended to measure one construct or dimension. Unidimensional item response

theory (UIRT) is used to model the student’s performance, to select the items, to

decide whether testing can be stopped, and to make the classification decisions.

More recently, classification methods were developed for tests measuring multi-

ple constructs or dimensions [(i.e., multidimensionality; Seitz and Frey (2013a, b),

Spray et al. (1997), Van Groen et al. (2014b, c, 2016)] using multidimensional item

response theory (MIRT). Classification decisions can be made for the entire test or

for one or more dimensions or subsets of items.

Two types of multidimensionality Wang and Chen (2004) are discussed in the next

section. In the case of between-item multidimensionality, each item is intended to

measure just one ability whereas the test as a whole measures multiple abilities. For

example, a test contains items for mathematics and language, and each item measures

either mathematics or language ability. In case of within-item multidimensionality,

items are intended to measure multiple abilities. Here, items measure both mathemat-

ics and language. The relative contribution of language and mathematics must vary

over items. If not, no distinction can be made between the dimensions and the test

should be modeled using UIRT. In what follows, adaptations of two unidimensional

classification methods to multidimensional classification testing are discussed. These

methods are based on Wald’s sequential probability ratio test SPRT; (1947/1973) and

Kingsbury and Weiss’ confidence interval method (1979). Subsequently, three item

selection methods are discussed. The efficiency and accuracy of the classification

and item selection methods are investigated in the simulations section. Limitations

and recommendations for further research are discussed in the final section.

14.2 Multidimensional Item Response Theory

Multidimensional computerized classification testing requires a statistical framework

to model the student’s performance, to obtain item parameters, to select the items, to

make the classification decisions, and to decide whether testing can be stopped before

reaching the maximum test length. MIRT (Reckase 2009) provides such a framework.

In a calibrated item bank, model fit is established, item parameter estimates are

available, and items with undesired characteristics are removed (Van Groen et al.

2014a). During testing, it is assumed that the item parameters have been estimated

with enough precision to consider them known (Veldkamp and Van der Linden 2002).

A vector θ of p person abilities is used in MIRT to describe the skills and

knowledge required for answering an item (Reckase 2009). The dichotomous two-

parameter logistic model is used here. The probability of a correct answer, xi = 1,

to item i is given by Reckase (2009)



14 Multidimensional Computerized Adaptive Testing for Classifying Examinees 273

Pi(θ) = Pi (xi = 1|ai, di, θ) =
exp(a′

iθ + di)

1 + exp(a′
iθ + di)

, (14.1)

where ai is the vector of discrimination parameters and di is the easiness of the item.

Ability estimates can be used during testing by the item selection and classification

methods in computerized classification testing. Ability is estimated using the like-

lihood function. The likelihood of a vector of observed responses xj = (x1j, ..., xkj)

to items i = 1, · · · , k for an examinee j with ability θ j equals the product of the

probabilities of the responses to the administered items (Segall 1996):

L
(

θ j|xj

)

=

k
∏

i=1

Pi

(

θ j

)xij
Qi

(

θ j

)1−xij
, (14.2)

where Qi(θ j) = 1 − Pi(θ j). This likelihood can be used due to the local independence

assumption, and it uses the fixed item parameters from the item bank.

The vector of values, θ̂ = (θ̂1, · · · , θ̂p), that maximizes Eq. 14.2 is used as the

ability estimate θ j (Segall 1996). Because the equations used to find the maximum

likelihood (ML) estimates have no closed-form solution, an iterative search pro-

cedure, such as Newton-Raphson, is used. Weighted maximum likelihood (Tam

1992; Van Groen et al. 2016; Warm 1989) estimation reduces the bias in the ML

estimates. Alternatively, Bayesian ability estimation approaches are also available

(Segall 1996).

