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ABSTRACT 

To the extent possible, a discretized system should 
satisfy the same conservation laws as the physical 
system. We consider the conservation properties of 
a staggered-grid Lagrange formulation of the 
hydrodynamics equations (SGH) which is an 
extension of a 1D scheme due to von Neumann and 
Richtmyer (VNR). The term staggered refers to 
spatial centering in which position, velocity, and 
kinetic energy are centered at nodes, while density, 
pressure, and internal energy are at cell centers. 
Traditional SGH formulations consider mass, 
volume, and momentum conservation, but tend to 
ignore conservation of total energy, conservation of 
angular momentum, and requirements for 
thermodynamic reversibility. We show that, once 
the mass and momentum discretizations have been 
specified, discretization for other quantities are 
dictated by the conservation laws and cannot be 
independently defined. 

Our spatial discretization method employs afinite 
volume procedure that replaces differential operators 
with surface integrals. The method is appropriate 
for multidimensional formulations (lD, 2D, 30) on 
unstructured grids formed from polygonal (2D) or 
polyhedral (3D) cells. Conservation equations can 
then be expressed in conservation form in which 
conserved currents are exchanged between control 
volumes. In addition to the surface integrals, the 
conservation equations include source terms derived 
from physical sources or geometrical considerations. 

In Cartesian geometry, mass and momentum are 
conserved identically. Discussion of volume 
conservation will be temporarily deferred. We show 
that the momentum equation leads to a form- 
preserving definition for kinetic energy and to an 
exactly conservative evolution equation for internal 
energy. Similarly, we derive a form-preserving 
definition and corresponding conservation equation 
for a zone-centered angular momentum. 

In the absence of energy source terms or energy 
dissipation (such as that produced by artificial 

' 

viscosity), difference equations should give rise to no 
entropy change. That is, the numerical system 
should be able to reversibly transfer energy back and 
forth between kinetic and internal reservoirs. 
Traditional SGH formulations simply postulate an 
evolution equation for internal energy. Although ' 

this might seem sufficient to guarantee reversibility, 
such is not actually the case because such 
formulations do not identically conserve energy. We 
show, however, that our formulation can be made 
reversible if certain constraints are' observed. The 
first of these requires that volume be defined in 
terms of a conservation equation instead of the usual 
direct function of coordinates. The second constraint 
forbids the use of higher order functional 
representations for either velocity or stress. That is, 
stress must be spatially constant within the cell, and 
velocity, within its control volume. Third, velocity 
or acceleration interpolation Cannot be used. 

In addition to the Cartesian form, we present a 
formulation in 2D axisymmetric geometry, as well as 
formulations in 1D. In 2D axisymmetric geometry, 
rotational symmetry of the difference equations must 
be preserved if spurious on-axis behavior is to be 
avoided. Generally, rotational symmetry is achieved ' 

by replacing the finite volume surface integrals with 
line integrals. This also causes a deviation from 
strict conservation form by introducing geometrical 
terms that appear functionally as sources. 

Finally, we discuss artificial viscosity which is 
used for two purposes: first to introduce the proper 
entropy change due to shocks and second to reduce 
spurious oscillations. We also present a 3D 
generalization of a 2D spurious vorticity damping 
model that removes both hourglass and chevron 
instabilities. 
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1. INTRODUCTION 

This paper discusses a Lagrangian hydrodynamics 
formulation that is multidimensional and is suitable 

for arbitrarily connected polygonal or polyhedral 

zones. In this section, we discuss why such a method 
is of interest, review conservation issues, and 

describe OUT notation. The body of the paper 

presents a multidimensional Cartesian formulation. 

Formulations in curvilinear geometry are described 

in b e  appendices along with several example 

CalCulatiOnS. 

1.1 THE FREE-LAGRANGE 
METHOD 

Problems involving extreme mesh distortions 

have been traditionally modeled using Eulerian 

techniques or by Arbitrary Lagrange Euler (ALE) 
techniques.' The free-Lagrange method (FL) offers 

an alternative that has significant advantages and has 

been used successfully in 2D for more than 20 years. 

The term free-Lagrange was first introduced by 

W.P. Crowle? about 1968, although the earliest 
work in the area appears to have been done by Pasta 

and Uam3 in 1959. Other early work in the US was 

also done by J. Boris and M fitts4 and in the USSR 

by D'yachenko, Glagoleva, Sofronov, and others? 

The FL method is characterized by: (a) a 
Lagrangian hydrodynamics formulation, i.e., mass 

moves with the mesh thereby minimizing advection 

error; (b) the use of unstructured grids that permits 

zoning to be placed where needed with minimal 

regard to special connectivity rules; and (c) the 

ability to reconfigure the mesh depending upon the 

flow. 

Several forms of FL have evolved. The most 

common is limited to trianglehetrahedral zoning and 

centers all variables at the mesh points (see for 

example Trease'). A second form7 employs a 
triangular/tetrahedral dual mesh constructed by 

connecting adjacent zone centers. The form 

described here' employs staggered-grid 

hydrodynamics (SGH), a generalization of the 1D 

von Neumann and Richtmyer (VNR)' scheme known 

to produce secondsrder accuracy in the discretized 
momentum equation. The term staggered refers to 

spatial centering in which position, velocity, and 

kinetic energy are centered at nodes, while density, 

pressure, and internal energy are within cells. 

Generally the SGH discretization is more accurate 

than tetrahedral methods, especially at interfaces. 

It is well known that triangular elements are 

relatively stiff" for continuum mechanics and 
possibly fluid mechanics applications. Because of 

this, the 2D SGH form was extended by Crowley8 
from triangular zones to mixtures of triangles and 

quadrilaterals. This permitted a strategy of 
calculating with quadrilateral zones until some 

deformation criteria is reached, splitting 
quadrilaterals into triangles where necessary, and 

later reforming quadrilaterals. One of the eventual 

goals of the present work is to extend these notions 

into 3D, resulting in polyhedral not simply 

tetrahedral zones. 

A common approach to discretizing 3D space is to 

extend the set of permitted elements beyond 

tetrahedra by adding brick (hexahedra), prism, and 

pyramid elements. Finite element prescriptions exist 

for this particular set of elements but not for general 

polyhedra. This is not a very satisfactory strategy 

for a FL method because of the need for 

reconnection. Consider, for example, two adjacent 

tetrahedra septahedron 

Figure 1. Creation of a septahedron by 
decomposing one of two adjacent hexahedra into 
tetrahedra. 
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brick elements sharing a common quadrilateral face. 

