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Multidimensional femtosecond spectroscopies of molecular aggregates
and semiconductor nanostructures: The nonlinear exciton equations

Vladimir Chernyak, Wei Min Zhang, and Shaul Mukamela)
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Rochester, P.O. Box RC 270216, Rochester, New York 14627-0216

~Received 19 March 1998; accepted 28 August 1998!

A unified description of nonlinear optical spectroscopies of molecular aggregates~starting with the
Frenkel-Heitler-London Hamiltonian! and semiconductors~starting with the two-band model! is
developed using the nonlinear exciton equations~NEE!. The equations follow explicitly the
complete set of one-, two-, and three-point dynamical exciton variables relevant for the third-order
response. Effects of nuclear motions are incorporated through relaxation superoperators calculated
perturbatively in exciton-phonon coupling. A Green’s function expression for the third-order
response is derived by solving the NEE using a new truncation scheme based on factorizing the
three-point relaxation kernels. These results set the stage for designing multidimensional
spectroscopies of excitons and analyzing them using coherence-transfer pathways. ©1998
American Institute of Physics.@S0021-9606~98!70545-8#
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I. INTRODUCTION

The dynamics of electronic excitations in assemblies
coupled molecular chromophores~crystals, nanostructure
and aggregates! and semiconductor systems~bulk, quantum
dots, quantum wells, and superlattices! can be effectively
probed using femtosecond spectroscopic techniq
Hole-burning,1,2 pump-probe,3,4 fluorescence depolarization5

photon echoes6 and four-wave mixing have been applied
molecular aggregates such as J-aggregates7–9 and biological
light-harvesting complexes10,11and to semiconductor mater
als as well.12,13

Despite the different structure of electronic excitation
these two classes of materials share several important fu
mental similarities, allowing the description of their dynam
ics and optical response within the same framework.13,14

First, in both systems the elementary electronic excitati
are excitons: Femtosecond techniques probe the interpla
coherent and incoherent dynamics, elastic and inelastic s
tering as well as self-trapping of excitons. The Wannier-ty
excitons in semiconductors are formed by an electron in
conduction band and a hole in the valence band. Molec
excitations moving coherently across the system are kn
as Frenkel excitons. These can also be considered
electron-hole pairs with the constraint that the electron
the hole must belong to the same molecule at all times. T
implies that there is no conceptual difference between
two types of materials. It should be noted, however, that
to the absence of intermolecular charge transfer in molec
assemblies, the number of Frenkel one-exciton states sc
;N with the number of moleculesN, whereas the number o
Wannier excitons~hereafter we refer to all electron-hole pa
states as excitons regardless of whether their relative mo
is bound or not! scales;N2. Similarly, the number of two-
exciton states scales;N2 and;N4, respectively. Although

a!Electronic mail: mukamel@chem.rochester.edu
9580021-9606/98/109(21)/9587/15/$15.00
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the difference is rather technical than conceptual, it has c
cial implications on adopting the right algorithm for nume
cal calculations. In general, a higher level of theory whic
e.g., accounts for the structure of two-exciton resonances
be much more easily used in the modeling of molecu
nanostructures compared with their semiconductor coun
parts.

Another important similarity is that both systems a
well described by a material Hamiltonian that conserves
number of electron-hole pairs. Non-pair-conserving p
cesses are controlled by the ratio of the exciton binding
ergy ~in semiconductors! or the intermolecular coupling~in
molecular aggregates! to the optical frequency, which is typi
cally small in both systems. This simplifies the origin
many-body problem considerably, since the energy spect
consists of well-separated groups of energy levels repres
ing single, double excitations, etc. Because only the radia
field can change the number of electron-hole pairs, we
classify optical techniques according to their power dep
dence on the incoming fields, and find that very few types
electronic excitations need to be considered at each or
This provides a convenient computational scheme as we
a basis for an intuitive physical picture.15

The simplest way to include the coupling with vibra
tional ~phonon! degrees of freedom is by eliminating th
nuclear variables and incorporating their effects through
laxation superoperators. In molecular aggregates this res
in the Redfield equation for the reduced exciton dens
matrix,16,17 whereas for a semiconductor system it yields t
semiconductor Bloch equations~SBE! with dephasing,12

which form a basic tool for calculating optical signals
superlattices using realistic anisotropic three-dimensio
models.18

In the absence of coupling to phonons it is possible
derive equations of motion for one- and two-excito
variables19 which avoid the explicit calculation of two
7 © 1998 American Institute of Physics
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exciton states, tracing the origin of the third-order nonline
optical response to exciton-exciton scattering.20,21 Phonon-
induced dephasing has been incorporated into the theorie
x (3) in molecular aggregates by including additional excito
population variables and applying certain factorizati
schemes for closing the equations.22,23This level of theory is
equivalent to the SBE with dephasing for semiconducto
The resulting expressions forx (3) describe adequately tran
sient grating experiments, however, they do not apply w
both exciton transport and two-exciton resonances are im
tant, as may be the case in pump-probe and photon e
spectroscopies. A Green’s function approach which
scribes the combined effects of exciton transport and t
exciton resonances has been developed24 and applied to vari-
ous spectroscopies in J-aggregates,24 pump-probe
spectroscopy of light harvesting antenna complexe25

photon-echoes26 and four wave mixing.27 In the absence o
vibronic coupling the method was extended to molecular
gregates made of three-level molecules28 and to
semiconductors.14,29 Effects of strong coupling to phonon
can be incorporated in equations of motion describing
laron transport17,30,31or by solving equations of motion fo
reduced wave packets which involve the dynamics of a
important collective nuclear coordinates.32 These extensions
will not be considered here.

The relevant dynamical variables for third order spe
troscopies in aggregate made out of two-level molecu
have been identified in Refs. 15 and 21. In the present w
we generalize these earlier studies in several ways. First
outline a procedure that holds for multilevel molecule
There is a great freedom in the choice of exciton variab
and we demonstrate how it may be used to simplify
theoretical analysis through a nonlinear transformation of
dynamical variables. Second, we consider a model of a
early coupled phonon bath and derive closed expression
the relaxation superoperators to second order in exci
phonon coupling. The resulting nonlinear exciton equatio
of motion ~NEE! provide the basic theoretical framewo
that applies to semiconductor nanostructures as well. Thir
closed-form Green’s function expression for the nonlin
response is derived by solving the NEE using a new appr
mation based on factorizing some of the relaxation supe
erators. The resulting expression generalizes and un
many of the earlier studies. Although spontaneous li
emission~fluorescence! is not considered here, it can be ca
culated as well using the present theory.

This paper is organized as follows. In Sec. II we pres
a general Hamiltonian representing an aggregate made o
multilevel molecules. The Hamiltonian written using colle
tive exciton variables contains three types of nonlinearit
direct Coulombic intermolecular interactions, nonboson s
tistics ~nonlinear commutation relations between exciton o
erators! and nonlinearities in the dipole operator. In Appe
dixes A and B we show how the conventional Hamiltonia
representing an aggregate of multilevel molecules, and
two band model of semiconductors can be transformed,
spectively, to assume the form of our general Hamiltoni
We then derive the NEE which depend on phonon-indu
relaxation superoperators defined formally in Appendix
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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The NEE are simplified considerably by an approximate c
culation of the relaxation terms. These equations are t
solved in Sec. III, resulting in a closed-form Green’s fun
tion expression for the third-order response. Our results
finally discussed in Sec. IV.

II. COLLECTIVE EXCITON VARIABLES AND THE
NONLINEAR EXCITON EQUATIONS

The starting point for our analysis is the Frenkel excit
Hamiltonian with the Heitler-London approximation for mo
lecular aggregates~Appendix A!, and the two-band Hamil-
tonian for semiconductors~Appendix B!. These Hamilto-
nians neglect processes which do not conserve the numb
excitons, which is justified since in both systems the exci
frequencies are much larger than the exciton interactions

The central result of this section is a unified represen
tion of the Frenkel-exciton and the Wannier-exciton Ham
tonians including the coupling to nuclear motions. The line
optical response only probes one-exciton states, wherea
third-order optical nonlinearity involves two-exciton stat
as well. Our unified material exciton Hamiltonian which d
scribes the optical response of both systems up to third o
is given by the sum of the electronic partHe , the vibrational
HamiltonianHph and the vibronic couplingH int

H5He1Hph1H int . ~2.1!

These have the following form in terms of the exciton an
hilation ~creation! operatorsB̂n(B̂n

†) and nuclear coordinate
qa

He5(
mn

hmnB̂m
† B̂n1 (

mnkl
Umn,klB̂m

† B̂n
†B̂kB̂l , ~2.2!

Hph5(
a

S pa
2

2ma
1

mava
2qa

2

2 D , ~2.3!

H int5 (
mna

h̄mn,aB̂m
† B̂nqa1 (

mnkla
Ūmn,kl;aB̂m

† B̂n
†B̂kB̂lqa ,

~2.4!

