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Multidimensional femtosecond spectroscopies of molecular aggregates
and semiconductor nanostructures: The nonlinear exciton equations
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A unified description of nonlinear optical spectroscopies of molecular aggre@aaesng with the
Frenkel-Heitler-London Hamiltonignand semiconductoréstarting with the two-band models
developed using the nonlinear exciton equatidNEE). The equations follow explicitly the
complete set of one-, two-, and three-point dynamical exciton variables relevant for the third-order
response. Effects of nuclear motions are incorporated through relaxation superoperators calculated
perturbatively in exciton-phonon coupling. A Green’s function expression for the third-order
response is derived by solving the NEE using a new truncation scheme based on factorizing the
three-point relaxation kernels. These results set the stage for designing multidimensional
spectroscopies of excitons and analyzing them using coherence-transfer pathway998©
American Institute of Physic§S0021-9608)70545-§

I. INTRODUCTION the difference is rather technical than conceptual, it has cru-
Fial implications on adopting the right algorithm for numeri-
cal calculations. In general, a higher level of theory which,
e.g., accounts for the structure of two-exciton resonances can
be much more easily used in the modeling of molecular
Janostructures compared with their semiconductor counter-
parts.

The dynamics of electronic excitations in assemblies o
coupled molecular chromophordsrystals, nanostructures
and aggregatésand semiconductor systenisulk, quantum
dots, quantum wells, and superlatticesan be effectively
probed wusing femtosecond spectroscopic technique
Hole-burning®? pump-probée’* fluorescence depolarization, , o
photon echodsand four-wave mixing have been applied to ~_Another important similarity is that both systems are
molecular aggregates such as J-aggre§atemd biological well described by a material Hamiltonian that conserves the

light-harvesting complex&&!*and to semiconductor materi- number of electron-hole pairs. Non-pair-conserving pro-
als as welt213 cesses are controlled by the ratio of the exciton binding en-

Despite the different structure of electronic excitations,e"dY (in semiconductopsor the intermolecular couplingn
these two classes of materials share several important fundglolecular aggregatgto the optical frequency, which is typi-
mental similarities, allowing the description of their dynam- cally small in both systems. This simplifies the original
ics and optical response within the same framewdfk. many-body problem considerably, since the energy spectrum
First, in both systems the elementary electronic excitation§onsists of well-separated groups of energy levels represent-
are excitons: Femtosecond techniques probe the interplay 419 single, double excitations, etc. Because only the radiation
coherent and incoherent dynamics, elastic and inelastic scdield can change the number of electron-hole pairs, we can
tering as well as self-trapping of excitons. The Wannier-typeclassify optical techniques according to their power depen-
excitons in semiconductors are formed by an electron in thelence on the incoming fields, and find that very few types of
conduction band and a hole in the valence band. Moleculaglectronic excitations need to be considered at each order.
excitations moving coherently across the system are knowifihis provides a convenient computational scheme as well as
as Frenkel excitons. These can also be considered asbasis for an intuitive physical pictute.
electron-hole pairs with the constraint that the electron and The simplest way to include the coupling with vibra-
the hole must belong to the same molecule at all times. Thiional (phonon degrees of freedom is by eliminating the
implies that there is no conceptual difference between th@uclear variables and incorporating their effects through re-
two types of materials. It should be noted, however, that dugaxation superoperators. In molecular aggregates this results
to the absence of intermolecular charge transfer in moleculdn the Redfield equation for the reduced exciton density
assemblies, the number of Frenkel one-exciton states scal@satrix, >’ whereas for a semiconductor system it yields the
~N with the number of moleculdd, whereas the number of semiconductor Bloch equation@BE) with dephasind,z
Wannier excitonghereafter we refer to all electron-hole pair which form a basic tool for calculating optical signals in

states as excitons regardless of whether their relative motiogyperlattices using realistic anisotropic three-dimensional
is bound or notscales~N2. Similarly, the number of two-  modelst8