If one element is tetrahedralized as shown in Figure 

1, the joining face must be split into 2 triangles, 

causing the remaining element to become a 

septahedron which is not an allowed member of the 

set. 

Consequently, we have chosen an alternative 

approach that focuses on developing differencing 

techniques suitable for arbitrary polygons in 2D and 

polyhedra in 3D. In this way, the numerical 

differencing is unaffected by the presence of the 

septahedron in the example. The only spatial 

discretization paradigm that seems suited to this 
situation is thefinite volume method that replaces 

differential operators with surface integrals. It is 

appropriate for multidimensional formulations on 

unstructured grids formed from polygonal (2D) or 

polyhedral (3D) cells. In particular we excluded 
from consideration (1) the finite element method 

which is limited to a relatively small set of 

polyhedra, and (2) finite difference schemes such as 

that of Schulz" because they are restricted to grids 

which are logically rectangular. We have recently 

developed data structures and discretization templates 

that accommodate arbitrary polygonal or polyhedral 

zoning and are well suited to constructing the finite 

volume integrals.12 

1.2 CONSERVATION 

The focus of this paper is the investigation of the 

conservation properties of an SGH formulation of 

the hydrodynamics equations using a finite volume 

spatial discretization. To the extent possible, a 

discretized system should satisfy the same 

conservation laws as the physical system and should 
employ form-preserving analogs of the physical 

variables. (A numerid quantity is said to beform- 

preserving when its functional dependence matches 

that of the physical variable.) Traditional SGH 

formulations are explicitly constructed to provide 

mass, volume, and momentum conservation, but tend 

to only approximate conservation of energy, ignore 

conservation of angular momentum, and disregard 

requirements for thermodynamic reversibility. As a 

consequence of the finite volume discretization, 
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Fi gure 2. Side template for a rectangular zone. gure 2. Side template for a rectangular zone. 

conservation equations can be expressed in 
'conservation form in which conserved currents are 

exchanged between control volumes. 

In Cartesian geometry, mass and momentum are 

conserved identically. We have previously shown 

that the momentum equation leads to an exactly 

conservative evolution equation for internal energyI3 

and to a corresponding conservation equation for a 

zone-centered angular mornentum,l4 We now show . 
that our formulation can be made thermodynamically 

reversible if certain constraints are observed. 

In 2D axisymmetric geometry, we present a form 

of the difference equations that achieves rotational 

symmetry by replacing the finite volume surface 

integrals with line integrals for both momentum and 
strain. The resulting method is symmetrical, 

employs an energy-conserving formulation, and 
avoids the unintended introduction of entropy by the 

difference equations. However, like other 

symmetrical formulations, the conservation equations 

are not in strict Conservation form and errors do 

occur near the axis. 

A recurring theme will be that, once the mass and 

momentum discretizations have been specified, 

there are very few independent assumptions to be 

made. 

1.3 NOTATION AND 
CONVENTIONS 

For ease of visualization, we will present our 
derivations in the context of the 2D case, although 



the results are valid in 1D and 3D. Further, 

although most figures will picture quadrilateral 
zones, the results are valid for arbitrary polygons in 

2D and polyhedra in 3D. 

Spatial template 

For 2D geometry, the zones are divided into 
triangular areas that will be called sides as shown 

(darkened) in Figure 2 for the special case of a 
rectangular zone. The sides are significant because 

they are the templates that provide the connectivity 
between points, zones, and so forth. The templates 

are generalizations of those described by Cooper?' 

Each side is divided into two triangular areas called 
corners and labeled i. 

The analogous 3D side12 is shown in Figure 3. 

To aid visualization, we have pictured a simple brick 

zone, but again the scheme works for any 

polyhedron. Although it may appear that we have 
introduced very fine detail into the differencing 

templates, such geometrical detail is necessary 

because the polyhedral faces are generally non- 

planar. Each side is further divided into two 
tetrahedral corner volumes labeled i. 

Figures 2 and 3 also show the surface area vectors 
Si and Ti that are fundamental in defining finite 

volume surface integrals. 

n n+U2 n+l 

0 + 1 
I I 

I 

u; x; v l  Start of cycle 
PXEl 0: 

Partial X i  qr: 
advance v,' Pz' 

coordinate 

Acceleration F: ut Final state 

SV: JT W: u:, x:, 

v; Pi 
E: a: 

Figure 4. Time centering of variables. 

Figure 3. Side template for a hexahedral zone. Si is 
normal to plane efzi and Ti is normal to plane fepi. 

Indices are used to point to memory locations in 

which data, such as physical coordinates, might be 
stored. The p index refers to points that defrne the 

mesh. To form numerical integrals, other auxiliary 
points are also needed corresponding to zone (2). 

edge (e), and face (f) centers. The coordinates of 
these points are derived from the points p ;  A 

surprising result of this work will be that the 

physical location of the point coordinates are 
relatively unimportant to the differencing, while the 
differencing is sensitive to the e and f points. 

For each comer index i there is an implied set of 

indices {p, z,  e,& s}, and for each side index s there 

is an implied set of primary indices {p l ,p2 ,  z,jJ and 

an auxiliary set {i l ,  a, 22, e}. 

Time Centering 

Unlike the original VNR scheme which was also 

temporally staggered, our method uses a temporal 
centering, termed even-time, in which most final- 

state variables are centered at the N 1  timestep. The 

simultaneous advancement of both position and 

internal energy requires a logically implicit 

calculation that is approximated using a predictor- 

corrector procedure to calculate a half-timestep 

acceleration used for advancing velocity. 

The time-centering of the variables is shown in 

Figure 4 for purposes of establishing notation. The 

exact definitions of the variables will be discussed 
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later. We use the superscript notation { -, 0, +, 1 1 to 

indicate time centering of (n-1/2, n, ni lD,  and n i l )  
respectively. Subscripts refer to spatial centering. 

Capitalized quantities are extensive while lower cased 

quantities are intensive or specific. 

2. CARTESIAN GEOMETRY 

This section presents a multidimensional 

hydrodynamics formulation in Cartesian geometry. 

Curvilinear formulations are given in Appendix A. 

Rather than simply postulating the entire formulation 

at the outset, we will begin with mhimal initiai 

postulates, and add to them as more are required. 

2.1 MASS CONSERVATION 

Since we consider only a Lagrangian formulation, 

we postulate that the mass in each comer volume is 

constant. 

