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Multidimensional diffusion 
MRI with spectrally modulated 
gradients reveals unprecedented 
microstructural detail
H. Lundell  1, M. Nilsson  2, T. B. Dyrby1,3, G. J. M. Parker  4,5, P. L. Hubbard Cristinacce4,  

F.-L. Zhou4, D. Topgaard  6 & S. Lasič1,7

Characterization of porous media is essential in a wide range of biomedical and industrial applications. 

Microstructural features can be probed non-invasively by diffusion magnetic resonance imaging 
(dMRI). However, diffusion encoding in conventional dMRI may yield similar signatures for very 
different microstructures, which represents a significant limitation for disentangling individual 
microstructural features in heterogeneous materials. To solve this problem, we propose an augmented 

multidimensional diffusion encoding (MDE) framework, which unlocks a novel encoding dimension 
to assess time-dependent diffusion specific to structures with different microscopic anisotropies. Our 
approach relies on spectral analysis of complex but experimentally efficient MDE waveforms. Two 
independent contrasts to differentiate features such as cell shape and size can be generated directly 
by signal subtraction from only three types of measurements. Analytical calculations and simulations 

support our experimental observations. Proof-of-concept experiments were applied on samples 

with known and distinctly different microstructures. We further demonstrate substantially different 
contrasts in different tissue types of a post mortem brain. Our simultaneous assessment of restriction 
size and shape may be instrumental in studies of a wide range of porous materials, enable new insights 

into the microstructure of biological tissues or be of great value in diagnostics.

A wide variety of materials are porous in nature. Characterizing the microstructure of such materials is key to 
understand for example the state and function of biological tissues, elasto-mechanic properties of materials, or 
texture of food products and rocks. This range of porous materials can be non-invasively studied by diffusion 
magnetic resonance imaging (dMRI)1. However, despite the high sensitivity of dMRI, different microstructural 
features, such as size, shape and orientation of diffusion restricting pores or living cells may yield indistinguisha-
ble signatures in conventional dMRI2–4. In other words, different microstructural information may be entangled 
in the encoding process, leading to low specificity of conventional dMRI. This problem is particularly acute in 
tissue, which consists of diverse compartments residing within a typical millimeter-size imaging voxel.

The dMRI research community has traditionally tried to resolve different microstructural features of tissue 
indirectly by biophysical modeling5. However, due to the lack of clean, disentangled data providing orthogonal, 
independent information, this approach is prone to over-fitting leading to erroneous conclusions6,7. The problem 
of entangled information is also common in nuclear magnetic resonance (NMR) studies of solids and porous 
media, and the research community has learned to address this by multidimensional encoding approaches. It has 
been shown that the resolution power in investigations of heterogeneous materials can be significantly increased 
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if the signal is encoded with several independent measurement dimensions simultaneously. This approach maxi-
mizes the specificity of data by preventing the entanglement at an encoding stage8–12.

One common challenge for dMRI is to resolve microscopic diffusion anisotropy from the macroscopic orien-
tation of microscopic compartments. Conventional experiments can provide a unique signature related to pore 
shape, but only in very special circumstances, when a sample consists of monodispersed pores with identical 
shapes13–15. To detect microscopic anisotropy in heterogeneous systems, Cory et al. introduced diffusion-diffusion 
correlation NMR experiments in which displacements are encoded in two non-collinear directions16. This dif-
fusion encoding approach, now known as double diffusion encoding, has recently been applied in a number of 
MRI studies17.

Under the assumption of Gaussian diffusion, the problem of resolving the distribution of diffusion tensors 
in systems with unknown macroscopic orientation dispersion, like for example in the brain tissue, is analogous 
to the problem of estimating distributions of chemical shift tensors for partially aligned polymer materials8. The 
solutions traditionally found in solid-state methodology, which can resolve isotropic and anisotropic nuclear 
interactions18, have recently inspired a more general multidimensional diffusion encoding (MDE) framework 
feasible both in NMR and MRI settings19. Prior approaches in this direction have extended the diffusion encoding 
from a vector-valued to a tensor-valued diffusion encoding20,21. The anisotropy of an encoding b-tensor, varying 
from sticks for directional encoding to spheres for isotropic encoding, is an example of the acquisition dimension, 
which matches the experimentally accessible microscopic diffusion anisotropy22. The general premise behind the 
MDE framework is to match the dimensionality of the acquisition space with that of the underlying phenomena19. 
Thus, it is crucial to identify relevant dimensions of the experimental inquiry and appropriately parameterize the 
acquisition space to create clean measurements of independent effects.

