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The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two

decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing

field are here reviewed from both theoretical and numerical points of view. The primary focus is on

the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic,

unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified

picture of all instability classes at play, emphasis is put on the potentially dominant waves

propagating obliquely to the beam direction, which have received little attention over the years.

First, the basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled.

Next, an overview of two-dimensional unstable spectra associated with various beam-plasma

distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the

latter being based on waterbag and Maxwell–Jüttner model distributions. The main properties of the

competing modes �developing parallel, transverse, and oblique to the beam� are given, and their

respective region of dominance in the system parameter space is explained. Later sections address

particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma

systems. The elementary structures generated by the various instability classes are first discussed in

the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for

large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of

closely related beam-plasma problems involving additional physical effects is presented, and

worthwhile directions of future research are outlined. © 2010 American Institute of Physics.

�doi:10.1063/1.3514586�

I. INTRODUCTION

A. A brief history of the topic

Beam-plasma systems are ubiquitous in laboratory or

space plasmas, and, as a consequence, their analysis makes

up a significant part of any textbook on plasma physics.

Since Langmuir first suggested in 1925, the existence of os-

cillations in beam-plasma systems,
1,2

most of the vast litera-

ture they have engendered has been devoted to understand-

ing their stability with respect to collective electromagnetic

perturbations. In 1948, Pierce
3

demonstrated that unstable

oscillations can arise within such systems and thus explained

Langmuir’s observation. Bohm and Gross
4

then developed a

thorough kinetic theory of unstable perturbations propagat-

ing along the beam direction. This class of instability was

promptly referred to as the now well-known “two-stream in-

stability.” Later on, a second class of instabilities was found

in 1959 by Fried,
5

who showed that a beam-plasma system

may also turn unstable against electromagnetic modulations

normal to the flow. Because these unstable modes tend to

break up an initially homogeneous beam profile into

small-scale current filaments, they are commonly referred to

as “filamentation” modes. In his article, Fried mentioned the

closely related work of Weibel who, that same year, demon-

strated the instability of an anisotropic two-temperature

Maxwellian plasma.
6

Although the Weibel and filamentation

instabilities have become almost interchangeable in the lit-

erature, we will discuss later �Sec. III F� the differences be-

tween these processes, and stick here to filamentation to la-

bel unstable normal modes in beam-plasma systems.

If perturbations both parallel and normal to the beam

flow are potentially unstable, one is naturally prompted to

investigate the stability of obliquely propagating modes,

since a real-world perturbation consists of an infinite super-

position of arbitrarily oriented modes. The problem was soon

addressed in the cold-fluid limit,
7–9

and it was found that

indeed, the unstable spectrum is truly multidimensional �at

least two-dimensional �2D�� as arbitrarily oriented perturba-

tions are likely to be unstable.

Pioneering temperature-dependent investigations of the

2D spectrum have been first performed through the electro-

static approximation,
9–11

hence failing to handle the essen-

tially electromagnetic filamentation modes. Simple fluid

models, whether covariant
12

or not,
13,14

were subsequently

worked out, before comprehensive kinetic treatments
15–18
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managed to provide a unified vision of the entire unstable

spectrum, further confirmed by particle-in-cell

simulations.
19–23

Given the potentially broad unstable spectrum of beam-

plasma system, one may wonder why early results on gas

discharge fluctuations were so readily attributed to a single

class of instability, namely, the two-stream one. The reason is

that the electrostatic two-stream instability does govern the

spectrum under the nonrelativistic conditions characteristic

of these early experiments.
18,24

Despite the multidimensional

character of the spectrum, beam-aligned modes then grow

much faster than the nonparallel ones and determine the on-

set of the beam evolution. For decades following Fried’s and

Weibel’s seminal papers, nonparallel instabilities hardly re-

ceived academic attention due to the relative scarcity of

physical applications wherein they may have been relevant.

This held even in the seemingly favorable context of relativ-

istic electron beam-driven fusion for which one-dimensional

�1D� treatments were usually justified by accounting for a

strong magnetic field guide.
25–27

One had to wait the inception of novel inertial confine-

ment fusion �ICF� and astrophysical scenarios in the mid-

1990s to see a suddenly increased interest in an accurate

understanding of the entire unstable spectrum. This trend is

illustrated in Fig. 1, which plots the number of citations re-

ceived per year by Fried’s and Weibel’s papers. The two

topics responsible for triggering this citation boom are the

so-called fast ignition scenario �FIS� for ICF and the astro-

physical problems of gamma ray burst �GRB� and cosmic

rays. Studies related to these topics have spurred most of the

theoretical advances in beam-plasma instabilities over the

past 15 years, much effort being put into revisiting, and

elaborating, the long-known result
8,9

that, within an extended

parameter range, nonparallel modes may initially govern the

system evolution.
18,28

Although this review focuses on FIS and GRB physics,

it is worth mentioning that beam-plasma instabilities in

the relativistic regime are also relevant for solar flares

physics,
29

cosmic magnetic fields generation,
30

magnetic

reconnection,
31,32

or even quantum chromodynamics.
33,34

B. Fast ignition scenario

The FIS was proposed as a strategy to increase the ther-

monuclear gain in ICF and/or to increase the robustness of

standard approaches.
35–37

In conventional ICF, the laser-

driven target compression and heating require a high degree

of irradiation symmetry so as to limit the growth of hydro-

dynamical instabilities.
38,39

In order to fulfill drastic symme-

try requirements, ICF facilities under construction such as

the National Ignition Facility
40

or the Laser Megajoule
41

rely

on the so-called indirect drive approach wherein nanosecond

laser pulses first hit the inner walls of a high-Z hohlraum

containing the DT pellet. The laser-hohlraum interaction then

produces a quasihomogeneous x-ray radiation bath, which,

by tailoring the incident laser intensity profile, drives a series

of shock waves expected, if efficiently synchronized, to both

compress and heat the target up to ignition temperatures. By

contrast, the FIS proposes to decouple the compression from

the heating phase. After the pellet is laser-compressed almost

isentropically, heating is achieved by means of an additional

laser pulse shot through the plasma corona, as pictured in

Fig. 2�a�. The petawatt laser pulse propagates up to regions

at a few times of the critical density through relativistic hole

boring
42,43

or, as now generally considered, by means of a

high-Z conical guide.
37,44,45

Along its path, the laser pulse

partially converts into a population of relativistic electrons,

which, if properly tailored, reach the dense region opaque to

the laser light and ignite the thermonuclear reactions.
46

In

addition to relaxing symmetry requirements, this approach

takes advantage of an isochoric ignition configuration, char-

acterized by a gain higher than the standard isobaric model.
47

The success of this scheme evidently lies in a quantita-

tive understanding of the transport of the laser-driven elec-

trons through a strongly inhomogeneous plasma.
48

Near the

electron acceleration region, the plasma can be assumed col-

lisionless and weakly coupled. By contrast, close to the tar-

get center, the beam encounters a collisional, nearly degen-

erate, and not-so-weakly coupled medium. As a result, the

FIS has inspired extensive investigations on the collisionless,

relativistic filamentation instability since it is thought to

mostly determine the beam divergence near the laser absorp-

tion region.
48–58

The resistive version of the filamentation

instability
59–61

has also been found influential for the beam

energy deposition in the subsequent stage of transport

through the moderate-density, yet collisional, part of the DT

plasma.

C. Gamma ray bursts and high energy cosmic rays

The second main setting involving relativistic beam-

plasmas is the long-standing problem of the origin of high-

energy cosmic rays �HECR� and GRBs.
62

By the end of the

1970s, Krymskii,
63

Blandford and Ostriker,
64

Bell,
65,66

and

Axford et al.
67

found independently that the observed power-

law distribution of HECR could be spontaneously generated

by Fermi-like acceleration in the vicinity of a collisionless

shock, provided there exists a level of wave turbulence

strong enough to bounce the particle back and forth across

the shock. The basic mechanism of shock-driven particle ac-

celeration, now known as “first-order Fermi acceleration,”
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FIG. 1. �Color online� Number of citations per year received by Fried’s

�Ref. 5� and Weibel’s �Ref. 6� 1959 articles until 2009 �from ISI Web of

Knowledge�.
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goes as follows �see Fig. 2�b��: assume a shock propagates in

the interstellar medium �ISM� at velocity V. We here con-

sider a 1D problem with V�c for simplicity and work in the

interstellar medium rest-frame �see Refs. 68 or Ref. 69, p.

376, for a more general description�. Consider a proton with

velocity u heading to the shock from the upstream. When

bouncing back against it, the proton comes back to the up-

stream with a velocity �u+2V. If scattered appropriately in

the upstream, it can return to the shock and bounce back

again to reach velocity �u+4V. Fewer and fewer particles

experience repeatedly the process, but the more they go

through it, the more energy they gain, which explains how

the ultimate distribution function should decrease with the

energy. This topic has been reviewed by Axford,
70

Drury,
71

and Blandford and Eichler.
72

The role of beam-plasma insta-

bility is here threefold.

To start with, particles escaping upstream interact with

the ISM. The broad range of unstable modes excited in

the process should here produce the turbulence needed

for first-order Fermi acceleration. PIC simulations
73–77

have been highly instrumental in validating this scenario

for relativistic and nonrelativistic shocks. Beam-

plasma instabilities are thus a key part of the loop:

Particle acceleration→beam-plasma instabilities→magnetic

turbulence→particle acceleration.

But this turbulence plays another role: particles deflected

in the electromagnetic fields generate synchrotron radiation,

which may be up-scattered by secondary mechanisms, such

as inverse Compton radiation, and subsequently observed in

the X-range for supernova remnant �SNR� nonrelativistic

shocks, and in the �-range for relativistic shocks. According

to the Fireball model,
78,79

the latter � radiation could explain

GRB’s emissions �see Refs. 80 and 81 for more details�.
The third role played by beam-plasma instabilities is the

formation of the shock itself. In a collisionless environment,

the instability driven by counterstreaming plasma shells con-

stitutes the sole mechanism through which energy and mo-

mentum transfers may take place between the two popula-

tions, hence giving rise to a collisionless shock, whether

relativistic
82

or not.
83

D. Principle of particle-in-cell simulations

Particle-in-cell �PIC� simulations
84,85

have long served

as powerful tools to test theoretical predictions and access

the nonlinear regime of plasma instabilities.
86–93

Even

though most of the simulations performed in the late 1960s

and 1970s were one-dimensional, one should note that a few

of them were already multidimensional. For instance, as

early as 1973, Lee and Lampe
92

produced a 2D numerical

study of the linear and nonlinear evolution of the relativistic

filamentation instability. Its accuracy would be confirmed

three decades later through refined simulations accessing the

long time-scale of the ion dynamics.
51

By this time, the

maximum numbers of macroparticles and time steps were

about 105 and 1000, respectively. Nowadays, the rapid de-

velopment of massively parallel supercomputers, together

with the good parallelization and scalability of PIC simula-

tions, allows to explore with unprecedented resolution the

linear and nonlinear dynamics of large-scale beam-plasma

scenarios and bridge the gap between theory and experiment.

State-of-the-art PIC codes move up to 1011 macroparticles

during �105 time steps.
94

As sketched in Fig. 3, the PIC technique consists in rep-

resenting the plasma as a collection of N macroparticles sub-

jected to self-consistent electromagnetic fields. Time and

space are discretized so as to resolve the physics and ensure

the numerical stability of the �usually explicit� algorithm.
84

For most of the systems under consideration, the mesh size is

usually chosen to be of the order of the Debye length, while

the time step, which has to fulfill the Courant–Friedrich–

Levy condition,
95

is a fraction of the plasma period. Starting

from the known particles’ positions and velocities

�xi ,vi�i=1. . .N, the charge and current carried by the particles

are projected onto the grid to yield the charge and current

densities ��r� and J�r�. Maxwell’s equations are then solved

to update the electromagnetic fields E�r� and B�r�, which, in

turn, are used to advance the particles’ positions and veloci-

ties through the relativistic Lorentz equation. Any kind of

initial particle distribution function �xi ,vi�i=1. . .N can be

implemented in accordance with the theoretical model under

Pre-compressed

DT Target

PW laser

REB

Downstream Upstream

Shock

Turbulence

(a)

(b)
0.01 cm

1012 cm

FIG. 2. �Color online� Schematic representation of the FIS and the colli-

sionless shock context. �a� A petawatt laser generates a relativistic electron

beam which then deposits its energy near the pellet center. �b� A collision-

less shock travels through the interstellar medium. After particles undergo

first-order Fermi acceleration �dashed line�, some escape upstream �plain

line� and trigger turbulence through beam-plasma instabilities. The typical

size of the system is indicated in each case.
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consideration. Because it solves the one-particle Vlasov

equation, the PIC technique is intrinsically suited to model-

ing collisionless plasmas. Yet kinetic collisional processes

can also be described using either Monte Carlo binary
96

or

Langevin-type
97

models.

E. Scope of the review and outline

Given the variety of scientifically relevant beam-plasma

systems, wherein the effects of thermal spreads, mobile ions,

external magnetic field, spatial inhomogeneities, quantum

degeneracy, etc., should be �or not� accounted for, we have to

restrict the scope of the present article. This review will thus

be devoted to the analysis of the 2D spectrum of a relativis-

tic, unmagnetized, and uniform electron beam-plasma sys-

tem. Alternate beam-plasma systems will be discussed in

Sec. VI B. Unless otherwise specified, ions will be consid-

ered to form a fixed positively charged background so that

only electron-electron instabilities will be dealt with �see Fig.

4�. The system will be assumed charge- and current-

neutralized in its unperturbed state. Although two-stream and

filamentation instabilities will be discussed, the main empha-

sis will be put on the lesser-known oblique modes and on an

unified description of the spectrum.

Our review will be organized as follows. In Sec. II, we

will summarize the linear formalism leading to the kinetic

expression of the dielectric tensor. The ensuing general prop-

erties of the unstable modes arising within a beam-plasma

system will be discussed. Specific electron beam-plasma sys-

tems will be considered in Sec. III. Results obtained for the

full spectrum in the cold �i.e., monoenergetic� approximation

will first be presented. Kinetic effects will then be addressed,

first by using simple waterbag distributions, then by resorting

to more realistic Maxwell–Jüttner distribution functions. The

differences between the somewhat confusable filamentation

and Weibel instabilities will also be clarified. In Sec. IV, the

properties of the fastest-growing unstable mode will be pre-

sented as functions of the system parameters. Depending on

the beam-to-plasma density ratio, the beam and plasma tem-

peratures and the beam drift energy, two-stream, filamenta-

tion, or oblique modes will be shown to dominate the linear

phase. The resulting mode hierarchy will be established for

the cold and kinetic cases. Section V will be devoted to an

overview of the nonlinear regime and particle-in-cell simu-

lation studies. The fundamental patterns generated during the

linear and nonlinear phases of the various instabilities will be

first presented, along with the main nonlinear processes re-

sponsible for the saturation of the instabilities. Next, we will

examine the interplay of multiple unstable modes in large-

scale systems. We will show the accurate reproduction of the

linear theory predictions and the multistaged evolution of the

nonlinear phase. Section VI will report on alternate beam-

plasma systems involving additional effects such as ion mo-

tion, collisions, or quantum degeneracy. Finally, we will con-

clude by suggesting a number of potentially fruitful further

investigations.

II. LINEAR ANALYSIS: DERIVATION
OF THE DIELECTRIC TENSOR FROM THE VLASOV
AND MAXWELL EQUATIONS

We here derive the dielectric tensor for an arbitrary ho-

mogeneous and infinite beam plasma system composed of N

species of charge q j, mass m j, density n j, and mean velocity

v j. Note that the density n j is here measured in the labora-

tory frame, rather than in the proper frame of the related

species as is sometimes the case.
59,98

This standard calculation is explained at length in a

number of plasma physics textbooks,
99–101

and we just here

mention the key points. The system is initially charge and

current neutral with 	 jq jn j =0 and 	 jq jn jv j =0. There are no

equilibrium electromagnetic fields. Each species j is de-

scribed by its initial distribution function f j
0�p� with


d3pf j
0�p�=1. In the absence of collisions, the distribution

function f j�r ,p , t� of each species obeys the relativistic Vla-

sov equation,

� f j

�t
+ v ·

� f j

�r
+ q j�E +

v � B

c
� � f j

�p
= 0. �1�

The charge � and current density J are computed through

FIG. 3. Basic principle of the particle-in-cell simulation technique.

Beam, nb, vb

RC, np, vp

y

z

x

k

kx

ky

E

FIG. 4. �Color online� Sketch of the system considered in the present re-

view. “RC” here stands for “return current.” Ions are fixed.
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� = 	
j

n jq j
 
 
 d3pf j ,

�2�

J = 	
j

n jq j
 
 
 d3pvf j ,

and Maxwell’s equations close the system. These equations

are then linearized by expressing every quantity �, be it sca-

lar or vectorial, in the form

� = �0 + �1 exp�ık · r − ı�t�, ��1� � ��0� , �3�

where �0 denotes the equilibrium initial value and ı2=−1.

