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Abstract. The emerging area of business process intelligence attempts
to enhance the analytical capabilities of business process management
systems by employing data warehousing and mining technologies. This
paper presents an approach to re-engineering the business process mod-
eling in conformity with the multidimensional data model. Since the
business process and the multidimensional model are driven by rather
different objectives and assumptions, there is no straightforward solution
to converging these models.

Our case study is concerned with Surgical Process Modeling which is
a new and promising subdomain of business process modeling. We for-
mulate the requirements of an adequate multidimensional presentation
of process data, introduce the necessary model extensions and propose
the structure of the data cubes resulting from applying vertical decom-
position into flow objects, such as events and activities, and from the
dimensional decomposition according to the factual perspectives, such
as function, organization, and operation. The feasibility of the presented
approach is exemplified by demonstrating how the resulting multidimen-
sional views of surgical workflows enable various perspectives on the data
and build a basis for supporting a wide range of analytical queries of vir-
tually arbitrary complexity.

1 Introduction

Conventional business process management systems, focused on operational de-
sign and performance optimization, display rather limited analysis capabilities
to quantify performance against specific metrics [1]. Deficiencies of business pro-
cess modeling (BPM) approaches in terms of supporting comprehensive analysis
and exploration of process data have been recognized by researchers and prac-
titioners [1,2]. The new field of Business Process Intelligence (BPI), defined as
the application of performance-driven management techniques from Business In-
telligence (BI) to business processes, claims that the developing convergence of
BI and BPM technologies will create value beyond the sum of their parts [3].
However, no straightforward guidelines for converging the flow-oriented process
specification and the snapshot-based multidimensional design are in existence.
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To be admitted into an OLAP (On-line Analytical Processing) system, the
descriptions of the business processes have to undergo the transformation im-
posed by the underlying multidimensional data model. However, the source and
the target models are driven by rather conflicting and partially incompatible
objectives: business process modeling is concerned with operational efficiency
and workflow behavior, whereas OLAP enables aggregation over accumulated
numerical data modeled as a set of uniformly structures fact entries.

In medical engineering “the term Surgical Workflows refers to the general
methodological concept of the acquisition of process descriptions from surgical
interventions, the clinical and technical analysis of them” [4]. One of the major
challenges is the acquisition of accurate and meaningful Surgical Process Models
(SPM). Surgical Process Models are “simplified pattern of a surgical procedure
that reflect a predefined subset of interest of the real intervention in a formal
or semi-formal representation“[5]. Formalization of the SPM recording scheme is
required to support both, manual and automatic data acquisition, and to apply
state-of-the-art analysis and visualization techniques for gaining insight into the
data.

Use cases of Surgical Workflows are manifold, ranging from supporting the
preoperative planning by retrieving similar precedent cases to the postoperative
exploration of surgical data, from analyzing the optimization potential with re-
spect to instruments and systems involved to verifying medical hypotheses, for
education purposes, answering qualitative and quantitative queries, etc. What-
ever abstraction approach is adopted, there is a need for an unambiguous de-
scription of concepts that characterize a surgical process in a way adequate for
modeling a wide range of different workflow types and surgical disciplines.

The prevailing process modeling standards, such as Business Process Mod-
eling Notation (BPMN) [6] and the reference model of Workflow Management
Coalition (WfMC) [7], are too general to address the domain-specific require-
ments adequately. Multidimensional modeling seems a promising solution as it
allows to view data from different perspectives and at different granularity and
define various measures of interest. To identify the major design challenges, we
proceed by inspecting the fundamentals of the involved modeling techniques.

1.1 Multidimensional Data Model

Multidimensional data model emerged as an alternative to the relational data
model optimized for quantitative data analysis. This model categorizes the data
as facts with associated numerical measures and descriptive dimensions charac-
terizing the facts [8]. Facts can thus be viewed as if shaped into a multidimen-
sional cube with dimensions as axes and measure values as the cube cells. For
instance, a surgical process can be modeled as a fact entry SURGERY charac-
terized by dimensions Location, Surgeon, Patient, and Discipline. Members of a
dimension are typically organized in a containment type hierarchy (e.g., location
↗ hospital ↗ city) to support multiple granularities.