In this work, we consider non-Gaussian diffusion effects in MDE, which are related to time-dependent diffu-
sivities and have traditionally been exploited with unidirectional encoding experiments to probe microstructure 
of porous media23–26. In complex systems, both time-dependent and anisotropic diffusion effects can be entan-
gled, which may lead to biased results if only anisotropic diffusion is considered. Isolating those effects already 
at a measurement stage can thus provide more specific microstructural information. However, experimentally 
efficient sequences for MDE employ general encoding waveforms where the diffusion time is not well defined. 
Time-dependent diffusion can be analyzed in the frequency domain as the spectrum of velocity correlations27. 
This perspective enables experimental designs probing shorter length-scales using diffusion encodings with oscil-
lating gradients28–30. As we demonstrate here, the frequency domain also provides an intuitive way to understand 
the effects of time-dependent diffusion across MDE protocols with more complex waveforms.

We suggest an augmented MDE protocol with specificity to both time-dependent diffusion and microscopic 
anisotropy. The observed effects relate to signal fractions with particular cell size and shape. Besides varying the 
shape of the encoding b-tensor so that the encoding is either isotropic or directional, we propose to independently 
vary also the encoding power spectrum as an additional encoding dimension. Importantly, varying the encoding 
power spectrum provides the necessary mechanism to match time-dependent diffusion effects in isotropic and 
directional encodings, which employ experimentally effective but complex encoding waveforms. We have applied 
directional encoding, which was either “tuned” or “detuned” with respect to the spectra of isotropic encoding. 
Our experimental design and analysis provide two important and valuable insights. First, the tuned directional 
encoding is needed for an unbiased detection of microscopic anisotropy when time-dependent diffusion effects 
are prominent over the length-scales probed by MDE waveforms. Second, our protocol provides additional and 
independent information revealing correlations between anisotropy and size of structures on the micrometer 
length scale. These two independent and highly specific contrasts are attainable directly by raw image subtraction. 
We have demonstrated that our method can provide a clear separation of distinctively different synthetic and 
biological microstructures. We anticipate that our method will be of high value in applications, where a prompt 
assessment of heterogeneous microstructure is required as for example in MRI assessments of pathologies.

Theory
Directional and isotropic diffusion encoding. We consider previously introduced optimized gradient 
waveforms for isotropic encoding based on the magic-angle spinning of the q-vector (q-MAS)31. For Gaussian 
diffusion, the isotropic encoding is orientation invariant and sensitive only to the isotropic diffusivity in each 
component. The observed multi-exponential signal decay is in this case, in contrast to the directional encoding, 
only affected by the dispersion of isotropic diffusivities22. The average microscopic anisotropy can thus be inferred 
from the difference between signals acquired with directional and isotropic encoding in a material with a uniform 
orientation distribution of microstructures. A uniform distribution can be mimicked in any material by averaging 
the signals acquired in multiple gradient orientations, i.e. by so called powder averaging22,32,33.

Time-dependent diffusion. Note that even in the limit of low diffusion weighting b-values, where the sig-
nal attenuation from a single compartment can be considered approximately mono-exponential and spin-phase 
dispersion due to diffusion approximately Gaussian, a multi-exponential decay is observed for a system with 
multiple polydispersed restrictions or molecules with different diffusivities (free diffusion)34. In the literature, any 
multi-exponential signal attenuation has often been attributed rather vaguely to “non-Gaussian diffusion”. We 
describe diffusion as “time-dependent” to distinguish it from the case of free diffusion even when it applies to a 
multi-Gaussian scenario. Time-dependent diffusion D(t) can be viewed in the time domain, but for experiments 
with finite encoding times the diffusion time is ill defined and the diffusion spectrum D(ω) proves to be a more 
convenient concept (Fig. 1A). The signal attenuation in the Gaussian approximation of cumulant expansion34 is 
then given by the sum of all the spectral components of D(ω) weighted by the encoding power spectrum ωF( ) 2, 
which depends on the gradient waveform27 (Fig. 1B,C). See methods section for details. Note that the diffusion 
weighting b-value is given by a sum of all the spectral components of ωF( ) 2.
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Time-dependent diffusion will affect the results of an MDE experiment when there is a significant variation of 
the diffusion spectrum D(ω) in the frequency range where the encoding power, according to ωF( ) 2, is present. In 
this regime, the inferred anisotropy will depend on the spectral profile of the applied MDE gradient waveforms.

Augmented multidimensional diffusion encoding protocol. In our new experimental protocol, we 
combine the isotropic encoding with two different directional encoding waveforms shown in Fig. 1C to detect a 
non-flat D(ω). We call them tuned and detuned. The tuned waveform has a similar encoding power spectrum, 
|F(ω)|2, as the isotropic encoding waveform and will thus measure the same apparent diffusion coefficient (ADC) 
in an isotropic sample. For the detuned waveform we use the originally suggested directional encoding31. In 
our experiments, both directional and isotropic encoding yield identical b-values, but the detuned directional 
encoding features considerably more power at lower frequencies compared to the tuned version, as can be seen in 
Fig. 1C. In a multi-compartment system, different sizes of restrictions can be measured based on the difference in 
signals from the tuned and detuned encodings, while anisotropy differences can be measured by comparing the 
tuned directional and isotropic encodings.