Fluctuations of the form �3� spontaneously arise in a plasma,

forming the seed perturbations which can turn unstable or

not. Such spontaneous emissions of magnetic field fluctua-

tions were investigated by Yoon for isotropic particle distri-

bution functions
102

and by Tautz and Schlickeiser for an an-

isotropic distribution function supporting the Weibel

instability.
103

With the electromagnetic field varying accord-

ing to Eq. �3�, Maxwell–Faraday’s and Maxwell–Ampere’s

equations read

ık � E1 = ı
�

c
B1,

�4�

ık � B1 = − ı
�

c
E1 +

4�

c
J1.

Eliminating B1 from Eqs. �4� yields

k � �k � E1� +
�2

c2 �E1 +
4ı�

�
J1� = 0. �5�

From this stage, the calculation roadmap consists in using

Eq. �1� to express the perturbed distribution functions f i
1 in

terms of f i
0 and E1, after eliminating B1 with Eqs. �4�. The

first-order current J1 is then computed from Eqs. �2�, and the

resulting expression inserted in Eq. �5� to give

T�k,�� · E1 = 0, �6�

with

T�k,�� =
�2

c2
	�k,�� + k � k − k2I , �7�

where I is the unity tensor and k � k the tensorial product

�k
k��. The dielectric tensor 	�k ,�� elements read

	
��k,�� = �
� + 	
j

�pj
2

�2 
 
 
 d3p
p


��p�
� f j

0

�p�

+ 	
j

�pj
2

�2 
 
 
 d3p
p
p�

��p�2

k · � � f j
0

�p
�

m j� − k · p/��p�
,

�8�

where �pj is the electronic plasma frequency of species j and

�
� is the Kronecker symbol. In the nonrelativistic limit

�=1, and for symmetric enough distribution functions, the

first sum simplifies as


 
 
 d3pp


� f j
0

�p�

= − �
�. �9�

Equation �8� shows that the Lorentz factor,

��p� =�1 +
px

2 + py
2 + pz

2

m j
2
c2

�10�

couples the quadratures along the three momentum

axes even though the equilibrium distribution function is

separable �i.e., it can be cast under the form f j
0�p�

= f j
x�px�f j

y�py�f j
z�pz��. This mathematical complication, which

evidently holds for any kind of coordinate system, has re-

stricted many studies of kinetic plasma instabilities in the

relativistic regime to peculiar, and often blatantly unrealistic,

distribution functions allowing for a simplified handling of

the Lorentz factor, and/or regimes characterized by weak

�i.e., nonrelativistic� thermal spreads.
15,16,52,104–109

Let us emphasize that no assumption whatsoever is made

in Eq. �7� about the respective orientations of k and E1.

Longitudinal �i.e., electrostatic� modes verify k�E1=0,

while transverse waves verify k ·E1=0. It is well-known that

two-stream modes are exactly longitudinal while filamenta-

tion modes are mostly transverse �see the discussion at the

beginning of Sec. III�. A formalism aiming at describing the

full unstable spectrum must encompass both instability

classes, and therefore be fully electromagnetic. While early

results on obliquely oriented modes have been obtained

through the longitudinal approximation
8,9 �which, as shown

in Ref. 110, allows for an accurate characterization of the

dominant modes in the broad parameter range governed by

oblique modes�, the general kinetic dispersion relation was

first numerically solved by Lee and Thode
111

for a special

class of diluted, angularly spread monoenergetic beams. The

first picture of the full 2D spectrum was obtained a decade

later in the cold-fluid regime by Califano et al.
28,112,113

Once a real wave vector k has been chosen, the disper-

sion equation follows from Eqs. �6� and �7� and simply reads

det T�k,�� = 0. �11�

Denoting �k the complex roots of this equation, the related

modes have their electric field lying in the linear subspace

defined by T�k ,�k� ·E1=0. The angle �k , Ê� follows there-

fore directly from the formalism instead of being assumed

a priori.

III. UNSTABLE SPECTRUM OF AN ELECTRON
BEAM-PLASMA SYSTEM

Let us consider the system sketched in Fig. 4, namely,

a relativistic electron beam of density nb, mean velocity

vb aligned with the y axis, and Lorentz factor �b= �1
−vb

2
/c2�−1/2 flowing through a plasma of ion density ni and

electron density np. Ions, of charge Z, are assumed at rest.

The system is initially assumed in equilibrium with ni=np

+nb �no net charge� and nbvb+npvp=0 �no net current�. Note

that perturbations defined by Eq. �3� are applied to the sys-

tem “beam+plasma.” The beam itself is not the perturbation.
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The formalism thus allows for arbitrarily high beam densi-

ties, which means the ratio nb /np can vary over the entire

range �0,1�.
Given the cylindrical symmetry of the model distribution

functions under consideration, the wave vector of the pertur-

bation can be chosen in the plane �x ,y� without loss of gen-

erality. For the same reason, dielectric tensor �8� is symmet-

ric, and all off-diagonal terms but 	xy vanish. The dispersion

equation then reads
15

�
�2

c2
	xx − ky

2 0
�2

c2
	xy + kxky

0
�2

c2
	zz − k2 0

�2

c2
	xy + kxky 0

�2

c2
	yy − kx

2 � = 0, �12�

yielding straightforwardly

�2	zz − k2c2 = 0 �13�

or

��2	yy − kx
2
c2���2	xx − ky

2
c2� − ��2	xy + kxkyc

2�2 = 0. �14�

These expressions bear important consequences on the polar-

ization of the unstable modes that we now detail.

The dispersion equation is found to have two main

branches. The first one, defined by Eq. �13�, pertains to

modes with an electric field along the z axis. Such modes are

therefore purely transverse for any k= �kx ,ky�. The second

branch defines modes with an electric field lying within the

�x ,y� plane, which can be longitudinal, transverse, or in-

between. When considering flow-aligned wave vectors with

kx=0, the off-diagonal term 	xy vanishes and Eq. �14� re-

duces to

��2	xx − ky
2
c2�	yy = 0. �15�

Whereas the first factor may yield unstable modes, the re-

maining dispersion equation 	yy =0 defines modes with an

electric field aligned with the flow as well. These are the

two-stream modes, which are therefore purely longitudinal.

If we now consider wave vectors normal to the flow, with

ky =0, we recover the dispersion equation for the filamenta-

tion instability,

	xx�	yy − kx
2
c2

/�2� = 	xy . �16�

The simplified dispersion equation,
54,104,114,115

	yy − kx
2
c2

/�2 = 0, �17�

is therefore valid provided 	xy�kx ,��=0, ∀ �kx ,��. If this

condition holds, the tensor T is such that the resulting modes

correspond to an y-aligned electric field and are therefore

purely transverse. Contrary to a common assumption, the

filamentation instability is generally not purely transverse

�i.e., it has a finite electrostatic component�, since its disper-

sion equation is more involved than Eq. �17�.55,61,116,117
Only

when the beam and return current are perfectly symmetric

�i.e., with the same density, temperature, and drift energies�
does the filamentation instability turn truly transverse. In

order not to generate any space charge, the beam and return

current should pinch at exactly the same rate. But this rate

strongly depends on both the thermal spread �since thermal

pressure tends to oppose magnetic pinching� and the relativ-

istic inertia �and therefore the Lorentz factors �b,p� of the two

electron populations. Charge imbalance thus arises whenever

these quantities differ. This feature has more than academic

interest since it can be proven that in the cold-limit, the

growth rate obtained within purely transverse assumption

�17� is overestimated by a factor 
��b.
117

The dispersion equations characterizing two-stream and

filamentation modes have been analyzed for a large number

of model distribution functions, ranging from

monokinetic
7,116

to Maxwellian
118–120

through waterbag
52

or

kappa
121–123

cases. To date, computations of the full 2D un-

stable spectrum have been carried out in the cold, waterbag

and Maxwell–Jüttner cases sketched in Fig. 5. The main fea-

tures of these studies will now be reviewed.

A. About the model distribution functions

Solving the dispersion equation requires to choose a dis-

tribution function. Within a collisional environment, a

Maxwell–Jüttner would seem legitimate since collisions are

to relax any distribution to this one.
124

In a magnetized

plasma, the use of gyrotropic distributions that only depend

on two momentum coordinates may also be justified. How-

ever, in the unmagnetized collisionless regime addressed in

Py

Px

PbPp

Cold

Py
PbPp

Maxwell-Juttner

Py
PbPp

Waterbag P//

P

..

FIG. 5. �Color online� Schematic representations of the distribution func-

tions considered.
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most of this review, there is no obvious physical reason sup-

porting a particular model distribution. Since there is an in-

finite number of ways to satisfy the vanishing-field equilib-

rium considered here, the choice of the three model

distributions sketched in Fig. 5 is mostly motivated by

their mathematical convenience. The cold distribution is

the simplest possible choice, able to provide zero-order

analytical estimates, whereas waterbag distributions are com-

monly employed as a first step to explore kinetic

effects.
52,61,109,105,125,126

Owing to its smooth shape, the rela-

tivistic Maxwell–Jüttner distribution appears as a natural

choice for a more realistic treatment of these effects, which,

in addition, lends itself to tractable parametric numerical

computations �see Sec. III E�.
It is worth noting, though, that the generation of a gyro-

tropic distribution does not necessarily involve an external

magnetic field. It may also originate from the wave-particle

heating induced by an anisotropic wave spectrum. As will be

seen, this is a common configuration for beam-plasma sys-

tems. A numerical illustration of such an anisotropic collec-

tive heating can be found in Ref. 19 in the case of an

oblique-mode dominated system. It has also motivated the

analytical and simulation studies of the Weibel instability in

the context of magnetic field growth ahead of collisionless

plasma shocks.
127

Anisotropic heating could then occur dur-

ing the interaction between the foreshock electrons and the

waves driven by the shock-reflected ion beam. Collisionless

shocks are known to produce kappa, i.e., power-law, distri-

butions which have also been investigated in connection with

plasmas instabilities.
121–123

Although studies using cold, waterbag, Maxwellian and

kappa distributions make up most of the literature on beam-

plasma instabilities, a few works aimed at deriving general

properties of arbitrarily distributed systems, generalizing, for

instance, well-known theorems such as Penrose’s criterion.

General results on the filamentation instability have thus

been obtained by Tzoufras et al.
128

in the case of separable

nonrelativistic distributions. Likewise, the Weibel instability

has been investigated by Tautz et al.,
129–132

who found that

the unstable k spectrum may be discrete instead of continu-

ous under certain conditions.

B. Cold-limit results

The first step in analyzing the unstable spectrum consists

in introducing monokinetic or “cold” distribution functions

of the form

f j
0�p� = ��px���pz���py − P j� , �18�

where P j =me� jv j for the beam and plasma electrons. The

corresponding 2D relativistic spectrum has first been ex-

plored through the electrostatic approximation in Refs. 8–10.

Later on, Califano et al.
28,112,113

worked out the first exact

calculation, dealing also with the nonlinear regime of the

filamentation instability and exploring inhomogeneity ef-

fects. Cold-limit results may be retrieved within the present

formalism, or equivalently, from linearization of the relativ-

istic cold-fluid equations.
28,112,113

The two growth rate maps

pictured in Figs. 6�a� and 6�b� have been computed from

dispersion equation �14�. They illustrate the main findings of

the cold-fluid limit: while filamentation modes dominate for

nb=np, oblique ones take the lead in the diluted beam re-

gime. As usual, the benefits of the cold approximation lie in

the possibility to derive exact or approximate expressions

which can serve as a basis for further studies.

The maximum growth rates and associated wave vectors

for the two-stream, filamentation, and oblique modes have

their expressions reported in Table I in terms of the dimen-

sionless variables,


 =
nb

np

, Z = k
vb

�p

, �b =
vb

c
, �19�

where

�p
2 =

4�npe2

me

�20�

is the plasma frequency of the background �i.e., return cur-

rent� electrons. It is also common to normalize the wave

vector to �p /c, or �e /c, where

FIG. 6. �Color online� Growth rate maps ��p units� in the cold-limit for

�b=3 and varying beam densities: �a� nb /np=1 and �b� nb /np=0.1.

TABLE I. Analytical expressions of the maximum growth rate � and asso-

ciated wave vector k in the cold-limit for each instability class. For


=nb /np�1, see Ref. 7 for two-stream, Ref. 133 for filamentation, and Ref.

8 for oblique. For 
=1, there is no oblique extremum. See Refs. 134 and 28

for two-stream and filamentation in this case.

Two-stream Filamentation Oblique


�1

� /�p

�
�3

24/3


1/3

�b ��b� 


�b

�
�3

24/3� 
�b

�1/3

k�vb /�p �1 0 �1

k�vb /�p 0 ��b �1


=1

� /�p

1

2�b
3/2

�b� 2

�b

¯

k�vb /�p

�3

2�b
3/2

0 ¯

k�vb /�p 0
��2

�b

�b
3/2

¯
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�e
2 =

4��nb + np�e2

me

= �1 + 
��p
2 �21�

is the total electron plasma frequency. The dimensionless

frequency reads in this text

�̃ =
�

�p

. �22�

For beam-aligned wave vectors, the two-stream instabil-

ity growth rate reaches a maximum for k�vb /�p�1 and van-

ishes for

k�

vb

�p

� 1 +
3

2

1/3. �23�

In the normal direction, the filamentation growth rate reads

��k�vb
�
 /�b for k���p /c.

133
In the opposite limit, the

growth rate saturates to the value given in Table I. Oblique

modes are worth mentioning as long as the growth rate map

features an off-axis local maximum. Figure 6�a� suggests that

such is not the case for nb=np. Indeed, the oblique extremum

vanishes above a threshold value of the beam to plasma den-

sity ratio which depends on the beam Lorentz factor �see

Sec. IV A�. Below this threshold, the electrostatic approxi-

mation gives the following value for the growth rate along

the line Zy =1 �i.e., k� =�p /vb�,8,9

�

�p

=
�3

24/3


1/3

�b

�1 + �b
2
Zx

2

1 + Zx
2 �1/3

. �24�

Let us now comment on the filamentation growth rate. Re-

gardless of the beam density, the factor �b�b
−1/2 shows that

the instability is quenched at low beam velocities. At relativ-

istic velocities, the increased relativistic inertia of the elec-

trons also acts to inhibit the instability. In the intermediate

regime �see Fig. 7�, the growth rate reaches a maximum for

�b = �3��b = �2/3� ,

�25�

� �b

��b

�
�b=�3

=
�2

33/4 � 0.62.

The largest filamentation growth rate therefore reads � /�p

��
�2 /33/4 for a diluted beam and � /�p�2 /33/4 for

nb=np. The cold-fluid model predicts saturated growth rates

in the infinite k� limit for any finite k�. Letting k�→� in

the cold dispersion equation, there follows the dispersion

equation,

��̃ − Zy�
2�b + 
�b

2��1 + 
�2 − 
�b��̃ − Zy�
2�

= ��̃ + Zy
�2��b��̃ − Zy�
2 −




�b
2��p. �26�

Within the cold-fluid limit, this equation is exact for any set

of parameters and allows for a simple numerical comparison

between the fastest-growing filamentation and oblique

modes. Figure 8 plots the maximum growth rate in k-space

computed numerically from Eq. �26� in terms of �
 ,�b�. In

the plane 
=1 ruled by filamentation, the profile correspond-

ing to Fig. 7 is retrieved. In the diluted-beam region where

oblique modes prevail, the scaling �
 /�b�1/3 is also retrieved.

Less expected is that, for large �b’s, the growth rate is a

nonmonotonic function of 
. Naive reasoning would suggest

that an increased beam density results in a more unstable

system. It turns out that from moderate Lorentz factors and

onward, the growth rate reaches a maximum for a density

ratio slightly smaller than unity. This can easily be under-

stood in terms of the relativistic inertia of the return current.

With a density ratio of unity, the Lorentz factor of the

return current is strictly equal to the beam one. Lowering the

beam density tends to reduce the growth rate, but, at the

same time, the rapid drop of the return current’s Lorentz

factor �p= �1−
2�b
2�−1/2 yields “lighter,” more unstable

plasma electrons. For 
 slightly smaller than unity, the latter

effect is found to prevail. The growth rate therefore rises up

to an extremum beyond which the 
1/3 scaling sets in.

2 3 4 5

Γb

0.1

0.2

0.3

0.4

0.5

0.6

Βb� Γb

FIG. 7. �Color online� Factor �b /��b determining the cold filamentation

growth rate for both nb=np and nb�np �Table I�, in terms of the beam

Lorentz factor �b. The factor peaks for �b=�3.