H 2 N4 i . o .
exciton states scalesN- and ~N*, respectively. Although In the absence of coupling to phonons it is possible to
derive equations of motion for one- and two-exciton
3E|ectronic mail: mukamel@chem.rochester.edu variables® which avoid the explicit calculation of two-
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exciton states, tracing the origin of the third-order nonlinearThe NEE are simplified considerably by an approximate cal-
optical response to exciton-exciton scatterifigt Phonon-  culation of the relaxation terms. These equations are then
induced dephasing has been incorporated into the theories eblved in Sec. Ill, resulting in a closed-form Green’s func-
¥ in molecular aggregates by including additional exciton-tion expression for the third-order response. Our results are
population variables and applying certain factorizationfinally discussed in Sec. IV.
schemes for closing the equatid?$3 This level of theory is
equivalent to the SBE with dephasing for semiconductors.
The resulting expressions foit®) describe adequately tran- Il. COLLECTIVE EXCITON VARIABLES AND THE
sient grating experiments, however, they do not apply Wherll\lO'\“‘"\lEAR EXCITON EQUATIONS
both exciton transport and two-exciton resonances are impor-  The starting point for our analysis is the Frenkel exciton
tant, as may be the case in pump-probe and photon echamiltonian with the Heitler-London approximation for mo-
spectroscopies. A Green's function approach which detecular aggregateAppendix A), and the two-band Hamil-
scribes the combined effects of exciton transport and twotonian for semiconductoréAppendix B. These Hamilto-
exciton resonances has been devel8padd applied to vari- nians neglect processes which do not conserve the number of
ous  spectroscopies in  J-aggregdfes, pump-probe excitons, which is justified since in both systems the exciton
spectroscopy of light harvesting antenna compléXes, frequencies are much larger than the exciton interactions.
photon-echoé$ and four wave mixing. In the absence of The central result of this section is a unified representa-
vibronic coupling the method was extended to molecular agtion of the Frenkel-exciton and the Wannier-exciton Hamil-
gregates made of three-level molecfesand to  tonians including the coupling to nuclear motions. The linear
semiconductors*?°® Effects of strong coupling to phonons optical response only probes one-exciton states, whereas the
can be incorporated in equations of motion describing pothird-order optical nonlinearity involves two-exciton states
laron transpoft 23 or by solving equations of motion for as well. Our unified material exciton Hamiltonian which de-
reduced wave packets which involve the dynamics of a fevscribes the optical response of both systems up to third order
important collective nuclear coordinat&sThese extensions is given by the sum of the electronic patt, the vibrational
will not be considered here. HamiltonianH ,, and the vibronic couplingy

The- relgvant dynamical variables for third order spec- H=Ho+ Hopt Hop. 2.1)
troscopies in aggregate made out of two-level molecules p
have been identified in Refs. 15 and 21. In the present workhese have the following form in terms of the exciton anni-
we generalize these earlier studies in several ways. First, weilation (creation operators3,(B') and nuclear coordinates
outline a procedure that holds for multilevel molecules.q,,
There is a great freedom in the choice of exciton variables

and we demonstrate how it may be used to simplify the He:% hmnBLBnﬂgfk, Umﬂ,leLBszBl’ (2.2
theoretical analysis through a nonlinear transformation of the P2 muwiq?

dynamical variables. Second, we consider a model of a lin- thzz (_“+ ¥> 2.3
early coupled phonon bath and derive closed expressions for « \2m, 2

the relaxation superoperators to second order in exciton- _ —  ata — Atata o
phonon coupling. The resulting nonlinear exciton equations Hint= n%x hm”’“BmB”q“er%la Umnt: aBmBrBiBi G
of motion (NEE) provide the basic theoretical framework (2.9

tf|1at agpf)hes to semlico?duc'For nanostrugtur?s ashwell. 1’|h|rd, fh Egs. (2.2-(2.4) h,,, represents the one-exciton Hamil-
closed-form Green's function expression for the non Ineartonian,Umn,M describes the exciton-exciton interactions,

response is derived by solving the NEE using a new approxiz 4 ,, are the reduced masses and frequencies of nuclear
mation based on factorizing some of the relaxation superop- *— — . . . :
; ) i .. modesh, , andU k-, Stand for vibronic coupling which
erators. The resulting expression generalizes and unifies. . : Kl
) ! . Prlgmates from theq,-dependence ofi,, and Uk, re-
many of the earlier studies. Although spontaneous ligh . . : !
2 ; . . spectively. The commutation relations for the exciton opera-
emission(fluorescenceis not considered here, it can be cal-
. tors have the form
culated as well using the present theory.
This paper is organized as follows. In Sec. Il we present  [B,B!1=6,,—2>, PminBiB, (2.5
a general Hamiltonian representing an aggregate made out of Kl
multilevel molecules. The Hamiltonian written using collec- where P, | is a tetradic matrix which describes the devia-
tive exciton variables contains three types of nonlinearitiestion of the exciton commutation relations from those of