Results
The augmented MDE protocol was implemented on a 4.7 T preclinical MRI system and experiments were con-
ducted on four phantoms with well-known microstructures as well as on a post mortem monkey brain tissue. All 
data shown represent powder averaged signals. For quantification of the average microscopic fractional anisot-
ropy (µFA) and the degree of macroscopic alignment of anisotropic compartments, we refer to the earlier work22. 
Further methodological details are provided in the method section.

Stratification of anisotropy and size in porous phantoms. To demonstrate the effects of 
time-dependent and anisotropic diffusion probed by our augmented MDE protocol, we constructed an array of 

Figure 1. Experimental design considerations for time-dependent diffusion. (A) Time-dependent diffusion 
can be considered in either time or frequency domains. For general diffusion encoding gradient waveforms, 
the diffusion times are ill defined. Thus, the frequency domain formulation provides a more stringent 
description of the signal. (B) The signal attenuation factor β from an individual compartment is given by the 
diffusion spectrum filtered by the encoding power spectrum. (C) The gradient waveforms (left panels) and the 
corresponding encoding power spectra (right panels) used in this study. The isotropic encoding has similar 
encoding power spectra in three orthogonal directions (different shades of gray) (top). The two directional 
encodings have the same total encoding power, i.e. b-value, but with either similar (tuned) or different 
(detuned) power spectra compared to the isotropic encoding. Note the increased encoding power at lower 
frequencies in case of detuned encoding. Time and frequency scales are shown for our experimental settings 
with the encoding time τ = 23 ms.
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diffusion phantoms with four distinctively different microstructures (Fig. 2A). The phantom data were collected 
within one imaging session (Fig. 2B). The effects of anisotropy and size were evaluated as signal differences at 
different b-values (Fig. 2C).

Aqueous polymer solution. The polymer solution phantom contains polymers (polyethylene glycol) dissolved in 
water35. All three signals from the polymer solution overlap, which is consistent with time-independent and iso-
tropic diffusion (lower left Fig. 2C). The multi-exponential signal decay reflects multi-Gaussian diffusion, related 
to the different spin populations in the solution (free self-diffusion of water and polymers of different lengths).

Yeast cell suspension. The densely packed baker’s yeast cell suspension, with spherical cells of ~5 µm diameter, 
features both extracellular and intracellular compartments, with hindered (time-independent) and restricted 
(time-dependent) diffusion, respectively22. The isotropic diffusion in both compartments is reflected in the 
multi-exponential signal decays, which overlap for the tuned directional and isotropic encoding. However, 
time-dependent diffusion in the intracellular compartment causes a divergence of the tuned and detuned direc-
tionally encoded signals (upper left Fig. 2C).

Liquid crystals. The liquid crystals phantom comprises orientationally dispersed anisotropic domains having 
an internal structure with ~4 nm diameter aqueous channels on a 2D hexagonal lattice with ~7 nm repeat dis-
tance20. The signal acquired on liquid crystals manifest the opposite behavior compared to the yeast results. The 
tuned and detuned directional encodings have their respective encoding power below ~200 and 50 Hz (Fig. 1C) 
and in this case yield overlapping results. Considerably higher frequencies would be required to detect any water 
mobility perpendicular to the channels (lower right Fig. 2C). In contrast to the signals from directional encoding, 
the isotropic encoding yields a nearly mono-exponential signal decay, suggesting that the directional signal atten-
uation is fully explained by identical but orientationally disordered domains in liquid crystals with apparently 1D 
anisotropic and time-independent diffusion.

Microfibers. This phantom comprises liquid filled hollow polymeric microfibers with inner diameters around 
10 µm36. The water channel diameters of the hollow fibers are three orders of magnitude larger than for the liquid 
crystals. In this case, ωF( ) 2 for the tuned directional encoding has sufficient power in the range of frequencies 
where variation of ωD( ) is present, which is manifested in the difference between the results for the tuned and 
detuned directional encoding (gray shaded area in the upper right Fig. 2C). Just like in case of liquid crystals, the 
signal attenuation from isotropic and tuned directional encodings diverge due to anisotropy (red shaded area in 
the upper right Fig. 2C). The multi-exponential decay of the isotropic encoding indicates a residual dispersion of 
apparent isotropic diffusivities due a various fiber diameters, unrestricted water compartments within the fibers 
phantom or variations in the spectral content across different directions of the isotropic encoding36,37.

Examples of biological tissue. A more complex example of heterogeneous microstructures, commonly 
studied by dMRI, are biological tissues. We performed the same experiments on an ex vivo excised Vervet monkey 

Figure 2. Experiments on various porous materials. (A) Illustrations of the four phantoms used in the 
experiment: yeasts cells represent large isotropic restrictions, microfibers large anisotropic restrictions, liquid 
crystals small anisotropic restrictions and polymer solution exhibits free diffusion. Data from all phantoms 
where collected in the same imaging experiment. (B) T2-weighted image of the four phantoms. Signals from 
the individual phantoms were averaged over regions indicated by the yellow lines. (C) Powder averaged and 
normalized signals for three encoding waveforms shown in Fig. 1C. The phantoms are schematically ordered 
according to the degree of anisotropy and size. The divergent signals from detuned and tuned encodings reveal 
time-dependent diffusion in the larger structures (gray shading in yeast and microfibers). The difference 
between signals for the tuned directional and isotropic encodings reveals anisotropy (red shading in liquid 
crystals and microfibers). For a mixed system, the signal differences are proportional to the signal fractions of 
the individual components.
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brain38, where three distinctly different microenvironments, schematically shown in Fig. 3A, are expected. The 
corresponding signals are shown in Fig. 3B.