Relational OLAP structures the data cubes according to the star or snowflake
schema [9]. Both schemas are composed of a fact table and the associated
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dimension tables. In the star schema, for each dimension, its whole hierarchy is
placed into a single table, whereas the snowflake schema extracts each hierarchy
level into a separate table and uses foreign keys for mapping child-parent rela-
tionships between the members. Within a dimension, the attributes that form the
hierarchy are called dimension levels, or categories. Other descriptive attributes
belonging to a particular category are property attributes. For instance, hospital
and city are categories of the dimension location, whereas hospital name and city
code are property attributes of the respective categories. Dimension levels along
with parent-child relationships between them are referred to as the intension,
or schema, of a dimension whereas the hierarchy of its members, i.e., the actual
data tree, forms its extension.

1.2 Business Process Modeling and Workflow Management

BPM and Workflow Management (WfM) foster a process-oriented perspective
on organizations that comprises activities and their relationships within and be-
yond an organization context. Relationships may be specified using control flow
(consecutive, parallel, or alternative execution) and/or hierarchical decompo-
sition; the organizational context comprises organizational units and resources
[10]. The differentiation in the definition of business processes vs. workflows
lies in the levels of abstraction: while business processes are mostly modeled in
a high-level and informal way, workflow specifications serve as a basis for the
largely automated execution and are derived by refining the business process
specification [11]. A workflow is specified in terms of work steps, denoted activ-
ities, which are either automated or include a human part. The latter type is
assigned roles filled by human actors at runtime. The role of the WfM system
is to determine the (partial) invocation order of activities. Therefore, a formal
specification of control flow and data flow is required.

Coexistence of different workflow specification methods is common in practice.
We restrain ourselves to naming a few techniques applicable in the context of
Surgical Workflows and refer the interested reader to [12] for a detailed overview.
Net-based, or graph-based, methods enjoy great popularity due to their ability
to visualize processes in a way understandable even for non-expert users. Espe-
cially the activity and state charts are frequently used to specify a process as an
oriented graph with nodes representing the activities and arcs defining the or-
dering in which these are performed. Logic-based methods use temporal logic to
capture the dynamics of the system. Finally, Event-Condition-Action rules are
used for specifying the control flow between activities in the conditional form.

Surgical Process Modeling, classified as a specific domain of BPM [4], adopts
the concepts from both WfM and BPM. The WfM approach of decomposing a
workflow into activities is useful for providing a task-oriented surgery perspec-
tive. However, since surgical work steps are predominantly manual and involve
extensive organizational context, such as participants, their roles, patients and
treated structures, instruments, devices and other resources, etc., high-level BPM
abstractions enable modeling such domain-specific elements.
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2 Related Work

Relevant work can be subdivided into the following categories: 1) enhancing
business process analysis by employing the data warehousing approach, 2) ex-
tending the OLAP technology to support complex scenarios, and 3) approaches
to surgical workflow analysis.

Grigori et al. present a BPI tool suite built on top of the HP Process Manager
(HPPM) and based on a data warehouse approach [2]. The process data is mod-
eled according to the star schema, with process, service, and node state changes
as facts and the related definitions as well as temporal and behavioral character-
istics as dimensions. While this approach focuses on the analysis of process exe-
cution and state evolution, we pursue the task-driven decomposition into logical
work steps, in which horizontal characteristics, or the factual perspectives[13],
extended by means of domain-specific taxonomies serve as dimensions.

An approach to visual analysis of business process performance metrics, called
impact factors, is given in [14]. The proposed visualization interface VisImpact
is especially suitable for aggregating over large amounts of process-related data
and is based on analyzing the process schema and instances to identify business
metrics. The selected impact factors and the corresponding process instances are
presented using a symmetric circular graph to display the relationships and the
details of the process flows.