In Eqs. ~2.2!–~2.4! hmn represents the one-exciton Ham
tonian,Umn,kl describes the exciton-exciton interactions,ma

and va are the reduced masses and frequencies of nuc
modes,h̄mn,a andŪmn,kl;a stand for vibronic coupling which
originates from theqa-dependence ofhmn and Umn,kl , re-
spectively. The commutation relations for the exciton ope
tors have the form

@B̂m ,B̂n
†#5dmn22(

kl
Pmk,nlB̂k

†B̂l , ~2.5!

wherePmk,nl is a tetradic matrix which describes the devi
tion of the exciton commutation relations from those
bosons. It follows from the Jacobi identity for the commut
tors that

Pmn,kl5Pnm,kl5Pmn,lk . ~2.6!

The total Hamiltonian representing the system coupled to
optical fieldE(t) is

HT5H2E~ t !P, ~2.7!

andP is the polarization operator
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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P5(
n

mn
~1!B̂n1(

mkl
mm,kl

~2! B̂m
† B̂kB̂l1H.c., ~2.8!

wheremn
(1) and mm,kl

(2) are the matrix elements of the pola
ization operator.

In general Eqs.~2.2!–~2.5! contain higher-order product
of B̂n and B̂n

† , however, since they only contribute to th
optical response in higher than third order, they are
glected. In Appendix A we show how the general Ham
tonian of a molecular aggregate made out of interact
multi-level molecules linearly coupled to a harmonic phon
bath can be represented in the form of Eqs.~2.2!–~2.5!. In
Appendix B we introduce the exciton operators for the tw
band model of semiconductors and recast it in the form
Eqs.~2.2!–~2.5! as well. All the results of this paper, there
fore, apply to both systems. In addition molecular assemb
may often have charge transfer processes~e.g., the photosyn-
thetic reaction center!. This intermediate case of charg
transfer excitons is also covered by our Hamiltonian.

Now we are in a position to derive a closed system
equations for the exciton variables. To that end, we introd
the following relevant dynamical variables:

Bn[^B̂n&, Ymn[^B̂mB̂n&,
~2.9!

Nmn[^B̂n
†B̂m&, Zmn, j[^B̂j

†B̂mB̂n&,

which are required to obtain a closed system of equations
the optical response up to third order.33 The Heisenberg
equation of motioni dB̂m /dt5@B̂m ,HT# yields

i
dB̂m

dt
5(

n
hmnB̂n1(

nkl
Vmn,klB̂n

†B̂kB̂l2Em
~1!

2(
kl
Em,kl

~2! B̂k
†B̂l2(

kl
Em,kl

~3! B̂kB̂l1@B̂m ,H int#,

~2.10!

Applying the truncation procedure of Refs. 15, 19, 21, a
34 finally gives

i
dBm

dt
5(

n
hmnBn1(

nkl
Vmn,klZkl,n2Em

~1!

2(
kl
Em,kl

~2! Nlk2( Em,kl
~3! Ykl1Ḃm , ~2.11!

i
dYmn

dt
5(

kl
hmn,kl

~2! Ykl2BmEn
~1!2BnEm

~1!

2(
k
En,mk

~2! Bk1Ẏmn , ~2.12!

i
dNi j

dt
5(

m
~himNm j2Nimhm j!2Ei

~1!Bj* 1Ej
~1!Bi1Ṅi j ,

~2.13!
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i
dZmn, j

dt
5(

kl
hmn,kl

~2! Zkl, j2(
i

hi j Zmn,i2Em
~1!Nn j

2En
~1!Nm j2(

k
Em,nk

~2! Nk j1Ej
~1!Ymn1Żmn j ,

~2.14!

where

hmn,kl
~2! [dmkhnl1hmkdnl1Vmn,kl, ~2.15!

Vmn,kl[2Umn,kl22(
p
Pmn,pkhpl22(

pq
Pmn,pqUpq,kl ,

~2.16!

Em
~1![mm

~1!
•E, ~2.17!

Em,kl
~2! [2m l ,km

~2!
•E22(

n
Pmk,nlmn

~1!
•E22(

rs
Pmk,rsm l ,rs

~2!
•E,

~2.18!

Em,kl
~3! [mm,kl

~2!
•E. ~2.19!

The variablesḂ,Ẏ,Ṅ, and Ż denote relaxation terms whic
are linear inB,Y,N, andZ. A procedure for evaluating thes
terms is outlined in Appendixes C and D.

The most time and memory consuming part in solvi
Eqs. ~2.11!–~2.14! is connected with Eq.~2.14! for Zmn, j

which contains;N3 variables whereN is the number of
one-exciton states. The corresponding relaxation operato
an N33N3 matrix. To overcome this bottleneck, we deriv
in this section a simplified scheme which allows us to redu
the number of variables to;N2. To that end we invoke the
following approximations for the relaxation terms in Eq
~2.11!–~2.14!. We first neglect the contributions which in
volve the driving fieldE. This yields

Ḃm52 i(
n

GmnBn , ~2.20!

Ẏmn52 i(
kl

Rmn,klYkl , ~2.21!

Ṅi j 52 i(
m

~G imNm j1NimGm j!2 i(
mn

R̄i j
mnNmn , ~2.22!

Żmn, j52 i(
kl

Rmn,klZkl, j2 i(
s

Gs jZmn,s

2 i(
kls

R̃mn, j
kl,s Zkl,s . ~2.23!

We shall refer toR̄ and R̃ as the irreducible relaxation op
erators.R̄i j

mn in Eq. ~2.22! is responsible for the conservatio
of the number of excitons and therefore may not be
glected. In the following we neglect the irreducible rela
ation operatorR̃ in Eq. ~2.23!:

R̃mn j
kl,s50. ~2.24!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Expressions for the relaxation kernels, evaluated to sec
order in exciton-phonon coupling are presented in Appen
D. Upon the substitution of Eqs.~2.20!–~2.23! into Eqs.
~2.11!–~2.14! we obtain

i
dBm

dt
2(

n
~hmn2 iGmn!Bn

5(
nkl

Vmn,klZkl,n2Em
~1!2(

kl
Em,kl

~2! Nlk2(
kl
Em,kl

~3! Ykl ,

~2.25!

i
dYmn

dt
2(

kl
~hmn,kl

~2! 2 iRmn,kl!Ykl

52En
~1!Bm2Em

~1!Bn2(
k
En,mk

~2! Bk , ~2.26!

i
dNi j

dt
2(

m
@~him2 iG im!Nm j2Nim~hm j1 iGm j!#

1 i(
mn

R̄i j
mnNmn52Ei

~1!Bj* 1Ej
~1!Bi , ~2.27!

i
dZmn, j

dt
2(

kl
~hmn,kl

~2! 2 iRmn,kl!Zkl, j1(
s

~hs j1 iGs j!Zmn,s

52Em
~1!Nn j2En

~1!Nm j2(
k
Em,nk

~2! Nk j1Ej
~1!Ymn. ~2.28!

Eqs. ~2.25!–~2.28! constitute a closed system of equatio
for the third-order optical response, hereafter referred to
nonlinear exciton equations~NEE!. These equations will be
solved in the following section.

As outlined in Sec. I, in the absence of the dephas
~coherent dynamics! Eqs. ~2.25! and ~2.26! form a closed
system of equations for theB and Y variables, obtained by
factorizing Zkl,n5Bn* Ykl and Nlk5Bk* Bl in the right-hand
side of Eq.~2.25!. This system of equations has been fi
derived for Frenkel-excitons.19,21 The analogous system o
equations has been later rederived for semiconductor sys
and generalized to higher-order responses.29,35 Equations of
motion for one- and two-exciton variables with phenomen
logical dephasing have been derived in Ref. 36. These e
tions can be recovered by settingR̄50 in Eq. ~2.27! which
yields the same factorization. These equations, howe
cannot fully describe pure dephasing effects in the propa
tion of exciton populations and coherences, which are
extreme importance in pump-probe and three-pulse pho
echo spectroscopies. The SBE with dephasing12 which con-
stitute the powerful standard tool in time-domain spectr
copy of semiconductors treats dephasing processes prop
However, the two-exciton correlations are completely n
glected. The NEE combine the advantages of both
proaches and describe the combined effects of exc
dephasing, transport, and two-exciton correlations. In
next section we show how two-exciton correlations can
treated using the exciton-exciton scattering matrix.
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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III. GREEN’S FUNCTION EXPRESSIONS FOR
OPTICAL RESPONSE

In this section we solve the NEE@Eqs. ~2.25!–~2.28!#
and derive Green’s Function Expressions~GFE! for the op-
tical response, establishing a nonlinear oscillator picture
the optical nonlinearities. Each of these equations contai
homogeneous part written in the left-hand side and an in
mogeneous source in the right-hand side. The solution
these equations can be expressed using four Green’s f
tions which are defined as the formal solution of Eq
~2.25!–~2.28! when the right-hand side is replaced by ad(t)
source.

Bm~ t !5(
n

Gmn~ t !Bn~0!, ~3.1!

Ymn~ t !5 (
m8n8

Gmn,m8n8
~Y!

~ t !Ym8n8~0!, ~3.2!

Ni j ~ t !5(
i 8 j 8

Gi j ,i 8 j 8
~N!

~ t !Ni 8 j 8~0!, ~3.3!