The two types of multidimensionality can be distinguished by the structure of

their item parameters. If more than one discrimination parameter is nonzero for one

or more items, within-item multidimensionality is present (Wang and Chen 2004),

and items are intended to measure multiple (or all) abilities. Using a within-item

multidimensional model, complex domains can be modeled while taking into account

several abilities simultaneously (Hartig and Höhler 2008). Different combinations of

abilities can be represented for different items (Hartig and Höhler 2008). If just one

discrimination parameter is nonzero per item in the test, the test is considered to have

between-item multidimensionality (Wang and Chen 2004). Items are then intended

to measure just one ability, and the test contains several unidimensional subscales

(Hartig and Höhler 2008).

14.3 Classification Methods

Multidimensional classification testing requires a method that decides whether

enough evidence is available to make a classification decision (i.e., testing is stopped

and a decision is made). The decision can be a classification into one of two lev-

els (e.g., master/nonmaster) or into one of multiple levels (e.g., basic/proficient/

advanced). Two well-known unidimensional methods, the SPRT (Eggen 1999;

Reckase 1983; Spray 1993) and the confidence interval method (Kingsbury and
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Weiss 1979), were adapted to multidimensional tests. Both methods stop testing

when a prespecified amount of confidence has been established to make the classi-

fication decision, but the way the decision is made differs. The methods can make a

decision based on the entire test and all dimensions, or based on parts of the tests or

dimensions. Different implementations of the methods are required for between-item

and within-item multidimensionality.

14.3.1 The SPRT for Between-Item Multidimensionality

The SPRT (Wald 1947/1973) was applied to unidimensional classification testing by

Eggen (1999), Reckase (1983), and Spray (1993). Seitz and Frey (2013a) applied

the SPRT to between-item multidimensionality by making a classification decision

per dimension. Van Groen et al. (2014b) extended the SPRT to make classification

decisions on the entire between-item multidimensional test.

14.3.1.1 The SPRT for Making a Decision Per Dimension

When making a decision per dimension, a cutoff point, θcl , is set for each dimension

l, l = 1, ..., p (Seitz and Frey 2013a). The cutoff point is used by the SPRT to make

the classification decision. Indifference regions are set around the cutoff points and

account for the measurement error in decisions for examinees with an ability close

to the cutoff point (Eggen 1999). The SPRT compares two hypotheses for each

dimension (Seitz and Frey 2013a):

H0l : θjl < θcl − δ, (14.3)

Hal : θjl > θcl + δ, (14.4)

where δ is the distance between the cutoff point and the end of the indifference region.

The likelihood ratio between the hypotheses for dimension l after k items are

administered is calculated for the SPRT (Seitz and Frey 2013a) after each item

administration by

LR (θcl + δ; θcl − δ) =
L

(

θcl + δ; xjl

)

L
(

θcl − δ; xjl

) , l = 1, · · · , p, (14.5)

in which L
(

θcl + δ; xjl

)

and L
(

θcl − δ; xjl

)

are calculated using Eq. 14.2 with those

items included that load on dimension l.

Decision rules are then applied to the likelihood ratio to decide whether to continue

testing or to make a classification decision (Seitz and Frey 2013a; Van Groen et al.

2014b):
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administer another item if β/(1 − α) < LR(θcl + δ; θcl − δ) < (1 − β)/α;

ability below θcl if LR(θcl + δ; θcl − δ) ≤ β/(1 − α);

ability above θcl if LR(θcl + δ; θcl − δ) ≥ (1 − β)/α,

(14.6)

where α and β specify the acceptable classification error rates (Spray et al. 1997).

Previous research has shown that the size of α, β and sometimes also δ has a limited

effect on classification accuracy (Van Groen et al. 2014a, c). When classifications

need to be made into one of multiple levels, the decision rules are applied sequentially

for each of the cutoffs until a decision can be made (Eggen and Straetmans 2000;

Van Groen et al. 2014b).