The cerebellar region of interest (ROI) consists of a mixture of axons and dendrites as well as the granular layer 
with a very high concentration of spherical neuronal cell bodies (Fig. 3A). This region exhibit both a signal differ-
ence between the tuned directional and isotropic encoding from anisotropy (red shaded area in Fig. 3B) as well 
as a substantial effect of time-dependent diffusion, as inferred from the tuned and detuned directional encoding 
(gray shaded area in Fig. 3B).

White matter consists of aligned axons with anisotropy both in the intra- and extracellular compartments 
(Fig. 3A). The signal difference between the tuned directional and isotropic encodings is maximal compared to 
other regions (red shaded area in Fig. 3B). Effects of time-dependent diffusion inferred from the signal difference 
between the tuned and detuned directional encoding is also pronounced but smaller compared to the cerebellum 
(gray shaded area in Fig. 3B).

In gray matter, water diffusion may occur in anisotropic dendrites or a more isotropic extracellular space 
(Fig. 3A). In our experimental data, the anisotropy in gray matter is reflected by the signal difference between the 
tuned directional and the isotropic encoding (red shaded area in Fig. 3B), while only a very small signal difference 
between the tuned and detuned directional encoding (gray shaded area) indicates that time-dependent diffusion 
is not pronounced.

The phosphate buffer ROI (PBS) serves as a control region and is located outside the neuronal tissue. It is 
chemically and structurally homogeneous on the micrometer length scale probed by dMRI. Consistent with the 
expected Gaussian diffusion, all three signals overlap and are mono-exponential above the rectified noise floor 
(lower left Fig. 3B).

The signal differences at the highest b-value shown in Fig. 3B are in the order of 5–15%, which allows 
voxel-wise visualization of the contrasts as shown in Fig. 3C. The strong time-dependent diffusion contrast is 
visible mainly in the cerebellar cortex and white matter. Interestingly, the pattern of low time-dependent dif-
fusion contrast in gray matter is broken in the primary visual cortex (V1 in. Fig. 3C), featuring intermediate 
time-dependent diffusion contrast.

Insights from calculations and Monte Carlo simulations. To provide a model-based interpretation of 
our encoding contrasts, we performed calculations and Monte Carlo simulations. Effects of restricted diffusion 
in our augmented MDE protocol were considered for a broad range of encoding times and restriction sizes for 
two types of systems: (1) an isotropic system consisting of two compartments, one with Gaussian diffusion and 
one with diffusion restricted within identical impermeable spheres, each compartment contributing 50% of the 
signal, (2) a macroscopically isotropic but microscopically anisotropic system consisting of identical impermeable 
cylinders with uniform orientation distribution. Figure 4 shows signal vs. b curves for spherical and cylindrical 
restrictions with dimensions and experimental parameters comparable to those in our experiments on yeast 
and microfiber phantoms. The theoretical predictions in Fig. 4 qualitatively correspond with the experimental 

Figure 3. Experiments on post mortem monkey brain. (A) Schematic illustration of the different tissue 
compositions contained within three regions of interest (ROIs). The cerebellum (CB) contains white matter, 
dendrites and in particular a very high density of neuronal cell bodies in the inner granular layer of the 
cerebellar cortex. White matter (WM) contains mainly myelinated axons and a small proportion of glial cells. 
Gray matter (GM) contains mainly dendrites and neuronal and glial cell bodies. (B) Powder averaged and 
normalized signals for the three encoding waveforms shown in Fig. 1C. Similarly as in Fig. 2C, the results from 
the four ROIs are ordered according to the degree of anisotropy and size. (C) Maps reflecting anisotropy (upper) 
and cell size (lower) calculated from the powder averaged signal differences at b = 4800 s/mm2 voxel-wise 
normalized to the b = 0 signal. The contrasts correspond to the signal differences shown in panel B as gray and 
red shaded areas. The primary visual cortex (V1) has slightly higher intensity in the size map compared to the 
gray matter in the rest of the cerebrum.
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results shown in Fig. 2C. For diffusion inside a restriction, the time-dependent diffusion contrast, i.e. the differ-
ence between the tuned and detuned encoding, depends on the relation between the frequency content of the 
two waveforms and the restriction dimensions. Further considerations on those relations are presented in the 
Supplementary Information.