Pedersen et al. have made remarkable contributions in the field of multidi-
mensional modeling for non-standard application domains. In [15], a medical
cases study concerned with patient diagnosis is used to demonstrate the analysis
requirements not supported by traditional OLAP systems. The proposed model
extensions aim at supporting non-summarizable hierarchies, symmetric treat-
ment of dimensions and measures, and correct aggregation over imprecise or
incomplete data. In [16], Jensen et al. present the guidelines for designing com-
plex dimensions in the context of spatial data such as mobile, location-based
services.

In a previous work [17] we analyzed the limitations of conventional OLAP
systems and the underlying data model in handling complex dimension hierar-
chies and proposed model extensions at the conceptual level and their relational
mapping as well their implementation in a prototype frontend tool. A compre-
hensive classification of dimensional hierarchies, including those not addressed
by current OLAP systems, formalized at both the conceptual model and the
logical level, may be found in [18].

Interdisciplinary research in the field of surgical workflow modeling, analysis
and visualization is carried out at the Innovation Center Computer Assisted
Surgery (ICCAS) located in Leipzig, Germany. Recent results and findings of
the ongoing projects may be found in [4,5].

3 Case Study: Surgical Workflows

Surgeons, medical researchers and engineers work jointly on obtaining a well-
defined formal Surgical Process Model that would enable managing huge volumes
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Fig. 1. Recording scheme of a surgical process model as a UML class diagram

of intervention models in a single data warehouse in a uniform manner and
querying that data for analytical purposes. A basic recording scheme of a surgery
in UML class notation is shown in Figure 1. The diagram denotes a further stage
of the scheme presented by Neumuth et al. in [4]. The use of UML offers an
implementation-independent view of the process scheme and is a widely accepted
specification standard for both BPM [19] and data warehouse design [20]. The
upper part of the diagram contains the characteristics describing the surgery as
a whole and corresponding to the dimensions of analysis for aggregating across
multiple surgical interventions (for instance, to query the number of patients
treated by a particular surgeon). Classes in the lower part of the diagram belong
to the intra-surgical level, i.e., they represent elements constituting a surgical
procedure.

To obtain the structure of a workflow recording scheme whilst avoiding the
information overload, we employ vertical and horizontal process decomposition.

Vertical decomposition corresponds to identifying core elements of a process.
Here, we account for two complementary data acquisition practices in the field
of SPM, namely a task-driven, or temporal, and an system-based structuring.
Activities represent surgical tasks, or work steps, similarly to the corresponding
WfM concept. Examples of activities are “irrigation of a vessel with a coagu-
lator” or “cutting at the skin with a scalpel”. Sequential ordering of activities
symbolizes the acquired surgical intervention [4]. System-based structuring uses
the concepts of System, State, and Event to capture the state evolution of in-
volved systems and events that trigger state transitions. The concept of a system
is very generic and may refer to a participant or his/her body part, a patient or a
treated structure, an instrument or a device, etc. For instance, the gaze direction
of surgeon’s eyes can be modeled as states, while surgeon’s instructions may be
captured as events. To reflect the heterogeneous nature of the notion system, we
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modeled it as an abstract superclass as shown in Figure 1. Another superclass
Component enables uniform treatment of the two data acquisition practices in
part of their common properties, e.g., to retrieve the entire output generated in
the coarse of a surgery, whether by its activities, system states or events.

Horizontal decomposition of a process is conceptually similar to identifying the
dimensions of a data cube and is drawn by recognizing different complementary
perspectives in a workflow model, following the factual perspective categorization
[13]. Further details on each perspective are given in the next section.

4 From Process Flows to Data Cubes

Transformation from the semantically rich BPM notation into a data cube can
be seen as a reduction of the complete set of extensible process elements, such
as various types of flow and connecting objects, to a rigid format that forces
decomposition into a set of uniformly structured facts with associated dimen-
sions. We proceed in three steps: 1) identify the main objectives of the business
process analysis, 2) provide the overall mapping of generic BPM concepts, such
as activity, object, resource, event etc. into the multidimensional data model,
and 3) transfer the application-specific characteristics into the target model.