14.3.1.2 The SPRT for Making a Decision on All Dimensions

In many testing situations, a pass/fail decision is required on the entire test in addi-

tion to classifications on dimensions of the test. The likelihood then includes all

dimensions and items (Van Groen et al. 2014b):

LR (θ c + δ; θ c − δ) =
L

(

θ c + δ; xj

)

L
(

θ c − δ; xj

) , (14.7)

where θ c and δ include all dimensions. The decision rules for the entire test then

become (Van Groen et al. 2014b)

administer another item if β/(1 − α) < LR(θ c + δ; θ c − δ) < (1 − β)/α;

ability below θ c if LR(θ c + δ; θ c − δ) ≤ β/(1 − α);

ability above θ c if LR(θ c + δ; θ c − δ) ≥ (1 − β)/α.

(14.8)

The SPRT can also make decisions based on a subset of the dimensions or a subset

of the items (Van Groen et al. 2014b). This implies that only the selected dimensions

and items are included in the likelihoods. This makes it possible to include an item

in several decisions.

14.3.2 The Confidence Interval Method for Between-Item

Multidimensionality

An alternative unidimensional classification method, developed by Kingsbury and

Weiss (1979), uses the confidence interval surrounding the ability estimate. The

method stops testing as soon as the cutoff point is outside the confidence interval.
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Seitz and Frey (2013b) applied this method to tests with between-item multidimen-

sionality to make a classification decision per dimension. Van Groen et al. (2014c)

extended the method to make decisions based on a some or all dimensions within

the test.

14.3.2.1 The Confidence Interval Method for Making a Decision Per

Dimension

Seitz and Frey (2013b) used the fact that the likelihood function of a between-item

multidimensional test reduces to a unidimensional function for each dimension. This

unidimensional likelihood function is used to make the classification decisions. The

method uses the following decision rules (Van Groen et al. 2014c):

administer another item if θ̂jl − γ · se(θ̂jl) < θcl < θ̂jl + γ · se(θ̂jl);

ability below θcl if θ̂jl + γ · se(θ̂jl) < θcl; (14.9)

ability above θcl if θ̂jl − γ · se(θ̂jl) > θcl,

where θ̂jl is the estimate examinee’s current ability for dimension l, γ is a constant

related to the required accuracy (Eggen and Straetmans 2000), and se(θ̂jl) is the

estimate’s standard error (Hambleton et al. 1991):

se(θ̂jl) =
1

√

I(θ̂jl)

, (14.10)

where I(θ̂jl) is the Fisher information available to estimate θjl (Mulder and Van der

Linden 2009). Fisher information is given by Tam (1992)

I(θ̂jl) =

k
∑

i=1

a2
ilPi(θ̂jl)Qi(θ̂jl). (14.11)

14.3.2.2 The Confidence Interval for Making a Decision on All

Dimensions

Seitz and Frey’s (2013b) application of the confidence interval method can be used

to make decisions per dimension, but not to make decisions on the entire test. An

approach developed by Van der Linden (1999) can be used as a starting point for

applying the confidence interval method to between-item multidimensional classifi-

cation testing (Van Groen et al. 2014c).

Van der Linden (1999) considered the parameter of interest to be a linear com-

bination of the abilities, λ
′
θ , where λ is a combination of p nonnegative weights.

In contrast to Van Groen et al. (2014c), we set λ equal to the proportion of items
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intended to measure the dimension at maximum test length. The composite ability

is given by Van der Linden (1999)

ζ =

p
∑

l=1

θlλl . (14.12)

The confidence interval method requires the standard error of the ability estimates

(Yao 2012):

se(ζ ) =
√

V(ζ ), (14.13)

with variance

V(ζ ) = λ
′V(θ)λ, (14.14)

and V(θ) = I(θ)−1. The nondiagonal elements of matrix I are zero, and the diagonal

elements can be calculated using Eq. 14.11.