Discussion
In this paper we propose an MDE experimental approach that is specific both to microscopic anisotropy and 
time-dependent diffusion by the use of three custom designed gradient waveforms. The use of b-tensor encoding 
on its own has been demonstrated successfully in both NMR and MRI including experiments on liquid crystals39 
and the histologically validated differentiation of cell morphology in different brain tumor types40. On the other 
hand, time-dependent diffusion, traditionally studied with directional encoding schemes, was reported early 
on in frog muscle30 and has later been extensively investigated in porous media and in different biological tis-
sues2,24,29,41–43. Human in vivo examples of time-dependent diffusion observations include various tumor types44,45 
and the healthy and ischemic human brain46,47. Our approach could eliminate ambiguities when combined effects 
of various degrees of microscopic anisotropy and time-dependent diffusion may interfere for instance in different 
types of tumor tissue. Tuning of the frequency profiles in MDE allows for a clean separation of these effects and 
provides additional independent microstructural information.

In this work we demonstrated an MDE application with data driven specificity related to size and shape of 
microstructures. Our method addresses the limitation of conventional dMRI techniques, which are highly sensi-
tive but not adequately specific since information about size and anisotropy is entangled, yielding indistinguish-
able signal attenuation signatures. We show how more specific microstructural information can be retrieved if, 
in addition to varying the encoding b-tensor shape, also the sensitivity to time-dependent diffusion is varied 
within the MDE framework. Our framework thus allows relating apparent anisotropic diffusivities to structural 
length-scales.

Frequency-domain analysis provides an intuitive understanding of how MDE waveforms encode time-dependent 
 diffusion. Based on this, we suggest an augmented MDE protocol with spectrally modulated gradient wave-
forms. Spectral tuning ensures that the effects of time-dependent diffusion are kept constant while varying the 
encoding b-tensor shape, which is key for accurate assessment of anisotropy in heterogeneous anisotropic porous 
media such as biological tissues. Most importantly, spectrally modulated MDE provides an additional inde-
pendent encoding dimension, which allows sorting microstructures according to the degree of anisotropy and 
time-dependent diffusion.

Our proof of concept experiment on phantoms featuring distinctly different microstructures illustrates the 
problem we have addressed and demonstrates the potential of our method. The attenuation curves for the detuned 
directional encoding, which alone resembles a conventional dMRI experiment, shows vaguely multi-exponential 
signal attenuations in all examples. Inferring underlying microstructure in those materials would require multiple 
severe a priori model assumptions. The three measurements with different b-tensor shapes and encoding power 
spectra but the same diffusion weighting b-value can clearly separate the four phantoms featuring microstruc-
tures with different size and anisotropy. Phantom data supported by simulations exemplify the clean measure-
ment dimensions. Time-dependent but isotropic diffusion is identified by a distinctly different signal for the 

Figure 4. Signals calculated from the analytical description (lines) and Monte Carlo simulations (markers) for 
the system with impermeable spheres embedded in a compartment with free diffusion (left) and for the system 
with uniformly oriented impermeable infinite cylinders (right). The signal vs. b curves were calculated for the 
two systems with restriction radius R = 2.5 µm and for the encoding time τ = 23 ms. The same τ was used in our 
experiments (Fig. 1) yielding results shown in Figs 2C and 3C.
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detuned encoding, while the signals for the tuned and isotropic encoding are identical (yeast data in Fig. 2 and 
spheres in Fig. 4). In contrast, anisotropic diffusion in absence of time-dependent diffusion effects is identified by 
a distinctly different signal for the isotropic encoding, while both tuned and detuned directional encodings yield 
identical signals in this case (liquid crystals in Fig. 2 and thin tubes corresponding to long relative encoding times 
in Fig. 5, see also Supplementary Information).

The detuned directional encoding waveform used in our experiments resembles encoding with two short 
gradient pulses, where the effective diffusion time is approximately equal to the encoding time τ. In the special 
case of pulsed field gradient encoding, the relation between apparent diffusivity and restriction size is well 
known48–50. Sensitivity to restriction size, which to the first order depends on apparent diffusivity, can be inferred 
also for arbitrary encoding waveforms based on the spectral analysis. As we show in Fig. 5 (Supplementary 
Information), maximum sensitivity occurs when the characteristic displacement of freely diffusing molecules 
during the encoding time, τD0 , approximately matches restriction size R. In this regime, differences between the 
signal attenuations for the tuned and detuned encodings are expected to be maximal. Our analytical and simu-
lated results (Supplementary Information) can thus be used to guide interpretation of our experimental 
observations.