Subjects, or focal points, of the analysis are mapped to facts. In business
process analysis, the major subjects of the analysis are the process itself (pro-
cess level) as well as its components (intra-process level). Process level analysis is
concerned with analyzing the characteristics of the process as a whole and aggre-
gating over multiple process instances. Back to our case study, sample analytical
tasks at this level are the utilization of hospital locations, surgery distribution
by discipline, surgeon ranking, etc. At the intra-process level, occurrence, be-
havior and characteristics of process components, such as activities, actors, and
resources are analyzed. Examples from the surgical field are the usage of instru-
ment and devices, work step duration, occurrence of alarm states, etc.

4.1 Handling Generic BPM Constructs

The conceptual design of a data warehouse evolves in modeling the structure
of business facts and their associate dimensions. Once major fact types have
been defined, aggregation hierarchies are imposed upon dimensions to enable
additional granularities. In what follows we present a stepwise acquisition of the
multidimensional perspective of a process.

Determining the Facts. As the fact entries within a data cube are required
to be homogeneous, i.e., drawn from the same set of dimensions, applications
dealing with multiple heterogeneous process types have to place each type into a
separate cube. In our scenario, surgery is the only process type, but if we had to
add a different type, e.g., a routine examination of a patient, the corresponding
fact entries would be stored separately from surgical facts.

At the process element level, we suggest modeling work steps, or activities,
as facts while other components, such as resources and actors, are treated as
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dimensional characteristics of those facts. However, in many contexts, process
activities may be rather heterogeneous in terms of their attributes. To preserve
homogeneity within the fact type, we propose to extract each homogeneous group
of activity types into a separate fact type. To account for common characteristics
of all activity types, generalization into a common superclass is used.

Determining the Dimensions. Dimensions of a fact are a set of attributes
determining the measure value of each fact entry. These attributes are obtained
via a horizontal decomposition along the factual perspective categories of work-
flow modeling defined in [13]. Availability and contents of particular perspective
categories as well as their number depend on the type of process at hand. Our
approach to transforming the fundamental factual perspectives into dimensions
is as follows:

1. The function perspective describes recursive decomposition of process into
subprocesses and tasks. This composition hierarchy is mapped into a dimen-
sion of Activity, such as Phase in our case study.

2. The operation perspective describes which operations are supported by a task
and which applications implement these operations. In case of a surgical work
step, operations are mapped to the dimension Action (e.g., “cut”, “suction”,
“stitch up”, etc.) and the applications are represented by Instrument.

3. The behavior perspective defines the execution order within the process. Be-
havior can be subdivided into temporal (along the timeline), logical (paral-
lelism, synchronization, looping) and causal. Temporal characteristics, such
as StartTime and StopTime, are used as time dimensions. Relationships be-
tween pairs of components (a reflexive association of Component with Behav-
ior in Figure 1) are more complex and will be discussed in the next section.

4. The information perspective handles the data consumed and produced by
the workflow components. These resources can be mapped to (Input) and
(Output) dimensions.

5. The organization perspective specifies which resource is responsible which
task. Organization dimensions may involve human actors, systems, and de-
vices. Back to the surgical activity case, an example of such resource is
Participant (e.g., “surgeon”, “assistant”, etc.).

5 Challenges of the Multidimensional Modeling

Apart from the standard OLAP constraints, such as normalization of the di-
mension hierarchies and avoidance of NULL values in the facts, the following
domain-specific requirements have been identified:

– Many-to-many relationships between facts and dimensions are very common.
For instance, during a single surgery, multiple surgical instruments are used
by multiple participants.

– Heterogeneity of fact entries. Treating Component elements as the same fact
type would disallow capturing of subclass specific properties, while modeling
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each subclass as a separate fact type would disable treating heterogeneous
elements as the same class for querying their common characteristics.