Zmn, j~ t !5 (
m8n8 j 8

Gmn, j ;m8n8, j 8
~Z!

~ t !Zm8n8, j 8~0!. ~3.4!

Here the one-exciton Green’s functionGmn(t) is given by

Gmn~ t !5u~ t !@exp~2 iht2Gt !#mn , ~3.5!

where u(t) is the Heaviside step function@u(t)51 for t
.0, and u(t)50 for t,0#. The other Green’s functions
have similar expressions.

The linear polarization to first order in the driving fiel
E(t) is given by

P~1!~ t !5E
0

`

dt1R~1!~ t1!E~ t2t1!, ~3.6!

where the linear response function obtained by solving
~2.25! adopts the form

R~1!~ t !5 i(
mn

mm
~1!mn

~1!@Gmn~ t !2Gnm
† ~ t !#. ~3.7!

Equation ~2.8! implies that the third-order response
expressed as a sum of third-order terms in the expansio
Bn andZkl,m in the driving field. The latter can be obtaine
by solving Eqs.~2.25!–~2.28! iteratively order by order in
the driving field. This straightforward procedure yields an
lytical expressions forBn andZkl,m in terms of the Green’s
functions of Eqs.~2.25!–~2.28!. It follows from Eq. ~2.28!
that the Green’s functionG(Z)(t) may be factorized as

Gmn,k;m8n8,k8
~Z!

~t !5Gmn,m8n8
~Y!

~t !Gk8k
†

~t!. ~3.8!

This results from our simplified relaxation superopera
@Eq. ~2.24!#. The only necessary Green’s functions are the
fore Gmn(t), Gmn,m8n8

(Y) (t), and Gmn,m8n8
(N) (t) which can be

found numerically by solving linear dynamical equatio
with no more thanN2 variables. The Green’s function ex
pressions~GFE! for the optical response derived in this wa
are presented in Appendix E. The crucial point in the pres
derivation is the factorization of the Green’s functio
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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G(Z)(t) @Eq. ~3.8!# which follows from the factorized form
of the relaxation operation@Eqs. ~2.20!–~2.24!#. The GFE
may not be obtained by directly factorizing the dynamic
variables in the equations of motion~e.g., settinĝ B̂†B̂B̂&
5^B̂†&^B̂B̂&), as is commonly done.

We next turn toG(Y). It is well known that optical non-
linearities vanish for a system of harmonic oscillators~free
bosons! provided the dipole operator is linear in the prima
~boson! variables. The deviation of the system defined
Eqs. ~2.2!–~2.5! from the harmonic oscillator system is d
termined by the matrixUmn,kl which describes anharmoni
terms in the Hamiltonian, and the matrixPmn,kl which re-
flects the deformation of the boson commutation relatio
These induce exciton scattering processes which in turn
rise to optical nonlinearities. The combined effect ofP and
U can be conveniently described by the exciton scatte
matrix. The nonlinear terms in the polarization operator@Eq.
~2.8!# constitute an additional source of optical nonlineari

We start with the formal definition of the exciton sca

tering matrixḠ(t). To that end we first define the free-boso
part Fmn,kl(t) of the two-exciton Green’s function by

Fmk,nl~t![Gmn~t!Gkl~t!, ~3.9!

the exciton scattering matrix can be defined using the re
sentation of the two-exciton Green’s functionG(Y)(t) in the
form of the Bethe-Salpeter equation~see Appendix F!. Using
the tetradic operator form the Bethe-Salpeter equation re

G~Y!~ t !~ I 2P!5F~ t !1E
0

t

dt9E
0

t9
dt8F~ t2t9!

3Ḡ~t92t8!F~t8!. ~3.10!

The matrix elements of Eq.~3.10! are given by Eq.~F5!.
Equation~3.10! representsG(Y) in terms of the exciton scat

tering matrix Ḡ, which is calculated in Appendix F by
switching to the frequency domain.

Finally we introduce the irreducible Green’s functio
Ḡmn,m8n8(t) of Eq. ~2.27! by

Gmn,m8n8
~N!

~t ![Gmm8~t!Gn8n
†

~t!1Ḡmn,m8n8~t!. ~3.11!

The first term represents the propagation of the^B̂†B̂&
variable when they can be factorized as^B̂†&^B̂&. The second
term represents therefore the genuine unfactorized prop
tion of the ^B̂†B̂& variables. We are now in a position t
obtain the GFE for the third-order optical response

P~3!~ t !5E
0

`

dt3E
0

`

dt2E
0

`

dt1R~ t3 ,t2 ,t1!E~ t2t3!

3E~ t2t32t2!E~ t2t32t22t1!. ~3.12!

We first note that Eq.~E7! implies that the two-exciton
Green’s functionG(Y) enters Eqs.~E6!, ~E10!, and ~E11!
only through the productG(Y)(t)(I 2P). The GFE can be
obtained by substituting Eq.~3.10! into Eqs.~E6!, ~E10!, and
~E11! taking into account Eqs.~E9! and ~E13!. This yields
GFE for R(t3 ,t2 ,t1) in terms of the one exciton Green

functionG, the exciton scattering matrixḠ, and the exciton-
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population Green’s functionḠ. The most general expressio
contains a large number of terms. However, in many ca
the variablesB̂n in the Hamiltonian@Eqs.~2.2!–~2.8!# can be
chosen such thatmm,kl

(2) 50. The resulting expressions for th
response function are simplified considerably in this case
the transition dipolesm01 andm12 are perpendicular we need
however, to keepm (2). @Alternatively we can introduce thre
oscillator variables on each molecule Ref.~21!.#

The GFE forR(t3 ,t2 ,t1) assume the following form

R~ t3 ,t2 ,t1!5 (
a51

3

Ra
c ~ t3 ,t2 ,t1!1 (

a51

2

Ra
i ~ t3 ,t2 ,t1!1c.c.,

~3.13!

whereRc is the coherent part of the response represen
direct processes which do not involveḠ

R1
c~ t3 ,t2 ,t1!

52 i 3( mn8
~1!mk8

~1!m j 8
~1!mm

~1!E
0

t3
dt9E

0

t9
dt8

3Gnn8~ t31t22t9!Gkk8~ t32t9!

3Gj 8 j
†

~ t31t21t12t8!Gmm8~t8!Ḡm8 j ,nk~t92t8!,

~3.14!

R2
c~ t3 ,t2 ,t1!

52 i 3( mn8
~1!mk8

~1!m j 8
~1!mm

~1!E
0

t3
dt9E

0

t9
dt8

3Gnn8~ t32t9!Gkk8~ t31t21t12t9!

3Gj 8 j
†

~ t31t22t8!Gmm8~t8!Ḡm8 j ,nk~t92t8!, ~3.15!

R3
c~ t3 ,t2 ,t1!

52 i 3( mn8
~1!mk8

~1!m j 8
~1!mm

~1!E
0

t31t2
dt9E

0

t9
dt8

3Gnn8~ t31t21t12t9!Gkk8~ t31t22t9!

3Gj 8 j
†

~ t32t8!Gmm8~t8!Ḡm8 j ,nk~t92t8!. ~3.16!

The sequential contributionsRi ~which do depend onḠ) are
given by

R1
i ~ t3 ,t2 ,t1!

52( mm
~1!m l

~1!mk
~1!m r

~1!E
0

t3
dt9E

0

t9
dt8

3Gms~t8!Ḡ js,i 8r 8~t92t8!Gj 8 j
†

~t92t8!

3Gr 8r~ t32t9!Ḡi 8 j 8,kn~ t31t22t9!Gln
† ~ t1!, ~3.17!

R2
i ~ t3 ,t2 ,t1!

52( mm
~1!m l

~1!mk
~1!m r

~1!E
0

t3
dt9E

0

t9
dt8

3Gms~t8!Ḡ js,i 8r 8~t92t8!Gj 8 j
†

~t92t8!

3Gr 8r~ t32t9!Ḡi 8 j 8,nl~ t31t22t9!Gnk~ t1!. ~3.18!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



in
-
th
on

on
x

a
ne
a

e

s

In
d
he
ot
e

ne
e
e

si
th
ns
n

a
ree
es
g
are
c-

tion
di-
p-

o-

ve-

h
c-

d in
o-
ec-
al:
rms
es-
on
e

ion
n

he

ub

ht -

on

9592 J. Chem. Phys., Vol. 109, No. 21, 1 December 1998 Chernyak, Zhang, and Mukamel
Equations ~3.13!–~3.18! show how the time-domain
nonlinear optical response is induced by exciton scatter
The coherent componentRc contains three contributions pre
sented diagrammatically in Fig. 1. In all cases each of
three interactions with the optical field creates an excit
two of these excitons are positive-frequency~pf! and their
evolution is described by the Green’s functionG whereas the
evolution of the third negative frequency~nf!-exciton is de-
termined by the Green’s functionG†. The contributions pre-
sented in Figs. 1~a!, 1~b! and 1~c! differ in that the exciton is
produced by the first, the second and the third interacti
with the field, respectively. The first scattering of the pf e
citons occurs att5t8; the last scattering at timet5t9. The
last scattering although described by the same scattering
plitude, has a different nature compared to the previous o
two pf excitons annihilate with the nf exciton, forming
single exciton which propagates by means ofG to form the
signal att5t. Scattering between pf and nf excitons nev

occurs.Ḡ(t92t8) describes the dynamics of two pf exciton
between the first and the last scattering events.