FIG. 8. �Color online� Full spectrum largest growth rate in terms of �
 ,�b�.
Without any free parameter left, this graph is universal. The largest growth

rate the system can experience is � /�p=2 /33/4�0.87 for nb=np and

�b=�3.
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C. Validity of the cold-limit results and thermal
effects

The domain of validity of cold theory can be simply

understood by looking at the underlying mechanism of the

instability in the single-mode approximation. Let us consider

Fig. 9�a� where a group of monokinetic electrons with veloc-

ity v are in phase at time t=0 with a growing wave �k ,�� of

growth rate �k and phase velocity v�=� /k=v. Because all

electrons share the same velocity along the wave vector k,

they remain in phase with the growing wave during one

e-folding time 1 /�k, and the energy exchange is optimum

�indeed, they remain locked all along the linear phase until

the particles and the mode affect each other�. Consider now

Fig. 9�b�, where electrons have a velocity thermal spread

�vk along the wave direction. Electrons are initially in phase

with the wave. After one e-folding time, the velocity spread

results in a spatial spread ��vk /�k. If this quantity is much

smaller than the wavelength �1 /k, one can consider that the

interaction is monokinetic during one e-folding time, and the

corresponding growth rate remains very close to that derived

in the cold-limit �also referred to as hydrodynamical�. We

thus derive the approximate condition of validity of the cold

approximation,
9

k · �v � �k. �27�

This condition may be fulfilled only in parts of the spec-

trum. When the inequality is reversed, the instability enters

the hot �or kinetic� regime characterized by weaker growth

rates.
26,110

A given configuration can therefore be cold with

respect to the two-stream instability, and “hot” with respect

to filamentation. Note also that the effective velocity spread

involved in Eq. �27� depends in practice on the model distri-

bution function. For instance, in the case of Maxwell–Jüttner

distribution �see Sec. III E�, it was found in Ref. 110 that

thermal effects set in when

Tb

mec
2
�

3

210/3�nb

np

�2/3

�b
1/3 �1 + �b

−2�2/3

�1 + �b
−1�2

. �28�

The previous reasoning allows to state quite general

rules about the sensitivity of the various unstable modes to

thermal spreads. In the relativistic regime, the parallel veloc-

ity spread is usually much smaller than the transverse one

�see Fig. 17�. This follows from the relativistic contraction of

the velocity distribution against the velocity of light c. Large

relativistic energy �or momentum� spreads therefore yield

much weaker velocity spreads. Equal energy spreads in the

parallel and normal directions yield a parallel velocity spread

much smaller than the transverse one. In the waterbag case,

the latter is larger than the former by a factor �b
2.

135
For the

Maxwell–Jüttner distribution in the weak-temperature limit,

the factor is rather �b.
110

Now, the sensitivity of unstable

modes to a given thermal spread depends on their orienta-

tion. Transverse spreads do not detune beam electrons from

beam-aligned modes, which are therefore weakly affected.

Conversely, parallel spreads hardly alter normally develop-

ing modes.

To summarize, two-stream modes will be essentially

sensitive to the parallel velocity spread, which is usually

rather weak, whereas filamentation modes will be mostly af-

fected by the usually much larger transverse velocity spread.

As a consequence, oblique modes will be increasingly stabi-

lized by a given beam temperature as they make an increas-

ing angle with the beam direction.

D. Waterbag model, limits, and results

Waterbag distributions �see Fig. 5� have been frequently

used in the literature as a first step toward a more elaborate

kinetic treatment.
52,105

While they cannot render Landau

damping 
�f /�v and exaggerate the number of hot particles,

they usually allow further analytical calculations than Max-

wellian functions and make it easy to model transverse or

parallel thermal spreads. Silva et al.
52

modeled thermal

spread effects on the filamentation instability using trans-

verse waterbags for the beam and the plasma, with no paral-

lel thermal spreads. These calculations have been extended

to the full unstable spectrum for nonrelativistic thermal

spreads, �E�mec
2.

15,16
Results reported here are valid for

any thermal spread. We consider for the beam and the plasma

waterbag distribution functions in momentum space,

f j
0 =

��pz�
4P j�P j�

���px + P j�� − ��px − P j���

� ���py − P j + P j�� − ��py − P j − P j��� , �29�

where ���� is the step function �����=1 for ��0 and 0

otherwise�, P j the mean momentum drift for the beam and

the plasma, and P j� , P j� the parallel and transverse thermal

spreads. The lengthy analytical expressions of tensor ele-

ments �8� have been derived and are reported in Appendix A.

Note that, instead of the �Px , Py� space, alternate waterbag

t = 0

v

t = 1/δk

v

vφ vφ

t = 0

v, ∆vk

t = 1/δk

vφ vφ

∆vk/δk

(a)

(b)

FIG. 9. �Color online� �a� A group of monokinetic electrons initially in

phase with a growing wave remains so during one e-folding time. �b� A

thermal velocity spread produces a spatial spread at t=1 /�k, where �k is the

growth rate. If this spread is much smaller than the wavelength, the inter-

action is quasimonochromatic.
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models have also been worked out in momentum cylindrical

coordinates
105

or in the �Py ,�� space.
57

The limit of validity of the waterbag model can be as-

sessed by comparing the moments of distribution �29� with

those of a Maxwellian. Consider the shifted 1D Maxwellian,

FM�p� =
1

��pT

exp�− � p − p0

pT

�2� , �30�

and the corresponding waterbag distribution,

FW�p� =
1

2pT

���p − p0 + pT� − ��p − p0 − pT�� , �31�

both normalized to unity and describing a momentum distri-

bution shifted around p0 with thermal spread pT. The insta-

bility analysis involves quadratures of the type 
dpg�p�F�p�,
where g is a function of the momentum. Assuming the func-

tions g�p� can be Taylor expanded over �p0− pT , p0+ pT�, we

can assess the accuracy of the waterbag approximation by

evaluating the discrepancies between the moments


dppnF�p�, n�N, for the two distributions. For n=0 and 1,

both moments are equal to 1 and p0, respectively. For n=2,

the moments differ with


 dpp2FM�p� = p0
2�1 +

pT
2

2p0
2� ,

�32�


 dpp2FW�p� = p0
2�1 +

pT
2

3p0
2� .

A proper rescaling of the thermal spread parameter in the

waterbag model can allow for the second moments to

coincide.
22

But moments for n�2 differ anyway, and the

parameter measuring the difference is clearly

� =
pT

p0

, �33�

which shows that the waterbag model requires pT�p0. A

finer analysis may unravel different criteria in terms of the

thermal spread orientation or the part of the k spectrum un-

der scrutiny. Overall, it turns out that waterbag models can

be trusted only for nonrelativistic thermal spreads.

An additional value of the waterbag distributions is the

possibility to adjust parallel or perpendicular thermal

spreads. The interplay between the various temperature pa-

rameters has been reported in Refs. 15 and 16, confirming

the heuristic conclusions about thermal effects reached in

Sec. III C.

Figure 10�a� displays the 2D growth rate map obtained

for nb /np=0.1, �b=4, Pb� = Pb�=0.2mec, and Pp� = Pp�

=0.1mec. In stark contrast to Fig. 6�b�, thermal effects now

single out one dominant unstable mode instead of a con-

tinuum of unstable modes. The location of the dominant

mode at �kx ,ky�= �2.07,0.93� evidently depends on the cho-

sen set of parameters �density ratio, beam drift velocity,

beam, and plasma temperatures�. The identification of the

dominant mode in terms of the parameters is a nontrivial task

and gives rise to the concept of “hierarchy map” explained in

Sec. IV.

Another noticeable feature of Fig. 10�a� is a narrow ob-

lique strip of unstable modes extending up to k=�. The criti-

cal angle associated with this unstable continuum can be

derived exactly
15,16

from the overlapping of the singularities

of the dispersion function det T�k ,��. Physically speaking, a

singularity results from the resonant coupling between a

wave �k ,�� and those electrons satisfying �−k ·vb=0. When

calculating the quadratures involved in the dispersion func-

tion with waterbag distributions, the end result is singular for

a number �say, l� of frequencies �� j
s�k�� j=1. . .l. It can be

shown that for some orientation�s� of the wave vector, some

singularities overlap, implying a resonant coupling with vari-

ous electrons populations. As a result, waves propagating in

this direction are preferentially amplified. This spurious ef-

fect is mitigated with more realistic Maxwell–Jüttner func-

tions, as large-k waves are eventually Landau-damped.

Figure 10�b� shows a vector field representation of the

electric fluctuations for the parameters of Fig. 10�a�. In the

cold-limit, growth rate �24� along the line k�vb /�p=1 has

been derived through the longitudinal �i.e., electrostatic� ap-

proximation k�E1=0. According to Fig. 10�b�, this ap-

proximation also holds in the waterbag case over a broad

unstable region encompassing the dominant modes. Figure

10�b� also confirms the finite electrostatic component of fila-

mentation modes discussed at the beginning of Sec. III.

FIG. 10. �Color online� �a� Growth rate map ��e units� with the waterbag

model for nb /np=0.1, �b=4, Pb� = Pb�=0.2mec, and Pp� = Pp�=0.1mec. �b�
Vector field representation of the corresponding electric fluctuations. The

flow is along the y axis.

FIG. 11. �Color online� Growth rate map ��e units� for Pb� = Pb�=mec.

Other parameters are those of Fig. 10. The flow is along the y axis.
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Representative changes brought about by raising the

beam momentum spread are depicted in Fig. 11 for Pb�

= Pb�=mec. The maximum growth rate is then reached

closer to the parallel y axis ��kx ,ky�= �0.77,1.06��, a trend

pointed out a long time ago in the electrostatic

approximation.
9–11

Besides, the angle between the parallel

axis and the oblique unstable ridge is decreased, in qualita-

tive agreement with the low-temperature cases addressed in

Refs. 15 and 16. The figure also exhibits a complete suppres-

sion of the filamentation instability. Such stabilization can be

achieved for waterbag
15,16,52,105

or Maxwellian-like
59,104

dis-

tributions, but not with Maxwell–Jüttner functions.
110

Fur-

thermore, the cancelation threshold, when it exists, can be

very sensitive to the background plasma distribution �see

Ref. 136 and discussion in Sec. III F�. The stabilization pro-

cess requires the thermal pressure to balance the pinching

magnetic force, and the largest unstable kx can be derived

heuristically from this physical principle.
52

For distribution �29�, the stabilization condition is given

in Appendix B where Eqs. �B1�–�B4� generalize the formula

given in Ref. 52 for a simpler waterbag configuration. Figure

12�a� plots the resulting stabilizing momentum spread for

two values of nb /np. For the parameters of Figs. 10 and 11,

filamentation is stabilized for Pb��0.8. Note that modest,

nonrelativistic transverse spreads suffice to suppress the fila-

mentation at very low �nb /np�0.01� beam densities.
52

The evolution of the maximum growth rate as a function

of the beam thermal spread is plotted in Fig. 12�b� for two

values of nb /np. Both curves exhibit a transition between a

rapidly and more slowly decreasing behavior. The threshold

thermal spread, which decreases with the beam density,

corresponds to a transition from the oblique regime toward

a two-stream-dominated regime.
9,19

This feature will be fur-

ther discussed in Sec. IV for the case of Maxwell–Jüttner

distributions.

The overall relativistic spectrum is weakly sensitive to

the parallel momentum spread because of the velocity of

light barrier �Sec. III C�. In this respect, Figs. 12, which have

been computed setting Pb� = Pb� in Eqs. �B1� and �B2�, turn

out to be almost independent of Pb�. In this respect, Fig. 13

displays two waterbag spectra computed varying only the

beam parallel spread with Pb� =2�10−2mec for Fig. 13�a�
and Pb� =2mec for Fig. 13�b�. The two plots are remarkably

similar, although the parallel momentum spread has been

multiplied by 100 between them.

As will be shown in Sec. V B, theoretical 2D unstable

spectra for waterbag distributions have been successfully

checked against PIC simulations.
19–22

Yet a more realistic

modeling of relativistically hot systems requires the use of

smooth distribution functions, in particular, so as to properly

account for the high-k-Landau damping. Such is the topic of

Sec. IV.

E. Maxwell–Jüttner calculations

Although derived by Jüttner
137

in 1911, the relativistic

generalization of the Maxwellian distribution function has

had its validity questioned since the 1980s. These doubts

were recently ruled out by molecular dynamics

simulations.
124,138

For a beam drifting along the y direction,

the so-called Maxwell–Jüttner distribution function in mo-

mentum space reads

f0�p� =
�

4��2K2��/��
exp�− ����p� − �bpy�� , �34�

where �=mec
2
/kBT is the normalized inverse temperature

and K2 the modified Bessel function of the second kind.

There result the following moments:
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FIG. 12. �Color online� �a� Momentum spread �mec units� stabilizing the

filamentation instability vs the beam relativistic factor in waterbag model

�29� for two beam-to-plasma density ratios. �b� Maximum growth rate ��e

units� as a function of the beam thermal spread �mec units� in the waterbag

model for two beam-to-plasma density ratios. The beam Lorentz factor is

�b=4. Parallel and transverse beam spreads are set equal in both cases.

FIG. 13. �Color online� Waterbag spectra ��e units� for a beam parallel spread of Pb� =2�10−2mec �a� and Pb� =2mec �b�. Density ratio is 
=0.1, beam

Lorentz factor �b=10, and plasma temperatures Pp� = Pp�=10−2mec. The beam transverse spread is mec in both cases.
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 d3pf0�p� = 1,

�35�


 
 
 d3pf0�p�
py

m��p�
= �b.

An unexpected virtue of the Maxwell–Jüttner distribution is

that the triple integrals involved in the dispersion equation

can be reduced to much more tractable one-dimensional

quadratures using a change of variables mentioned in Ref.

139. The effective calculation, together with the details of the

numerical resolution of the dispersion equation in the com-

plex plane, have been reported in Ref. 110. A typical calcu-

lation of the growth rate vs. k is plotted in Fig. 14. The

system is characterized by nb /np=1, �b=1.5, Tb=2 MeV,

and Tp=5 keV. Oblique modes are found to govern the sys-

tem, which is a purely thermal effect since cold systems with

nb /np=1 are ruled by filamentation �see Fig. 18�. In contrast

to the waterbag model yielding a critical direction unstable

for any k’s, the unstable spectrum is here bounded. This is a

consequence of the Landau damping of high-k modes asso-

ciated with smooth distribution functions.

The kinetic growth rate scalings for the three instability

classes are reported in Table II. The correlation between two-

stream and oblique modes is striking, as they only differ

through the Lorentz factor scaling.

F. Filamentation versus Weibel instabilities

Filamentation and “Weibel” instabilities are used almost

interchangeably in the literature, and a brief comparative dis-

cussion of these two instabilities maybe useful at this stage.

Weibel
6

found that purely transverse waves can grow

exponentially within an anisotropic plasma at rest. Fried
5

provided a physical interpretation of the Weibel instability

by showing that counterstreaming cold beams are also

prone to modulations growing normal to the flow. To

our knowledge, the oldest occurrence of the term “filamen-

tation instability” in relation with Fried’s article is due

to Benford in Refs. 140 and 141. The process of beam

filamentation has since then been alternatively referred

to as filamentation instability,
28,51,59,92,114,142,143

Weibel

instability,
52,61,104,112,113,144

or both at the same time.
54,55,145

Figure 15 explains the basis for the analogy developed

by Fried. The anisotropic hot plasma with thermal velocities

Vty�Vtx is unstable in Weibel’s sense. The fastest growing

modes are found for k=kxex �Ref. 146� with a maximum

growth rate,
6

�W = �e

Vty

c
, kx �

�e

c
, �36�

where �e is the electronic plasma frequency. Simply put,

Weibel modes grow preferentially along the lower-

temperature axis. Fried then stated that, by virtue of its ex-

treme anisotropy, this system is similar to the one pictured on

the right side. This implies that the system’s dynamics should

be mainly governed by the group of energetic particles lo-

cated �in velocity space� around �Vtyey. The cold-fluid in-

stability analysis for this system readily gives the maximum

growth rate �see Table I and Ref. 28�,

�F = �e

Vty

c
, kx �

�e

c
, �37�

for wave vectors aligned with the normal x axis �see Fig.

6�a�� �the substitution of the total plasma frequency �e for

the background plasma frequency �p explains the disappear-

ance of the factor �2 present in Table I�. The two systems

pictured in Fig. 15 definitely share striking features: both are

unstable with respect to an extended range of wave numbers,

but the dominant modes are transverse and aligned with the

x-axis. Furthermore, the growth rate’s expressions are

very similar, although not analytically strictly identical for

kx��e /c.
28,146

This equivalence, however, holds only for

symmetric beams. Otherwise, several important differences

arise between filamentation and Weibel modes. First, Weibel

modes are exactly transverse. This was assumed by Weibel

FIG. 14. �Color online� Growth rate map ��e units� with the Maxwell–

Jüttner model for nb /np=1, �b=1.5, Tb=2 MeV, and Tp=5 keV. The flow

is along the y axis.

TABLE II. Kinetic scalings of the maximum filamentation, oblique and

two-stream growth rates in the high �b- and Tb-limits �Ref. 110�. For the

cold-fluid scalings, see Table I.

Parameters Filamentation Oblique Two-stream


=nb /np 
3/2 
 


�b �
�1� �b
−1/2 �b

−1/3 �b

Tb �
�1� Tb
−3/2 Tb

−1 Tb
−1

2Vty

2Vtx
Vty-Vty

Weibel unstable Filamentation unstable

x

y

x

y

FIG. 15. Typical distribution functions subject to the Weibel and the fila-

mentation instabilities. An anisotropic Weibel-unstable hot plasma can be

approximated by a cold filamentation-unstable two-beam system.

120501-12 Bret, Gremillet, and Dieckmann Phys. Plasmas 17, 120501 �2010�

Downloaded 31 Mar 2011 to 130.236.83.30. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



and demonstrated by Kalman et al.
146

By contrast, filamen-

tation modes are usually not transverse. As already men-

tioned in Sec. III, dispersion equation Eq. �17� for transverse

filamentation waves is valid if and only if the tensor element

	xy�kx ,��=0, ∀ �kx ,��. Within the framework of relativistic

kinetic theory, this tensor element does not vanish unless

both beams are strictly identical, i.e., have the same density

and distribution function. This effect, first discussed in Ref.