direct Coulombic intermolecular interactions, nonboson stahosons. It follows from the Jacobi identity for the commuta-
tistics (nonlinear commutation relations between exciton op-+grs that

eratorg and nonlinearities in the dipole operator. In Appen-

dixes A and B we show how the conventional Hamiltonians ~ mnki = Pamii=Pmnk - (2.6
representing an aggregate of multilevel molecules, and thghe total Hamiltonian representing the system coupled to the
two band model of semiconductors can be transformed, resptical field £(t) is

spectively, to assume the form of our general Hamiltonian. Hi—H—&(t)P 2.7

We then derive the NEE which depend on phonon-induced T ' '
relaxation superoperators defined formally in Appendix D.andP is the polarization operator
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. e dZun;

P=; Mﬁl)Bn“'%l miekBrBB I+ H.c., (2.8 '%ZE h(nfr)LkIZkI,j_Ei hiZmni — Em’Na;
where (" and u), are the matrix elements of the polar- —EPN = > E2L NG EDY it Zinn.
ization operator. ko

In general Eqs(2.2)—(2.5) contain higher-order products (2.14

of B, and B!, however, since they only contribute to the

optical response in higher than third order, they are neWhere

glected. In Appendix A we show how the general Hamil- o) _

tonian of a molecular aggregate made out of interacting ™™kl

multi-level molecules linearly coupled to a harmonic phonon

bath can be represented in the form of E@s2—(2.5). In an,k|52umn,k|—22 Pmn,pkhm—ZE PrnpqYpg.ki s

Appendix B we introduce the exciton operators for the two- P Pa

band model of semiconductors and recast it in the form of (2.16

Egs.(2.2—(2.5 as well. All the results of this paper, there- =, ¢ 2.17)

fore, apply to both systems. In addition molecular assemblies™ mo '

may often have charge transfer procegseg., the photosyn-

thetic reaction centgr This intermediate case of charge &2)=2u{3m E=22 Prknisty E=22 Prkrsiti 2,

transfer excitons is also covered by our Hamiltonian. n s (2.18
Now we are in a position to derive a closed system of '

equations for the exciton variables. To that end, we introducex3) =u@ € (2.19

the following relevant dynamical variables: ikl ik

5mkhnl+hmk5nl+vmn,kla (2-15)

The variablesB,Y,N, andZ denote relaxation terms which

Br=(B.), Ymn=(BmBn), are linear inB,Y,N, andZ. A procedure for evaluating these
(2.9 terms is outlined in Appendixes C and D.
516 STR A The most time and memory consuming part in solvin
NmnE<Ble>v ZmnjE<BjTBmBn>! y gb g

Egs. (2.1)—(2.14 is connected with Eq(2.14 for Z,;

. . . . which contains~N?3 variables whereN is the number of
which are required to obtain a closed system of equations for

) . : one-exciton states. The corresponding relaxation operator is
the opncal reSPOr?SeA up to thA'rd ord‘ér..'l'he Heisenberg an N®x N2 matrix. To overcome this bottleneck, we derive
equation of motiori dB,,/dr=[B,,,H] vyields

in this section a simplified scheme which allows us to reduce
. the number of variables te-N2. To that end we invoke the
dBn, A Aina following approximations for the relaxation terms in Egs.
; _ T _ )

ar ; hm”B”JrnEH VinnkiBnBiBy € (2.1)—(2.14. We first neglect the contributions which in-
volve the driving field€. This yields

- % &2.BIB - % E34BiB+ B Hind,

Bm:_iE I'nBns (2.20
(2.10 "
Applying the truncation procedure of Refs. 15, 19, 21, and Y= —i >, Rmnki Yk » (2.2
34 finally gives ki
dB Nii=—1> (FimNmiT Nim[m) —i> RITN 2.2
i drm:E hmBnt 2 VinnkiZin— € ! 2": (FimNiny = Nimlm) %‘ i N, (2:22
n nkl
_% gmz,)klNIk_z grr?,)kIYkl_F Bmv (2.1]) Zmn,j:—|% Rmn,klzkl,j_lz stzmn,s
LN Bkls
dy —i> RmnjZkis- (2.23
=S iR Yig~ B~ Bt
We shall refer toR andR as the irreducible relaxation op-
—> &2 Bt Yin, (2.12  eratorsR{"in Eq.(2.22 is responsible for the conservation
ko of the number of excitons and therefore may not be ne-
glected. In the following we neglect the irreducible relax-
dN ation operatoR in Eq. (2.23:

id—:ZEm: (himNmj—Nimhmj) = &7BF + &VB;+N

ijo
2.13 Rim=0. (2.24
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Expressions for the relaxation kernels, evaluated to seconidl. GREEN'S FUNCTION EXPRESSIONS FOR
order in exciton-phonon coupling are presented in AppendiOPTICAL RESPONSE