Mi = Constant 

z 
M , = ~ M ~  

i 

Q 

i 

M, = z M i  

2.1.6a 

where 2, is a unit vector from the zone center to 

the respective point and Ti is a zone surface vector. 

Equal mass weighting also produced satisfactory 
results (nz being the number of comers in the zone). 

'Pi = 1/nz 2.1.6b 

True areaholume weighting produced the poorest 

results. 
2.1.1 

'Pi = vyv,oo 

2.1.2 

2.1.3 

where the notation and zT refer to sums over 
comers i surrounding respectively a point p or a 

zone z. 

In practice, the zone mass is first computed from 

the specified initial density p: and volume V,", 

0 0 0 0  
Mz = Pz vz 2.1.4 

and the resulting mass is partitioned to Mi based 
upon a mass fraction 'pi 

2.1.5 

2.1.6~ 

2.2 MOMENTUM CONSERVATION 

The fractions cpi can be defined in several ways. 

Our experience to date has been that best numerical 

results are obtained from a surface area weighting , 
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Forces 

As shown in Figure 5, each point p is surrounded 

by surfaces that define the momentum control 

volume.  Forces result from reversible and 
irreversible stress fields d and z that exist within the 

zone or side. The stress on each element of surface 
Si of the momentum control volume results in forces 

Ri due to reversible fields and Q i  due to the 

irreversible fields. We will show in a later section 
that the reversible stress fields must be centered at 

the zone, but will not at this point restrict the 
notation to reflect this. Sign conventions are such 

that the pressure is given by (summing over repeated 
indices) 

P = -05/3 2.2.1 

Since stress at + depends upon energy while energy 

is incremented from 0 to +by the P6v work, the two 
must be solved for simultaneously. This q n  be done 



control volume 

Elgure 5. Zone and momentum control volumes, 
showing surface vectors. 

in many ways, and we simply note that we use a 

predictorcorrector iteration. 

Then let us assume that the stresses are known, 
and we can calculate forces Fi time centered at n+1/2 

on the surfaces Si 

q = R: +Q; 2.2.2 

so that the total force on point p is 

2.2.3 

2.2.4 

Conservation requires that the forces sum to zero 

on the boundary of the momentum control volume 
(Newton’s third law); that is, 

Sf =-si, + 

2.25 

2.2.6 

the finite volume method automatically accomplishes 

this providing 

2.2.7 

Acceleration and Velocity 

The control volume plays the role of an 

accounting device in which the conserved momentum 
of the system can alwaysbe accumulated. The force 

at -F imparts an acceleration to the momentum 

control volume, presumably to the center of mass. 
Later, we will show that we must take this 

acceleration to be constant throughout the volume, 

although we do not explicitly make this assumption at 
this point. The acceleration is calculated from 

M,U; = F; 2.2.8 

Velocity is integrated using a central difference 

scheme 

u; = u ; + q t +  2.2.9 

The value at + is not arbitrary, but is chosen for 

consistency with kinetic energy equations to be 

described below. 

u; +(u; +u;) 2.2.10 

The coordinate integration will also be described 

later. 

2.3 ENERGY 

Kinetic Energy 

Trulio and TriggerI6 pointed out in 1%1 that the 

VNR method was not energy-conserving and 

proposed conservative methods for the one- 
dimensional equations. Their 1D formulation 

retained the spatial staggering of VNR but 

relinquished the temporal staggering. Burton13 

derived a temporally staggered form for 

unstructured multidimensional grids. The following 

derivation is for an even-time scheme. By 
considering the momentum equations in the half 

intervals [O, +I and [+, 13 and dotting them into the 

respective velocities at 0 and 1, the evolution 

equation for kinetic energy is derived 

at the surface. 
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boundary condition. Similarly, the node is a system 

having only kinetic energy. Thus, the work done by 

a zone on the surrounding nodes is simply the sum 
of the exiting energy currents about the zone 2.3.1 

P 

i 

=XJP z 

WC=ZJ: 
i 

2.3.6 

2.3.2 

Most SGH hydrodynamics formulations simply 

assert that the workis P6V where 6V is defined to be 

a time difference of volumes that are functions of 
coordinates V.=V(xp). Such fomulations, which we 

will denote as PDV, do not exactly conserve energy. 

As will be discussed shortly, our work expression, 

which does conserve energy, does not reduce to this 

particular definition. Implications of this will be 
discussed below. 

P 

i 

= c, JT1 

where we have identified the following form 

preserving definitions of kinetic energy 

2.3.3 

The latter corresponds to a definition originally 

made by Trulio and Trigger. We also identified 

energy currents J between the zone and the point 
arising from forces on the surface Si 

Energy is exchanged through the boundary via 

heat transfer 6H and work W. The zonal energy 

balance is then 

2.3.7 
2.3.4 

Then in the full interval [O, 13, the kinetic energy of 

a point changes by Entropy and Reversibility 

K', -KO, = (K; - K:) + ( ~ l p  - K;) 

=qF; *(u: +I$) 

The work can be resolved into parts W, resulting 

from reversible forces R and Wq due to irreversible 

viscous or plastic forces Q. The energy balance for 

the zone can then be written 
2.3.5 

=gJ: 
i %=T6S-Wr 

= (m - w, ) - w, 2.33 
where 

J; = ~ p '  + J;' 
= St'F,' u; 

We require that all viscous or plasticity models be 
dissipative, le., 

2.3.9 
Work and InternaI Energy 

so that the second law of thermodynamics is satisfed 
The discrete SGH system has only two energy 

reservoirs, internal in the zone and kinetic at the 
node. The zone is viewed as a system without 

explicitly modeled kinetic energy but with a velocity 

T 6 s ~ m - W ~  26H 2.3.10 
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In the absence of heating or viscous forces, 

reversibility implies that energy can be converted 
between kinetic and internal reservoirs via the 
momentum equation without loss. Because energy is 

not exactly conserved in PDV formulations, they 

cannot s a w  the reversibility condition. However, 

our numerical expression for the change in internal 

energy seems to guarantee that no entropy is 

produced under these conditions. That is, the energy 

change for the zone involves only reversible fields 

and is exactly given by 

= -w* 
2.3.11 

so that if we were to explicitly integrate a numerical 

entropy 5 ,  it would properly not change under these 

conditions, i.e., 

2.3.12 
T& = 6E+ W, = 0 

However, this is not the complete picture because 

such a numerical entropy is not explicitly used except 

perhaps as a calculational diagnostic. That is, this 

numerical entropy is fictitious, and the true entropy 

is that which comes from the equation of state 

@OS>. 