116, has since then been further studied
55,117

and is some-

times referred to as “space charge effect.”
55,61,147,148

As a consequence, the filamentation and Weibel insta-

bilities can be switched on and off independently from each

other, and even made to interfere with one another �see Fig.

16�. In addition to the usual case of a filamentation unstable

beam propagating through a Weibel-stable plasma, a

filamentation-stable beam may coexist with an anisotropic,

Weibel-unstable plasma. But these two instabilities can also

be coupled.
15,16

By raising the parallel plasma temperature

above its perpendicular one, both the Weibel �plasma� and

filamentation �beam� instabilities amplify transverse modula-

tions. In such a configuration, the two instabilities strongly

interact, and the filamentation instability gets increasingly

resistant to large beam temperatures, until it can no longer be

suppressed. As a result, the threshold beam temperature for

stabilizing the filamentation instability could be extremely

sensitive to the anisotropy of the background plasma.
136

Lazar and Stockem worked extensively on this

topic,
120,121,149–151

implementing kinetic calculations for

Maxwellian as well as kappa distribution functions. They

found a systematic enhancement of filamentation when the

plasma is hotter in the beam direction. Conversely, the effect

is reversed if the plasma is colder along the beam flow.

G. Phase velocity diagram

The phase velocity v� of an unstable mode is a key

quantity determining how it interacts with a given particle

population. For the flow-aligned direction, it is well-known

that two-stream modes travel close to the beam speed in the

hydrodynamical regime, with vb−v�=O��nb /np�1/3�.4,152
In

the kinetic regime, they resonate with the part of the electron

distribution satisfying v=v�, and therefore v��vb for �v

�vb. By contrast, filamentation modes with k�vb are purely

growing modes with v�=0.
5,153

The phase velocity vector of

an arbitrarily oriented mode of real frequency � reads

FIG. 17. �Color online� Phase velocity diagrams for a hot relativistic beam

passing through a 5 keV plasma. Parameters are nb /np=0.1 and �b=4. Beam

temperatures are 5 keV �a�, 50 keV �b� and 1 MeV �c�. Upper plots: growth

rate maps ��e units�. Lower plots: phase velocity diagrams. The beam �red�
and plasma �blue� velocity distributions formally extend all over the domain

v�c. The contours shown are isocontours of the distribution functions en-

closing 99% of the particles. For Tb=1 MeV, the contour appears like a

line.

Px

WS FU

Py

Px
WU FU

Px

WS FS

Px

WU FS

(A)

(B)

(C)

(D)

Interaction

k k

BeamPlasma

Py

FIG. 16. �Color online� Schematic representation of various settings involv-

ing the Weibel and the filamentation instability. �a� The plasma is Weibel

stable �WS�, the beam is filamentation unstable �FU�. �b� The plasma is

Weibel stable, the beam is filamentation stable. �c� The plasma is Weibel

unstable �WU�, the beam is filamentation stable �FS�. �d� The plasma is

Weibel unstable, the beam is filamentation unstable, and the two instabilities

interact.
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v� =
�

k

k

k
. �38�

Normalizing the phase velocity to vb and introducing the

dimensionless wave vector and frequency defined in Eq. �19�
gives

v�

vb

� V� =
�̃

Z

Z

Z
. �39�

The phase velocity diagrams shown in Fig. 17 are con-

structed by scanning the unstable spectrum �upper frames�
and computing the phase velocity of each unstable mode.

The resulting points are then plotted in velocity space �lower

frames� and colored according to the growth rate. Plotted on

the same graphs are the velocity extensions of the beam and

plasma distributions, here taken in the Maxwell–Jüttner form

with nb /np=0.1, �b=4 and varying Tb. The isocontours are

chosen to enclose 99% of the electrons of each population.

Relativistic effects are obvious for Tb=1 MeV as the spread

extends almost exclusively in the transverse direction. The

temperature dependence exhibited in Figs. 17�a�–17�c�
illustrates that qualitatively described in Sec. III C: for

Tb=5 keV, filamentation modes are still unstable and visible

near v�=0 on the phase velocity diagram. At Tb=50 keV,

most of the intermediate modes between filamentation and

the oblique have been stabilized. By Tb=1 MeV, all modes

with k�vb /�e�0.8 and v�� /vb�0.2 are damped.

The approximation ��k ·vb �valid in both the weak-

velocity spread kinetic limit and the diluted-beam hydrody-

namic limit� gives in dimensionless units �̃=Z cos �, where

� is the angle between vb and k. In polar coordinates, Eq.

�39� thus reads V�����cos �, which correctly describes the

upper semicircular limit of the weak-temperature case exem-

plified in Fig. 17�a�. In general, though, the monokinetic ap-

proximation may not apply over the whole spectrum.

The hydrodynamical or kinetic character of any unstable

mode of wave vector k and phase velocity v� can be then

roughly gauged from the number of particles whose pro-

jected velocities on the k direction k ·v /k fall close �i.e.,

within �� /k according to Fig. 9� to v�. As a result, thermal

effects appear negligible for the fastest-growing parallel

mode for Tb=5 keV �Fig. 17�a��, whereas they most prob-

ably affect it for Tb=1 MeV �Fig. 17�c��. Likewise, these

diagrams reveal the kinetic coupling of the dominant oblique

modes with particles having v��0. They also evidence the

proximity of some plasma electrons with the dominant ob-

lique modes for Tb=5 keV. Once amplified to a nonlinear

level, these modes may then trap both beam and plasma

electrons.
19

Finally, projecting the distribution functions on

the filamentation axis �i.e., the vertical axis in Fig. 17� allows

to understand why transverse beam spread can affect this

instability more than the parallel one.

H. Fluid models

A kinetic treatment of the unstable modes is required

when condition �27� is not fulfilled, that is, when there is a

significant number of electrons satisfying the resonance con-

dition �see Sec. III G�. When the cold approximation is jus-

tified, the dispersion relation obtained from the kinetic cal-

culation by setting all distributions to Dirac’s � functions

evidently coincides with that derived directly from the cold-

fluid equations. These write for each species j,

�n j

�t
+ � · �n jv j� = 0, �40�

�p j

�t
+ �v j · ��p j = q j�E +

v j � B

c
� , �41�

where p j =m jv j�1−v j
2
/c2�−1/2. The continuity equation

readily yields the first-order density perturbations,

n j1 = n j0

k · v j1

� − k · v j0

, �42�

where subscripts 0 and 1 stand for the equilibrium and first-

order quantities, respectively. Linearized momentum equa-

tion �41� yields a purely relativistic term on its left-hand side,

im j� j�k · v j0 − ���v j1 + � j
2v j0 · v j1

c2
v j0� , �43�

where � j = �1−v j0
2

/c2�−1/2. The first-order velocities v j1 are

then expressed in terms of E1 alone, eliminating the n j1’s

through Eq. �42� and the magnetic field through Eq. �4�. The

resulting expressions allow for the calculation of the first-

order current, and Eq. �5� eventually gives the dispersion

equation. This approach has been used by several

authors
9,112,116,154

to analyze the cold unstable spectrum, and

their results are evidently those reported in Sec. III B.

Problems arise when a velocity spread is introduced at

the kinetic level. A pressure term −�P j /n j then appears in

the fluid �moment-based� description in the right-hand side

of Eq. �41� which, in principle, is a function of higher-order

moments whose space-time evolution has also to be simulta-

neously addressed. There results an infinite system of mo-

ment equations that has to be truncated at some point by

means of a closure argument, which is made here compli-

cated by the regime of interest being both relativistic and

collisionless.

Using the fluid equation requires, in fact, a two step

questioning. �1� To which extent can a velocity distribution

be replaced by a single, “equivalent” fluid velocity v j0 in

Eqs. �42� and �43�? �2� In case the fluid approach is valid,

how to close the system of equations?

Question 1 can be answered by means of the phase ve-

locity diagrams of the previous section, and the outcome

obviously depends on the kind of mode considered. For ex-

ample, Fig. 17�b� suggests that for the parameters consid-

ered, a fluid approximation aiming at the description of the

most unstable oblique mode should be valid for the plasma,

but not for the beam.

Turning now to question 2, the isothermal assumption is

generally made because the linear analysis of electron beam-

plasma instabilities is concerned with the early phase of the

system evolution. In this respect, many related studies

have employed classical isothermal pressure terms

�P j =3kBT j�n j, which are expected to be valid for nonrela-

tivistic temperatures kBT j�m jc
2 only.

12,50,155–159
More elabo-
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rate, and generally less tractable, covariant derivations of flu-

idlike equations have been given in Refs. 160–163, without

being thus far exploited in the context of relativistic beam-

plasma instabilities. Yet, no matter how involved they may

be, fluidlike models are intrinsically flawed by their failure to

capture collisionless �Landau� wave-particle resonances and

are therefore restricted to describing nonresonant processes

such as the quasielectrostatic �parallel or oblique� instabili-

ties in the weak-velocity spread, nonkinetic regime, or, to

some extent, the filamentation instability. Simple warm-fluid

models may thus render correctly the �weak� beam tempera-

ture effects on the filamentation instability,
14,104

while failing

to account for plasma temperature effects.
14,16

Overall, pro-

vided accurate enough closed-form expressions of the rela-

tivistic pressure tensor can be worked out, warm-fluid and

waterbag approaches share similar domains of validity and

yield very similar results.

The much simplified formalism associated with warm-

fluid models becomes particularly valuable when addressing

magnetized systems for which the kinetic formalism involves

coupled three-dimensional �3D� quadratures over the veloc-

ity space due to the energy-dependent magnetic Lorentz

force. The analytical effort required to compute the magne-

tized kinetic conductivity tensor is such that it was termed as

a “daunting task” by Clemmov and Dougherty �see Ref. 100,

p. 335�. It is generally found more convenient to employ the

fluid equations from the start rather than taking the fluid limit

of the kinetic expressions. Such a direct approach was fol-

lowed to address the 2D unstable spectrum of magnetized

beam-plasma systems in the cold
133

or warm
98,164

limits and,

lately, to assess quantum chromodynamical instabilities in-

duced by relativistic jets.
34

Only recently was carried out the

first fully kinetic treatment of a magnetized beam-plasma

system.
165

IV. DOMINANT MODE: THE HIERARCHY MAP

Given the existence of three distinct instability classes,

the question naturally arises about their relative hierarchy in

the system parameter space. In other words, given an arbi-

trary set of beam-plasma parameters, to which instability

class does the fastest-growing mode belong? A two-stream

governed regime will generate density stripes perpendicular

to the flow and excite electrostatic modes. A filamentation

regime prompts filaments and electromagnetic modes. Ob-

lique modes are rather electrostatic and produce finite length

filaments sometimes referred to as “tilted” filaments.
166,167

The kind of spatial structures
17

and the nature of the excited

modes are therefore directly related to the most unstable one.

A. Cold-fluid model

This problem is readily solved in the cold-fluid limit

since only two independent parameters are then involved

�the beam-to-plasma density ratio and the beam energy�.134
A

2D graph ��b ,
�� �1,��� �0,1� therefore suffices to picture

the domains governed by each instability class.

Figure 18 shows that filamentation modes govern the

high beam density regime while oblique modes dominate for

diluted beams. For �b=1+	 , ∀	�0, two-stream modes

grow slower than oblique modes, which explains why no

part of the graph is dedicated to two-stream modes. The in-

tricate part of the frontier is due to the nonmonotonic behav-

ior of the filamentation instability �see Sec. III B�. The low-

est point of the filamentation/oblique frontier is reached for

�b = 2.44,

�44�

 = 0.53,

so that a cold system with nb /np�0.53 cannot be governed

by the filamentation instability. Another salient feature of the

cold-limit hierarchy is the frontier behavior in the ultrarela-

tivistic regime. Figure 18 makes it clear that the ultrarelativ-

istic regime is governed by oblique modes as the frontier

between the two domains seems to approach unity for large

�b. Labeling 
 f��b� the equation of the frontier, the quantity

1−
 f is plotted in Fig. 19 for �b� �20,105�. A power-law

scaling is obvious, with the fitting formula


 f � 1 − 0.93�b
−0.395. �45�

The coordinates of the most unstable modes in each regime

can be derived from Table I. An important point in this re-
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spect is the discontinuous variation of k� during the transi-

tion. While the normal component of filamentation vanishes,

the normal component of the most unstable oblique mode is

finite. Although all functions involved are continuous �the

dispersion equation is polynomial�, the discontinuity stems

from the multidimensional nature of the unstable spectrum.

Temperature effects, which are now introduced, amplify this

feature.

B. Maxwell–Jüttner kinetic theory

The temperature-dependent analysis
18,110

brings in at

least two additional parameters, namely, the beam and

plasma temperatures. The introduction of both transverse and

parallel thermal spreads would lead to a daunting six-

dimensional parameter space. For the sake of tractability, the

kinetic mode hierarchy has been determined using the

Maxwell–Jüttner functions presented in Sec. III E. Since

these functions involve a single thermal parameter, only four

parameters are involved in the hierarchy analysis. Once the

plasma temperature has been fixed, the domains governed by

the various instabilities can be sketched on a 3D graph.

While the frontier between two domains is a 1D curve in the

cold-limit, the frontiers here are 2D surfaces, which are de-

picted in Fig. 20 for a 5 keV plasma.

The surface boundary approximately parallel to the

�b=1 plane defines the two-stream/oblique transition. As ex-

pected, two-stream modes govern the nonrelativistic regime.

Through a balance between thermal and relativistic effects,

some weakly relativistic systems up to �b�2 turn out to be

dominated by two-stream modes. The filamentation/oblique

frontier, confined to rather high density ratios, is more in-

volved. Its overall shape along the �b direction stems from

the behavior of the filamentation growth rate observed in

Fig. 7 and commented in Sec. III B. Note that the frontier

profile in the plane Tb=1 keV matches the 1D curve plotted

in Fig. 18. The surface behavior along the Tb axis now re-

sults from the sensitivity of the filamentation to the beam

temperature. According to the reasoning exposed in Sec.

III C, filamentation modes are more vulnerable to the beam

thermal spread than oblique and two-stream modes. As a

result, for Maxwell–Jüttner distributions, it is found that ob-

lique modes always end up taking over filamentation for high

enough beam temperatures.

V. PARTICLE-IN-CELL SIMULATIONS
AND NONLINEAR REGIME

A huge wealth of simulation studies of beam-plasma in-

stabilities have been reported over the past 40 years. This

section is mostly devoted to a selection of recent PIC simu-

lation results on multidimensional, relativistic beam-plasma

systems, performed with the goal of supporting the afore-

mentioned linear theory, as well as extending it to the non-

linear regime.
19–22

In line with our theoretical framework,

this review is limited to the evolution of uniform systems,

that is, initial-condition problems. Configurations where the

beam is injected into a semi-infinite plasma �thus far mostly

considered in the GRB context
74,76� will not be addressed

here.

A. Elementary nonlinear structures and saturation
mechanisms

Before analyzing the interplay of multiple unstable

waves as they grow and saturate in a realistic high-

dimensional system, we briefly discuss the elementary non-

linear structures arising during the nonlinear evolution of

unstable systems of counterstreaming electron beams. These

are the electron phase space holes, which evolve out of the

electrostatic two-stream instability, and the current filaments

that develop when the filamentation instability saturates. Un-

derstanding the formation of these structures allows for

simple analytical modeling of the primary instabilities which

have spawned them. We will demonstrate key aspects of

their growth and saturation with simulation case studies.

1. Two-stream and oblique instabilities

The parallel two-stream instability that we first consider

here results in the growth of sine waves, which give rise to

periodic chains of electron phase space holes upon

saturation.
177,169

This coherent structuring of the phase space

implies that a single mode eventually dominates the unstable

FIG. 20. �Color online� Views from two different angles of the surface boundaries delimiting the domains governed by distinct instability classes in the

�nb /np ,�b ,Tb� parameter space for a 5 keV plasma. The color code refers to the maximum growth rate in �e units. The surface approximately parallel to the

plane �b=1 defines the two-stream/oblique frontier �two-stream prevails in the low �b limit�. The second surface defines the filamentation/oblique frontier

�filamentation prevails in the high nb /np limit�.
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spectrum, which is usually the case in the cold �hydrody-

namical� regime.
26

In the opposite kinetic case, the wave

spectrum is broad enough to cause the quasilinear relaxation

of the beam. This weak-turbulence problem has been tackled

in Refs. 9, 10, and 26 where it was found that a proper

modeling of the beam relaxation requires accounting for

nonlinear ion-induced scattering and parametric processes.

The scattering in velocity space of the primary unstable

waves outside the beam-resonant region limits their growth

and the related beam energy loss.
170,171

This intricate issue is

clearly beyond the scope of the present review. In the fol-

lowing discussion, we shall ponder instead on the single-

mode regime of the wave saturation.

Electron phase space holes have been observed first in

the numerical experiment in Ref. 86 and were identified as

nonlinear BGK modes.
172

A local excess of positive charge

results in an electrostatic potential, in which the trapped elec-

trons oscillate and form a vortex in phase space. Electrons

are trapped if their kinetic energy in the wave frame of ref-

erence is not sufficient to overcome the wave potential.