D. Upon the substitution of Eq92.20—(2.23 into Egs. In this section we solve the NEFEGS. (2.29—(2.28]

(2.13(2.14 we obtain and derive Green's Function Expressid@&-E) for the op-
dB,, tical response, establishing a nonlinear oscillator picture for
= (hpn—iTm) By the optical nonlinearities. Each of these equations contains a
dr n homogeneous part written in the left-hand side and an inho-
mogeneous source in the right-hand side. The solutions of
=2 VaonkZin—EX' =2 EZNK— 2 E34 Y, these equations can be expressed using four Green’s func-
nkl . . tions which are defined as the formal solution of Eqgs.
(2.2 (2.25-(2.28 when the right-hand side is replaced by@)

source.
dY,
a7 gt (M R Vi Bn()=3 Gri(DBA(0), (3.1
=-&gblB,,—&lB,— > &2 B, 2.2
"B En'Bn 20 EimBi 228 =3 G (O (0), (3.2
m’n’
_dN;; . : (N)
g7~ 2 [N =i Tim)Nimj = Nim(hinj +1 Ty} Nij (=2 il (ON;/;(0), (3.3
Ilj/
+i;n RT"™Nm=—EYBF +£8;, (2.27) Zonj()= 2 G oo 11 (0 Zgyne (0). (3.4)
m/nlj/
4z Here the one-exciton Green'’s functi@,(t) is given by
i— > (W@ = iRmnk) Za i+ > (h+iTs)Z _ i
dr = mn,kl mnkl) £kl & sj sj)&mn,s Gt =00 [exp(—iht=T1)]mn, (3.5

where 6(t) is the Heaviside step functiopd(t)=1 for t
= — &N~ EVNp— > €2 N+ EVY . (228 >0, and 6(t)=0 for t<0]. The other Green's functions
k have similar expressions.

) ] The linear polarization to first order in the driving field
Egs. (2.25—(2.28 constitute a closed system of equatlon35(t) is given by

for the third-order optical response, hereafter referred to as
nonlinear exciton equation®NEE). These equations will be Do | (1) _
solved in the following section. Uk fo LR ()&t~ t), 36
As outlined in Sec. I, in the absence of the dephasin
(coherent dynamigsEgs. (2.25 and (2.26 form a closed
system of equations for thB and Y variables, obtained by
factorizing Z,; ,=B* Y}, and N,,=B; B, in the right-hand _
side of Eq.(2.'23. 1n'his system of équations has been first R(l)(t):'% pin 16 [Grnn(H) = Gn(D]. 3.7
derived for Frenkel-excitonS:?* The analogous system of
equations has been later rederived for semiconductor systems Equation(2.8) implies that the third-order response is
and genera"zed to higher-order respon?gég_Equations of eXpreSSEd as a sum of third-order terms in the expanSion of
motion for one- and two-exciton variables with phenomeno-Bn andZy; , in the driving field. The latter can be obtained
logical dephasing have been derived in Ref. 36. These equ&y solving Eqs.(2.25-(2.28 iteratively order by order in
tions can be recovered by settiﬁ_g:O in Eq. (2.27 which the driving field. This straightforward procedure yields ana-

yields the same factorization. These equations, howevelytic@l expressions foB, andZy, , in terms of the Green's

cannot fully describe pure dephasing effects in the propagdunctions of Egs.(2.25—(2.28. It follows from Eq. (2.2

tion of exciton populations and coherences, which are ofhat the Green's functio? () may be factorized as
extreme importance in pump-probe and three-pulse photon 2 —cM T

