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Abstract

In the paper we studied different methods to extend Matsui’s Alg. 2 to
multiple dimensions. The efficiency of the methods were compared by the
“advantage” (Selçuk). This presentation will focus on the method based on
the log-likelihood ratio.
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Introduction

History - Multiple linear approximations

Matsui EUROCRYPT’93: Uses one biased approximate linear
equation to recover one bit information of the inner key (Alg. 1) or
several bits of the last round key (Alg. 2)

Robshaw and Kaliski CRYPTO’94: Alg. 1 and Alg. 2 several linear
approximations, obtain one bit of information of the inner key
(assumes statistical independence)

Biryukov, et al., CRYPTO’04: Alg. 1 and Alg. 2 with multiple
approximate linear equations (assumes statistical independence),
recovers multiple bits of information of the key, success measured
using gain

Collard, et al., FSE 2008: Experiments of Biryukov’s algorithms on
Serpent
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Introduction

History - Probability distributions of multidimensional
linear approximations

Baignères, et al., ASIACRYPT’04: Distinguishing probability
distributions based on log-likelihood ratio LLR

Maximov, 2006: Algorithms for computing large probability
distributions of multidimensional approximate linear equations

Baignères and Vaudenay, ICITS’08: Different scenarios in hypothesis
testing

Hermelin, et al., ACISP 2008: Multidimensional Alg. 1, using G-test
and comparison with the algorithm of Biryukov, et al.

Hermelin, et al., Dagstuhl 2009 (to appear): Multidimensional Alg. 1
with LLR and χ2
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Introduction

Assumption about statistical independence

Problem

Customised special-purpose statistical test under the assumption about
statistical independence of simultaneous 1D linear approximations
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Introduction

Assumption about statistical independence

Problem

Customised special-purpose statistical test under the assumption about
statistical independence of simultaneous 1D linear approximations

Our contribution

Use of LLR (optimal distinguisher) and other known tools and no
assumption about statistical independence
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Introduction

Computing the multidimensional probability distribution

Problem

Computing large probability distributions needed in the multidimensional
attack
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Introduction

Computing the multidimensional probability distribution

Problem

Computing large probability distributions needed in the multidimensional
attack

Our contribution

Use Cramér-Wold Theorem (1936) for computing efficiently the probability
distribution
⇒ Only information essential to the attack is taken into account and
probability distribution computed with smaller dimension
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Introduction

Adding linearly or statistically dependent approximations

Problem

Is it correct to use linearly or statistically dependent 1D approximations?
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Introduction

Adding linearly or statistically dependent approximations

Problem

Is it correct to use linearly or statistically dependent 1D approximations?

Solution

Theoretical justification for this enhancement
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Basic Concepts

Boolean functions

Correlation between Boolean function f : Vn → V and zero

c(f) = c(f , 0) = 2−n (#{ξ ∈ Vn | f(ξ) = 0} − #{ξ ∈ Vn | f(ξ) , 0})

f = (f1, . . . , fm) : Vn → Vm an m-dimensional vector Boolean function

W = (w1, . . . ,wm) : Vn → Vm a linear Boolean function
Wx = (w1 · x , . . . ,wm · x)
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Basic Concepts

Probability distribution

Probability distribution (p.d.) p = (p0, . . . , pM) of random variable Y
taking values in the set {0, 1, . . . ,M}:

Pr(Y = y) = py , y = 0, . . . ,M,

If random variable Y has p.d. p, denote Y ∼ p

θ uniform distribution

Let f : Vn → Vm and X ∼ θ. If f(X ) ∼ p we call p the p.d. of f
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Basic Concepts

Kullback-Leibler distance

Definition

Let p = (p0, . . . , pM) and q = (q0, . . . , qM) be two p.d.’s. Their relative
entropy or Kullback-Leibler distance is

D(p||q) =
M∑

η=0

pη log
pη
qη
,

where we use the convention 0 log 0/b = 0, b , 0 and b log b/0 = ∞.
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Basic Concepts