Equating the electron kinetic energy and its potential energy

in the wave field gives a separatrix, which is analogous to

that of the nonlinear pendulum in classical mechanics. It sub-

divides the phase space into intervals with trapped electrons

and untrapped electrons. The separatrix contains an x-point,

which corresponds to the unstable equilibrium of the nonlin-

ear pendulum. The oscillation time of the electron goes to

infinity as we approach the separatrix.

An estimate of the fraction of the initial beam energy

converted into electric field energy can be made by describ-

ing the beam dynamics in a coherent wave whose amplitude

has grown suddenly from thermal level to a value high

enough to trap beam electrons. In the nonrelativistic limit,

the beam electrons gyrate almost rigidly in the phase

space.
168,173

Assuming their initial distribution function in

the wave frame is fb�t=0�=��v�−vb�� �where vb�=vb−� /k�, it

becomes after half a trapping period fb�t=�tr /2�=��v�+vb��.
In the laboratory frame, the beam has then lost an amount of

energy �Wb=
1

2nbme��� /k+vb��
2− �� /k−vb��

2��2nbmevbvb�.

For a cold diluted beam, we have vb�=2−4/3�nb /np�1/3
vb,

which yields the relative energy loss,

�Wb

Wb

= 2� nb

2np

�1/3

, �46�

where Wb=
1

2nbmevb
2 is the initial beam energy density. Since

the plasma electrons remain untrapped in the cold regime,

the energy loss is equally split into electric field energy and

plasma kinetic energy. The electric energy density is there-

fore WE= �E2� /8�=�Wb /2. This expression can be recast

as
174

�BE = � eE0k

me

�1/2

=
23/2

91/4� , �47�

in terms of the linear growth rate � and the �nonrelativistic�
electrostatic bouncing frequency �BE of the electrons trapped

close to the potential bottom of the sine wave of amplitude

E0. The above formula simply states that the saturation of the

dominant wave occurs when the response of the beam elec-

trons can no longer be treated as a linear perturbation of the

ballistic motion.

Applying the previous simple reasoning to the relativis-

tic regime of interest here is straightforward, provided the

beam dynamics in the wave frame remains nonrelativistic.
93

Given the phase velocity of the dominant beam-aligned

mode ��=� /kc=�b�1− �nb /np�1/3
/2�b�, a Lorentz transform

yields the momentum of the beam electrons in the wave

frame,

pb�

mec
= ��� pb

mec
− ���b� �

�b�b

2
� nb

2np

�1/3

, �48�

where ��= �1−��
2 �−1/2. The nonrelativistic approximation

therefore holds in the wave frame if �b�b�nb /2np�1/3�1. As-

suming again a rigid rotation of the beam in the phase space,

we have fb�t=0�=��p�− pb�� and fb�t=�tr /2�=��p�+ pb��. The

minimum energy of the beam particles in the laboratory

frame thus reads �b��tr /2�����1−
1

2�b�b
2�nb /2np�1/3�, hence

the fractional energy loss,

�Wb

Wb

�
�b

2�b
2

�b − 1
� nb

2np

�1/3

, �49�

where we have used ����b�1−
1

2�b�b
2�nb /2np�1/3�. In the

limit �b�1, the energy loss therefore appears to depend on a

single parameter, namely,
93

S = �b�b
2� nb

2np

�1/3

. �50�

Within the assumption of nonrelativistic wave-frame dynam-

ics �S�1�, the beam is expected to lose only a small fraction

of its incident energy. The opposite limit S�1 of strongly

relativistic wave-particle interaction is complicated by the

energy variation of the bouncing frequency.
26,93

The rigid-

motor model then no longer holds: some electrons are decel-

erated, while others are accelerated so as to get phase-locked

with the wave. The number of electrons coherently pumping

energy into the wave is therefore lowered, as is the overall

energy loss. A semianalyical estimate of the relative energy

loss, valid in both weakly and strongly relativistic regimes,

has been derived by Thode and Sudan
93

in the case of a

square-shaped wave. It reads

�Wb

Wb

�
S

�S + 1�5/2
. �51�

This formula predicts a maximum energy loss �Wb /Wb

�0.1 at S=2 /3. 1D relativistic PIC simulations have con-

firmed the dependence of the fractional energy loss on the

sole parameter S and agree within 50% with the theoretical

estimates.
26,175

The coupling efficiency of the beam with oblique waves

was first assessed numerically by Thode
175

by generalizing

the reduced simulation method of O’Neil.
168

This simplified

scheme consists in computing numerically the beam elec-

trons’ trajectories while treating the plasma as a mere cold

dielectric. The evolution of the fixed-k wave is calculated

self-consistently through Poisson’s equation. For S�0.45,

the fractional energy loss is found to scale as in Eq. �51� and

is mostly due to parallel modes. For S�0.45, the beam-wave
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interaction is stronger within the range 0�k�� �nb /np�1/3.

The fractional energy loss then proves essentially insensitive

to S and equals �Wb /Wb�0.18. These results, based on the

assumption of a unique unstable wave vector, mainly serve

to indicate qualitative trends. As will be shown by the PIC

simulations of Sec. V C, a quantitative description of the

beam energy loss requires accounting for the temporal

change of the orientation of the dominant mode, and there-

fore a configuration space at least 2D is needed. Also, it will

be shown that in the oblique interaction regime, the domi-

nant waves may be slow enough to trap part of the back-

ground electrons.

In the postsaturation phase of the parallel instability,

neighboring electron phase space holes typically merge or

collapse due to the coalescence instability, until only solitary

ones remain.
86

A second instability affecting electron phase

space holes is the trapped particle sideband instability.
176,177

The oscillation frequency �BE of the trapped electrons close

to the bottom of the electrostatic wave potential is Doppler-

shifted by the motion of the electron phase space hole, to

give observable upper and lower sidebands.
178

The trapped

electrons can couple energy through these sidebands to other

wave modes.

Stable equilibrium distributions between the electrostatic

potential and the modulated electron phase space distribution

can be constructed in form of solitary phase space holes, if

the sideband instability is inefficient. Such distribution func-

tions can be found straightforwardly, if the wave potential is

planar; the phase space distribution is then a function only of

the direction and of the velocity component parallel to the

wave vector. Such electron phase space holes and related

electrostatic structures are revised in depth in Ref. 179.

Electron phase space holes in more than one dimension

are also unstable to transverse instabilities,
88

which are dif-

ferent from the coalescence and sideband instabilities dis-

cussed above. The self-focusing instability amplifies any

charge modulation orthogonal to the wave vector of a planar

electron phase space hole until it is disrupted. A guiding

magnetic field can slow down this instability,
180

prolonging

the lifetime of the multidimensional electron phase space

hole. Despite this multitude of instabilities, the lifetime of

electron phase space holes is sufficient to allow for their

observation in space
181

and in laboratory plasmas, where

proton radiography now permits measurements of their mul-

tidimensional electric field distribution at a good time

resolution.
182

2. Filamentation instability

Pioneering PIC simulations of the filamentation instabil-

ity of counterstreaming electron beams have been performed

in Refs. 91, 92, and 183 and in many consecutive numerical

studies. The filamentation instability is the fastest growing

one if the interacting electron beams have comparable den-

sities and if their speed is at least mildly relativistic �see

Figs. 18 and 20�. The wave vectors of the fastest-growing

waves and the direction vectors of the growing magnetic

field are in this case transverse to the beam direction. The

displacement current then couples the growing magnetic

field to a weak beam-aligned electric field. No transverse

electrostatic field grows during the linear growth phase of the

filamentation instability, unless the beams are

asymmetric.
55,117

However, the Lorentz force imposed by the

growing transverse magnetic field on the beam-aligned cur-

rents and, more specifically, the magnetic pressure gradient

result in the growth of transverse electrostatic fields long

before the instability saturates, even if the beams are per-

fectly symmetric.
184

The development of this instability can be understood as

follows. Individual electrons of both beams interact through

their microscopic currents. Electrons moving in opposite di-

rections repel each other, while comoving electrons are at-

tracted to each other. The initial charge- and current-neutral

equilibrium is thus unstable. A macroscopic �collective�
magnetic field grows by the rearrangement of the beam elec-

trons into spatially separated current filaments, until the elec-

tromagnetic fields become sufficiently strong to confine the

particles to within a filament. This nonlinear saturation

mechanism is termed magnetic trapping.
91

If only one spatial

direction orthogonal to the beam direction is resolved, then

the current distribution can reach a stationary final state for

nonrelativistic beam speeds.
184

Resolving a second orthogo-

nal direction permits the repelling filaments to move around

each other and to merge with other attractive filaments to

larger ones. The typical filament size increases approxi-

mately linearly with time.

Magnetic trapping was early identified as the main

mechanism responsible for quenching the initial filamenta-

tion growth.
91,183

Similarly to the previous analysis of elec-

trostatic two-stream modes, a rough saturation criterion may

be obtained by expressing the fact that the magnetic fluctua-

tions have reached a level high enough to significantly de-

flect the particle trajectories. To this goal, let us assume that

the particles �initially flowing at the velocity v0� evolve un-

der the influence of a stationary magnetic modulation of am-

plitude B0 and wave vector k. Their transverse motion then

obeys the equation

d2x

dt2
=

evy

mec�
B0 sin�kx� . �52�

Particles near x=0 therefore oscillate at the magnetic trap-

ping frequency

�BM = � ev0kB0

mec�0

�1/2

, �53�

where the variations in the longitudinal velocity have been

neglected. We can assume that the instability linear phase is

over when the bouncing frequency becomes of the order of

the growth rate �BM ��.
52,91,126

There follows the saturated

field amplitude,

eBsat

me�ec
� � �

�y

��e

kc
���k�

�e

�2

, �54�

where �� /�y� denotes an appropriate average of � /�y over

the particle distribution. Alternative estimates of the stabi-

lized magnetic field can be derived by equating the cyclotron

frequency to the growth rate or the gyroradius to the modu-
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lation wavelength.
82,113,185–187

The dominant filamentation

mode at saturation may be determined by computing Eq.

�54� over the whole unstable spectrum. This is illustrated in

Fig. 21 in the case of a Maxwell–Jüttner system with nb /np

=0.8, �b=3, Tb=100 keV, and Tp=5 keV. The filamenta-

tion instability is the dominant instability for this set of pa-

rameters. The solid line plots the k-resolved magnetic energy

density normalized to the unperturbed kinetic energy density.

The wave vector associated with the maximum magnetic en-

ergy is slightly lower than the one maximizing the growth

rate �dashed line�. This behavior is consistent with the nu-

merically observed shift of the magnetic spectrum toward

low k’s as the mean transverse temperature of the beam in-

creases due to magnetic deflections.
91,126

The normalized

magnetic energy appears to be a decreasing function of Tb as

is shown in Fig. 22 for the same parameters as before. Fur-

thermore, as already pointed out in Ref. 52, it amounts to

only a small fraction of the initial total electron energy even

in the low-temperature limit.

The late-time interplay of filaments has been examined

with PIC simulations, which resolve the plane orthogonal to

the beam velocity vector,
184,188

and it has been found that the

characteristic size of filaments increases approximately lin-

early with time through the mergers, if the initially spatially

uniform electron beams were equally dense. If the initial

conditions are such that both electron beams differ substan-

tially in their density �
�1�, then the electrons of the diluted

beam are strongly compressed and this beam expels locally

the electrons of the dense beam. The tenuous beam electrons

are channeled into beams, which are immersed in the almost

uniform background of the electrons of the dense beam.

Such current filaments can be remarkably stable,
189

which

has been confirmed with PIC simulations.
51,58

Further mag-

netic pinching of the beam electrons produces a strong elec-

tric field accelerating the ions in the radial direction.
51,190

3. Case studies: PIC simulations

We now illustrate the nonlinear evolution of the two-

stream and filamentation instabilities in form of four ideal-

ized case studies. The most favorable setup for the growth of

the filamentation instability is selected, by modeling two

identical counterstreaming electron beams with �b=�3 �Fig.

7�. Initially, both spatially uniform electron beams have a

Maxwellian velocity distribution with a weak temperature

�570 eV� in their respective rest-frames. The total current

vanishes in the simulation frame of reference by nb=np and

by vb=−vp. Ions are fixed in all four case studies. We illus-

trate the nonlinear evolution of the two-stream and filamen-

tation instabilities in form of four idealized case studies.

The 1D simulation of the two-stream instability will be

followed by a 1D simulation of the filamentation instability.

A third case study addresses the interplay of the two-stream

instability and the filamentation instability by selecting a

beam velocity vector in the 2D simulation plane. Case study

4 illustrates the filament dynamics, if the beams flow or-

thogonally to the simulation plane. All three momentum

components are resolved, even if the simulations are limited

to fewer spatial dimensions. We use 600 grid cells to resolve

the x and y directions in the 1D simulations, where we set the

box lengths either to Lx=14c /�p or to Ly =14c /�p. The 2D

simulations resolve a box of size Lx�Ly by 6002 grid cells.

The beam velocity vectors are parallel to y in case studies

1–3 and parallel to z in case study 4. All boundary conditions

are periodic. Here we consider the initial value problem with

the electromagnetic and relativistic particle-in-cell code

TwoDEM.
191

The 1D simulation box with the length Ly resolves one

two-stream mode with a wave number close to the kyvb /�p

��3 /2�b
3/2 and vb /c�0.82 of the fastest growing one �case

study 1�. We align a box with length Lx with x in case study

2. Figure 23 compares the time evolution of the box-

averaged field energy densities computed by these two 1D

simulations, which are normalized to the initial electron en-
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ergy density. The energy density of the electrostatic Ey,

which is driven by the two-stream instability, is ET. That of

the magnetic Bz component and the electrostatic Ex that grow

due to the filamentation instability are BF and EF.

The energy density ET of the two-stream instability in-

creases beyond the noise levels at �pt�30. Even if we take

into account that a growth of ET becomes visible only after it

exceeds the noise levels, there is still a time lag. The growth

of a charge density wave requires the collective interaction

of electrons at least over a spatial scale that is comparable to

its wavelength. A signal moving at the light speed crosses a

wavelength Ly in about 14 /�p and no coherent wave can

grow before this time. The rapid growth of the filamentation

instability can probably be attributed to its electromagnetic

character and the much shorter wavelengths in the cold-limit.

The beam speed vb in the simulation is larger than the elec-

tron thermal speed by a factor of �25.

The growth phase of the two-stream instability is char-

acterized by an exponential growth rate of the energy density

ET
Ey
2, that is, well below the BF and EF of the filamenta-

tion instability, in accordance with the computed linear

growth rates. The magnetic energy density BF grows expo-

nentially up to a value, which is comparable to the saturation

value of ET. The energy density EF grows after a few �p
−1,

when BF has already reached a value of �10−5. Its exponen-

tial growth rate is, however, twice that of BF in a 1D simu-

lation and it reaches a high value when the filamentation

instability saturates. According to the solution of the linear

dispersion relation, no EF should grow in response to the

filamentation instability if both beams are perfectly symmet-

ric. Furthermore, if the EF would grow in the linear regime,

then the amplitude of Ex should be proportional to that of Bz.

EF should grow in this case at the same rate as BF. The

source mechanism of EF must thus be nonlinear.

The growth of this electrostatic field has been discussed

for �b=1, but for otherwise similar initial conditions in Ref.

184. We repeat this discussion here and demonstrate that the

nonrelativistic description holds initially qualitatively for the

�b=�3 considered here.

Each electron beam is initially a fluid s with the density

ns and mean speed vs
�y. Both beams are identical, apart

from their velocity direction along y, and we consider only

one of them. The fluid evolves according to

�t�nsvs� + � · �nsvsvs� =
qsns

ms

�E +
vs � B

c
� , �55�

where the contribution by the thermal pressure has been ne-

glected.

We sum up the two fluid components and consider the

right-hand side of the resulting one-fluid momentum equa-

tion. The summation gives with ne=n1+n2 and the equal

charge and mass of all particles the expression qsneE /ms

+ �cms�−1qs�n1v1+n2v2��B. The total plasma current Je

=qs�n1v2+n2v2� is rewritten using Ampere’s law Je

= �c /8�����B�, where we have neglected the displacement

current. The right-hand side of the one-fluid momentum

equation then becomes: qsneE /ms+ �8�ms�−1���B��B,

which can be transformed further with the vector equation

���B��B=−�B2
/2+� · �BB�.

The displacement current is neglected here because its

force contribution in the simulation is about an order of mag-

nitude weaker than that due to the magnetic pressure gradi-

ent. The fluid equation then becomes with qs=−e

	
s=1,2

��t�nsvs� + � · �nsvsvs�� =
− ene

me

E −
1

8�me

dxB
2. �56�

We have exploited that in the considered 1D geometry of

case study 2, the spatial derivatives dy =d /dy and dz=d /dz

are zero, so that the magnetic stress tensor vanishes. Only Bz

grows due to the filamentation instability and we arrive at the

simplified equation of the Lorentz force acting on the current

of beam s and modulating the x-component vsx of the beam

velocity vector,

	
s=1,2

��t�nsvsx� + dx�nsvsx
2 �� = −

ene

me

Ex −
BzdxBz

4�me

. �57�

The growth of Bz implies that the second term on the right

hand side is not zero. In the nonrelativistic limit, an electric

field grows to an amplitude EB=−BzdxBz /8�ens and both

terms cancel. We bring forward more evidence for this con-

nection between Bz and Ex below. A more detailed overview

over the plasma dynamics in the 1D simulations is now

given.