The entropy S is not an independently integrable 

quantity, but is rather a dependent variable of the 

EOS which has specific volume and energy as 

independent variables. Therefore, the actual entropy 

change comes from an iterative calculation of the 

form 

is= EOS(E~,V~)-SO 
2.3.13 

= EOS(EO + m, vo + m) - so 

Because this is not an algebraically exact calculation, 

there will always be accuracy issues associated with 
large steps or incomplete convergence. We are not 

concerned with this type of error which is 

controllable, but rather with a more serious potential 

error associated with the form of 6E. 

For simplicity consider an adiabatic gas system. 

For points sufficiently near each other, the EOS was 

explicitly constructed to satisfy 6E = -PSV along an 
adiabat. In the traditional PDV formulation, 6E is 

simply set to -P6V, so that 6V and 6E are consistent 

with the EOS, although not conservative. 

However, in our formulation, 6E is fured by the 

energy consemirig formulation, and we have not as 
yet defined 6V. If we make no attempt to guarantee 

exact consistency of the two, our numerical model 

will generally yield 6E#-P6V even though no 
viscous forces are present. Failure of the 

differencing scheme to satisfy such a consistency 

relationship will appear as unintended entropy 
errors (deviations from the adiabat). The solution, 

of course, is to define a consistent 6V which is done 

in a later section. 

Constraint on the stress field 

It follows from the preceding discussion that the 

form of the strain or volume calculation cannot be 
arbitrarily chosen, but is in fact dictated by the 

initial discretization chosen for the momentum 

equation. That is, it must be defined such that the 

following is true for a fluid 

z 

w,'=-Gt+~Pi+s; ou; 
1 2.3.14 

+P,'6V,' 

The first step in establishing the desired relationship 
is to factor the zonal pressure Pz fiom the sum. This 
can only be done if Pi=PZ. Consequently, extensions 

to SGH with sidecentered stresses such the 

method cannot be exactly reversible. We are then 
constrained to use only a so called constant stress 
element, resulting in 

w: =P: {-&+is: 1 .I$ I 2.3.15 

This particular arqunent does not apply to the 

viscous forces Q which are intended to be dissipative 

and do not need to be factored from the 

corresponding sum. 
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For a solid, the corresponding work equation 

' needtobe 

2.3.16 

where : denotes contraction on both indices, and 

m; = st+v,+ vu 2.3.17 

is a deformation tensor and includes dilitational, 

shear, and rotational components. In the next 

section, we establish that the above correspond to 
reasonable discretizations for 6V and SD; i.e., 

z 

sv,+ =-st+xs: .u; 

m; =-st+zs:u; 

i 

z 2.3.18 

1 

2.4 VOLUME AND STRAIN 

Obviously, we cannot simply postulate that 

V=V(x). Instead, we propose an evolution equation 
for volume in conservation form and will verify that 

it is equivalent to Equation 2.3.18 

sv,+ =St+V,'(V.u) 

2.4.1 

Note that volume is rigorously conserved even 

though it may not be exactly what might be 

calculated directly from the coordinates. This is 

easily shown to reduce to the form required by the 
reversibility constraint. We rely upon the fact that 
the velocity up is constant within the momentum 

control volume and that SI +S2 =-(TI +T2) as 

shown in Figure 6. This is simply a statement of the 
path independence of the integral between el and e2 

providing oZ and up are constant along the path. The 

same result obtains in 3D. As was the case with 

Figure 6. Path independence of the volume integral. 

stress, use of a higher order spatial dependence for 
up would destroy the path independence of the 

integral. In particular, velocity or acceleration 

interpolation cannot be used, such as has been 

suggested to correct for the centersf-mass of the 

momentum control v~iume.18.19 our point is that 

such extensions to SGH are unintentionally 

dissipative, not that they fail to serve useful purposes 
or should not be employed. 

Then we have shown that the volume change can 

be written as in Equation 2.3.18 

z 

6V,+ = -St+cs: . u;: 
1 

and the corresponding deformation equation as 

Another convenient form for these equations is 

sv,' =-St+ts,+ .(u; -u&) 
.l 

m; =-st+gs:(u+, -u&) 
S 

2.4.2 

2.4.3 

2.4.4 

where Sf E S{. This is useful in defining artificial 

viscosity tensors. 



The zone specific volume used in EOS 

calculations is given by 

vz v, =- 
M, 

2.4.5 

2.5 COORDINATES 

After substituting a conservative integral for the 

explicit volume expression, examination of the 
difference equations reveals an extremely significant 

fact. The momentum contained in the control 
volume about a point remains important as the 

primary momentum accounting device, but the 
specific point coordinates xp do not play a role in the 

differencing. What actually matters are the 

coordinates of the edge centers Xe (and face centers 

xf in 3D) that are advanced using a momentum 

conserving average of adjacent point velocities given 

bY 

2.5.1 

with similar expressions at times 0 and 1. In order 
to mechanically form the surface Si vectors, control 

points xz and xp are needed in addition to Xe and xf, 

but mathematically drop out of the integrals. The 

coordinates for the auxiliary points can be directly 

integrated. However, since we use constant mass 

weights, a more economical alternative procedure 

for calculating the auxiliary points is possible. If the 

point velocity is formally integrated 

2.5.2 

= x; +zit+.; 

then the auxiliary coordinates can be found using the 

same weighted averages as in the velocity equations 

with similar expressions for xf and xz. 

Hourglass instability and coordinates 

2.5.3 

It is also well known that SGH suffers from 

spurious modes on the scale of the mesh size because 

of degrees of freedom unconstrained by the 

difference equations. One such mode is the 
hourglass mode shown in Figure 7. By definition, 

an hourglass mode is any mode of deformation that 

does not change the zone volume or strain and 
therefore produces no response from the constitutive 
model. There exist many ad hoc artificial viscosity 

schemes successful in reducing hourglass distortion 
without affecting physical shear modes. The 

smoothing viscosities discussed in a later section are 

effective against instabilities such as hourglassing. 