– Interchangeability of measure and dimension roles. In a classical OLAP sce-
nario the measures of interest are known at design time. However, “raw”
business process data may contain no explicit quantitative characteristics.
The measure of interest varies from one query to another. Therefore, it is
crucial to enable the runtime measure specification from virtually any at-
tribute. For instance, a query may investigate the number of surgeries per
surgeon or retrieve the distribution of surgeons by discipline.

– Interchangeability of fact and dimension roles. Surgery has dimensional char-
acteristics of its own (location, patient, etc.) and therefore, deserves to be
treated as a fact type. However, with respect to single work steps, Surgery
clearly plays the role of a dimension (e.g., events may be rolled-up to
surgery).

5.1 Terminology

In this work, we adopt the notation proposed by Pedersen et al. [15] by simpli-
fying and extending it to account for BPM particularities.

An n-dimensional fact schema is a pair S = (F , {Di, i = 1, . . . , n}), with F as
the fact schema and {Di} as the set of corresponding dimension schemata.

A dimension schema is a four-tuple D = ({Cj , j = 1, . . . , m}, !D, "D, ⊥D),
where {Cj} are the categories, or aggregation levels, in D, with the distinguished
top and bottom category denoted "D and ⊥D, respectively, and !D being the
partial order on the Cjs.

The top category of a dimension corresponds to an abstract root node of the
data hierarchy and has a single value referred to as ALL (i.e., "D = {ALL}).

A non-top dimension category is a pair C = ({Ak, k = 1, . . . , p}, ĀC) where ĀC
is the distinguished hierarchy attribute, i.e., whose values represent a level in the
dimension hierarchy, whereas {Ak} is a set of property attributes functionally
dependent on ĀC , i.e., ∀Ak ∈ C : Ak = f(ĀC).

A fact schema is a triple F = ({Ā⊥}F , {Mq, q = 1, . . . , t}, ĀF), where {Ā⊥}
is a set of bottom-level hierarchy attributes in the corresponding dimension
schema {Di} (i.e., ∀C = ⊥Di : ĀC ∈ {Ā⊥}F), {Mq} is a set of measure
attributes, defined by its associated dimensions, such that ∀Mq ∈ F : Mq =
f({Ā⊥}F), and ĀF is an optional fact identifier attribute.

We allow the set of measure attributes to be empty ({Mq} = ∅), in which
case the resulting fact schema is called factless [9] and the measures need to be
defined dynamically by applying the desired aggregation function to any category
in {Di}. The fact identifier attribute plays the role of a single-valued primary
key, useful for specifying the relationship between different fact schemata.
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Fig. 2. Vertical decomposition of the surgical workflow into a fact hierarchy

5.2 Fact Constellation vs. Fact Hierarchy and Fact Generalization

In our usage scenario, fact table modeling is an iterative process starting with a
coarse definition of the basic fact types with their subsequent refinement under
the imposed constraints. Vertical decomposition of a surgical process results in
two granularity levels of the facts, as depicted in Figure 2:

– Surgery. Each surgical case along with its attributes and dimensional char-
acteristics represents the top-level fact type.

– Activity, State, and Event. The three types of workflow components have
their specific sets of dimensions and are thus treated as distinct fact types.

At this initial stage, we disregarded existence of many-to-many relationships
between facts and dimensions. However, disallowance of such relationships is
crucial in the relational context as each fact entry is stored as a single data
tuple with one single-valued attribute per dimension. Consider the problem of
modeling Participant as a dimension of Surgery: most surgeries involve multiple
participants, hence, it is impossible to store the latter as a single-valued attribute.