Capacity

Close p.d.’s

We say that p.d p is close to p.d. q if |pη − qη| � qη, ∀η = 0, 1, . . . ,M
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Basic Concepts

Capacity

Close p.d.’s

We say that p.d p is close to p.d. q if |pη − qη| � qη, ∀η = 0, 1, . . . ,M

Definition

The capacity between two p.d.’s p and q is defined by

C(p, q) =
M∑

η=0

(pη − qη)2

qη

We denote C(p, θ) by C(p) and call C(p) the capacity of p (cf. Biryukov, et
al.). It is identical to the notion of squared Euclidean imbalance of p used
by Baignères, et al.
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Basic Concepts

Log-likelihood ratio (LLR)

Independent and identically distributed data d̂1, . . . , d̂N, d̂i ∈ Vm, is
drawn from p or q , p , q

LLR is the optimal distinguisher between the two p.d.’s (hypotheses)

Empirical p.d. q̂ = (q̂0, . . . , q̂M), M = 2m − 1, where
q̂η = 1

N #{i = 1, . . . ,N | d̂i = η} are the relative observed frequencies

We decide p if

LLR(q̂, p, q) =
M∑

η=0

Nq̂η log
pη
qη
≥ γ

and otherwise we decide q, where γ is a threshold, usually taken
equal to zero
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Multidimensional Linear Approximation

Linear approximation of a block cipher (Alg. 2)
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Linear approximation of a block cipher (Alg. 2)

x

y

z

f k

K

...

Plaintext x, ciphertext y, last round
key k ∈ Vl, all but last round key data
K , last round function f , z = f−1(y , k )

Alg. 2 exploits 1D approximation
u · x + w · z + v · K with non-negligible
correlation c
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Multidimensional Linear Approximation

Linear approximation of a block cipher (Alg. 2)

x

y

z

f k

K

...

Plaintext x, ciphertext y, last round
key k ∈ Vl, all but last round key data
K , last round function f , z = f−1(y , k )

Usually one has multiple 1D
approximations with large correlations:
ui · x + wi · z + vi · K , i = 1, . . . ,m
linearly independent base
approximations

Q: How to efficiently exploit them all?

A: Determine the p.d. p of
Ux +Wz + VK , U = (u1, . . . , um), W =
(w1, . . . ,wM), V = (v1, . . . , vm)
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Multidimensional Linear Approximation

From one to many

The p.d. p of Ux +Wz + VK and 1D correlations
ρ(a) = c(a · (Ux +Wz + VK )), a ∈ Vm are related as follows:

pη = 2−m
∑

a∈Vm

(−1)a·ηρ(a), η ∈ Vm.

That is, p.d. is determined using 1D projections, a well-known
statistical method due to Cramér and Wold (1936)
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Multidimensional Linear Approximation

From one to many

The p.d. p of Ux +Wz + VK and 1D correlations
ρ(a) = c(a · (Ux +Wz + VK )), a ∈ Vm are related as follows:

pη = 2−m
∑

a∈Vm

(−1)a·ηρ(a), η ∈ Vm.

That is, p.d. is determined using 1D projections, a well-known
statistical method due to Cramér and Wold (1936)

One can and must add all non-negligible 1D approximations when
calculating p

To strengthen the attack one should choose the m base
approximations such that there are as many as possible non-neglible
correlations ρ(a), a ∈ Vm.

We do not assume statistical independence of base approximations!
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Multidimensional Linear Approximation

Multidimensional linear approximation of a block cipher
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Multidimensional Linear Approximation

Multidimensional linear approximation of a block cipher
x

y

z

f k

K

...