However, unless we introduce special artificial 

viscosities that are themselves sensitive to 

hourglassing, the only manifestation of the spurious 
mode is through the point coordinates xp. But, as 
we have shown, the specific point Coordinates do not 

play a role in the differencing either. It follows that 

the major consequence of hourglass modes is simply 

that the grid may appear distorted, not that the 

quality of the solution has been compromised. We 
are justified therefore in independently moving the 

points, without adjusting velocity, anywhere 

aesthetics demands. There is not even a re&irement 

that edges formed from pairs of points be straight 

lines. We propose advancing the point using the 

center-of-mass velocity of the surrounding zones 

Figure 7. Typical hourglass instability. 
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Figure 9. Example of chevron instability. 

= x; + s t + q  

2.5.4 

As a practical matter, these results do not 

eliminate from concern other instabilities such as 
chevron modes which occur in fluids because the 

constitutive model does not respond to shear 

deformation. Further, although pure hourglass 

modes do not themselves degrade the solution, they 

are seldom pure. That is, velocity patterns that 

appear in one zone as hourglassing typically show up' 

in an adjacent one as a chevron or other mode. 

2.6 ARTIFICIAL VISCOSITY 

Artificial viscosity serves two principal functions: 

first to attain the correct shock dissipation, and 

second to smooth numerical noise. In this section, 

we consider both functions and also two spatial 

centering of the viscosity tensor, zone-centered and 

side-centered. The requirement that the viscous 
work be dissipative W,S 0 greatly constrains the 

permissible form of artificial viscosity equations. 

Zone-centered viscosity 

Consider the case of a zone-centered viscosity 

tensor. The viscous work equation reduces to 

2.6.1 

so that we can guarantee dissipation if we choose 

The velocity gradient can be decomposed into strain 

and rotational rate tensors 

VU=&+O 

0 = +(vu - v'u) 2.6.2 

The usual approach in defining a viscosity tensor 

would be to discard the rotational component, 

arguing that rotations should not be damped. 
However, the chevron instability (illustrated in 

Figure 9) which occurs in fluids and low-strength 

solids is an example of a spurious rotational 
numerical mode that also requires filtering. 

Let us first consider shocks. On the scale of an 

individual zone, shocks are physically planar so that 

the viscous forces should only be parallel to the 

direction of propagation e. This means that we must 

eliminate non-shock components of% such as those 
which might arise from convergent flow. The 

direction of propagation can be found in a number 

of ways, such as by diagonalizing the strain rate 

tensor E. The viscosity tensor can then be written 

x; = -pz f LzE 2.6.3 

where the effective strain rate tensor is obtained by 

removing the non-shock components 

1 compression 

0 expansion 
~ ( A u )  = 

- 11 - 
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Lz is the zone width in the direction of propagation 

5, c is the soundspeed, and pz is the zone density. 

The quantities q1 and 92 are multipliers for the 

linear and quadratic viscosities. For a y-law gas 

typically recommended values follow from analytical 

shock solutionsm 

ql'= 0.1 

q2 =3(Y+1) 

The net effect of this form is to produce a force on 

each surface parallel to the direction of propagation 

Q, =S, ox: 

= (s, e)(&: 55)t 2.6.5 

Next, let us consider viscosity used for 

smoothing. The linear q is an example of such a 

viscosity with a serious flaw. If problems are 

calculated long enough, the linear q could, in 

principle, smooth until all velocity gradients have 

disappeared. For .this reason, it is preferable to 

avoid linear q and use an alternative ' 

g "-pz c L ( V u - q T  
2.6.6 

in which L is a characteristic length and is an 
average velocity gradient which has been spatially 

smoothed in some fashion. This form causes the 

velocity gradient to relax toward the local average, 

as opposed to the value of zero used in the linear q. 
In practice, the velocity gradient is separated into 

volumetric 8, deviatoric X, and rotational w tensors, 

and different multipliers are permitted on each 

2.6.7 

This form has not been proved to be rigorously 

dissipative, but this has not been a problem in 

practice. 

Side-centered Viscosity 

An alternative to the zone-centered viscosity is 
one centered on the side. The viscous work reduces 

to 

z 
Wq =st'zQ; 

i 

2 

= 6t'c.n': : s+u; 

= 6t+cn; : SfU12 

i 

z 

Ll 

where 

We can guarantee dissipation if we choose 

where 

2.6.8 

2.6.9 

2.6.10 

2.6.1 1 

The restoring force on each side is proportional to 
the velocity difference u12between the two points. 

The ad hoc factor lfi12 0d has been introduced to 

eliminate non-shock components of ulzsuch as those 

which might arise from convergent flow. 

A variation on a form due to Barton2' 

2.6.12 

also produces a restoring force proportional to the 
velocity difference uI2 and is rigorously dissipative. 

The absolute value of the dot product S, has 

been taken to avoid pathological attractive forces 

which could otherwise occur. 

- 12- 



equation can be separated as follows into rates 

Yet another variation comes from calculating a 
gradient V,u from the motion of the side points ( p l ,  

x;: OC -Pz f 1x121 VsUT 

Q;: =S,'.n,' 

associated with the point and about the point- 

Cmirixui=xrixfi  
i '  i 

P2, Gfl 

MrxU+xmi(q -r)xui =rxF+x(r i  -r)xfi 
i 

1~ 

2.6.13 

which produces a resulting force that is not 
necessarily parallel to uI2, so that dissipation is not 

guaranteed but has not been a problem in practice. 

This form (and the next) can be made rigorously 

dissipative by retaining only the component of the 
graiiient parallel to u12 

V'U 4 [v,u : ii12ii12 J ii12Q12 

We have not fully investigated the consequences of 

,this variation. 

A variation of the previous form is a side- 

centered viscosity used only for purposes of 

smoothing 

2.6.14 

2.7.1 

2.7.2 

2.7.3 
L(r)+i(r) = T(r)+T(r) ' 

where 

M r x m i  
i 

T(r) E r x F 

1 
R =-xmiri 

M i  

i(r)=Mrxfr 

2.7.4 

T(r)=x(ri -r)xfi 
1 

i(r) =xmi(ri -r)xui 
i .  

However, only for the CM point r = R is the integral 

of L a constant of the motion, so that Again dissipation is not guaranteed. This form is a 
multidimensional generalization of the spurious- 

vorticity-damping method (SVD)*4 and is effective L(R) = jdt  MR x fr 
against both chevron and hourglass instability (see 

Figures 7 and 9). 