The two sequential contributions are shown in Fig. 2.
Figs. 2~a! and 2~b! the nf exciton is created by the first an
the second interaction with the field, respectively. After t
second interaction we have one pf and nf exciton in b
diagrams. Their coupled propagation due to phonon
change is described by the Green’s functionḠ. After the first
scattering of the pf exciton, the phonon exchange is
glected since a stronger exciton-exciton scattering proc
takes place. Starting att5t8 the system evolves in the sam
way as in the coherent case.

We have chosen to express the response function u
the time intervals between consecutive interactions with
driving fields rather than the actual times of the interactio
This choice is particularly convenient for the incohere
component Eqs.~3.17! and~3.18!. The three contributions to

FIG. 1. Diagrammatic representation of the three contributions to the co
ent part of the third-order optical response functionRc(t3 ,t2 ,t1) @~a! Eq.
~3.14!, ~b! Eq. ~3.15!, and~c! Eq. ~3.16!#. Time runs from the bottom to the
top. A single line denotes the one-exciton Green’s function G, the do
line stands for the exciton scattering matrixḠ. Arrows represent the three
incoming fields and the signal field. An arrow pointing from left to rig
~right to left! implies that the incomingk j field makes a1k j (2k j ) contri-
bution to the signal wave vectorks .
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the coherent part Eqs.~3.14!–~3.16! can be represented in
more concise form using the actual times: each of the th
terms represents two out of six permutations of three tim
of interactions with the driving field. However, we are usin
the time intervals for the coherent parts as well since they
more suitable for the description of time-domain spe
troscopies.

A notable advantage of this diagrammatic representa
is that it allows us to immediately recognize the spatial
rection of the various contributions. To that end, let us re
resent the fields in the form

E~ t !5(
j

@Ej~ t !exp~ ik j r2 iv j t !

1Ej* ~ t !exp~2 ik j r1 iv j t !#. ~3.19!

Within the rotating wave approximation, pf excitons are pr
duced by the positive-frequency componentE of the optical
field whereas the nf exciton is produced by the negati
frequency componentE* . This implies that the contributions
shown in Figs. 1~a!, 1~b!, and 1~c! are proportional to
E1* E2E3, E1E2* E3, and E1E2E3* . Similarly, the two contribu-
tions in Figs. 2~a! and 2~b! are proportional toE1* E2E3 and
E1E2* E3, respectively. It immediately follows then that eac
of the five signals will be generated only in a specific dire
tion ks as indicated in the figures.

The third-order optical response has been expresse
terms of the Green’s function for the propagation of the tw
exciton variables in Ref. 37. The GFE presented in this s
tion are different in two respects. The first is purely form
in the GFE the two-exciton propagation is expressed in te
of the exciton-exciton scattering matrix. Second, the expr
sions of Ref. 37 do not include the incoherent contributi
@Eqs.~3.17! and~3.18!# which describes the evolution of th
exciton populations and coherences.

IV. DISCUSSION

In this paper we have derived closed Green’s funct
expressions~GFE! for the third-order optical response of a

r-

le
FIG. 2. The same as Fig. 1 but for the incoherent contributionRi(t3 ,t2 ,t1)
@~a! Eq. ~3.17!, ~b! Eq. ~3.18!#. The filled double line describes the irreduc

ible partḠ of the Green’s function representing the evolution of the excit

density matrix, i.e., theN5^B̂†B̂& variables.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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excitonic system coupled to a phonon bath by solving
nonlinear exciton equations~NEE!. The response is recast i
terms of the exciton Green’s functionG, the exciton-exciton

scattering matrixḠ and the Green’s functionḠ which de-
scribes incoherent exciton motion induced by the excit
phonon scattering. Coupling to phonons is accounted for
relaxation kernels whereas optical nonlinearities origin

from exciton-exciton scattering which is described byḠ. The
NEE provides a collective oscillator picture for exciton d
namics and the nonlinear response. For a linearly driven
monic oscillator all nonlinear responses vanish. Optical n
linearities are generated by the deviations from the linea
driven harmonic model which enter through anharmoniciti
nonlinearities in the expansion of the polarization operato
powers of the primary variables, and the nonboson natur
the primary variables~deviations from boson statistics!. The
distinction between these three sources of optical nonlin
ity depends on our choice of dynamical variables since tra
formations of variables change the commutation relatio
the Hamiltonian and the polarization operator. It is possib
for example, to choose variables such that their commuta
relations become those of bosons; such transformation to
son variables is known as bosonization. The classical limi
the bosonization procedure is the transformation to canon
variables~i.e., the variables in which the Poisson bracket h
the canonical form!. It can be shown that this classical tran
formation can always be extended to the bosonization of
original quantum system. Bosonization is a convenient t
for classifying the sources of optical nonlinearities as ori
nating either from statistics or from anharmonicities: t
former are described by nonlinear terms in the expansio
the polarization in boson operators whereas the latter
given by the anharmonic terms in the Hamiltonia
Bosonization is also a common tool for treating syste
whose natural variables possess nontrivial commutation r
tions, i.e., spin systems,38,39 electron-hole pairs,40 and Fren-
kel excitons.41 Bosonization was particularly popular at th
early stages of condensed matter theory when diagramm
perturbative expansions involved systems of free boson
fermions as a reference.42 Later it was shown43 that non-
trivial perturbation theories can be formulated for spin s
tems using the highly nonboson spin variables includ
nonzero temperatures. Nonboson commutation relations
do not pose a major difficulty in theories of nonlinear optic
response of Frenkel exciton systems, which are based
equations of motion for one- and two-excito
variables.15,19,28In this paper we found the choice of dynam
cal variables that makes the polarization operator linea
the exciton variables to be the most adequate. These
ables appear naturally for the two-band semiconductor mo
or for molecular aggregates made out of two-level m
ecules. For other systems~e.g., aggregates of three level mo
ecules! this can be arranged by a proper transformation. T
choice of variables greatly simplifies the GFE: the coher
contribution is represented by the product of four on
exciton Green’s functions and the exciton scattering mat
and the incoherent contribution has a simple form as w
Bosonization does not simplify the treatment, on the contr
it generates nonlinearities in the polarization operators
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the GFE becomes much more cumbersome.44 This can be
understood by recognizing that the dipole operator is
window through which the system interacts with the fie
Bosonization tries to work with a basis set that is as close
possible to the system’s eigenstates. However, the dipole
erator, which has a particularly simple form in a zero-ord
basis set in real space, becomes quite complex in the ei
state representation. A linear relationship between the dip
and the exciton variables makes the description of the w
packet created by the interactions with the field much m
intuitive and compact.

The treatment of the optical response of semiconduc
and molecular systems within the same unified framew
allows us to establish a clear correspondence between di
ent levels of theory developed for both types of systems. T

simplest level which is based on keeping the^B̂& variables
alone is known as the SBE for the polarization in the the
of semiconductors12 and the local field approximation
~LFA! for Frenkel excitons.15 Adding dephasing through re
laxation kernels leads to the SBE for polarizations and po
lations for semiconductors, and equations of motion for

^B̂& and ^B̂†B̂& variables developed for Frenkel excitons17

The dynamics of̂ B̂†B̂& variables also describes the tim
and frequency-resolved fluorescence.24 The present article
shows that the SBE and LFA theories are essentially
same. The proper accounting for two-exciton states has b

first achieved by a scheme involving the^B̂& and ^B̂B̂&
variables.19 The corresponding equations for semiconduct
were derived later.29,35 The equivalence of these approach
has been established in Ref. 14 where the exciton repre
tation for the two-band model was introduced. Howev
practical applications of this theory to semiconductors s
constitute a nontrivial task because of the;N4 scaling of the
number of two-exciton state. Current applications are the
fore limited to some crude approximate models of semic
ductor superlattices which only take into account a few o
and two-exciton states45 or to special systems such as sem
conductor quantum wells in a strong magnetic field wh
the two-exciton manifold becomes manageable by virtue
the strong symmetry.46

The GFE expressions derived in this paper have no a
logue in the semiconductor literature. Similar expressio
have been derived earlier for aggregates made out of t
level molecules using Green’s function techniques in the
quency domain with partial resummation of the princip
contributions in exciton phonon coupling.24 In this paper we
have extended the GFE of Ref. 24 to a more general exc
system and derived them in a more intuitive way using
NEE and applying certain approximations for the relaxat
kernels @Eqs. ~2.20!–~2.24!# rather than factorization
schemes for higher-order exciton variables. It is not poss
to derive these expressions by factorizing the variables th
selves. The present derivation clarifies the physical sign
cance of the response function in the time domain, a
should be particularly useful for the analysis of femtoseco
measurements. The GFE describe the combined effect
exciton population-relaxations and coherent two-exciton m
tion, which is absolutely necessary for a proper descript
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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of pump-probe and three-pulse photon echo spectrosco
An expression that interpolates between the theories of R
22 and 19 and incorporates both^B̂B̂& and ^B̂†B̂& variables
was derived in Ref. 23. The present theory is more gen
and the expressions are not additive in the contributions
both types of variables. The ability of the GFE to adequat
describe femtosecond spectroscopy of molecular aggreg
has been demonstrated by application to pump-probe sp
of the LH2 harvesting antenna of purple bacteria.25 The
theory presented here which avoids the explicit calculat
of two-exciton states and allows us to make use of sym
tries is an important step towards its application to realis
semiconductor materials as well.