Case Study 1. The two-stream instability is expected to

give rise to a sine wave in the simulation box with length Ly.

Lower wave numbers than 2� /Ly are not resolved and the

first harmonic 4� /Ly does, according to the solution of the

linear dispersion relation, not correspond to a fast-growing

wave. However, wave harmonics driven by nonlinear pro-

cesses are always observed in PIC simulations, when the

electrostatic waves have reached a high enough amplitude.

Figure 24�a� demonstrates that the electrostatic waves satu-

rate at �pt�70 and that they oscillate around an equilibrium

distribution after that, which is not a monochromatic sine
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FIG. 23. Normalized box-averaged field energy densities in the 1D simula-

tion: That of Ey driven by the two-stream instability is ET. The energy

densities of the magnetic Bz and electrostatic Ex component of the filamen-

tation instability are denoted as BF and EF.

120501-20 Bret, Gremillet, and Dieckmann Phys. Plasmas 17, 120501 �2010�

Downloaded 31 Mar 2011 to 130.236.83.30. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



wave in space. This is confirmed by a comparison of the

amplitudes of the first two Fourier modes in the simulation

box in Fig. 24�b�. The first harmonic grows rapidly during

65��pt�75 and it saturates shortly after the initial mode.

The amplitudes of both Fourier modes are comparable for

�pt�75.

The cause of the growth of the first harmonic in our case

study is revealed by the electron phase space distribution

fe�y , py , t� in Fig. 25. Initially, the mean momentum along py

of each electron beam oscillates sinusoidally as a function of

y, which is a consequence of the electron motion across the

electrostatic wave potential. That is, practically sinusoidal at

�pt=63 �Fig. 24�b��. The phase velocity of the two-stream

instability vanishes for the symmetric beams we consider

here, and the wave potential grows aperiodically in the box

frame of reference. This is reflected by the steadily increas-

ing amplitude of the electron beam modulation in time,

which is visualized in the time-animation of Fig. 25 in the

online material.

The electron phase space distribution has changed quali-

tatively at �pt=74, when the large primary phase space hole

is about to form in the interval 0.85�y /Ly�0.4 �periodic

wrap-around� and a separate structure fills the remainder of

the simulation box. If the beam speeds were nonrelativistic,

and if we would have a periodic train of phase space holes,

then the structure in the interval 0.4�y /Ly�0.85 would be-

come the x-point of the separatrix between the parts of the

phase space corresponding to untrapped and trapped elec-

trons. Here the substantial relativistic electron mass varia-

tions change the shape of the separatrix and, instead of an

x-point, a secondary phase space hole has formed at �pt

=83 in the interval 0.5�y /Ly�0.8. The primary electron

phase space hole reveals in Fig. 25�c� large-amplitude per-

turbations of its boundary. It is not a stationary phase space

hole, which explains the electric field oscillations in Fig. 24.

Its oscillatory electric fields cause the rotation and the com-

pression of the secondary phase space hole in the time-

animation of Fig. 25. The electrons have filled up a signifi-

cant part of phase space at �pt=133. However, the primary

and secondary phase space holes have not yet merged. The

enhanced stability of relativistic electron phase space holes

against the coalescence instability compared to their nonrel-

ativistic counterparts in a one-dimensional system has been

demonstrated by parametric PIC simulation studies.
192

Case Study 2. We consider now the filamentation insta-

bility in its most basic form. The simulation box of length Lx

is oriented along x and orthogonally to the beam flow direc-

tion y. Figure 26 shows the spatiotemporal distribution of the

Bz, of the Ey that is driven by the displacement current, and

of the electrostatic Ex.

It also compares Ex with the magnetic pressure Bz
2 at an

early time �pt=11. The distribution of Bz evidences an initial

growth phase prior to �pt�15, in which small filaments of
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FIG. 24. �Color online� �a� displays the electrostatic Ey�y , t� computed by

the 1D simulation of the two-stream instability in units of �pcme /e. �b�
shows the amplitude modulus in the wavenumber 2� /Ly �solid curve� and in

4� /Ly �dashed curve�.
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FIG. 25. Ten-logarithmic electron phase space distributions computed

by the 1D simulation of the two-stream instability at the times

�pt=63 �a�, 74 �b�, 83 �c�, and 133 �d�. �enhanced online�. �URL:

http://dx.doi.org/10.1063/1.3514586.1�
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FIG. 26. �Color online� The fields normalized with s0=e /mec�p computed

by the 1D simulation: �a� shows s0Bz, �b� shows s0Ey and �c� s0Ex. The

normalized magnetic pressure 
Bz
2 �solid black curve� is compared to s0Ex at

the time �pt=11 in �d�. The filaments merging process are clearly evidenced

in �a�.
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width �Lx /20 grow. Figure 23 shows that the exponential

growth phase of BF ends at this time. Its value continues to

increase, but not exponentially. A different growth mecha-

nism must be at work.

Figure 26�a� reveals that this further increase of BF is

linked to the merging of filaments after the initial quasiequi-

librium has been established. The flow-aligned Ey or the

electrostatic Ex in Figs. 26�b� and 26�c� do not show a clear

correlation with Bz at late times. The rapid growth of the

filamentation instability implies that, although the wave

growth is aperiodic, the filamentation mode can couple to

high-frequency modes in the plasma. The strong Bz supports

the extraordinary modes in a plasma, to which Ey can couple,

while the Ex can couple to the upper-hybrid wave branch.
193

However, the linear dispersion relation of these waves will

be modified by the oscillations of Bz and of the plasma

frequency.

The electrostatic waves are at least partially pumped by

the magnetic pressure gradient force, as it can be seen at an

early simulation time in Fig. 26�d�, when the electrostatic

field does not yet couple to the eigenmodes of the plasma.

The electric field vanishes, whenever Bz=0 or dBz /dx=0, or,

consequently, when BzdBz /dx=0. This provides a first hint of

the connection between Ex and the magnetic pressure gradi-

ent force.

Figure 27�a� compares EB=−BzdxBz /8�ens with Ex,

where ns is the unperturbed density of one electron beam.

The match would be accurate for nonrelativistic beam

speeds.
184

We have multiplied here Ex by an empirically de-

termined proportionality factor of 1.25. Both curves agree

well at �pt=11, clearly evidencing their connection. This

proportionality also holds as a function of time, as it is dem-

onstrated by Fig. 27�b�. Initially, the Ex is due to the noise

arising from statistical charge density fluctuations in the

simulation. In the interval 6��pt�11, the curve 1.25Ex

matches EB at the selected position. After this time, both

curves diverge as the turbulent wave spectrum develops in

Fig. 26�c�.
Figure 28 visualizes the electron phase space distribu-

tions at two simulation times. The projection fe�x , py� of the

electron phase space distribution shows clusters of electrons.

A location with a higher density on one beam corresponds to

a density depletion on the other; electrons moving in the

same direction attract each other, while those moving into

opposite directions repel each other magnetically. The elec-

trostatic Ex field results in the formation of electron phase

space holes in the projection fe�x , px� of the electron phase

space distribution.

The electron beams are still compact in the projection

fe�x , py� at the late time, but the mean momentum along py of

each beam varies strongly with x and also with time, as the

time-animation of Fig. 28 demonstrates, and we can expect

relativistic mass variations amounting to several rest masses.

The fe�x , px� distribution reveals that electrons have been

heated to relativistic temperatures, which introduces a spread

in the relativistic electron masses at any position x. This

mass variation probably results in the filament merging at

late times here and in simulations of relativistically colliding

leptonic flows
194

because the saturation condition �magnetic

trapping� for the filamentation instability depends on the

electron cyclotron frequency �see Eq. �54��. The latter is here

neither uniform in space or time nor uniform for all electrons

at any given position. By contrast, 1D PIC simulations, with

a value of vb that do not introduce notable relativistic mass

variations, evidence a steady state distribution of the fila-

ments after the saturation.

Case Study 3. We illustrate now the consequence of

resolving a second spatial dimension. We consider first a

beam velocity vector parallel to y in the simulation’s x−y

plane, which combines case studies 1 and 2. The selection of

beam parameters favors the growth of the filamentation in-

stability over the two-stream mode and the oblique modes

because of first a larger exponential growth rate and, second,

because of the delayed growth of the two-stream instability

�Fig. 23�.
Figure 29 plots the time-evolution of the box-averaged

energy density of the magnetic Bz component and of the total

electric field energy density, which are both normalized to

the total initial kinetic energy density of the electrons. It also

displays the spatial distribution of the relevant field compo-

nents at the time �pt=22, when the magnetic field energy

density reaches its maximum in this 2D simulation. The

magnetic energy density does not show the smooth exponen-

tial growth as in the 1D simulation of the filamentation in-

stability, where a uniformity along y was enforced by the

simulation geometry that resolved only x. So we expect that
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FIG. 27. �Color online� The electrostatic 1.25·Ex �blue dashed curve�
is compared in panel �a� to EB=−BzdxBz /8�ens �solid black curve� at

�pt=11. In �b�, the time-evolution of these amplitudes are compared at the

position X /Lx�0.6, where both are maximally positive. All curves are ex-

pressed in units of �pmec /e.

FIG. 28. �Color online� The ten-logarithmic electron phase space distribu-

tions. The distributions for the momentum component along the beam di-

rection are shown in �a� and �b� at the time t�p=10.8, while �c� displays the

total distribution for the momentum component along the simulation direc-

tion. The total distribution for the momentum component along the beam �d�
and in the simulation direction are shown in �e� at �pt=83. �enhanced on-

line�. �URL: http://dx.doi.org/10.1063/1.3514586.2�
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the magnetic field distribution is not uniform along y. The

magnetic energy density exceeds the electric one by a factor

of 3 at �pt�22, but both converge to similar and much

lower values at late simulation times. We observe a strong

magnetic field only during a limited time interval.

The distribution of Bz in Fig. 29�a� reveals a two-

dimensional structuring. The magnetic field stripes are nei-

ther perfectly planar nor aligned with y. Wave modes with

ky �0 must be present. The oscillation period of Bz along y is

Ly, which equals that of the two-stream mode. However, we

find this modulation only in Bz, while the Ey component in

Fig. 29�b�, which is associated with the two-stream instabil-

ity, does not show such oscillations. The spectrum of Bz in

the kx ,ky plane �not shown� reveals that these modes still

belong to the filamentation mode branch. This is in line with

the solution of the linear dispersion relation in Fig. 14�a�,
which predicts the wave growth for small ky �0. These

modes were excluded geometrically in case study 2.

The uniform oblique angle is a finite box effect. The

periodic boundary conditions result in a discrete wave spec-

trum, and here a single dominant mode is responsible for the

uniform tilt. The time-animation of Fig. 29 reveals that ini-

tially small filaments grow, with approximately the same size

as those found in case study 2 prior to �pt�11. The mag-

netic energy density of these small-scale filaments peaks at

�pt�13, when the magnetic energy density in Fig. 29�d�
reaches its first maximum. Thereafter, the magnetic field

shows an intermittent phase, during which the small fila-

ments merge in various locations as in case study 2. We can

then observe in the time-animation of Fig. 29 the develop-

ment of larger magnetic stripes. These saturate at �pt�22

and are responsible for the absolute maximum in the mag-

netic energy density. The magnetic field becomes diffuse af-

ter �pt�22, as the time-animation of Fig. 29 evidences. The

distribution of Bz continues to show a preferential direction

though. Magnetic stripes with a positive or negative ampli-

tude follow the beam �y� direction.

The time-animation of Fig. 29 shows a clear connection

of Bz, Ex, and Ey prior to �pt�13, while no such correlation

is visible after this time. The average size of the structures in

Ex in Fig. 29 is much smaller than that of those in Ey at

�pt�22, suggesting different source mechanisms and wave

modes that are responsible for these fields at late times.

The nonplanarity of Bz and of its generating currents

after �pt�13 imply that we cannot necessarily connect the

turbulent wave fields of Ey to the displacement current and of

Ex to the magnetic pressure gradient force. At this advanced

simulation time, both sources will also have coupled signifi-

cant energy into the plasma eigenmodes, which would com-

plicate further a straightforward interpretation of the data.

What is, however, clear is that the two-stream instability has

not developed, since we do not find a modulation of Ey along

y at this time and later, which could be approximated by a

sine wave with period Ly. The rapid decrease of the field

energy densities in Fig. 29�d� furthermore demonstrates that

the plasma has thermalized at the simulation’s end and the

two-stream instability cannot develop anymore. This case

study 3 confirms our previous hypothesis based on the linear

growth rate that the filamentation instability is the dominant

one for symmetric counterstreaming electron beams with

�b=�3.

Case Study 4. Now we let the electron beams move

orthogonally to the x−y simulation plane to study the inter-

play of the filaments. Figure 30 displays the box-averaged

energy densities of the electric field 
E2, as in Fig. 29. It

also displays the box-averaged energy density of the trans-
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FIG. 30. �Color online� The electromagnetic fields at t�p=22 in the

2D simulation, which resolves the x−y plane, and has the beam direction

aligned with z: The distributions ��a�–�c�� display �Bx+ iBy�, �Ex+ iEy�,
and Ez, normalized to �pmec /e. The box-averaged field energy densities

B2 �dashed blue curve� and E2 are plotted in �d� in units of the

initial electron kinetic energy density. �enhanced online�. �URL:

http://dx.doi.org/10.1063/1.3514586.4�
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FIG. 29. �Color online� The electromagnetic fields at �pt=22 in the 2D

simulation, which resolves the x−y plane, and has the beam direction

aligned with y: The distributions ��a�–�c�� display Bz, Ey, and Ex, normalized

to �pmec /e. The normalized field energies of Bz �dashed blue curve� and of

E are plotted in �d� in units of the initial electron kinetic energy density.

�enhanced online�. �URL: http://dx.doi.org/10.1063/1.3514586.3�
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verse magnetic field 
�Bx
2+By

2�, which grows in response to

the

filamentation instability. The transverse magnetic field

B�= �Bx+ iBy� is compared to the transverse electric field

E�= �Ex+ iEy� and the beam-aligned Ez.

The comparison of the electric field energy density 
E2

in Figs. 29�d� and 30�d� demonstrates that both grow to

about the same peak value �0.04 at �et�22. This is a fur-

ther evidence for an absence of the two-stream instability in

case study 3, as it is excluded geometrically in case study 4.

The magnetic energy densities in case studies 3 and 4 differ.

Only Bz grows in case study 3, while Bx and By grow in case

study 4. The magnetic energy density 
�Bx
2+By

2� in Fig.

30�d� peaks at a value of �0.16, which is approximately

twice that of the magnetic energy density 
Bz
2 in case study

3. This suggests that each magnetic degree of freedom

reaches about the same energy density.

Furthermore, we note that the magnetic energy density in

Fig. 30�d� maintains a high value, which makes it compa-

rable to that in the 1D case study 2. The rapid decrease of the

magnetic energy density in Fig. 29�d� should thus be linked

to the nonuniform distributions along the beam flow direc-

tion y that accelerates the plasma thermalization. The trans-

verse magnetic and electric fields in Figs. 30�a� and 30�b�
show the well-known banded structure, which is characteris-

tic for a filamentation instability driven by counterstreaming

symmetric electron beams.
92

The magnetic bands are sepa-

rating the individual current filaments and they change con-

tinuously their shape, as evidenced in the time-animation of

Fig. 30. This time-animation reveals on various occasions, in

particular, at late times, x-points in �B��, which occur when

the filaments merge in 2D. The time-animation further dem-

onstrates that the filament size becomes through the mergers

comparable to the box size at �pt�50 and we stop the simu-

lation here.

We now turn away from these idealized case studies, in

which the filamentation instability did outgrow all other in-

stabilities, and in which we could isolate individual nonlinear

structures driven by relativistic electron beams. We consider

now a more realistic setting, in which wave modes with dif-

ferent polarizations on different wave branches compete and

interact simultaneously with the electrons.

B. Large-scale simulations: Validation of the linear
theory and related effects

Accurate comparisons between linear and simulation re-

sults during the early phase of beam-plasma instabilities

have been carried out in Refs. 19–22. For illustrative pur-

poses, let us first consider the waterbag configuration yield-

ing the theoretical growth rate map of Fig. 10. This system

was simulated by means of the parallel CALDER code with

the same parameters as linear theory.
19

Periodic boundary

conditions are applied for both fields and particles while ions

are kept immobile. Fields are found to develop rapidly up to

�et=60, at which time the beam density profile undergoes

(a) (b)

(c) (d)

FIG. 31. �Color online� 2D PIC simulation of a waterbag beam-plasma system with nb /np=0.1, �b=4, Pb� = Pb�=0.2, Pp� = Pp�=0.1: �a� beam and �b� plasma

density profiles at the end of the linear phase; simulated growth rate maps calculated from �c� Ex�k� and �d� Bz�k� spectra over 30��et�40. The beam flows

along the y-axis.
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strong oblique modulations ��nb /nb�5�, as displayed in Fig.

31�a�. These modulations translate in the �x , px� phase space

into vortex structures indicative of complete trapping along

the oblique dominant wave direction �Fig. 32�a��. Trapping

therefore proves to be the main mechanism causing the field

saturation. According to past numerical studies of 1D beam-

plasma instabilities,
93,168

this is an expected result given the

hydrodynamical character of the instability in the present

case �k ·�v�0.1���0.18�. The time history of the normal-

ized �to the initial beam energy� particle kinetic energies

plotted in Fig. 33�a� shows at the saturation time ��et�90�,
the beam has lost about 30% of its initial energy. This is 50%

higher than the theoretical estimate of Ref. 175.