2.7 ANGULAR MOMENTUM 

= jdt  M(R xfr+R XU) 

=Jdt zMRXU d 

=MRxU 

2.7;5 

Unlike kinetic energy which directly enters the 

differencing through the internal energy, the 

numerid angular momentum appears only as a 

diagnostic. However, the analysis is important for 
understanding the source of common SGH 
instabilities and for establishing that the zone center 
is free of such instabilities. 

For this Particular reference poht, the angular 
momentum Of the point and the intrinsic anaar 
momentum about h e  point can be independently . 

i(R)=T(R) 

i(R) = T(R) 
2.7.6 

Let us briefly review the kinematics of angular 
momentum and the role of the center of mass (CM). 

For a system of particles satisfying Newton's law, the 
rate of change of angular momentum is equal to the 

total applied torque. For any point r, this balance 

We must show that the former conservation 
equation for angular momentum is satisfied by our 
numerical system. To do this we must (a) establiih a 
center of mass, (b) define a control volume, and (c) 

- 13 - 



express the torque on the right hand side as a sum 
of fluxes across the control volume boundary. 

Center of Mass 

We must find some point for which the velocity 

is known and which could reasonably be taken to be 
a CM. Since the points p, e, andf all stride zone 

boundaries, the adjacent masses Mi depend upon the 

initially assigned zoning and can not in general be 

CM. Among our set of control points, only the 
zone center is a possible candidate. Depending 
upon the definition of Mi. there are two approaches 

to showing that the zone center is a CM. If the 
equal-mass definition of Mi is used, then the CM of 

a comer i can be defined to be 

Ri +xz + Xe) 2D 
'(x +x,+xe+xf)  3D 2.7.7 

It can be shown that the above definitions for the 
auxiliary coordinates lead to 

= X, 

2.7.8 

so that the zone CM is indeed the auxiliary point xz. 

On the other hand, if one of the other definitions 
of Mi is used, then an approximate CM must be used 

for i. One such is defined 

Ri E O L X ~ + ( ~ - E ) ~ ,  2.7.9 

where a varies between 0 and 1. Consider the 

substructure consisting of the set of comers which 
share points p and z. Although this definition is 

seemingly inappropriate for individual comers, it 

has the effect of setting the CM for this substructure 
on the line between p and z, a reasonably good 

approximation. Then, the CM for the zone again 

reduces to 

Figure 8. Extended and true zone control volumes. 

= X, 

Torque 

For the momentum control volume, the forces Fi 

are applied at some position Xi on the surfaces Si. 

The total force Fp on a point p and torque Tp about 

some point R are given by 

1 

2.7.1 1 
= R & F ~  +$(xi - R ) ~ F ~  

i 1 

Consider the extended zone control volume 

formed by the median mesh passing through the 

centers of adjacent zones as shown in Figure 8. The 
forces Fit are applied at the surface of the extended 

zone, but accelerate only the true zone. Define the 

mass fractions 

vi =Mi/Mp 2.7.12 
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which are used to conservatively divide the point 

forces among the zones with which they interact. 

The equation for the zonal linear momentum is in 

nonlocal conservation form because the cunents sum 

to zero at the extended zone boundary instead of the 

true zone boundary 
2 

Fz e Z W i F p  
1 

2.7.13 

The notion of splitting the point forces in this 

2 

M,U, = C, MiU, 
i 

= CyriMpUp 
1 

manner requires some explanation. The point force 

produces a momentum change within the point 

control volume. Since all points within the volume 

have the same velocity, the momentum change is' 

2 

= Z WiFp 

= F, 
i 

. 

2.7.15 

correctly apportioned 

mass fractions. 

subvolumes according to the 

Similarly, the torque applied to a node can be 

resolved into torques at and about the CM, and can 

be distributed to the zone by mass fraction. These 

resulting forms for torque correspond to the same 

control volumes used in the linear momentum 

equatiOns. 

The acceleration equations for the zone are of lower 

spatial order than those for the node. The 

conservation law for angular momentum at zone z is 

then proved 

L, E M,R, xu, 

'= R, x M,U, 

=R, xF, 

= T, 

2.7.16 

T,(R,) + 2, = t i vi [Tp(R,) + z p ]  No similar law can be proved at the point because it 

Z P  is not a 
=C,~iC,x i .x l$  

i i' 

Z P  . AMIOU~II conservation of angu~ar momen& on 
the global scale has never been in question, this work 

shows conservation on a scale somewhat larger than 

+ i ; w i ~ ( ~ i o  - R,) x 
a zone. The lack of such conservation on the scale of 

' i i' momentum control volumes gives rise to numerical 
instabilities such as chevron and hourglass modes. 

= R, x cviZFi, 
2.7.14 

i i' 

= R, xF, +T, 

Conservation Law 

The equation for the nodal momentum is in 
conservation form 

MpUp = Fp 

- 15- 



3. CONCLUSIONS 

Hydrodynamics algorithms are often formulated 
in a relatively ad hoc manner in which independent 

discretizations are proposed for mass, momentum, 

energy, and so forth. We have shown that, once 

discretizations for mass and momentum are stated, 

the remaining discretizations are very nearly 

uniquely determined, so there is very little latitude 

for variation. The resulting analysis provided some 

known results and several previously unreported 

surprises. 

As has been known (and largely ignored for 

some years) the kinetic energy discretization 
must follow directly from the momentum 

equation; and the internal energy must follow 

directly from the energy currents affecting the 

kinetic energy. 

Because energy is not exactly conserved in 

traditional PDV formulations of SGH, such 

formulations are not in principle reversible. 

Requirements for reversibility and 
thermodynamic consistency unexpectedly 

forces the replacement of the usual volume 
calculation with a conservation integral. 

Reversibdity considerations further forbid the 

use of higher order functional representations 

for either velocity or stress within zones or 

control volumes, forcing the use of a constant 

strongly limits the possible algebraic forms for 

artificial viscosity. We have proposed a 
distinction based upon the shock dissipation 

. and numerical smoothing functions of artificial 

viscosity and have presented forms for both, as 
well as two spatial centerings of the viscosity 

tensor. 

The momentum equation and a centersf-mass 
definition lead directly to an angular 

momentum conservation law which is satisfied 

by the system. Although conservation of 
angular momentum on the global scale has 

never been in question, this work shows 

conservation on a scale somewhat larger than a 

zone. The lack of such conservation on the 

smaller scale of momentum control volumes 

gives rise to numerical instabilities such as 

chevron and hourglass modes. 