The decision rules are (Van Groen et al. 2014c)

administer another item if ζ̂j − γ · se(ζ̂j) < ζc < ζ̂j + γ · se(ζ̂j);

ability below ζc if ζ̂j + γ · se(ζ̂j) < ζc; (14.15)

ability above ζc if ζ̂j − γ · se(ζ̂j) > ζc,

where ζc denotes the cutoff point and ζ̂j is the estimated composite for the student

(Van Groen et al. 2014c). The cutoff point is determined with Eq. 14.12 using the

cutoff points for the dimensions. If a decision on several, but not all, dimensions

simultaneously is required, only those dimensions should be included in the equa-

tions.

14.3.3 The SPRT for Within-Item Multidimensionality

The SPRT can also be used for tests with within-item multidimensionality. This

does require the computation of the so-called reference composite (Van Groen et al.

2016). The reference composite reduces the multidimensional space to an unidimen-

sional line (Reckase 2009; Wang 1985, 1986). This line is then used to make the

classification decision (Van Groen et al. 2016).

The reference composite describes the characteristics of the matrix of discrimina-

tion parameters for the items in the item bank (Reckase 2009) or test. The direction

of the line is given by the eigenvector of the aa′ matrix that corresponds to the largest

eigenvalue of this matrix (Reckase 2009). The elements of the eigenvector deter-

mine the direction cosines, αξ l , for the angle between the reference composite and

the dimension axes.
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θ -points can be projected onto the reference composite (Reckase 2009). A higher

value on the reference composite, ξj, denotes a more proficient student than does a

lower value (Van Groen et al. 2014c). Proficiency on the reference composite can be

calculated using an additional line through the θ j-point and the origin. The length of

this line is given by Reckase (2009)

Lj =

√

√

√

√

p
∑

l=1

θ̂2
jl , (14.16)

and the direction cosines, αjl , for this line and dimension axis, l, are calculated using

(Reckase 2009)

cos αjl =
θ̂jl

Lj

, l = 1, · · · , p. (14.17)

The angle, αjξ = αjl − αξ l , between the reference composite and the student’s

line is used to calculate the estimated proficiency, ξ̂j, on the reference composite:

ξ̂j = Lj cos αjξ . (14.18)

The reference composite can now be used to make classification decisions with

the SPRT (Van Groen et al. 2016). The cutoff point for the SPRT, ξc, and δξ are

specified on the reference composite. The boundaries of the indifference region need

to be transformed to their θ -points using

θ ξc+δ
= cos αξ × (ξc + δξ ); (14.19)

θ ξc−δ
= cos αξ × (ξc − δξ ), (14.20)

where αξ includes the angles between the reference composite and all dimension

axes. The likelihood ratio for the SPRT becomes (Van Groen et al. 2016)

LR
(

θ ξc+δ
; θ ξc−δ

)

=
L

(

θ ξc+δ
; xj

)

L
(

θ ξc−δ
; xj

) , (14.21)

which can be used to make multidimensional classification decisions with the fol-

lowing decision rules (Van Groen et al. 2016):

administer another item if β/(1 − α) < LR(θ ξc+δ
; θ ξc−δ

) < (1 − β)/α;

ability below ξc if LR(θ ξc+δ
; θ ξc−δ

) ≤ β/(1 − α); (14.22)

ability above ξc if LR(θ ξc+δ
; θ ξc−δ

) ≥ (1 − β)/α.

Decisions can be made using the reference composite for different subsets of

items and for more than two decision levels (Van Groen et al. 2016).
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14.3.4 The Confidence Interval Method for Within-Item

Multidimensionality

The confidence interval method (Kingsbury and Weiss 1979) can also be used for

tests with within-item multidimensionality. Again, the reference composite is used

to make a classification decision (Van Groen et al. 2014c).

To determine whether testing can be stopped after an item is administered, the

examinee’s ability is estimated after each item. This estimate is projected onto the

reference composite. The proficiency on the reference composite is then transformed

to the corresponding point in the multidimensional space (Van Groen et al. 2014c):

θ ξ̂j
= cos αξ × ξ̂j. (14.23)

The reference composite is considered to be a combination of abilities. The

weights between the abilities, λξ , are based on the angles between the reference

composite and the dimension axes; λξ l = 1/αξ l (Van Groen et al. 2014c).