The interpretation of optical nonlinearities in terms
exciton scattering is particularly useful for molecular agg
gates. First, the local form of theU andP operators28 and the

form of the scattering matrixḠ given by Eq.~F10! implies
that it can be obtained by inverting anN3N matrix rather
than anN23N2 tetradic matrix.28 Second, this interpretation
constitutes a real space picture of optical response whic
very appealing: due to the local structure of the polarizat
operators28 the driving field interacts with individual chro
mophores. This implies that aggregate structure can be
rectly probed using two-dimensional time-domain spectr
copy by examining the cross peaks in the double Fou
transforms of the response functions.47 This is analogous to
multidimensional NMR48 and Raman echo49 techniques.
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APPENDIX A: HAMILTONIAN FOR AN AGGREGATE
OF MULTILEVEL MOLECULES

In this Appendix we sketch a derivation of the excito
representation@Eqs. ~2.2!–~2.5!# for an arbitrary molecular
aggregate. We consider a molecular aggregate made o
interacting multilevel molecules linearly coupled to a ha
monic bath which represents intramolecular, intermolecu
as well as solvent degrees of freedom. The Hamiltonian
the joint electronic and nuclear~bath! degrees of freedom
can be written in the form

H5He@h~q!#1Hph. ~A1!

HereHe@q# is the electronic part which depends on a set
parameters represented byh. Hph is the phonon~bath!
Hamiltonian representing a set of harmonic oscillators@see
Eq. ~2.3!#. The parametersh of the electronic Hamiltonian
depend on the set of oscillator coordinatesq[qa . This de-
pendence is the origin of the exciton-phonon coupling. W
shall expand these parameters in a Taylor series around
equilibrium valuesq̄ of the bath coordinates in the groun
electronic state. We can then recast Eq.~A1! in a form of a
generalized Davydov Hamiltonian:

H5He1Hph1H int , ~A2!
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He[He@ q̄#, ~A3!

H int5(
a

F]He@h#

]h G
h5h̄

F ]h

]qa
G

q50

qa . ~A4!

Equations~A1! and ~2.3! express the total Hamiltonian
H in terms of its electronic partHe . To defineHe , we con-
sider an assembly of (N11)-level molecules. Assuming bi
nary intermolecular interactions and using the basis se
molecular eigenstates, our most general Hamiltonian is

He5(
n

(
i

Vn
i rn

ii 1 (
mn

mÞn

(
i j ,kl

Jmn
i j ,klrm

i j rn
kl , ~A5!

wherern
i j [u i &n n^ j u with i , j 50, . . . ,N is a complete set of

operators for thenth molecule. The first term in Eq.~A5!
describes the molecular Hamiltonians while the second t
represents intermolecular interactions. The parameters
noted byh are now given byVn

i andJmn
i j ,kl . The interaction

HamiltonianH int can be written in a form

H int5(
ni

(
a

V̄n;a
i rn

ii qa1 (
mn

mÞn

(
i j ,kl

(
a

J̄mn;a
i j ,kl rm

i j rn
klqa .

~A6!

Equation~A2! together with~2.3!, ~A5!, and~A6! represent
the most general Hamiltonian of a molecular aggregate
early coupled to harmonic bath.

The aggregate driven by an external fieldE(t) is repre-
sented by the total Hamiltonian@Eq. ~2.7!# with the polariza-
tion operator

P5(
n

(
i j

mn
i j rn

i j . ~A7!

The Hamiltonian@Eq. ~A5!# can be simplified consider
ably by making use of the fact that the energy spacings
tween molecular levelsnV are usually much larger tha
typical valuesJ of intermolecular interactionsJ!nV. How-
ever, there still might be closely lying levels. We shall the
fore separate the molecular levels into groups using the
lowing prescription: the energy spacings between any
levels within a group is not larger than;J, and the spacings
between any two levels which belong to different groups
much larger thanJ. In the zeroth approximation, we can the
neglect intermolecular couplings between levels which
long to different groups. The neglected terms can sub
quently be taken into account perturbatively. The only e
ception is when, for example, the energy of a state wher
two molecules are excited in molecular states belonging
the same group is close to the energy of a state when a s
molecule is excited to a molecular state which belongs
another group. The calculation then becomes tedious. A
example, we consider resonant third-order~four-wave mix-
ing! nonlinear spectroscopy. In this case, we can pick u
single group of states on each molecule that can be r
nantly excited from the ground state by a single interact
with the driving field. We will refer to these states as m
lecular single-excited~MSE! states. Another group of state
participating in resonant third-order response are those
can be excited by a single interaction with the field start
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



b

la
x-
en
o
i

ed

er
re

rd
r

an
at
gl
s
a

ne

e-

te

Th
es

at
al
r

on
-

isf

the
-

le

era-
ies

on
le
d

hen
the

ries
se

erm

co-

es-
e-
urth
er.

le

:

9595J. Chem. Phys., Vol. 109, No. 21, 1 December 1998 Chernyak, Zhang, and Mukamel
with one of the MSE states. In general, the states can
classified as either collective double-excitations~CDE!
whereby two different molecules are excited or molecu
double-excited~MDE! states, where a single molecule is e
cited to a molecular state which belongs to a group differ
from MSE. On each molecule we are now left with tw
groups of states: MSE and MDE. The aggregate states
volved in third-order nonlinear are either singly excit
~MSE! or doubly excited~either MDE or CDE!. We can
neglect couplings between these groups, which is a gen
ized Heitler-London approximation. The CDE and MDE a
strongly coupled when the MDE energies lie withinJ from
twice the energies of MSE. In summary, for resonant thi
order nonlinear spectroscopy we can use a model with th
groups of molecular states; the ground state, MSE,
MDE. There are three groups of the global aggregate st
involved in the third-order response; the ground state, sin
excited states and double excited states. These state
strongly coupled by intermolecular interactions within
group, the coupling between different groups can be
glected.

To establish the exciton oscillator picture of optical r
sponse, we introduce creation~annihilation! operators
B̂n j

† (B̂n j) of MSE wherej denotes thej th MSE on thenth
molecule. Denoting the ground state of the aggregate byuV&,
we defineB̂n j

† uV& to be a normalized single-excited sta
whereby thenth molecules are in the stateu j &, which belongs
to MSE, and all other molecules are in the ground state.
statesB̂n j

† uV& constitute the manifold of single-excited stat
of the aggregate. The CDE states are generated
B̂m j

† B̂n j
† uV& for mÞn. In order to treat the MDE and CDE in

a similar manner and at the same time maintain an oscill
picture, we would like to avoid the introduction of addition
operators; it is natural to represent the MDE states in a fo
B̂ni

† B̂n j
† uV&. Assuming that the number of MSE states isM

we haveM (M11)/2 MDE states given byB̂ni
† B̂m j

† uV&.

APPENDIX B: EXCITON HAMILTONIAN FOR THE
TWO-BAND MODEL

In this Appendix we derive the exciton representati
@Eqs.~2.2!–~2.5!# for semiconductors, starting with the two
band Hamiltonian12,50,51

Ĥ5 (
m1n1

tm1n1

~1! âm1

† ân1
1 (

m2n2

tm2n2

~2! b̂m2

† b̂n2

1
1

2 (
m1n1k1l 1

Vm1n1k1l 1
~1! âm1

† ân1

† âk1
âl 1

1
1

2 (
m2n2k2l 2

Vm2n2k2l 2
~2! b̂m2

† b̂n2

† b̂k2
b̂l 2

1
1

2 (
m1n2k2l 1

Wm1n2l 1k2
âm1

† b̂n2

† b̂k2
âl 1

, ~B1!

where ân1
(ân1

† ) and b̂n2
(b̂n2

† ) are the annihilation~creation!

Fermi operators of electrons and holes, respectively, sat
ing the commutation relations
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ân1
âm1

† 1âm1

† ân1
5dm1n1

, b̂n2
b̂m2

† 1b̂m2

† b̂n2
5dm2n2

,

~B2!

and all the other anticommutators are zero. We adopt
following convention for indices: Latin indices with a sub
script 1~2!, i.e., m1 (m2), stand for electrons~holes!. A par-
ticle ~electron-hole pair! is denoted by a Latin index with no
subscriptm5(m1m2).

The polarization operatorP has the form

P[ (
m1n2

mm1n2
~ âm1

† b̂n2

† 1b̂n2
âm1

!. ~B3!