Our solution is based on a popular relational implementation of a non-strict
dimension hierarchy by means of bridge tables [9]. A bridge table captures a non-
strict ordering between any two categories by storing each parent-child pair. Back
to our example, a many-to-many relationship between Surgery and Participant
as well as that between Surgery and Discipline are extracted each into a separate
table, as shown in Figure 3. We denote such extracted fact-dimensional fragments
satellite facts to stress their dependent nature. Availability of the fact identifier
attribute SurgeryID facilitates the connection of the satellite fact to its base fact
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SURGERY_PARTICIPANT

SurgeryID
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              satellite fact

               foreign key
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SurgeryID
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Fig. 3. Extracting many-to-many relationships into “satellite” facts



32 S. Mansmann, T. Neumuth, and M.H. Scholl

COMPONENTStartTime

StopTime ComponentIDData

Description

STATESystem

Value

StateID

ACTIVITYPhase

Actuator

ActivityID

Type

EVENT

EventID

Type

COMPONENT_BEHAVIOR

Behavior

InputComponent

OutputComponent

Action

InstrumentTreatedStructure

Fig. 4. Using generalization (dashed lines) for unifying heterogeneous categories

table; a natural join between the two fact tables is necessary in order to obtain
the entire multidimensional view of Surgery.

Another phenomenon worthwhile consideration is the presence of parent-child
relationships between fact types, such as the hierarchy Activity ↗ Surgery. Similar
to a hierarchical dimension, Activity records can be rolled-up to Surgery.

A fact hierarchy relationship between Fj and Fi, denoted Fj ↗ Fi, is a special
case of the fact constellation in which the fact schema Fi appears to serve as
a dimension in Fj , such that ĀF i ∈ {Ā⊥}Fj .

So far, the three workflow component types have been modeled as separate
fact types Activity, State, and Event. However, these heterogeneous classes have
a subset of common characteristics that qualify them to be generalized into
superclass fact type Component, resulting in a fact generalization depicted in
Figure 4. A simple relational implementation of Component can be realized by
defining a corresponding view as a union of all subclass projections onto the
common subset of schema attributes.

Fj is a fact generalization of Fi, denoted Fj ⊂ Fi, if the dimension and measure
sets of Fj are a subset of the respective sets in Fi:
{Ā⊥}Fj ⊂ {Ā⊥}Fi ∧ (∀Mq ∈ Fj : Mq ∈ Fi).

An obvious advantage of the generalization is the ability to treat heteroge-
neous classes uniformly in part of their common characteristics. A further ad-
vantage is the ability to model the behavior of components with respect to each
other (see Behavior class in Figure 1) in form of a satellite fact table Compo-
nent Behavior depicted in Figure 4.

5.3 Modeling Dimension Hierarchies

A key strategy in designing dimension hierarchies for OLAP is that of sum-
marizability, i.e., the ability of a simple aggregate query to correctly compute a
higher-level cube view from a set of precomputed views defined at lower aggrega-
tion levels. Summarizability is equivalent to ensuring that 1) facts map directly
to the lowest-level dimension values and to only one value per dimension, and
2) dimensional hierarchies are balanced trees [21]. Originally motivated by per-
formance considerations, the summarizability has regained importance in the
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Fig. 5. A (simplified) Dimensional Fact Model of a surgical workflow scheme

context of visual OLAP as it ensures the generation of a proper browser-like
navigation for visual exploration of multidimensional cubes [17].

The resulting structure of the entire surgery scheme (with some simplifica-
tions) in terms of facts, dimension hierarchies, and the relationships between
them is presented in Figure 5 in the notation similar to the Dimensional Fact
Model [22]. Solid arrows show the roll-up relationships while dashed arrows ex-
press the “is a” relationships, namely the identity in case of a satellite fact and
the generalization in case of a fact hierarchy. The chosen notation is helpful
for explicitly presenting all shared categories, and therefore, all connections and
valid aggregation paths in the entire model.

We limit ourselves to naming a few non-trivial cases of dimensional modeling.

Multiple alternative hierarchies. The time hierarchy in the dimension Period is
a classical example of alternative aggregation paths, such as date ↗ month and
date ↗ week. These paths are mutually exclusive, i.e., within the same query,
the aggregates may be computed only along one of the alternative paths.