The standard error for the confidence interval method is given by Yao (2012)

se(ξ) =
√

V(ξ), (14.24)

with

V(ξ) = λ
′
ξ V(θ ξ )λξ . (14.25)

The variance at θ ξ̂j
is approximated by the inverse of the information matrix at

θ ξ̂j
. The decision rules are (Van Groen et al. 2014c)

administer another item if ξ̂j − γ · se(ξ̂j) < ξc < ξ̂j + γ · se(ξ̂j);

ability below ξc if ξ̂j + γ · se(ξ̂j) < ξc; (14.26)

ability above ξc if ξ̂j − γ · se(ξ̂j) > ξc,

where ξc denotes the cutoff point on the reference composite. The cutoff point is

determined based on the cutoff points for each dimension. Again, decisions can be

made using the reference composite for different subsets of items and for more than

two decision levels (Van Groen et al. 2016).

14.4 Item Selection Methods

Computerized classification testing requires a method to select the items during

test administration. Most methods select an optimal item given some statistical

criterion. Limited knowledge is available for selecting items in multidimensional

classification testing (Seitz and Frey 2013a; Van Groen et al. 2014b, c, 2016).
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Van Groen et al. (2014c) based their item selection on knowledge about item selection

methods from unidimensional classification testing (Eggen 1999; Spray and Reckase

1994; Van Groen et al. 2014a, c) and multidimensional computerized adaptive testing

for ability estimation (Reckase 2009; Segall 1996; Yao 2012).

Following Van Groen et al. (2014c), three different types of item selection methods

are included here for between-item and within-item multidimensionality. In unidi-

mensional classification testing, items are often selected that maximize information at

the current ability estimate or at the cutoff point (Eggen 1999; Spray 1993; Thompson

2009). Maximization at the cutoff point becomes more complicated when multiple

cutoff points are included. One type of the methods available for selection with mul-

tiple cutoff points, that is weighting methods, is also used here (Van Groen et al.

2014a). The third item selection method selects items at random. This provides a

benchmark that can be used to compare the efficiency and accuracy of the more

complex methods. The method that selects items based on the ability estimate and

the weighting method have different implementations for between- and within-item

multidimensionality.

14.4.1 Item Selection Methods for Between-Item

Multidimensionality

Unidimensional item selection methods can be used for tests with between-item

multidimensionality (Van Groen et al. 2014b), but items must be selected per dimen-

sion. Here this is accomplished using the Kingsbury and Zara (1989) approach. This

approach selects the items from the dimension for which the difference between

the desired and achieved percentage is the largest (Van Groen et al. 2014c) and can

be applied to the three described item selection methods. The unidimensional item

selection method that maximizes information at the ability estimate is described first.

The unidimensional weighting method is described thereafter.

14.4.1.1 Item Selection Using the Ability Estimate

In unidimensional classification testing, Fisher information is often maximized at

the current ability estimate (Eggen 1999; Spray 1993). The aim of maximizing infor-

mation at the current ability estimate is to reduce the estimate’s standard error. In

between-item multidimensional testing, this boils down to (Van Groen et al. 2014b)

max Ii(θ̂l), for i ∈ Val, (14.27)

where Val is the set of items available for selection for dimension l.
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14.4.1.2 Item Selection Using the Weighting Method

Information is often maximized at the cutoff point in unidimensional classification

testing (Eggen 1999; Spray 1993). In between-item multidimensional tests, items

can be selected that maximize the information at the cutoff point using

max Ii(θcl), for i ∈ Val (14.28)

as a consequence of the selection per dimension in such tests.

This method can be used if just one cutoff point is specified per dimension.