Neuronal and glial cell bodies are typically in the order of 3–10 µm in diameter, which is within the sen-
sitivity range of our encoding parameters (see Supplementary Information). Most axons, dendrites and other 
cellular structures are below 1 µm but with a broad size distribution51. The time-dependent diffusion in white 
matter could occur perpendicular to axons due to the restrictions of axonal membranes with radii above several 
micrometers or due to extracellular space featuring structural heterogeneities over length scales of 10–100 µm52. 
Time-dependent diffusion may also be caused by intra-axonal varicosities acting as polydisperse semipermea-
ble barriers spaced along axons in the range of 5–10 µm or due to axonal undulations47,53. The observed effect 
of time-dependent diffusion in regions with densely packed cell bodies, e.g. in the cerebellar granular layer 
(“size” contrast in Fig. 3C), is well known from earlier post mortem studies using oscillating gradient spin echo 
techniques applying encoding power in a similar range of frequencies around 100 Hz and is validated with his-
tology29,54. The intermediate time-dependent diffusion contrast observed in the primary visual cortex (V1 in. 
Fig. 3C) is consistent with the sharp increase of neuronal cell body density by a factor of 2–3, which is known to 
exist in this region of gray matter55,56. The larger anisotropy observed in white matter compared to gray matter 
could be attributed to a larger fiber density or to a slower exchange of water between the extra- and intracellular 
spaces in myelinated axons compared to dendrites57.

In MDE, different encoding axes may have different encoding power spectra, which means that in the pres-
ence of anisotropic time-dependent diffusion even a spherical encoding b-tensor, i.e. isotropic encoding, does 
not yield orientationally invariant signal attenuation37. In analogy to the anisotropy of the encoding b-tensor, 
MDE waveforms possess an additional property of relevance that we call spectral anisotropy. Varying spectral 
anisotropy may provide yet another valuable independent dimension in MDE, which is exclusively sensitive to 
time-dependence in anisotropic compartments58. For an isotropic encoding under powder average conditions, 
as applied in this paper, the average power spectrum needs to be considered. To achieve proper spectral tuning 
between directional and isotropic encodings, one should ideally find a rotation of the isotropic encoding axes, 
which yields identical power spectra along the orthogonal encoding axes matching the average power spectrum. 
This may not be attainable exactly; however, as we demonstrated, the differences between the power spectra along 
the orthogonal axes of our q-MAS implementation are sufficiently small that an efficient tuning between the 
isotropic and directional encoding can be achieved. The effect of spectral anisotropy in our isotropic encoding is 
readily observed based on theoretical predictions and Monte Carlo simulations (highlighted region in Fig. 5D of 
Supplementary Information). However, this effect is negligible in comparison to the signal differences between 
isotropic and tuned/detuned directional encoding.

A conceptually simpler approach to study time-dependent and anisotropic diffusion could be based on apply-
ing single or repeated blocks of short gradient pulses or oscillating gradients with alternating gradient directions 
and well-defined diffusion times59–61. However, such experiments may not always be feasible, in particular in 
practical imaging settings. Gradient hardware performance in terms of maximum gradient strength, slew rate and 
duty cycle as well as the relaxation properties of the sample limit the experimentally accessible parameter space. 
Using smoother gradient waveforms makes it possible to access MDE parameters within a measurable range31. In 
our case, neither the encoding time nor a single encoding frequency can adequately characterize gradient wave-
forms. It is rather a distribution in frequency content of the entire encoding that provides a useful link between 
experiments and observations62.

Previous 2D experiments have probed multi-Gaussian time-independent diffusion by dense sampling of 
points spanning a full range of axisymmetric b-tensors20,39 or with additional dimensions sampling directions63. 
Dense 2D sampling schemes have also been done for time-dependent diffusion with correlations between diffu-
sivity sampled at two different diffusion times11. In contrast, sparse sampling of a limited but most informative 
multidimensional data is a good strategy when time and hardware limitations need to be considered. Our exper-
iments confirm that very rich information can be obtained when acquisition dimensions are carefully designed 
despite our minimal sampling protocol with just three data points. Along the same idea, we have previously 
proposed sparse sampling schemes to isolate local self-diffusion from exchange and incoherent flow effects64,65. 
Future extended dense sampling protocols could control time-dependent diffusion effects by keeping the tuning 
constant when varying tensor shapes or probe time-dependent diffusion by varying encoding power spectrum 
along an independent third encoding dimension. A trivial way of varying the encoding power spectrum in prac-
tice is achieved by simply varying the encoding time, as done in our simulations (Supplementary Information 
Fig. 5). The echo-time should in such experiments be constant or varied independently to control for or explore 
entangled relaxation effects66,67. Finally, in our analysis we rely on the Gaussian approximation of the signal 
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cumulant expansion, i.e. assuming that the signal attenuation from each compartment is mono-exponential. This 
assumption is reasonable at low values of diffusion weighting34. In our Monte Carlo simulation, we found that 
deviations from mono-exponential decay in an individual cylindrical restriction prior to powder averaging, indi-
cating the breakdown of the Gaussian approximation, were less than 1% for the isotropic encoding in the range of 
b-values and encoding times used in this study.