Parallel hierarchies in a dimension account for different analysis criteria, for
example, the member values of Patient can be analyzed by age or by sex criteria.
Apparently, such hierarchies are mutually non-exclusive, i.e., it is possible to
compute the aggregates grouped by age and then by sex, or vice versa.

Generalization hierarchies are used to combine heterogeneous categories into a
single dimension. System is an example of a superclass, which allows to model
the belonging of the categories Instrument, TreatedStructure, and Actuator to the
dimension System of the fact type STATE, as shown in Figure 4.
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Fact as dimension. In the case of a fact hierarchy or a satellite fact, the whole n-
dimensional fact schema S of the basis fact is included as a hierarchical dimension
into its dependent fact. For instance, COMPONENT treats SURGERY as its
dimension, while the dimensions Patient, Location, etc. of the latter are treated
as parallel hierarchies [18] within the same dimension.

Dimension inclusion is a special case of shared dimensions, in which dimension
Dj represents a finer granularity of dimension Di, or formally, Di ⊂ Dj if ∃Ck ∈
Dj : Ck ! ⊥Di. For example, TreatedStructure in ACTIVITY rolls up to Patient
in SURGERY. Dimension inclusion implies that all categories in Di become valid
aggregation levels of Dj .

The guidelines for modeling complex dimensions are provided in [15,18,17].

5.4 Runtime Measure Specification

Define new measure

Cancel OK

Name Number of participants

Attribute

DISTINCT

Function SUM

Drag any category in here

Define new measure

Hospital

Fig. 6. Defining a measure

Compulsory elements of any aggregate query are
1) a measure specified as an aggregate function
(e.g., sum, average, maximum etc.) and its input
attribute, and 2) a set of dimension categories to
use as the granularity of the aggregation. Conven-
tional OLAP tools require the set of the available
measures within a cube to be pre-configured at
the metadata level. It is also common to provide
a wizard for defining a new measure, however, lim-
iting the selection of qualifying attributes to the
set Mq of fact schema F , i.e., to the actual measure attributes encountered
in the fact table. In our scenario, the measure definition routine needs to be
modified to account for the following phenomena:

– The fact schema is factless, i.e., {Mq} = ∅.
– Each non-satellite fact schema disposes of a fact identifier attribute ĀF

belonging neither to the measure nor to the dimension set of F .
– Any attribute of a data cube, whether of the fact table itself or of any of its

dimensions, can be chosen as an input for a measure. Examples of commonly
queried measures are the total number of patients operated, average num-
ber of surgeries in a hospital, most frequent diagnoses, number of distinct
instruments per surgery, etc.

In accordance with the above requirements, we propose to enable runtime
measure specification by the analyst as a 3-step process, depicted in Figure 6:

1. Selecting an aggregate function from the function list;
2. Specifying the measure attribute: in a visual interface, this can be done via a

“drag&drop” of a category from the navigation, as shown in Figure 6, where
Hospital category is being dragged into the measure window;

3. Specifying whether the duplicates should be eliminated from the aggregation
by activating the DISTINCT option.
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Fig. 7. Changes in the conceptual schema caused by deriving a measure from a dimen-
sion category: (left) number of hospitals, (right) number of instruments

Optionally, the newly defined measure may be supplied with a user-friendly
name. As long as no user-defined measure is specified, the default setting of
COUNT(*), i.e., simple counting of the qualifying fact entries, is used. In terms
of the conceptual model, derivation of a measure from virtually any element
of the n-dimensional fact schema is equivalent to re-designing the entire
schema.

Let us consider an example of analyzing the number of hospitals, i.e., using
category Hospital from dimension Location as the measure attribute. Obviously,
to support this measure, SURGERY facts need to be aggregated to the Hospital
level, Hospital turns into a measure attribute within SURGERY and the bottom
granularity of Location changes from Room to City. The resulting data schema
is shown in Figure 7 (left). Location granularities below Hospital simply become
invalid in the defined query context.