Several methods have been developed for item selection with multiple cutoff points

for unidimensional classification testing (Eggen and Straetmans 2000; Van Groen

et al. 2014a; Wouda and Eggen 2009), The weighting method combines the objective

functions per cutoff point into one weighted objective function. The weight for the

cutoff points depends on the distance of the cutoff point to the current ability estimate

(Van Groen et al. 2014a). As a result, the test is adapted to the individual student’s

ability. The item is selected for dimension l that fulfills (Van Groen et al. 2014b)

max

C
∑

c=1

1

|θ̂jl − θcl |
Ii(θcl), for i ∈ Val . (14.29)

14.4.2 Item Selection Methods for Within-Item

Multidimensionality

In contrast to between-item multidimensional tests, selecting items for within-item

multidimensional tests has to take the multidimensional structure of the test into

account. This implies that multidimensional item selection methods have to be used.

However, these methods were developed for multidimensional computerized adap-

tive testing to obtain an efficient and precise ability estimate. Nevertheless, Segall’s

(1996) method, which selects the items at the current ability estimate, can be used

for classification testing. This method was adapted by Van Groen et al. (2016) for

selection at a weighted combination of the cutoff points.

14.4.2.1 Item Selection Using the Ability Estimate

Segall (1996) developed an item selection method focused on estimating ability as

precisely as possible. Precision is reflected by the size of the confidence ellipsoid

surrounding the estimate. The item is selected that results in the largest decrement of

the volume of the confidence ellipsoid. The size of the ellipsoid can be approximated

by the inverse of the information matrix, so the item is selected that maximizes

(Segall 1996)
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max det

(

k
∑

i=1

I(θ̂ j, xij) + I(θ̂ j, xk+1,j)

)

, for k + 1 ∈ Vk+1, (14.30)

where
∑k

i=1 I(θ̂ j, xij) denotes the information that has been collected thus far and

I(θ̂ j, xk+1,j) is the information that a potential item provides. Because the item is

selected that results in the largest determinant of the information matrix, the volume

of the confidence ellipsoid is minimized (Reckase 2009).

14.4.2.2 Item Selection Using the Weighting Method

The weighting method for within-item multidimensional classification testing is

based on maximization at a weighted combination of the cutoff points (Van Groen

et al. 2016). The weights for the dimensions depend on the distance between the

cutoff points and the student’s proficiency. The weighting method then selects the

item using (Van Groen et al. 2016)

max

C
∑

c=1

1

|ξθ̂j
− ξc|

Ii(θξc
), for i ∈ Val . (14.31)

14.5 Examples

The accuracy and efficiency of the classification and item selection methods are

illustrated using two example simulation studies. The first example deals with a test

in which between-item multidimensionality is present. The second example shows

a test with a within-item multidimensional structure. The examples demonstrate the

differences in accuracy and efficiency in specific situations with specific settings for

the classification methods.

14.5.1 Example 1: Between-Item Multidimensionality

The End of Primary School Test (Cito 2012) in the Netherlands can be calibrated with

a between-item multidimensional model. The test provides a recommendation on the

most suitable level of secondary education to pupils. As a test result, a scale score is

given that relates to an advise on the most appropriate level of secondary education

(Van Boxtel et al. 2011). The test is typically modeled using six unidimensional

scales; four scales for Language (100 items), one scale for Mathematics (60 items),

and one scale for Study Skills (40 items).
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14.5.1.1 Simulation Design for Example 1

The example is based on the item parameters, ability distribution, and correlation

structure from a NOHARM 4 (Fraser and McDonald 2012) calibration with 147,099

students. A dataset of 10,000 students was generated with abilities drawn from the

observed correlation structure. The same dataset was used for all simulations. The

generated abilities were used to determine the true classification for each student.

The minimum test length was set at 20 items, with a maximum of 200 items. Three

cutoffs were specified based on the 2012 ability and score distributions. Simulations

were run with the SPRT and the confidence interval method. For the SPRT, the values

for α and β were set equal and varied between 0.1 and 0.2, and δ was set to 0.4. Other

values for δ resulted in similar test lengths and accuracy. For the confidence interval

method, γ varied between values corresponding to 90–97.5% confidence intervals

for each of the individual cutoff points. Items were selected using random selection,

maximization at the ability estimate, and the weighting method. The content structure

of the item pool was respected in the item selection using the Kingsbury and Zara

approach (1989).