Multidimensional linear approximation
Ux +Wz + VK ∈ Vm with p.d. p

Parity bits g = VK called the inner key
class

For g = VK , the data Ux̂ +Wẑ ∼ pg, a
permutation of p dependent on g

⇒ We have nice symmetry properties,
e.g., C(pg) = C(p) for all g ∈ Vm

g0 is the right inner key class
k0 is the right last round key
both unknown!
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Key Ranking

Key ranking as a statistical problem

Given key candidates k ∈ Vl we wish to find the right key k0
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Key Ranking

Key ranking as a statistical problem

Given key candidates k ∈ Vl we wish to find the right key k0

Four phases:
On-line phase: collect data
Off-line phase: using some statistic T , calculate mark T(k ) for each
key k ∈ Vl using the empirical data
Sort phase: rank keys according to order statistic T(k )
Search phase: run through the list to find k0 which should be at the top
of the list

How well T ranks? Measure using advantage
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Key Ranking

Advantage

Definition (Selçuk’s a-bit advantage, JoC’08)

We say that a key recovery attack for an l-bit key achieves an advantage of
a bits over exhaustive search, if the correct key is ranked among the top
2l−a out of all 2l key candidates.
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Key Ranking

Advantage

Definition (Selçuk’s a-bit advantage, JoC’08)

We say that a key recovery attack for an l-bit key achieves an advantage of
a bits over exhaustive search, if the correct key is ranked among the top
2l−a out of all 2l key candidates.

We derived the relationship between the data complexity of the on-line
phase and the advantage to describe the trade-off between search phase
and data complexity.
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Algorithm 2

On-line phase of Alg. 2

Draw data (x̂i , ŷi), i = 1, . . . ,N

Hermelin (TKK) Multidimensional Alg. 2 FSE’09 23 / 33



Algorithm 2

On-line phase of Alg. 2
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Draw data (x̂i , ŷi), i = 1, . . . ,N

For each k ∈ Vl, calculate empirical p.d. q̂k
= (q̂k

0 , . . . , q̂
k
M):

q̂k
η =

1
N

#{i = 1, . . . ,N |Ux̂i +Wẑk
i = η}, where ẑk
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Draw data (x̂i , ŷi), i = 1, . . . ,N

For each k ∈ Vl, calculate empirical p.d. q̂k
= (q̂k

0 , . . . , q̂
k
M):

q̂k
η =

1
N

#{i = 1, . . . ,N |Ux̂i +Wẑk
i = η}, where ẑk

i = f−1(ŷi , k )

Decrypting with the right round key, we have empirical p.d. q̂k0 ∼ pg0 ,
where g0 ∈ Vm is unknown

Decryption with wrong key k , k0 means additional encryption such
that q̂k ∼ θ, k , k0 (Wrong-key Randomisation Hypothesis)
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Algorithm 2
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L(k ) = maxg∈Vm L(k , g),
where
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Algorithm 2

Wrong-key Randomisation Hypothesis

pg0

pg1

pg2

pg3

q̂k0

q̂k , k , k0

Ranking statistic (off-line):
L(k ) = maxg∈Vm L(k , g),
where
L(k , g) = LLR(q̂k , pg , θ)

q̂k0 follows pg0 for some
g0 ∈ Vm (an unknown
permutation of p) and not
any other pg, g , g0 or θ,
then L(k0, g0) > 0

q̂k , k , k0 follows θ rather
than pg , for any g ∈ Vm,

then L(k , g) < 0, k , k0
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Algorithm 2

Other approaches

We could also interpret the problem as a goodness-of-fit test

⇒ χ2-based ranking statistic

Similar calculations

A weaker method both in theory and in experiments

Unlike LLR, does not benefit from using (many) multiple
approximations

Different ranking statistics are also possible, but the LLR is optimal
and its statistical behaviour is well-known
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Experiments

Experimental results

Experiments on 5-round Serpent, 16 keys, k has 12 bits

Comparison between LLR and χ2, in theory and practice

LLR is more powerful

Theoretical and experimental advantage behave similarly with
dimension m of linear approximation

For this cipher the optimal value for LLR is m = 12 and for χ2 it is
m = 4
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Advantage of LLR-method as a function of data
complexity for different m
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Advantage of LLR increases with m further than advantage of χ2

⇒ If no reason to suspect a significant error in p, we recommend using
LLR rather than χ2
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Conclusions

Open questions and future work

Measure advantage for finding both last round key and inner key class

Extensions to nonlinear cryptanalysis (cf. Baignères, et al.2004)?

Other ciphers? Stream ciphers?
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Conclusions

Thank you!
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