A more complicated example of selecting the number of instruments to serve
as a measure is presented in Figure 7 (right). Instrument category is turned into
a measure attribute of the fact table ACTIVITY INSTRUMENT. From this per-
spective, all upper-level facts, such as ACTIVITY and SURGERY, are treated as
dimension categories. Thus, the analyst may pursue any aggregation path valid
in the context of the chosen measure. For example the number of instruments
can be rolled-up to SURGERY, Action, Phase, etc.

In practice, the schemata of the designed data cubes remains unchanged and
only a virtual view corresponding to the adjusted schema is generated to support
querying user-defined measures. For frequently used measures, materialization
of the respective view may improve the performance.

6 Results

The feasibility of our model can be shown by implementing it into a relational
OLAP system and running domain-specific queries against the accumulated
data. We present an application case of analyzing the use of instruments in
the surgical intervention type discectomy. The goal of a discectomy is partial
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Fig. 8. Results of sample aggregate queries 1 und 2 as a pivot table

removal of the herniated intervertebral disc. Typical expert queries in this sce-
nario focus on the occurrence of particular instruments, frequency of their usage
throughout the surgery, and duration of usage periods. Figure 8 shows a pivot
table with the results of the following two queries:

Query 1. For each of the interventions of type discectomy, find the instruments
used by the surgeon and the frequency of their occurrence (i.e., the number of
activities in which that instrument is used).

The measure of this query, i.e., the number of activities (COUNT(DISTINCT
ActivityID)), is rolled-up by SurgeryID and Instrument with a selection con-
dition along Discipline. The input data cube is obtained by joining the fact ta-
bles SURGERY and ACTIVITY with their respective satellites SURGERY DISCIPLINE
and ACTIVITY INSTRUMENT and joining the former two with each other via
COMPONENT. The left-hand half of the table in Figure 8 contains the computed oc-
currence aggregates, with Instrument mapped to the table rows and SurgeryID
as well as the measure COUNT(DISTINCT ActivityID) in the columns.

Query 2. For each of the interventions of type discectomy, calculate the mean
usage times of each instrument used by the surgeon (i.e., the average duration
of the respective activities).

The duration of a step corresponds to the time elapsed between its start and end,
so that the measure can be specified as (AVG(StopTime-StartTime)). The rollup
and the filtering conditions are identical to the previous query. The resulting
aggregates are contained in the right-hand half of the pivot table.

Other examples of surgical queries supported by our proposed multidimen-
sional design for Surgical Workflows are ‘How much time does the surgeon spend
on action X?’, ‘At which anatomical structures has instrument Y been used?’,
or ‘Which input is needed to execute a particular work step?’.
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7 Conclusion

In this work we applied the data warehousing approach to business process anal-
ysis. Conventional BPMS are rather limited in the types of supported analysis
tasks, whereas data warehousing appears more suitable when it comes to man-
aging large amounts of data, defining various business metrics, and running com-
plex queries. The case study presented in this work is concerned with designing
a recording scheme for acquiring process descriptions from surgical interventions
for their subsequent analysis and exploration.

As the business process model and the multidimensional model are based on
different concepts, it is crucial to find a common abstraction for their conver-
gence. We propose to map the vertical decomposition of a process into temporal
or logical components to fact entries at two granularity levels, namely, at the
process and at the work step level. Horizontal decomposition according to the
factual perspectives, such as function, organization, operation, etc., is used to
identify dimensional characteristics of the facts.

We evaluated the relational OLAP approach against the requirements of our
case study and proposed an extended data model that addresses such challenges
as non-quantitative and heterogeneous facts, many-to-many relationships be-
tween facts and dimensions, runtime definition of measures, interchangeability
of fact and dimension roles, etc. The proposed model extensions can be easily
implemented using current OLAP tools, with facts and dimensions stored in
relational tables and queried with standard SQL. We presented a prototype of
a visual interface for the runtime measure definition and concluded the work
by producing the results of sample analytical queries formulated by the domain
experts and run against the modeled surgical process data warehouse.
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