The choices made here were different from those made for actual test adminis-

tration for the purpose of simplicity and comparability with example 2. The number

of cutoffs was limited to three in example 1. The actual test provides eight different

advises and also reports at the subject level. The choices made here imply that the

presented simulation results cannot be translated to actual test administration.

14.5.1.2 Simulation Results, Example 1

The results of the simulations for example 1 are presented in Figs. 14.1 and 14.2.

The former indicates the average test length (ATL) over all students per condition.

The latter denotes the proportion of correct decisions (PCD) as an indication of the

accuracy of the classification decisions. The PCD compares the true classification

and the decision made by the classification methods.

The plot for average test length for the SPRT shows that higher values for α and β

result in a shorter test. The plot for the confidence interval method shows that when

the confidence interval is increased, the test length also increases. The SPRT results

in longer tests than the confidence interval method for these settings of the SPRT

and confidence interval method. Random item selection results in the longest tests.

Maximization of information at the ability estimate results in the shortest tests.

The plot for the proportion of correct decisions for the SPRT indicates that 80–

87% of the classifications are accurate. The plot for the confidence interval method

indicates that the settings for γ have a limited influence on classification accuracy.

The plot also shows that random selection results in slightly less accurate decisions.

The SPRT results in more accurate decisions than the confidence interval method.

Based on the these simulations, one might conclude that the SPRT results in longer

tests with more accurate decisions. However, this might be caused by the settings of

the SPRT and the confidence interval method in the example.
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Fig. 14.1 Average test length, example 1. Left plot: SPRT; right plot: confidence interval method.

δ = 0.4. Dots: random selection; triangles: maximization at the ability estimate; diamonds: weighting

method

Fig. 14.2 Proportion of correct decisions, example 1. Left plot: SPRT; right plot: confidence

interval method. δ = 0.4. Dots: random selection; triangles: maximization at the ability estimate;

diamonds: weighting method

14.5.2 Example 2: Within-Item Multidimensionality

An within-item multidimensional ACT mathematics item pool, as in Ackerman

(1994) and Veldkamp and Van der Linden (2002), was used in the second exam-

ple. The item parameters had been obtained previously using an orthogonal two-

dimensional NOHARM II (Fraser and McDonald 1988) calibration. Items are

intended to measure coordinate geometry, elementary algebra, intermediate algebra,

pre-algebra, plane geometry, and trigonometry, and they require three skill categories;

analysis, application, and basic skills (Veldkamp and Van der Linden 2002).
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14.5.2.1 Simulation Design, Example 2

The standard normal multivariate ability distribution was used to generate 10,000

students. The cutoff points were specified on the reference composite based on the

33th and 66th percentiles of the underlying dimensions. Simulations were gener-

ated with α = β between 0.025 and 0.10, and δ was set at 0.40. γ varied between

values corresponding to 90–97.5% confidence intervals. A maximum of 50 items

was selected using random selection, maximization at the ability estimate, and the

weighting method. No content restrictions were made in the simulations.

14.5.2.2 Simulation Results, Example 2

The results of the simulations for example 2 can be seen in Figs. 14.3 and 14.4. The

plot for average test length for the SPRT shows that higher values for α and β result in

a shorter test. As expected, the average test length increased when a larger confidence

interval was required. The plots also suggest that test length is often shorter for the

confidence interval method. However, this depends on the settings for the SPRT and

the confidence interval method. Random selection results in the longest tests, and the

weighting method results in the shortest test. The effect of the item selection method

appears to be consistent regardless of the classification method.