Following the derivation of Ref. 14 we introduce the partic
~electron-hole! operators

B̂m1m2

† [âm1

† b̂m2

† , B̂m1m2
[b̂m2

âm1
. ~B4!

We can express the commutation relations of particle op
tors as well as the Hamiltonian in terms of an infinite ser
of normally ordered operatorsB̂† andB̂. This can be accom-
plished in the following way. Expressing the commutati
relations ofB̂ and B̂† in terms of the electron and the ho
operatorsâ,b̂,â†, andb̂† we can project the Hamiltonian an
the right-hand side~rhs! of the commutation relations into
the subspaces with the given number of excitations. We t
make an ansatz and assume that the Hamiltonian and
commutation relations can be expanded in a power se
involving normally ordered products of operators. Becau
the Hamiltonian conserves the number of particles, each t
should contain an equal number of creationB̂† and annihila-
tion B̂ operators. We can easily determine the expansion
efficients starting with the zero-order terms~in B̂ and B̂†),
making use of the fact that an operatorB̂† . . . B̂†B̂ . . . B̂
which containsn creation andn annihilation operators is zero
on all the subspace of state containing less thann excitations.
This method allows us to determine the coefficients succ
sively, order by order. For calculating the third-order r
sponse, we need to expand the Hamiltonian up to the fo
order and the commutation relations up to the second ord22

The total Hamiltonian is finally given by Eqs.~2.2!–~2.8!,
with

hmn[tm1n1

~1! dm2n2
1dm1n1

tm2n2

~2! 1Wm1m2n1n2
, ~B5!

Umn,kl[2
1

4
@ tm1k1

~1! dm2k2
dn1l 1

dn2l 2
1dm1k1

tm2k2

~2! dn1l 1
dn2l 2

1dm1k1
dm2k2

tn1l 1
~1! dn2l 2

1dm1k1
dm2k2

dn1l 1
tn2l 2
~2! #

1
1

4
@Vm1n1k1l 1

~1! dm2k2
dn2l 2

1dm1k1
dn1l 1

Vm2n2k2l 2
~2! #, ~B6!

and P in Eq. ~2.5! represents the deviation from partic
boson statistics and is given by

P5
1

2
@P ~1!1P ~2!#. ~B7!

HereP (1)(P (2)) is the electron~hole! permutation operator
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Pmn,pq
~1! [dm1q1

dp1n1
dm2p2

dn2q2
,

~B8!Pmn,pq
~2! [dm2q2

dp2n2
dm1p1

dn1q1
.

The parametersh̄mn;a andŪmn,kl;a may be derived in a simi-
lar way.

APPENDIX C: ELIMINATION OF PHONON VARIABLES

In this Appendix we derive expressions for the rela
ation terms Ḃm ,Ẏmn ,Ṅn j , and Żnm, j which enter Eqs.
~2.11!–~2.14!. The relaxation superoperators will be calc
lated perturbatively to second order in the exciton-phon
coupling. Our calculation is based on equations of motion
phonon-assisted variables. The projection operator techn
will be used to justify a factorization scheme which allow
us to close the system of equations. To set the stage we
that the full system-bath density matrixr̂ can be represente
in a form

r̂5r~0,0!~q!uV&^Vu1(
m

rm
~1,0!~q!B̂m

† uV&^Vu

1( rmn
~2,0!~q!B̂m

† B̂n
†uV&^Vu1(

nm
rm,n

~1,1!~q!B̂m
† uV&

3^VuB̂n1(
mn j

rmn, j
~2,1!~q!B̂m

† B̂n
†uV&^VuB̂j1H.c ~C1!

In Eq. ~C1! uV& denotes the ground state of the excit
system,q5(qaL ,qaR) represents the nuclear variables
Liouville space where L and R stand for left and right va
ables of nuclear wave packetsr ( i , j )(q), and the indexa pa-
rametrizes nuclear oscillators@Eq. ~2.3!#.

Higher-order terms inB̂ andB̂† are omitted in Eq.~C1!
since they are not involved in the third-order optical r
sponse. The projection operator technique starts by introd
ing the projection operatorsP̂ andQ̂ with

Q̂[I 2P̂. ~C2!

We defineP̂ as an operator acting in the nuclear space w

P̂r~ i , j !~q![r0~q!Trq@r~ i , j !~q!#, ~C3!

wherer0(q) is the equilibrium nuclear wave packet in th
ground electronic state. Since to zeroth order in excit
phonon coupling the nuclear motions are uncoupled we h

r̂~t!5P̂r̂~t!. ~C4!

Applying Eq.~C4! to Eq.~C1! implies that to zeroth order in
exciton phonon coupling the following factorization holds

^B̂i 1 . . .

† B̂i n
† B̂j 1 . . .

B̂j m
pa1 . . .

par
qb1 . . .qbs

&

5^B̂i 1 . . .

† B̂i n
† B̂j 1 . . .

B̂j m
&Trq@pa1 . . .

par
qb1 . . .

qbs
r0~q!# .

~C5!

We have applied the projection operator technique
derive Eq.~C5!. The derivation involves equations of motio
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for phonon assisted variables which will be closed using
~C5!. The projection operator technique will not be us
hereafter.

Substituting Eq.~2.4! into Eq. ~2.10! we obtain the re-
laxation terms which enter Eqs.~2.11!–~2.14! in a form:

Ḃm5( h̄mn,aBn;a
~q! 1( V̄mn,kl;aZkl,n;a

~q! , ~C6!

Ẏmn5( h̄mn,kl;a
~2! Ykl;a

~q! , ~C7!

Ṅi j 5( ~ h̄im,aNm j;a
~q! 2Nim;a

~q! h̄m j,a!, ~C8!

Żmn, j5( ~ h̄mn,kl;a
~2! Zkl, j ;a

~q! 2Zmn,i ;a
~q! h̄i j ,a!, ~C9!

whereV̄mn,kl;a and h̄mn,kl;a
(2) are defined by

V̄mn,kl;a[2Ūmn,kl;a22(
p
Pmn,pkh̄pl,a

22(
pq
Pmn,pqŪpq,kl;a , ~C10!

h̄mn,kl;a
~2! [dmkh̄nl,a1h̄mk,adnl1V̄mn,kl;a . ~C11!

In Eqs. ~C6!–~C9! we have introduced the phonon-assist
variables

Bn;a
~s! [^B̂nXa

~s!&, Ymn;a
~s! [^B̂mB̂nXa

~s!&,
~C12!

Nmn;a
~s! [^B̂n

†B̂mXa
~s!&, Zmn, j ;a[^B̂j

†B̂mB̂nXa
~s!&,

with s5p,q;Xa
(q)[qa ,Xa

(p)[pa .
To obtain the relaxation terms we use equations

motion for the phonon-assisted variables@Eq. ~C12!#. The
rhs of these equations will contain the phonon assisted v
ables, exciton variables@Eq. ~2.9!# and new variables of the

form ^B̂nXa
(s)Xb

(s8)&,^B̂mB̂nXa
(s)Xb

(s8)&,^B̂m
† B̂nXa

(s)Xb
(s8)&, and

^B̂j
†B̂mB̂nXa

(s)Xb
(s8)&. However, all new variables come wit

coefficients proportional to the exciton-phonon coupling.
is clearly seen from Eqs.~C6!–~C9! that in order to obtain
the relaxation terms in second order in the coupling,
phonon-assisted variables should be calculated in first or
This implies that the new variables should be taken in zer
order and we can apply the factorization of Eq.~C5! which
closes the equations. After applying the factorization of E
~C5!, the equations of motion for the phonon-assisted va
ables can be represented in a form

i
dXa

~s!

dt
5 ivaXa

~2s!2 idsp( h̄mn,aNnm , ~C13!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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i
dBm;a

~s!

dt
2( hmnBn;a

~s! 2 ivaBm;a
~2s!

5( h̄mn;awa
~s!Bn1( Vmn,klZkl,n;a

~s!

1( V̄mn,kl;awa
~s!Zkl,n2Em

~1!Xa
~s!

2( Em,kl
~2! Nlk;a

~s! 2( Em,kl
~3! Ykl;a

~s! , ~C14!

i
dYmn;a

~s!

dt
2( hmn,kl

~2! Ykl;a2 ivaYmn;a
~2s!

5( h̄mn,kl;a
~2! wa

~s!Ykl2E n
~1!Bm;a

~s! 2Em
~1!Bn;a

~s!

2( En,mk
~2! Bk;a

~s! , ~C15!

i
dNi j ;a

~s!

dt
2( ~himNm j;a

~s! 2Nim;a
~s! hm j!2 ivaNi j ;a

~2s!

5( ~ h̄im;awa
~s!Nm j2wa

~s!Nimhm j!2 idspNimh̄m j;a

2E i
~1!Bj ;a

~s! * 1E j
~1!Bi ;a

~s! , ~C16!

i
dZmn, j ;a

~s!

dt
2( ~hmn,kl

~2! Zkl, j ;a
~s! 2Zmn,i ;a

~s! hi j !2 ivaZmn, j ;a
~2s!

5( wa
~s!~ h̄mn,kl;a

~2! Zkl, j2Zmn,i h̄i j ;a!