As Douglas Adams notoriously illustrated by 42 as the “Answer to the Ultimate Question of Life, the Universe, 
and Everything”68, the value of the ultimate answer intrinsically depends on the value of the ultimate question. 
In line with this parable, we advocate diffusion encoding designs, which can ease the requirements for model 
assumptions and fitting involved in explaining experimental observations. As our results demonstrate, we can 
facilitate interpretations by providing more direct contrasts specifically sensitive to time-dependent anisotropic 
diffusion in heterogeneous media. Importantly, considering the magnitude of our contrasts in the raw signal 
is crucial before seeking too elaborate answers through modeling and potential over-fitting. Our experimen-
tal results, supported by theoretical predictions and simulations, clearly demonstrate the ability of multidimen-
sional diffusion encoding to directly resolve qualitatively different microstructural properties. Future applications 
of our method include differentiation of heterogeneous tumor tissue and other diagnostics where prompt and 
non-invasive assessments of changes in cell morphology are essential.

Materials and Methods
Model systems and tissue preparation. The phantoms were prepared as follows. The aqueous polymer 
solution was prepared with 50 wt% polyethylene glycol with molecular weights between 1305 and 1595 g/mol 
(Sigma Aldrich, MO, United States) dissolved in H2O and filled in a 10 mm glass tube. Fresh baker’s yeast was 
mixed with water in 1/1 weight ratio. The cell suspension was left overnight to sediment. Residual water was 
removed, and the yeast sediment was transferred to a 10 mm glass tube and centrifuged at 2500 g for 10 minutes 
to produce a solid sediment of yeast cells without CO2 bubbles. The top water layer was again removed, and 
the tube was sealed. The polydomain lyotropic liquid crystals of the reversed hexagonal type were prepared as 
previously described and filled in two 10 mm glass tubes20. A system with larger diameter tubular restrictions 
was realized with cyclohexane filled microfibers with a mean diameter of 13.4 µm36. An excised brain from a 
3.5 year old vervet monkey (Chlorocebus sabeus) was prepared for ex vivo imaging38. The post mortem monkey 
brain specimen was obtained from the Behavioral Science Foundation, St. Kitts and the live animal was socially 
housed in enriched environments. All procedures for handling and sacrificing the live animal prior to our post 
mortem experiment were reviewed and approved by the Institutional Review Board of the Behavioral Science 
Foundation acting under the auspices of the Canadian Council on Animal Care. No experimental procedures 
were performed on the live animal as a part of this study. The whole brain was submerged in minimal amount 
of phosphate buffer solution (PBS) in a plastic bag. Care was taken to release air bubbles trapped in the tissue 
before the bag was sealed.

MRI. Data were acquired on a 4.7 T preclinical MRI system with a 600 mT/m gradient set (Agilent 
Technologies, Santa Clara, CA, USA). The tubes with the phantoms where bundled together and placed horizon-
tally in a 30 mm quadrature transmit/receive coil (Rapid MR International, Columbus, OH, USA). Care was taken 
to ensure stable temperature at different gradient loads. A small animal monitoring system was used to stabilize 
the temperature during different gradient loads. A heated air flow through the scanner bore was controlled by the 
temperature measurement from a probe attached to the inner housing of the coil just outside the imaging field 
of view (SA Instruments Inc., Stony Brooke, NY, USA). The temperature was logged and kept at 23.0 ± 0.2 °C 
throughout the whole experiment. The diffusion protocol was run for 2 hours prior to data acquisition to achieve 
a stable working temperature and to minimize short-term instabilities due to physical handling38.

Maximum gradient strength of 500 mT/m was applied using an optimized isotropic encoding31. The spec-
trally tuned directional encoding provided by the x-channel of the isotropic encoding scheme was scaled by 3  
to match the same b-value. A spectrally detuned directional encoding using the gradient waveform with 
dephasing corresponding to the dephasing magnitude of the isotropic encoding was applied as in previous 
studies22. Since the gradient waveforms were played out symmetrically around the refocusing pulse, no detri-
mental effects of concomitant fields were expected69. Experiments were repeated with 15 uniformly distributed 
orientations of the gradient axes and with 12 b-values logarithmically spaced between 240 and 4800 s/mm2. 
The gradient waveforms with encoding time τ = 23 ms were performed before and after the refocusing pulse in 
a spin-echo sequence. Images were acquired with a 2D single line readout using an echo time of 68 ms and a 
repetition time of 2500 ms.

All imaging parameters were identical for the phantoms and for the post mortem monkey brain experiment 
except for the imaging matrix and resolution. In the phantom experiment, the imaging matrix was 128 × 128 × 3 
and the voxel size 0.375 × 0.375 × 3 mm3. A single image without diffusion encoding with a matrix size of 
256 × 256 × 3 and voxel size of 0.18 × 0.18 × 3 mm3 was acquired and used for visualization in Fig. 2. For the 
post mortem brain experiment, the imaging matrix was 128 × 256 × 5 (number of phase encoding steps was kept 
constant) with a voxel size of 0.25 × 0.25 × 2 mm3. Total imaging time was 48 hours for each experiment.