The rather slow wave phase velocity of the dominant

oblique modes �� /k=0.34, as compared to � /k=0.91 for the

fastest-growing parallel mode� results in an efficient cou-

pling with the plasma electrons, hence exhibiting pro-

nounced density modulations �np /np�3 �Fig. 31�b��. This

efficient interaction with plasma electrons gives rise to the

partially trapped structures observed in the �x , px� phase

space of Fig. 32�b�, as well as to the quasi-instantaneous

beam-to-plasma energy transfer seen in Fig. 33�a�. This fea-

ture constitutes a major difference with the usual 1D picture

of the relativistic beam-plasma interaction wherein, in the

hydrodynamical regime, the plasma response can be as-

sumed linear.
26,168,175

A close comparison between linear theory and simula-

tion is provided by Figs. 31�c� and 31�d� which plots the

k-resolved growth rates extracted from the exponential evo-

lution of the Ex�k� and Bz�k� spectra over the time interval

30��et�40. The main features of Fig. 10�a� are quantita-

tively reproduced. Note that, because of their relatively weak

Ex content, the growth of the filamentation modes can only

be accurately accessed through the Bz spectrum. The essen-

tially electrostatic nature of the dominant oblique modes is

demonstrated by plotting in Fig. 34 the electric field orienta-

tion of the simulated electric fields during the linear phase.

We observe that the simulation result closely agrees with the

prediction of Fig. 10�b�.
The effect of increasing the beam thermal spread to

Pb� = Pb�=1 is illustrated by Figs. 35�a� and 35�b� which

displays the numerically extracted growth rate maps. The

map obtained from Ey�k� accurately matches that of Fig. 11.

The displacement of the dominant mode toward the parallel

axis is well reproduced. However, the agreement is not that

good as regards the evolution of the filamentation modes

expected to be wholly suppressed in the present configura-

tion. Even though the magnetic field energy is found to be

lower than the electric energy by about two orders of mag-

nitude, it is seen to grow at a comparable rate as evidenced in

Fig. 35�b�. This stems from the rapid smoothening of the

initial waterbag-shaped distribution during the development

of the dominant electrostatic modes. There results a distribu-

tion function slightly differing from the waterbag form for

which the theoretical predictions no longer exactly apply.

The anomalous resistivity generated by the resulting high-

frequency electric fluctuations has also been invoked as an

additional mechanism for the enhancement of filamentation

modes.
61,159

Complete suppression of the filamentation insta-

bility therefore appears difficult to achieve in the parameter

range under consideration, as also further discussed in Ref.

23. Furthermore, one should pay attention to the fact that,

because of an increased wave phase velocity �� /k�0.6� as

compared to the previous case, the initially dominant elec-

trostatic waves interact much less efficiently with the plasma

electrons. Consequently, only the beam electrons are subject

to electrostatic trapping �Fig. 36�a��, while the plasma elec-

FIG. 32. �Color online� �x , px� phase spaces of �a� beam and �b� plasma

electrons close to the field saturation time. The parameters are those of

Fig. 31.

FIG. 33. �Color online� Time histories of beam �red� and plasma �blue�
kinetic energies for �a� Pb� = Pb�=0.2 �a� and Pb� = Pb�=1 �b�. The other

parameters are nb /np=0.1, �b=4, Pp� = Pp�=0.1. All energies are normalized

to the initial beam energy. The gray dashed line indicates the saturation time

of the fields following the linear phase.

FIG. 34. �Color online� Vector field representation of the simulated electric

fluctuations at �et=40. The parameters are those of Fig. 31. The color code

refers to the simulated growth rate.
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trons exhibit anharmonic, yet untrapped, motion �Fig. 36�b��.
As a result, at field saturation, the beam energy loss is

equally converted into plasma heating and field energy �Fig.

33�b��. The total electron distribution function remaining

double-peaked, beam slowing down and plasma heating pro-

ceeds, yet at a much reduced quasi-linear rate.
115,195

The ob-

served instantaneous energy transfer between both popula-

tions suggests the occurrence of nonlinear Landau damping,

whose matching condition �−����k−k�� ·v, where �� ,k�
and ��� ,k�� denote two unstable waves, is easily fulfilled in

2D geometry.
175

2D PIC simulations have also been used to support the

hierarchy map of Fig. 20 within the Maxwell–Jüttner

model.
18

In Figs. 37�a� and 37�b� are plotted the beam and

plasma profiles obtained around the end of the linear phase

for nb /np=1, �b=3, Tb=1000 keV, and Tp=5 keV. As ex-

pected, the filamentation instability prevails, thus yielding

mostly transverse modulations �that stand out more clearly

on the plasma profile due to its weaker temperature�. As a

result, the magnetic energy is found to prevail over the elec-

tric energy, despite a significant contribution of the Ex field

to the charge separation induced by nonequal electron tem-

peratures. Varying the beam drift energy and temperature to

�b=1.5 and Tb=2000 keV causes the system evolution to be

governed by oblique modes �Figs. 37�c� and 37�d��. By con-

trast, changing to a colder and more diluted beam with

nb /np=0.1 and Tb=500 keV leads to a two-stream-

dominated system �Figs. 37�e� and 37�f��.
A noticeable, if somewhat academic, feature of the

Maxwell–Jüttner hierarchy map is that the surface bound-

aries almost make contact for nb /np=1, �b=1.1, and

Tb=100 keV �see Fig. 20�. It has been found
110

that the

spectrum associated with this set of parameters is character-

ized by an almost isotropic �in k-space� continuum of un-

stable modes growing at approximately the same rate

��0.1. Figures 38�a� and 38�b� shows that both the beam

and plasma density profiles are strongly modulated at the end

of the linear phase without exhibiting a clearly defined pat-

tern. The growth rate maps numerically extracted from the

Ey�k� and Bz�k� spectra indeed reveal a very broad unstable

spectrum encompassing both instability classes. It is worth

mentioning that even although the magnetic field energy

ends up exceeding by more than an order of magnitude the

electric energy at later times �100��et�400�, no coherent

structure is then seen to form.

C. Comparisons between 1D and 2D simulations
in the oblique regime

Assuming the initial broadband unstable spectrum gets

sufficiently narrowed at the outcome of the linear stage, one

may think that the beam-plasma dynamics in the oblique

regime can be captured in a good approximation by means of

a 1D PIC simulation whose spatial axis is parallel to the

dominant oblique mode. In fact, such a reduced numerical

description does not manage to accurately predict the beam

slowing down obtained through a 2D simulation. This failure

is illustrated here with the waterbag beam-plasma parameters

of Fig. 31. For these parameters, the initially dominant mode

propagates at an angle �=65° with respect to the beam di-

rection. Plotted in Fig. 39 are the temporal evolutions of the

beam �a� and electric �b� energies as predicted by three 1D

PIC simulations whose spatial axis makes a varying angle

��=0°, 55°, and 65°� with the beam axis. As expected, the

(a) (b)

FIG. 36. �Color online� �x , px� phase spaces of �a� beam and �b� plasma

electrons at the field saturation time. The parameters are those of Fig. 35.

FIG. 35. �Color online� 2D PIC simulation of a waterbag beam-plasma system with nb /np=0.1, �b=4, Pb� = Pb�=1, Pp� = Pp�=0.1: simulated growth rate

maps calculated from Ey �a� and Bz spectra �b� over 50��et�80 and 70��et�80, respectively. The beam drift is along the y-axis.
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�=0° case �restricted to weaker two-stream modes� leads to

a field growth slower than that predicted when resolving the

most unstable direction. However, the field energy keeps an

approximately constant value after reaching saturation. This

strongly contrasts with the rapid drop of the postsaturation

electric energy observed in the large-angle 1D simulations, in

fair agreement with the 2D case. This decrease points to

the instability in the oblique geometry of the trapping struc-

tures generated at the end of the growth stage. Despite

these differences, all 1D simulations predict close values

��7–10%� of the late-time energy loss, which significantly

underestimate the 2D value ��30%�. This discrepancy stems

from the failure of the 1D simulations to account for the

time-varying direction of the dominant mode. Consequently,

the largest reservoir of unstable modes available in a 2D

geometry yields an increased beam slowing down along with

a longer-duration phase of field growth, as evidenced in

Fig. 39�b�.

D. Dynamic transition between distinct regimes
of instability

As already hinted at in Sec. V B, a general result of

multidimensional simulations of diluted-beam-plasma sys-

tems initially governed by quasielectrostatic �oblique or par-

allel� modes is the late-time domination of filamentation.

This takes place through a multiple-stage process as illus-

trated here by a 3D simulation. A Maxwell–Jüttner configu-

ration is considered with nb /np=0.1, �b=3, Tb=50 keV, and

Tp=5 keV. The numerical box consists of 3603 cells with

�x=�y=�z=0.15c /�e. In contrast to previous cases, ion

motion is here accounted for with a realistic mass ratio

mi /me=1836, but it does not affect the system evolution up

to the final simulation time �et=600.

Isosurfaces of the beam and plasma density profiles are

displayed in Fig. 40 at various times. At �et=80, oblique

modulations clearly stand out in both profiles, in agreement

with the theoretical prediction that the system is initially

dominated by oblique modes characterized by �max /�e

=0.07�e at �k� ,k��= �1,0.75��e /c �Fig. 41�a��. The initially

prevailing oblique modes get rapidly stabilized by the heat-

ing and slowing down of the beam, thus allowing purely

parallel modes to take the lead in the field growth. This re-

sults in the flow-aligned modulations affecting the beam and

plasma profiles at �et=160. This transition can be readily

understood from linear theory using the real-time electron

distribution. Beam electrons can be fitted by a Maxwell–

Jüttner distribution with �b=1.6 and Tb=200 keV, whereas

the plasma distribution remains essentially unchanged. For

(a)

(c)

(e)

(b)

(d)

(f)

FIG. 37. �Color online� 2D PIC simulations of Maxwell–Jüttner beam-

plasma systems: beam ��a�, �c�, and �e�� and plasma ��b�, �d�, and �f�� density

profiles at the end of the linear phase with ��a� and �b�� nb /np=1, �b=3,

Tb=1000 keV, ��c� and �d�� nb /np=1, �b=1.5, Tb=2000 keV, ��e� and �f��
nb /np=0.1, �b=1.5, Tb=500 keV. In all cases, Tp=5 keV and the beam

flows along the y-axis.

(a) (b)

(c) (d)

FIG. 38. �Color online� 2D PIC simulations of a Maxwell–Jüttner beam-

plasma system with nb /np=1, �b=1.1, Tb=100 keV, and Tp=5 keV: �a�
beam and �b� plasma density profiles; growth rate maps obtained from �c�
Ey�k� and �d� Bz�k� spectra.

θ = 0°

θ = 65°

θ = 55°

2D

θ = 0°

θ = 65°

2D

θ = 55°

(a) (b)

FIG. 39. �Color online� Comparison between 1D and 2D simulations in the

oblique regime: time evolutions of the normalized electric energy �a� and

kinetic beam energy �b�. The spatial axis resolved in the 1D simulations

makes a varying angle �from 0° to 65°� with the beam axis.
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these parameters, the hierarchy map depicted in Fig. 20 pre-

dicts the system has indeed shifted to the two-stream regime.

The corresponding growth rate map shows a reduced peak

growth rate �max /�e=0.016 reached k� =1.3 �Fig. 41�b��.
We find that the beam experiences its highest deceleration

rate during the oblique-to-parallel transition phase, losing

about 20% of its initial energy over the time interval

80��et�160.

Stabilization of the parallel modes subsequently occurs

through further spreading of the beam and plasma distribu-

tions until a single-peaked distribution is formed. Because of

its strong enough anisotropy, the resulting beam-plasma dis-

tribution remains unstable against filamentation modes,

whose development is depicted in Fig. 40 at �et=320 and

�et=560. Note, in particular, how remaining parallel modu-

lations are smoothened out during this time interval. There

results a typical filamentary configuration consisting of mi-

crocurrents of beam electrons �of radial extent �10c /�e�
surrounded by counterflowing plasma electrons �Fig. 42�. A

this stage, though, the beam-plasma distribution function

proves too severely distorted to be accurately fitted by

Maxwell–Jüttner functions. The magnetic energy is seen to

grow exponentially over 200��et�600 �with B
�

2 �B�
2� at

the effective rate � /�e�0.005. By the end of the simulation,

the beam loss, which amounts to �30% of its initial energy,

has been entirely transferred to plasma electrons.

VI. BEYOND THE BASIC ELECTRON BEAM-PLASMA
SYSTEM

Many extensions of the aforementioned results have

been published over the past decades. The basic system we

have been describing, namely, two relativistic counterstream-

ing electron beams, can be enriched in many ways. On the

one hand, extra physical ingredients can be added such as

finite mass ions, collisions, background magnetic field, quan-

tum effects, etc. On the other hand, one can modify the sys-

tem itself by varying the number and nature of the interact-

ing species. For instance, proton beam-plasma instabilities

may be relevant for the proton-driven FIS
196,197

as well as

some astrophysical settings. Collisions of counterstreaming

e-i or pair �e−e+� plasmas are also under scrutiny for their

potential role in GRBs. Since the present model can be end-

nb = 0.1 at ωet = 80

np = 0.9 at ωet = 80

nb = 0.1 at ωet = 160

np = 0.9 at ωet = 160

nb = 0.1 at ωet = 320

np = 0.9 at ωet = 320

nb = 0.1 at ωet = 560

np = 0.9 at ωet = 560

FIG. 40. �Color online� 3D PIC simulation of a Maxwell–Jüttner beam-plasma system with nb /np=0.1, �b=3, Tb=50 keV, Tp=5 keV, and mi /me=1836:

isosurfaces of the beam �upper plots� and plasma �lower plots� density profiles at successive times. The beam flows rightward.

(a) (b)

FIG. 41. �Color online� �a� Theoretical growth rate map with the parameters

of Fig. 40. �b� Growth rate map for the parameters best fitting the simulated

beam-plasma at �et=160: nb /np=0.1, �b=1.6, Tb=200 keV, and

Tp=5 keV.

FIG. 42. �Color online� Superimposed iso-surfaces of beam �red� and

plasma �blue� density profiles at �et=560.
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lessly refined, we shall restrict the present section to an over-

view of its most investigated and/or worthwhile extensions.

A. Same system, additional effects

Moving ions, collisions, or an external magnetic field

may add unstable modes which were not excited before.

Mathematically speaking, new branches of the dispersion

equation can appear, which may or not overlap in the

k-space. If they do, the full dispersion equation will have

more than one complex root �+ i� with ��0 for a given

wave vector.

A guiding magnetic field was the first additional ingre-

dient considered to potentially affect the multidimensional

unstable spectra of REB systems.
133

Calculations were

performed within the cold-limit, where an analytical treat-

ment of the magnetic field remains tractable. Here, the

strength of magnetization is measured through the parameter

�B=�c /�p, where �c= �q�B0 /mec is the nonrelativistic elec-

tronic cyclotron frequency. A salient feature of the magne-

tized system is the suppression of the filamentation instabil-

ity. For a diluted beam, the threshold is �B��b
�
�b �this

result has been extended to arbitrary beam densities in Ref.

164�. Dividing the inequality by �b yields a very intuitive

relation for the suppression of filamentation instability,

qB0

�bmec
� �p�b� 


�b

, �58�

as one recognizes on the right-hand side the growth rate of

the unmagnetized filamentation instability reported on Table

I. The equation above simply states that when the relativistic

cyclotron frequency becomes larger than the filamentation

growth rate, the electron dynamics is dictated by the external

magnetic field rather than by the instability-driven magnetic

perturbations. This prediction has since then been confirmed

by PIC simulations.
198

Figure 43 shows a filamentation sta-

bilized spectrum. The two-stream profile remains unchanged

�because B0 �vb�, but the rest of the two-stream/filamentation

branch is deeply affected. More unstable branches appear

and intersect, yielding portions of the spectrum where the

same wave vector supports various unstable modes. Some

warm fluid models have been implemented in the magne-

tized regime,
98,164

and Timofeev et al.
165

worked out the full-

spectrum kinetic calculation, considering a cold plasma and a

monoenergetic beam distribution function of the form f0�p�

��p− Pb�e−�2

/��2
, where �� defines the angular spread. This

first step toward the completion of Clemmow and Dougher-

ty’s “daunting task” unraveled a spectrum much richer than

the one coming out of a simpler fluid approach. The adjunc-

tion of a non-flow-aligned magnetic has also been investi-

gated in the cold-limit,
199

mainly in connection with

astrophysics.
200

Accounting for the ion motion may be mandatory in

very weakly unstable cases, or when relativistic effects make

the beam electrons’ inertia comparable to that of the ions. If

the beam is diluted enough, the electron return current re-

mains nonrelativistic. Relativistic effects then result in an

“heavy” electron beam interacting with background ions and

a “light” electronic return-current. Still in the cold regime, it

has been found that the ion motion in the linear phase cannot

be neglected for �b�
Zmi /me, where Z and mi are the ion

charge and mass, respectively.
201

It turns out that a finite ion

mass triggers unstable Buneman modes arising from the ion/

return current interaction.
7,202,203

Note that this criterion ap-

plies to the full spectrum and may differ if restricted to par-

allel or transverse wave vectors. Regarding the latter case,

Fiore et al.
61

found that ion motion renders filamentation

more robust to thermal effects. This conclusion is relevant to

relativistic collisionless shocks which are believed to be me-

diated through the filamentation instability.
82

Lately, much attention has been paid to quantum effects.