It was shown that, by a few straightfonvard 

substitutions, the Cartesian formulation can be 

converted to a multidimensional curvilinear 

one. The resulting equations for momentum 

and quantities derived from it are not in strict 

conservation form and some conservation 
error occurs near the axis. 

The formulation in 2D axisymmetric geometry 

was shown to preserve rotational symmetry. 
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APPENDIX A 
CURVILINEAR GEOMETRY 

This appendix presents, without proof, 

curvilinear formulations in 1D (Cartesian, spherical, 

and cylindrical) and 2D (Cartesian and 

axisymmetric). We will retain the form of the 3D 
expressions ,previously presented, but indicate the 

replacements that must be made to achieve the 

curvilinear form. The basic method involves 
replacement of the finite volume surface integrals 

with corresponding integrals of lower dimension 
(e.g., line integrals in 2D) and addition of 

geometrical l/r terms that formally appear as 

sources. 

The resulting equations for momentum and 

quantities derived from it are not in strict 
conservation form an‘d some error occurs near the 

axis. Exact conservation could be assured by also 

including the error terms as sources, but exact 

rotational symmetry would be lost in 2D. 

Rotational Symmetry 

The 2D axisymmetric formulation presents a 
special problem, that of rotational symmetry. I fa  

spherically symmetric flow field is calculated in 2D 
axisymmetric geometry using rotationally symmetric 

zoning, then an exactly symmetrical result should be 

obtained. If‘not, a numerical algorithm will be 

prone to generating spurious vorticity especially 

along the axis. Generally, we achieve rotational 

symmetry by replacing the finite volume surface 

integrals with line integrals and introducing 
geometrical terms in l/r. The resulting method is 

symmetrical, employs an energy-conserving 
formulation, and moreover avoids the unintended 

introduction of entropy by the difference equations. 

However, like other symmetrical formulations, the 

conservation equations are not in strict conservation 

form and errors occur near the axis. 

t 
Z 

r 

Figure Al. Thought experiment for rotational 

symmetry. 

equations for a zone on the symmetry axis with 

another at some other angle (shown in Figure Al). 
This is a relatively difficult test to pass. The proof 

in most cases amounts to showing that the 

expressions in question rotate as 

A numerical algorithm can be tested for 

rotational symmetry by comparing the difference 

- 17 - 

in which both ra and rb correspond to points on the 

l i e  from the origin through the zone center. 

A. 1 GEOMETRY 

Define 

0 Cartesian 

cylindrical/axisymmetric 

‘A.1.1 



and Bi is the corresponding volume of revolution. 

At each timestep, the zone area and volume change is 

calculated from the conservative integrals 

Surface areas 

Surface areas in the Cartesian formulation are 

replaced by 

Si = sir: 

Ti =fir: A. 1.2 
A.1.6a 

This discretization of 6V is consistent with the work 

equation. A commonly used altemative. 
where in 1D 

sV, = 6t r, ti up + a i a i u p ]  [T rz i 
A.1.6b 

A. 13a 

is not. The accumulated area and volumes are then 

andin2D 
a , = a ~ + C & ,  

t 

v, = v," + c. sv, 
t .  

~ ~ ( 2 )  = k x (xe x x,) 

t,(2)=kx(xl xx2) 

si (2) = &Ss 

ti(2) = t,/2 

A. 1.7 

A.1.3b 

We have omitted multiplicative factors ikolving IC. 
The mass 'fractions 'pi are constants determined as 

before and are used to define where i and k are respectively unit vectors in the r 

and outsf-plane directions. 
ai = 'piaz 

A.1.8 

Volume In 2D axisymmetric geometry, ratios like 

6Vz/V," do have rotational symmetry. For 

spherical flow, the expressions for both 6Vz and Vz 
can be shown to be composed of terms effectively 

evaluated on the line from the origin through the 

zone center, so that the ratio is rotationally 

symmetric. 

Volume conservation in the curvilinear 

formulation is exact but, as in the Cartesian form, 

not a direct function of coordinates. However, the 
initial areas and volumes are defined by coordinate 

and volumes Ai and Bi of comers 

A.2 MASS 
A. 1.4 

In curvilinear geometry, zone and point masses 

are defined in distinctly difference manners. Zone 
mass is used principally in determining density for 

EOS calculations and is defined 

specifically, 

0 0 0 0  
M, =Pz vz 

=constant 
A. 1.5 

A.2.1 
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In order to produce a rotationally symmetric 

momentum equation in 2D, point mass is defined in 

terms of an areal quantity 

mz = Pzaz A.2.2 

and is not exactly conserved. The quantity mZ is 
partitioned according to mass fraction cpi 

mi = (Pi% 

P 

i 
mp = z m i  

M, = mprp" 

f a n s t a n t  

A.2.3 

The point masses Mp are not constant because rp is 

not exactly the CM of the momentum control 

volume. However, large errors should only occur 
near rp=O. 

A.3 MOMENTUM CONSERVATION 

Forces 

For brevity, we combine the ,reversible and 
irreversible stress tensors into a single ai. The 

forces Fi centered on the surfaces Si are 

Fi = (fi + gi)r," A.3.1 

The expression for Fp is unchanged from the 

Cartesian form. The necessary equations for f and g 

follow from the differential expressions for the 

divergence operator and are given by - 
fi =si ai 

6, -P) lD cylindrical 

otherwise I" 

A.3.2 

Sil =-si2 A 3  3 

the finite volume formulation produces f forces that 

sum to zero on the boundary of the momentum 

control volume; that is, 

fil =-fiz 
A.3.4 

The g forces arising from the curvilinear geometry 

appear as body forces. 

Acceleration, Velocity, Coordinates 

After the indicated substitutions the cwilinear 

form of the momentum equation is 

A 3 5  

The velocity and coordinate integrations are 
unchanged. Unlike the Cartesian formulation in 

which the point coordinate xp drops out of the 
discretized eqirations, its component rp appears 

repeatedly in the cwilinear formulation. 