2 idsp( h̄k j ;aZmn,k2Em
~1!Nn j ;a

~s! 2E n
~1!Nm j;a

~s!

2( Em,nkNk j ;a
~s! 1E j

~1!Ymn;a
~s! , ~C17!

where we have used the notation (2p)[(q),(2q)[(p)
and

va
~q![ma

21, va
~p!52mava

2,

wa
~q![Trq@qaqar0~q!#5

1

2mava
cothS bva

2 D , ~C18!

wa
~p![Trq@paqar0~q!#52

i

2
,

with b5(kT)21, T being the temperature.
Equations~C13!–~C17! constitute a closed system o

equations for the phonon-assisted variablesB(s),Y(s),N(s),
and Z(s). The relaxation terms are obtained in Appendix
upon substituting the solutions of Eqs.~C13!–~C17! into
Eqs.~C6!–~C9!.

APPENDIX D: PHONON-INDUCED RELAXATION
SUPEROPERATORS

In this Appendix we solve Eqs.~C6!–~C9! and ~C13!–
~C18! for the relaxation terms which yield closed expre
sions for the relaxation operators.
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
-

We start by noting that Eqs.~C13!–~C17! can be for-
mally written in the operator form:

i
dAa

~q!

dt
2hAa

~q!2
i

ma
Aa

~p!5Wa
~q!~t !,

~D1!

i
dAa

~p!

dt
2hAa

~p!1 imava
2Aa

~q!5Wa
~p!~t !,

where Aa
(s) denotes the variablesXa

(s) , Ba
(s) ,Ya

(s) ,Na
(s) , and

Za
(s) ; Wa

(s) is the rhs of the corresponding equation, where
h is the linear operator representing the free evolution
each variable~in the absence of relaxation!. Each of the vari-
ables has a differenth, as can be seen from Eqs.~C13!–
~C17!. We further introduce the set of the Green’s functio
of these operators which satisfy the equations

i
dG
dt

2hG5 id~t!. ~D2!

The solution of Eq.~D1! can be represented in a form

Aa
~q!~t !52 i E

0

`

dtFcos~vat !G~ t !Wa
~q!~t2t !

1
1

mava
sin~vat !G~ t !Wa

~p!~t2t !G ,
~D3!

Aa
~p!~t !52 i E

0

`

dt@cos~vat !G~ t !Wa
~p!~t2t !

2mavasin~vat !G~ t !Wa
~q!~t2t !#.

It follows from Eq. ~D2! that the Green’s functionsG(t)
satisfy the condition

G~t8!G~t9!5G~t81t9!. ~D4!

SinceG(t) describes the evolution of the exciton var
ables alone, the Green’s functionsGi j ,mn

(N) and Gi j ,k; mn,r
(Z) re-

lated to the variablesNi j andZi j ,k , respectively, can be ex
pressed in terms of the Green’s functionsGmn and Gmn,kl

(Y)

which are related toBm andYmn variables~one-exciton and
two-exciton Green’s functions!:

Gi j ;mn
~N! 5Gim~t!G n j

† ~t!,
~D5!Gi j ,k;mn,r

~Z! ~t !5Gi j ,mn
~Y! ~t !G rk

† ~t!.

Equations~C13!–~C17! may be solved as follows: we
first solve Eq.~C14! taking into account only the first-orde
in the driving field terms. Using Eq.~D3! we find B̄a

(s) (B̄a
(s)

is the first-order contribution in the driving field toBa
(s)) in

terms of B. We then substituteB̄a
(s) into Eqs. ~C15! and

~C16!. Solving Eqs.~C15! and ~C16! by applying Eq.~D3!
we expressYa

(s) andNa
(s) in terms ofB,Y,N, and the driving

field. We then substituteNa
(s) andYa

(s) in Eq. ~C17! and solve
Eq. ~C17! which yieldsZa

(s) in terms ofB,Y,N,Z, and the
driving field. We next solve Eq.~C14! and substituteXa

(s)

together with Na
(s) ,Ya

(s) , and Za
(s) found earlier into Eq.

~C14!. By solving Eq.~C14! we obtain the contribution to
Ba

(s) to third-order in the driving field. After finishing this
straightforward but tedious procedure we express the pho
assisted variablesBa

(q) ,Ya
(q) ,Na

(q) , and Za
(q) in terms of the
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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exciton variablesB,Y,N,Z, and the driving field. These ex
pressions involve the one- and two-exciton Green’s functi
Gmn(t) andGmn,kl

(Y) (t) as well as the phonon Green’s fun
tions Ma(t) defined by

Ma~t![
1

2mava
FcothS bva

2 D cos~vat!2 isin~vat!G .
~D6!

The relaxation terms are obtained by substituting these
pressions into Eqs.~C6!–~C9!. These expressions for the re
laxation terms involve the one- and two-exciton Gree
functionsG andG (2) as well as the collective~bath! coordi-
nate Green’s functionsM ( i j )(t) with i , j 51,2,3 defined by

M ~ i j !~t ![(
a

h̄a
~ i !

^ h̄a
~ j !Ma~t!, ~D7!

where we have definedh̄mn;a
(1) [h̄mn,a , h̄mn,kl;a

(3) [V̄mn,kl;a ,
and h̄mn,kl;a

(2) has been defined earlier@Eq. ~C11!#. For ex-
ample

Mmn; i j ,kl
~1,3! 5(

a
h̄mn,aV̄i j ,kl;aMa~t!. ~D8!

The phonon Green’s functionsM ( i j )(t) can be conveniently
expressed in terms of tensor spectral densitiesC( i , j )(v):

M ~ i , j !~t !5
1

2E2`

` dv

2p
C~ i , j !~v!

3FcothS bv

2 D cos~vt!2 isin~vt!G . ~D9!

with the spectral densities defined by

C~ i , j !~v!5(
a

1

2mava
h̄a

~ i !
^ h̄a

~ j !

32p@d~v2va!2d~v1va!#. ~D10!

In what follows we first neglect the relaxation terms invol
ing the driving field. The remaining relaxation terms can
recast in the following form:

Ḃm~t!5( E
0

`

dtRm;n
B,B~ t !Bn~t2t !, ~D11!

Ẏmn~t!5( E
0

`

dtRmn;kl
Y,Y ~ t !Ykl~t2t !, ~D12!

Ṅi j ~t!5( E
0

`

dtRi j ;mn
N,N ~ t !Nmn~t2t !, ~D13!

Żmn, j~t!5( E
0

`

dtRmn, j ;kl,i
Z,Z ~ t !Zkl,i~t2t !. ~D14!

The relaxation superoperators in Eqs.~D11!–~D14! have the
form:

Rm;n
B,B~ t !52 i( Gm8n8~ t !Mmm8;n8n

~1,1!
~ t !, ~D15!
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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Rmn,kl
Y,Y ~ t !52 i( Gm8n8,k8 l 8

~Y!
~ t !Mmn,m8n8;kl,k8 l 8

~2,2!
~ t !,

~D16!

Rmn,kl
N,N ~ t !52 i( Gm8k8~ t !Gl 8n8

†
~ t !@d l l 8dn8nMmm8,k8k

~1,1!
~ t !

2dmm8d l l 8Mn8n,k8k
~1,1!

~ t !1dk8kdm8m

3Mn8n,l l 8
~1,1!

~2t !2dk8kdn8nMmm8,l l 8
~1,1!

~2t !#.

~D17!

Invoking the Markov approximation, we obtain Eqs.~2.20!–
~2.23! where the relaxation superoperatorsGmn , Rmn,kl and
R̄i j

mn are defined by

Gmn[(
n8

E
0

`

dtRm;n8
B,B

~ t !G n8n
†

~ t !, ~D18!

Rmn,kl[ (
m8n8

E
0

`

dtRmn;m8n8
Y,Y

~ t !Gm8n8,kl
~Y!†

~ t !, ~D19!

R̄i j
mn[ (

m8n8
E

0

`

dtRi j ;m8n8
N,N

~ t !Gm8m
†

~ t !Gn8n~ t !. ~D20!

Equation~D18! can be derived as follows: neglecting rela
ation,Bn(t2t) is given by

Bn~t2t !>(
n8
G nn8

†
~ t !Bn8~t!. ~D21!

Substituting this into the rhs of Eq.~D11! results immedi-
ately in Eq.~2.20! together with Eq.~D18!. Equations~D19!
and ~D20! are obtained in a similar way. The zero-ord
Green’s functions@Eq. ~D2!# represent the free evolutio
when the relaxation terms are neglected. The effect of th
Green’s functions in Eqs.~D18!–~D20! can be interpreted a
a transformation to a rotating frame.15,16

APPENDIX E: GREEN’S FUNCTION EXPRESSION
FOR NONLINEAR OPTICAL RESPONSE FUNCTIONS

In this Appendix we derive expressions for the tim
domain third order response functionR(t3 ,t2 ,t1) which con-
nects the third-order polarizationP(3)(t) with the driving
field @Eq. ~3.12!#. To that end, we need to evaluateBn(t)
andZkl,m(t) to third order in the driving fieldE(t) and sub-
stitute them into Eq.~2.8!. We first find the first-order term
Bn

(1)(t) using Eq.~2.25!