Experimental data analysis. Reconstructed images were exported from the scanner and analyzed using 
in house code written in Matlab (Mathworks Inc., Navick, MA, USA). Signal intensities were powder averaged 
across measurements with the same b-tensor shape and b-value. The signal attenuation was fitted to 3rd order in b 
using nonlinear least squares fit to the signals with the b = 0 signal as an additional free parameter to plot the sig-
nal vs. b-value curves in Figs 2 and 3. Regions of interest (ROIs) where manually drawn on the images to extract 
the signals from the different phantoms and from the different tissue types in the monkey brain. Subtraction maps 
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shown in Fig. 3C were calculated after normalization to the estimated unweighted image and smoothed with an 
isotropic Gaussian kernel with 5 mm full width at half maximum.

Analytical calculations. Under Gaussian approximation of the signal cumulant expansion34, the effects of 
time-dependent diffusion in arbitrary diffusion encoding waveforms can be analyzed in frequency domain27,29. 
Ignoring relaxation effects, normalized signal attenuation is given by, E = exp(−β) where the attenuation factor β 
is given by the diffusion spectra D(ω) as27

∫β
π

ω ω ω ω= − .
−∞

∞
dF D F

1

2
( ) ( ) ( )

(1)
T

Here F(ω) is the spectrum of the dephasing vector F(t),

∫ω =
τ

ω−t e dtF F( ) ( ) ,
(2)

i t

0

given by the effective gradient waveform g(t) as

∫γ= ′ ′t t dtF g( ) ( ) ,
(3)

t

0

where γ is the gyromagnetic ratio. The dephasing spectrum along direction n̂ is given by ω ω= ˆ
ˆ

F F n( ) ( )n  and the 
corresponding power spectrum is given by ω

ˆ
F ( )n

2. We use the term encoding power spectrum as a synonym for 
the dephasing power spectrum. D(ω) can be expressed with a rotation matrix R as D(ω) = Rλ(ω)R−1, where λ(ω) 
is the diagonal matrix containing diffusion spectra λi(ω) along the restriction principal axes. Analytical expres-
sions for the λi(ω) in case of restricted diffusion in cylindrical, planar and spherical geometries can be found in 
the literature27. The total diffusion encoding power, more commonly known as the b-value, is given by the trace 
of the b-tensor,

∫ ∫ω ω ω= ⊗ − = ⊗
−∞

∞ ∞
d t t dtb F F F F( ) ( ) ( ) ( ) ,

(4)0

where ⊗ denotes outer product and the equivalence between the frequency and time domain formulations is a 
consequence of Parseval’s theorem. The apparent diffusion coefficient is proportional to the initial slope of the 
1n(E) vs b curve and is defined as ADC = β b/ .

The dephasing spectra ωF( ) were calculated with the FFT algorithm (Mathworks Inc., Navick, MA, USA) 
using a time step of 1 µs and 125·104 points with varying amount of zero padding depending on the encoding time 
τ . Calculations were performed for τ  between 50 µs and 625 ms, the intrinsic diffusivity D0 = 1·10−9 m2/s and 
spherical and cylindrical compartments of various sizes (R = 1, 2.5, 5, 10 µm). Results only depend on the relative 
encoding time τD R/0  (support data not shown). Signal attenuation, i.e. signal vs. b curves for the case of 
τ = 23 ms and R = 2.5 µm are shown in Fig. 4, and the corresponding mean ADC values and their variances are 
shown in Fig. 5 (Supplementary Information) for a range of relative encoding times.

ADC = β/b values were computed for each out of 1000 uniformly distributed orientations according to Eq. 1. 
Spherical restrictions were considered in a mixture with a Gaussian diffusion compartment with diffusivity 
D0 contributing 50% of the signal. The mean ADC value over different orientations, 〈ADC〉, and its variance, 
VD = 〈[ADC − 〈ADC〉]2〉, were computed over a wide range of relative encoding times. 〈ADC〉 and VD respec-
tively reflect the initial slope and curvature of the signal vs. b curves, given by exp[−〈ADC〉b + VDb2/2] (see 
Supplementary Information Fig. 5A,C).

Monte carlo simulations. Monte Carlo simulations were performed as a cross-validation of the frequency 
domain analysis using an algorithm written in Matlab (Mathworks Inc., Navick, MA, USA). The simulation was 
performed with spherical and cylindrical restrictions with radii of 2.5 µm and gradient waveforms identical to 
those used in the frequency domain analysis. Gradient amplitudes were adjusted to achieve b-values in the range 
0–5000 s/mm2 for all encoding times. The intrinsic diffusivity was set to D0 = 1·10−9 m2/s. The random walk pro-
cess was performed with 5000 time steps and 105 diffusing particles. Restrictions were modeled by rejecting steps 
crossing barriers70. The simulation was repeated with the symmetry axis of the substrate rotated in 60 uniformly 
distributed directions relative to the gradient frame of reference. The ADCs for each gradient waveform and ori-
entation were computed from the exponential decay between two lowest b-values (0 and 100 s/mm2). The 〈ADC〉 
and VD values shown in Fig. 5A,B (Supplementary Information) were computed as for the analytical results.

Data Availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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