The plot for the proportion of correct decisions for the SPRT indicates that the

values for α and β did not influence the accuracy of the decisions. In contrast, the size

of the confidence interval did influence the accuracy. As expected, random selection

resulted in the least accurate decisions. The confidence interval method resulted in

less accurate decisions than did the SPRT. This might be caused by the shorter tests

for the confidence interval method.

Fig. 14.3 Average test length, example 2. Left plot: SPRT; right plot: confidence interval method.

δ = 0.4. Dots: random selection; triangles: maximization at the ability estimate; diamonds: weighting

method



286 M. M. van Groen et al.

Fig. 14.4 Proportion of correct decisions, example 2. Left plot: SPRT; right plot: confidence

interval method. δ = 0.4. Dots: random selection; triangles: maximization at the ability estimate;

diamonds: weighting method

Based on the current settings for the SPRT and confidence interval method, one

might conclude that the SPRT resulted in longer tests in this example dataset. How-

ever, those longer tests result in more accurate classification decisions. This finding

clearly indicates the well-known trade-off between accuracy and test length.

14.6 Conclusions and Discussion

Multidimensional computerized classification testing can be used when classifica-

tion decisions are required for constructs that have a multidimensional structure.

Here, two methods for making those decisions were included here for two types of

multidimensionality. In the case of between-item multidimensionality, each item is

intended to measure just one dimension. By contrast, in case of within-item multi-

dimensionality, items are intended to measure multiple or all dimensions.

Wald’s (1947) sequential probability ratio test has previously been applied to mul-

tidimensional classification testing by Seitz and Frey (2013a) and Van Groen et al.

(2014b) for between-item multidimensionality and by Van Groen et al. (2016) for

within-item multidimensionality. Kingsbury and Weiss’s (1979) confidence interval

method was applied to between-item multidimensionality by Seitz and Frey (2013b)

and Van Groen et al. (2014c), and by Van Groen et al. (2014c) to within-item multidi-

mensionality. The present study’s implementation of the confidence interval method

for between-item dimensionality differs from the implementation in Van Groen et al.

(2014c). Here, different weights were used that reflect the number of items per

dimension relative to the test length.

Three methods were included for selecting the items: random item selection,

maximization at the current ability estimate, and the weighting method. The last
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method maximizes information based on a combination of the cutoff points weighted

by their distance to the ability estimate. Two examples illustrated the use of the

classification and item selection methods.

Classifications were made into one of three classification levels on the entire test.

Van Groen et al. (2014c) showed classifications on both the entire test as well as on

some of the items or dimensions. They also required that decisions had to be made

on all partial classification decisions before a classification decision could be made

on the entire test. Here, only one decision was made per test.

Examples were included to demonstrate the use of the classification and item

selection methods. Simulations included only two different item banks, a limited

number of settings for the classification methods, and a limited number of students.

More thorough studies are needed in order to draw conclusions regarding the most

effective settings and classification methods. Van Groen et al. (2014c) provided

some further suggestions for comparison of the classification methods. Moreover,

only three item selection methods were included here. Many more item selection

methods (Reckase 2009; Segall 1996; Yao 2012) exist for multidimensional adaptive

testing. These should be investigated as well. Finally, α, β, δ, and γ were set equal

for all cutoffs points. The use of different values for different cutoff points should be

investigated as well.

Two classification methods were included here. A third unidimensional classifica-

tion method, the generalized likelihood ratio test developed by Bartroff, Finkelman,

and Bartroff et al. (2008), has never been applied to multidimensional classification

testing. This method is based on the sequential probability ratio test. This suggests

that it should be feasible to expand the method to multidimensional classification

testing.

Research on multidimensional classification testing is still limited to the work of

(Seitz and Frey 2013a, b), Spray et al. (1997), and the current authors (Van Groen

et al. 2014b, c, 2016). Further studies will be required before multidimensional clas-

sification testing can be applied in practice. To date, too little is know about the

classification methods, the item selection methods in this context, and the settings

for the classification methods to administer multidimensional classification tests with

confidence.
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