Bn
~1!~t !5 i E

0

`

dt(
m

Gnm~ t !Em
~1!~t2t ! . ~E1!

Hereafter all summations are performed over repea
indices. SubstitutingBn(t) obtained from Eq.~E1! into Eqs.
~2.28! and ~3.11!, we obtain the second-order terms
Ymn(t) andNi j (t):

Ymn~t!5 i 2E
0

`

dt2E
0

`

dt1 (
m8n8kk8

Gmn,m8n8
~Y!

~ t2!Gk8k~ t1!

3 Ēm8n8,k8
~1!

~t2t2!Ek
~1!~t2t22t1!, ~E2!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Ni j ~t!52 i 2E
0

`

dt2E
0

`

dt1( $Gii 8~ t21t1!Gj 8 j
†

~ t2!Ej 8
~1!

~t2t2!Ei 8
~1!

~t2t22t1!1Gii 8~ t2!Gj 8 j
†

~ t21t1!Ej 8~t2t22t1!

3Ei 8
~1!

~t2t2!1Ḡi j ,i 8 j 8~ t2!@Gi 8m8~ t1!d j 8n81d i 8n8Gm8 j 8
†

~ t1!#En8
~1!

~t2t2!Em8
~1!

~t2t22t1!%, ~E3!

where we have used Eq.~3.11! and introduced the notation

Ēmn,k
~1! [En

~1!dmk1Em
~1!dnk1En,mk

~2! . ~E4!

The third-order term inZmn, j is obtained upon substitution of Eqs.~E2! and ~E3! into Eq. ~2.28! and making use of Eq
~3.8!. A convenient representation is obtained by introducing a response functionẐmn, j (t3 ,t2 ,t1) by

Zmn, j~t!5E
0

`

dt3E
0

`

dt2E
0

`

dt1Ẑmn, j~ t3 ,t2 ,t1!E~t2t3!E~t2t32t2!E~t2t32t22t1!, ~E5!

which adopts a form

Ẑmn, j~ t3 ,t2 ,t1!52 i 3( $Gmn,m8n8
~Y!

~ t31t2!Gj 8 j
†

~ t3!Gk8k~ t1!m j 8
~1!m̄m8n8,k8

~1! mk
~1!1Gmn,m8n8

~Y!
~ t3!Gj 8 j

†
~ t31t2!

3Gii 8~ t21t1!m̄m8n8,i
~1! m j 8

~1!m i 8
~1!

1Gmn,m8n8
~Y!

~ t3!Gj 8 j
†

~ t31t21t1!Gii 8~ t2!m̄m8n8,i
~1! m i 8

~1!m j 8
~1!

1Gmn,m8n8
~Y!

~ t3!Gj 8 j
†

~ t3!Ḡi 8 j 8,i 9 j 9~ t2!@Gi 9k~ t1!d j 9 l1d i 9 lGk j9
†

~ t1!#m̄m8n8,i 8
~1! m l

~1!mk
~1!%, ~E6!

where we have used the notation

m̄mn,k
~1! [mn

~1!dmk1mm
~1!dnk12mk,mn

~2! 22( Pnm,k jm j
~1!22( Pnm,rsmk,rs

~2! . ~E7!

Substituting Eqs.~E2!, ~E3!, ~E5! and ~E6! into Eq. ~2.25!, we obtain

Bm
~3!~t !5E

0

`

dt3E
0

`

dt2E
0

`

dt1B̂m~ t3 ,t2 ,t1!E~t2t3!E~t2t32t2!E~t2t32t22t1!, ~E8!

with

B̂m~ t3 ,t2 ,t1!5B̂m
~1!~ t3 ,t2 ,t1!1E

0

t3
dtB̂m

~2!~ t,t32t,t2 ,t1!, ~E9!

and

B̂m
~1!~ t3 ,t2 ,t1!52 i 3( $Gmm8~ t3!Gii 8~ t21t1!Gj 8 j

†
~ t2!m̄m8, j i

~2! m j 8
~1!m i 8

~1!
1Gmm8~ t3!Gii 8~ t2!Gj 8 j

†
~ t21t1!m̄m8, j i

~2! m i 8
~1!m j 8

~1!

1Gmm8~ t3!Ḡi j ,i 8 j 8~ t2!@Gi 8 l~ t1!d j 8k1d i 8kGl j 8
†

~ t1!#m̄m8, j i
~2! mk

~1!m l
~1!2Gmm8~ t3!

3Gkl,k8 l 8
~Y!

~ t2!Gj 8 j~ t1!mm8,kl
~2! m̄k8 l 8, j 8

~1! m j
~1!%, ~E10!

B̂m
~2!~ t,t32t,t2 ,t1!5 i 4( Vs j,kl$Gms~ t !Gkl,n8m8

~Y!
~ t31t22t !Gj 8 j

†
~ t32t !Gk8k9~ t1!m j 8

~1!m̄n8m8,k8
~1! mk9

~1!
1Gms~ t !

3Gkl,n8m8
~Y!

~ t32t !Gj 8 j
†

~ t31t22t !Gii 8~ t21t1!m̄n8m8,i
~1! m j 8

~1!m i 8
~1!

1Gms~ t !Gkl,n8m8
~Y!

~ t32t !

3Gj 8 j
†

~ t31t21t12t !Gii 8~ t2!m̄n8m8,i
~1! m i 8

~1!m j 8
~1!

1Gms~ t !Gkl,n8m8
~Y!

~ t32t !Gj 8 j
†

~ t32t !Ḡi 8 j 8,i 9 j 9~ t2!

3@Gi 9k8~ t1!d j 9 l 81d i 9 l 8Gk8 j 9
†

~ t1!#m̄n8m8,i 8
~1! m l 8

~1!mk8
~1!%. ~E11!
he
Here we have used the following notation:

m̄m,kl
~2! [2m l ,km

~2! 22( Pmk,nlmn
~1!22( Pmk,rsm l ,rs

~2! .

~E12!

The response function adopts the final form
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
R~ t3 ,t2 ,t1!5( mn
~1!B̂n~ t3 ,t2 ,t1!

1( m j ,mn
~2! Ẑmn, j~ t3 ,t2 ,t1!. ~E13!

APPENDIX F: THE EXCITON SCATTERING MATRIX

In this Appendix we derive a closed expression for t

exciton scattering matrixḠ. To get it in a simpler form we
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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first include the relaxation operators for one- and tw
exciton variables in the matriceshmn andUmn,kl . To that end
we represent the two-exciton relaxation matrixRmn,kl in a
form

Rmn,kl5dmkGnl1Gmkdnl12R̃mn,kl

22(
P
Pmn,kpGpl22(

pq
Pmn,pqR̃pq,kl , ~F1!

and introduce the renormalized matricesĥ and Û by

ĥmn[hmn2 iGmn , ~F2!

Ûmn,kl[Umn,kl2 iR̃mn,kl , ~F3!

whereV̂ is expressed in terms ofÛ andĥ by @see Eq.~2.16!#

V̂mn,kl[2Ûmn,kl22(
p
Pmn,pkĥpl22(

pq
Pmn,pqÛpq,kl .

~F4!

Equations~2.25!–~2.28! can then be rearranged by elimina
ing the relaxation termsG andR while substituting the renor
malized values ofĥ andÛ given by Eqs.~F2!–~F4!. In what
follows we will only use the renormalized values. The te

radic scattering matrixḠ is defined by Eq.~3.10!. In matrix
form it reads

(
k8 l 8

Gmn,k8 l 8
~Y!

~ t !~dk8kd l 8 l2Pk8 l 8,kl!

5Fmn,kl~ t !1 (
m8n8k8 l 8

E
0

t

dt9E
0

t9
dt8Fmn,m8n8~ t2t9!

3Ḡm8n8,k8 l 8~t92t8!Fk8 l 8,kl~t8!, ~F5!

Equation ~3.10! can be easily solved by switching to th
frequency domain

Ḡ~ t !5E dv

2p
e2 ivtḠ~v!, ~F6!

where it assumes the form

G~Y!~v!~ I 2P!5F~v!1F~v!Ḡ~v!F~v!, ~F7!

yielding

Ḡ~v!52@F~v!#211@F~v!#21G~Y!~v!~ I 2P!

3@F~v!#21. ~F8!

In the frequency domain we have

G~v!5~v2ĥ!21, F~v!5~v2ĥ^ I 1I ^ ĥ!21,
~F9!

G~Y!~v!5@v2~ I 2P!~ I ^ ĥ1ĥ^ I !22~ I 2P!Û#21.

Substituting Eqs.~F9! into Eq. ~F8! yields

Ḡ~v!5@ I 1Pĥ0
~2!F~v!22~ I 2P!ÛF~v!#21

3@2vP12~ I 2P!Û#. ~F10!

whereĥ0
(2) is the free-boson part of the two-exciton Ham

tonian with matrix element
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
-

-

ĥ0
~2![ĥ^ I 1I ^ ĥ. ~F11!

Equations~F6! and ~F10! form a closed expression for th
exciton scattering matrix.
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