Quantum kinetic linear,
204,205

nonlinear,
206

or fluid linear
207

treatments of the “pure” Weibel instability are available,

showing a new purely quantum branch and a general weak-

ening �if not suppression� of the instability. Similar develop-

ment can be found for the two-stream instability,
208

and a

purely quantum branch arising from the theory has indeed

been found connected with the classical one when extending

the calculations to the full 2D unstable spectrum.
209

The

quantum fluid equations,
210–212

where quantum correction

terms are added to the right-hand side of the nonrelativistic

version of Eq. �41�, have been instrumental in dealing with

the filamentation instability, with
213

or without guiding mag-

netic field,
214

the two-stream instability in a magnetized

plasma,
215

or quantum effects on streaming instabilities in

dusty plasmas.
216

Here again, the fluid approach has usually

been selected first to deal with magnetic effects. The same

fluid approach remains so far the basis for multidimensional

investigations of the quantum unstable spectrum.
209,217

Collisional effects have also inspired many studies, aim-

ing, in particular, to characterize the instabilities possibly

excited within the dense precompressed target core in the

FIS. Given the then-expected low beam density, it seems

legitimate to account for the sole collisionality of the �non-

relativistic� background electrons. Two approaches have

been mainly developed so far. The simpler one consists in

FIG. 43. �Color online� Growth rate map ��p units� of the electron beam-

plasma system with a guiding magnetic field. Parameters are 
=0.1,

�B=2, and �b=4. Filamentation is stabilized, and some wave vectors sup-

port more than one unstable mode. Ions are fixed. The flow is along the y

axis.
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adding a Krook collision term  �f0− f� to the right-hand side

of Vlasov equation �1� for the collisional species.
57,114,148,218

The fluid counterpart of this technique features a friction

term to the right-hand side of Euler equation �41� and has

also been implemented by some authors.
156,217

The simplicity

of the Krook approach makes it widely employed in spite of

its known drawbacks �no relaxation to a Maxwellian, non-

conservation of particle number, etc.�. More elaborate treat-

ments for the filamentation
219

or the two-stream
220

instabili-

ties rely on a kinetic Fokker–Planck collision operator,
221

� � f

�t
�

c

=
�

�v
�− F�v�f +

1

2

�

�v
:�D�v�f�� , �59�

where F�v� and D�v� are friction and diffusion operators in

velocity space �see Ref. 99 p. 231, or Ref. 100, p. 315 for

more details�. Noteworthily, a coherent picture of the effects

of collisions has not yet emerged. While some authors find

collisions trigger some extra unstable branch�es�,155,217,222

others find they only modify the existing collisionless un-

stable branch. A general trend, observed regardless of the

number of branches, is that collisions tend to generate larger

filaments by displacing the fastest growing filamentation

modes toward the lower k’s. This is in accordance with

works on the resistive filamentation of a diluted beam in a

collisional plasma ruled by Ohm’s law, which predict the

formation of filaments whose typical width is the beam skin

depth instead of the plasma one.
60,223

Finally, some authors focused on cumulative effects on a

given part of the unstable spectrum. For example, Molvig
59

and then Cary et al.
104

developed a kinetic theory of the

collisional �Krook term� filamentation instability in the pres-

ence of a guiding magnetic field. They found that the stabi-

lizing effects of magnetic field, collisions, and temperature

do add-up, although in a nontrivial way. The full unstable

spectrum accounting for ion motion and a guiding magnetic

field has been recently computed within the cold-fluid limit,

revealing an intricate mode competition.
224

B. Other relevant beam-plasma systems

Beam-plasma systems involving more than two species

are relevant in a number of astrophysical scenarios. For in-

stance, collisionless shocks may arise from colliding

pair/pair
225

or e-p /e-p �Ref. 77� plasma shells �“pair” stands

for a pair e+e− plasma and e-p for electron/proton plasma�.
The unmagnetized dispersion relation of such a four-stream

system has recently been investigated by Michno and

Schlickeiser.
226

Filamentation is found to prevail in the rela-

tivistic regime, whereas the electrostatic instability rules the

nonrelativistic regime. At a later stage, both in GRB or SNR

contexts, as the shock propagates and some Fermi-

accelerated particles �cosmic rays, CR� interact with the up-

stream, the very nature of the unstable system may also vary.

CRs are usually assumed to be protons.
227

Some authors then

have considered a beam of protons neutralized by a cloud of

comoving electrons,
228–230

while others superimposed to the

CRs a beam of slow protons originating from the

upstream.
231

Accounting, in addition, for an external

B-field
133

of arbitrary orientation and strength,
199,200

as well

as for thermal effects �that may depend on the model distri-

bution functions� multiplies the number of potentially rel-

evant configurations. In this context, much attention was de-

voted in recent years to a new instability, first pointed out by

Bell through a MHD approach.
232

It involves nonresonant

Alfvén-like waves destabilized by cosmic rays streaming

through a magnetized plasma with mobile ions. The issue at

stake here, already mentioned in Sec. I C, is the generation

of the magnetic turbulence needed to accelerate particles at

the shock. Now, the level of scattering provided by the inter-

stellar medium turbulent magnetic field seems insufficient to

account for cosmic rays above a few GeV �see Ref. 229 for

more details�. In this respect, the now so-called Bell’s modes

appear as plausible candidates to explain the observational

evidence because they are predicted to saturate at a magnetic

field level much higher than that expected for other electro-

magnetic streaming instabilities such as filamentation. They

are thus able to amplify a seed magnetic field to the desired

level for the particle acceleration process. While these modes

are found for arbitrarily oriented wave vectors, they grow the

most for flow aligned k’s.
233

Figure 44 plots the growth rate of each unstable branch

as a function of Zy =kyvb /�p for Z�=Zx=0. The setup con-

sidered here consists of a nonrelativistic beam of protons

interacting with a much denser plasma in the presence of a

guiding magnetic field. The plasma electrons initially drift

with the protons so as to cancel the net current. For these

wave vectors, the dispersion equation can be cast under the

form

det�
a d 0

− d b 0

0 0 c
� = 0, �60�

which clearly factorizes into three branches �ab+ ıd��ab

− ıd�c=0. The first two factors give rise to the low-k Alfvén

and Bell’s modes. The third branch c=0 yields two-stream

0.001 0.1 10
Z//

10 -7

10 -5

0.001

0.1

ωp

δ

FIG. 44. �Color online� Growth rate of the flow aligned unstable modes for

a cold proton beam with �b=0.4 interacting with a cold plasma 100 times

denser. A guiding magnetic field is accounted for such as �c=10−2�p. Blue

�thin plain�: resonant Alfvén unstable modes. Purple �thin dashed�: nonreso-

nant Bell’s unstable modes. Yellow �bold plain�: Two-stream instability.

Green �bold dashed�: Buneman instability. The proton to electron mass ratio

is 1836.
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modes arising from the proton/proton interaction and

Buneman modes between the electron and the background

plasma. In spite of the fact that Bell’s modes do not govern

the spectrum, the orders of magnitude separating the two-

stream/Buneman modes from the Alfvén/Bell modes cer-

tainly play a role. Two-stream and Buneman modes grow so

rapidly, and on so small a scale-length, that they should satu-

rate even before Bell’s modes start “noticing” them. It is thus

probable that the growth of the former modes simply results

in mere heating of the plasma from the standpoint of the

latter. Bell’s modes have motivated many studies over the

past years, and a number of theoretical
229,234

and numerical

works
230,235,236

have now enriched the initial MHD theory.

The proton beam/plasma interaction is also relevant for

the proton-driven FIS �Ref. 196� which has been proposed as

a more robust alternative to the electron-driven FIS, owing to

the higher ion inertia. This scheme proposes to exploit the

recently discovered possibility of generating intense beams

of high energy protons from the rear surface of solid targets

irradiated by ultraintense lasers.
237–239

This option is being

extensively investigated with the goal of designing the target

and igniting beam parameters �see Ref. 240 and references

therein�. Stability issues were numerically addressed by Ruhl

et al.
241

before an analytical kinetic treatment
242

found that

flow aligned unstable modes should be completely stabilized

under normal conditions.

VII. CONCLUSIONS

The linear and nonlinear processes ruling the evolution

of a relativistic electron beam-plasma system have been re-

viewed. Three instability classes governing the early-time

system’s dynamics have been identified in the 2D k-space.

Section II of this review explained the linear formalism

needed to deal with arbitrarily oriented waves in the relativ-

istic regime for a beam plasma system. Section III then fo-

cused on a current-neutralized relativistic electron beam.

Ions were considered as fixed. The complete 2D unstable

spectrum has been characterized for three kinds of distribu-

tion functions. The differences between filamentation and

Weibel instabilities have been discussed, together with a full

spectrum phase velocity analysis and the possibility of using

a fluid formalism to deal with the problem. The hierarchy of

the competing modes has been established in the system pa-

rameter space in Sec. IV both in the cold-fluid and kinetic

regimes, using in the latter case waterbag and Maxwell–

Jüttner distribution functions. Section V has dealt with PIC

simulations. Theoretical predictions have been confronted to

highly resolved, multimode simulations of the early evolu-

tion of large-scale beam-plasma setups. The main nonlinear

structures generated by the saturated primary beam-plasma

instabilities have been illustrated by reduced case studies and

explained through simple reasoning.

To this stage, the reader may have noticed that a kinetic

evaluation of the multidimensional spectrum accounting for

some realistic distribution functions has only been achieved

for the simplest case of an unmagnetized, fixed-ion, relativ-

istic electron beam-plasma system. Given the number of al-

ternate systems reviewed in Sec. VI, a considerable amount

of work remains to be done. Besides the systematic approach

consisting in dealing with these cases one by one, it could be

possible to unify some of them. For example, the linear

phase of the REB/Plasma case reviewed here is equivalent to

a pair/pair collision as long as there is no external magnetic

field. The reason is that the unmagnetized linear response

only depends on the square of the particle charges. Since

positrons and electrons have the same mass, a pair beam of

electronic density nb is equivalent to an electron beam of

density 2nb. The second pair beam then plays the role of the

return current with doubled density, and all the linear results

exposed in Secs. III and IV can be readily applied, making

sure the dimensionless coefficients from Eq. �19� are prop-

erly rescaled. Maybe it is possible to generalize this ap-

proach, by finding “classes” of equivalent systems. All set-

ups pertaining to the same class would share the same linear

phase, allowing thus for a drastic reduction of the overall

calculations.

Giving up the assumption of an infinite and uniform sys-

tem could allow for a deeper understanding of the beam-

plasma physics relevant in the context of FIS and GRBs.
243

For it to be valid, this approximation first implies that the

situation of interest be defined by scale-lengths much larger

than the modulation scales of the unstable modes. While this

condition is generally fulfilled for most of the collisionless

electron-electron processes, it may be more easily violated

for a system supporting collisional or Bell’s modes �see

Fig. 44�.
Another limitation of the present review is its exclusive

focus on initial-condition problems. For instance, as regards

the FIS, a number of simulation studies have shown that the

filamentation instability rapidly develops, and saturates, over

a narrow region encompassing the laser absorption

region.
48,56

A space-time model of the magnetic spraying of

an electron beam injected through the front surface of a

plasma would then match more closely the actual FIS param-

eters. A difficulty, however, would be to provide an accurate

enough description of the fast electron source given the dem-

onstrated coupling between the laser-acceleration process

and the self-generated magnetic fluctuations.
56

A similar

space-time model, further accounting for the filamentation-

scattered beam distribution, would also prove most valuable

for quantifying the subsequent growth of quasielectrostatic

modes and the associated anomalous stopping power. Such a

model could draw upon the dynamic quasilinear theories

worked out to explain type III solar radio bursts.
244,245

In the

GRB context, the aforementioned theoretical results are fre-

quently applied to model the unstable processes arising

within colliding plasma shells prior to the shock formation.

But the concept of plasma shell collision necessarily implies

that these shells have borders. Once they start interpenetrat-

ing, simulations reveal shocks emerging through each shell’s

borders,
246

at which location the uniformity assumption

clearly fails. In this case, a space-time, finite-beam size

theory could shed new light on the shock formation.
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APPENDIX A: TENSOR ELEMENTS FOR 2D
WATERBAG DISTRIBUTION FUNCTIONS

The tensor elements have been derived in Refs. 15 and

16 for monokinetic electron beams as well as waterbag dis-

tribution functions with nonrelativistic thermal spreads. For

such functions, results for 2D and 3D momentum spaces are

strictly equivalent. Albeit lengthy, closed-form expressions

can also be worked out in the case of 2D waterbag space

with arbitrarily large momentum spreads. Omitting for brev-

ity subscripts defining beam or plasma components, the re-

sulting tensor elements then read

!kl = �kl + 	



n

2

�2 �Akl + kxBkl + kyCkl� , �A1�

with

Axx = −
1

2P�

ln�P + P� + �1 + �P + P��2 + P�

2

P − P� + �1 + �P − P��2 + P�

2 � , �A2�

Ayy =
P − P�

4PP�

ln� P� + �1 + �P − P��2 + P�

2

− P� + �1 + �P − P��2 + P�

2 �
−

P + P�

4PP�

ln� P� + �1 + �P + P��2 + P�

2

− P� + �1 + �P + P��2 + P�

2 � ,

Axy = 0, �A3�

Bxx =
P�

4P�
�1 + P�

2 �F0�x,
kxP�

�1 + P�

2
,�,− ky�

− F0�x,−
kxP�

�1 + P�

2
,�,− ky��

sinh−1�P−P��/�1+P
�

2

sinh−1�P+P��/�1+P
�

2

,

�A4�

Byy =
�1 + P�

2

4P�P�
�F2�x,

kxP�

�1 + P�

2
,�,− ky�

− F2�x,−
kxP�

�1 + P�

2
,�,− ky��

sinh−1�P−P��/�1+P
�

2

sinh−1�P+P��/�1+P
�

2

,

�A5�

Bxy = −
1

4P�
�F1�x,

kxP�

�1 + P�

2
,�,− ky�

− F1�x,−
kxP�

�1 + P�

2
,�,− ky��

sinh−1�P−P��/�1+P
�

2

sinh−1�P+P��/�1+P
�

2

,

�A6�

Cxx =
�1 + �P − P��2

4P�P�
�F2�x,−

ky�P − P��
�1 + �P − P��2

,�,− kx��
−sinh−1P

�
/�1+�P − P��

2

sinh−1P�/�1+�P − P��
2

−
�1 + �P + P��2

4P�P�

��F2�x,−
ky�P + P��

�1 + �P + P��2
,�,− kx��

−sinh−1P
�

/�1+�P + P��
2

sinh−1P�/�1+�P + P��
2

, �A7�

Cyy =
P − P�

4P�P�
�F0�x,−

ky�P − P��
�1 + �P − P��2

,�,− kx��
−sinh−1P

�
/�1+�P − P��

2

sinh−1P�/�1+�P − P��
2

−
P + P�

4P�P�

��F0�x,−
ky�P + P��

�1 + �P + P��2
,�,− kx��

−sinh−1P
�

/�1+�P + P��
2

sinh−1P�/�1+�P + P��
2

, �A8�
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Cxy =
P − P�

4P�P�
�F1�x,−

ky�P − P��
�1 + �P − P��2

,�,− kx��
−sinh−1P

�
/�1+�P − P��

2

sinh−1P�/�1+�P − P��
2

−
P + P�

4P�P�

��F1�x,−
ky�P + P��

�1 + �P + P��2
,�,− kx��

−sinh−1P
�

/�1+�P + P��
2

sinh−1P�/�1+�P + P��
2

. �A9�

The functions Fn�x ,a ,b ,c� are determined by the indefinite

integral

Fn�x,a,b,c� =
 dx
sinhn x

a + b cosh x + c sinh x
. �A10�

For n= �0,1 ,2�, we obtain

F0 =
2

�b2 − a2 − c2
tan−1� �b − a�tanh

x

2
+ c

�b2 − a2 − c2 � , �A11�

F1 =
cx

c2 − b2
−

b

c2 − b2
ln�a + b cosh x + c sinh x�

+
2ac

�c2 − b2��b2 − a2 − c2
tan−1� �b − a�tanh

x

2
− c

�b2 − a2 − c2 � ,

�A12�

F2 = −
a�b2 + c2�x
�b2 − c2�2

−
c cosh x

b2 − c2
+

b sinh x

b2 − c2

+
2abc

�b2 − c2�2
ln�a + b cosh x + c sinh x�

− 2
a2�b2 + c2� − b2�b2 − c2�

�b2 − c2�2�b2 − a2 − c2
tan−1� �b − a�tanh

x

2
− c

�b2 − a2 − c2 � .

�A13�

APPENDIX B: STABILIZATION CONDITION
FOR THE FILAMENTATION INSTABILITY
WITHIN THE WATERBAG MODEL

From the tensor elements given in Appendix A, it is easy

to derive the condition for stabilizing the filamentation insta-

bility. It writes

AB − C2 � 0, �B1�
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