We need to show that this momentum equation 
preserves rotational symmetry in the case of 2D 

axisymmetric geometry. Consider the element of 
area shown at two different orientations in the 

Figure A2. For a configuration with spherical 

symmetry, the stress tensor for the element on the r- 
axis will be given by 

The f forces depend only upon planar quantities and 

are clearly rotationally symmetric. However,. the lh 
terms require explanation. Consider 

-s, 6x2- 612 0 
a,=-=---= r r r  

We need to show that 

Because the surface areas satisfy 
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Figure A 2  Rotational symmetry of g forces. 

a: = a,cose- azsinO = a,cose 

4 = arsine + azcos8 = arsine A.3.8 

In the rotated frame, the transformed quantities are 

o~ = o,cos2e + 02sin2e 

oh = -(02 - o1 )sinecose 

o:, = 01sin2e + 02c0s2e 

a&) =o3 
A.3.9 

r' = r cos0 

For the postulated spherical flow conditions, 
o3 =a2, and it folIows that spherical symmetry is 

indeed preserved 

- o1c0s2e + o,(sin2e - 1) - 
rcos0 

- (ol - o,)sinecofi - 
rcos0 

A.3.10 

A.4 ENERGY 

The kinetic energy and energy current 

expressions are unchanged aside from the indicated 

substitutions which result in 

-20 - 

A.4.1 

z 

W z = S J i  
i 

z A.4.2 
=6txr,"(fi +gi).uP 

i 

Because the point mass is not exactly constant, some 
error is present in the kinetic energy, and 

consequently in the resulting w e n t ,  work, and 
internal energy expressions. The radius in these 

expressions is evaluated at +. 



APPENDIX B 
SAMPLE CALCULATIONS 

The following are representative results for the 

hydrodynamics algorithm described. Although the 

3D hydrodynamics algorithms are fully functional, 

we have yet to define non-trivial 3D test problems, 

so that no 3D results are presented. Because optimal 

settings for artificial viscosity are currently being 

investigated, the problems were run with different 

viscosity formulations as noted. 

Notes 
1 sh = 1.e-8 sec 
1 jk = Le16 erg 

B.11D SPRERICAL NOH PROBLEM 

Geometry 
1D sphericai geometry 
Sphere of radius 10 cm. 

100 equaIly spaced zones 

Gamma law gas withy= 5/3 

Density = 1.0 gm/m3 
Specific energy = 2.e-7 jldgm ‘ 

Velocity = 1 mlsh toward origin except for 

Zoning 

Materials 

Initial conditions 

origin itself which has velocity = 0 

Boundary conditions 
Origin is fixed 
Outer radius is constant inward velocity of 1 

d s h  

stop time 
6sh 

Figure B1.l Density v e r k  distance to zone 
centers. Exact result is a density of 64 behind the 
shock which extends to a radius of 2 m. 
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B.2 2D THREE K-LINE NOH 
PROBLEM 

2D axial geometry 
Half sphere with origin at (0,O) and radius 1 cm. 

Geometry 

Zoning 
3 equally spaced radial (K) lines (00,450,900) 
200 equally spaced lateral Q lines. 

Gamma law gas with y= 5/3 
Materials 

Initial conditions 
Density = 1.0 gm/cm3 
Specific energy = 2.e-7 jk/p 
Velocity = 1 d s h  toward origin except for 

origin itself which has velocity = 0 

Boundary conditions 
Radial line at 00 is z-fixed 
Radial line at 900 is r-fixed 
Origin is fixed 
Outer radius is constant inward velocity of 1 

d s h  

Stop time 
0.6 sh 

Comment 

mm 

Figure B2.1 Density versus distance to zone 
centers. Exact result is a density of 64 behind the 
shock. If plotted versus point centers, the shock 
would extend to a radius of 2 cm. 

Run with shock viscosity only (Equation 2.6.3, 
qi=.l, q2=1.33). No hourglass, or other 
smoothing viscosity was used. 

Figure B2.2 3KL Noh grid at stop time. Entire mesh. 
Apparent irregularities are due to graphical raster 
spacing, not the calculation itself. 

Figure B2.3 3KL Noh grid at stop time. Shock 
region. Apparent irregularities are due to . 
graphical raster spacing, not tkie calculation itself. 

- 22 - 



B .3 SCHULZ ELLIPSE 

Geometry 
2D axial geometry 
Half ellipse with radial semi-axis=lt? cm, axial 

semi-axis=12 cm 

Zoning: 
10 equally spaced radial K lines extending from 
origin (0,O) to the edge of the ellipse at angles 
from 0 to 90 in 10 degree increments. The 
innermost lateral L-line is the origin (0,O). The 
next L-line is an ellipse with a radial semi-axis of 
6 cm and a axial semi-axis of 4 cm. The 
remaining lateral L-lines are equally spaced from 
there to the edge of the ellipse. 

Materials: 
Gamma law gas with y= 5/3 

Figure B3.1 Schulz grid at 0. 

Figure B3.2 Schulz grid at 25. 

Figure B3.3 SchuIz grid at 50. 

Initial Conditions 
Density = 1.845 @cm3 

Specific energy = 2.e-7 jk/gm 

Vertical radial line is z-fixed 
Pressure profile outside the ellipse that ramps 

Boundary Conditions 

from 0 jk/cm3 at t=O to 0.1 j j c m 3  at t=5 sh 
and remains constant thereafter 

Stop Time 
100 sh 

Comment 
Run with a combination of shock viscosity 
(Equation 26.3, qi=.l, q2=1.33) and smoothing 
viscosities (Equation 2.6.14, q ~ q d q - 5 )  

Figure B3.4 Schulz grid at 75. 

Figure B3.5 Schulz grid at 100. 
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B .4 SALTZMAN PROBLEM 

Geometry 
2D axial geometry 
Cylinder of radius 0.1 an and length 1.0 cm 

Zoning: 
F o r k  = 1 to 101, L = 1 to 11, 

z(K, L) = 0.0 1 (L - 1) sin 

Materials 

Initial conditions 

Gamma law gas with y= 5/3 

Density = 1.0 gm/an3 
Specific energy = 2.e-7 jk/gm 
Velocity = 0 except on boundary 

Boundary Conditions 
At z=O, velocity = 1 c d s h  directed toward 

Boundaries at r=O and p.1 are both r-fixed 
Boundary at z=1 is fixed 

opposite end of cylinder 

Figure B4.1 saltanan 
grid at 0. expanded in the 
radial direction. 

Stop Time 
1Sh 

Comment 
Run with a side centered viscosities (Equation 
2.6.13, qlz.1, q2~1.33, qv-d=l., qwd.) and 
(Equation 2.6.14, qv-d=O., qw=.5) 

Figure B4.2 Saltpnan 
grid at 0.4. expanded in 
the radial direction. 

Figure B4.3 Saltzman 
grid at 0.8. expanded in 
the radial direction. 
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