echo spectroscopies. The SBE with depha<imghich con- Cmntcmn’ s ()= G (7) G 7)- &8
stitute the powerful standard tool in time-domain spectrosThis results from our simplified relaxation superoperator
copy of semiconductors treats dephasing processes properlyzd. (2.24]. The only necessary Green'’s functions are there-
However, the two-exciton correlations are completely nefore Gy (7), Gm'm,n,(r), and Gmm'n'(ﬂ which can be
glected. The NEE combine the advantages of both apfound numerically by solving linear dynamical equations
proaches and describe the combined effects of excitowith no more thanN? variables. The Green’s function ex-
dephasing, transport, and two-exciton correlations. In theressiongGFE) for the optical response derived in this way
next section we show how two-exciton correlations can beare presented in Appendix E. The crucial point in the present
treated using the exciton-exciton scattering matrix. derivation is the factorization of the Green’s function

g%/\/here the linear response function obtained by solving Eq.
(2.25 adopts the form
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G (7) [Eq. (3.8)] which follows from the factorized form  population Green’s functios. The most general expression
of the relaxation operatiofEgs. (2.20—(2.24]. The GFE  contains a large number of terms. However, in many cases
may not be obtained by directly factorizing the dynamicali,e variables,, in the Hamiltoniar[Egs.(2.2—~(2.8)] can be

variables in the equations of motide.g., setting(B"BB)  chosen such thatZ),=0. The resulting expressions for the
=(B")(BB)), as is commonly done. response function are simplified considerably in this case. If

We next turn toG(™). It is well known that optical non- the transition dipoleg.y; andu, are perpendicular we need,
linearities vanish for a system of harmonic oscillat@free  however, to keep.?). [Alternatively we can introduce three
boson$ provided the dipole operator is linear in the primary oscillator variables on each molecule R&f1).]
(boson variables. The deviation of the system defined by = The GFE forR(t3,t,,t;) assume the following form
Egs. (2.2—-(2.5 from the harmonic oscillator system is de- 3 2
termined by the matrid,; which describes anharmonic R(ts,ty,t;) = 2 RS (ta,tn,ty) + E R (ta,tp,t)) +C.C.
terms in the Hamiltonian, and the matrf,,,; which re- a=1 7T =1 7 ’
flects the deformation of the boson commutation relations. 3.13
These induce exciton scattering processes which in turn givihere R° is the coherent part of the response representing
rise to optical nonlinearities. The combined effectfnd . . . —

. ) . . _direct processes which do not invol@

U can be conveniently described by the exciton scattering
matrix. The nonlinear terms in the polarization opergey.  Ri(ts,t2,t1)

(2.8)] constitute an additional source of optical nonlinearity. 5 p
We start with the formal definition of the exciton scat- ~ =—i33, Mﬁj;)/l,l((];)/.l,}})/.l,%)f dr”f dr’
tering matrixI'(t). To that end we first define the free-boson 0 0
partFn«(7) of the two-exciton Green’s function by X Gppr(tag+t,— 7)) Gy (t3— 77)
FmKnI(T)EGmn(T)GkI(T)y (39) XG}rrl‘(t3+t2+t1_T,)Gmm’(Tl)Fm’j,nk(T”_T,):
the exciton scattering matrix can be defined using the repre- (3.14

sentation of the two-exciton Green’s functi@i¥)(t) in the .
form of the Bethe-Salpeter equatisee Appendix F Using Ra(tst2,ta)

the tetradic operator form the Bethe-Salpeter equation reads . PRTIRT S
¢ . =_|32 /-Ln/ /-Lk/ /-LJ/ /-Lf“)fo dT’,fo d’T’
GM(t)( —79)=F(t)~l—f df’jT dr'F(t—7")

0 0

X Gnn/(t3_ ’T”)Gkk/(t3+t2+tl_ 7'”)

XF(T/’_ T’)F(T’). (31@ XG;r,j(t3+t2— T,)Gmm’(T,)Fm’j,nk( 7= 7_/)’ (313
The matrix elements of Eq3.10 are given by Eq(F5). S(ts.to,th)
Equation(3.10 represent$s(Y) in terms of the exciton scat-
tering matrix I', which is calculated in Appendix F by - i3> M(J;)M(];)[Lg),u(l)ft3+t2d7J/JTHdT,
switching to the frequency domain. ne Pk Sy m 0

_ Finally we introduce the irreducible Green’s function X Gy (tat tyty— 7) G (ts + ty— 77)
Gmnmn(7) of EQ. (2.27) by . -
— XG, (ta— 7)) Gy (7)) i (7' — 7). (3.1
Gg\lg’m/nr(T)EGmm’(T)G;/n(T)+Gmn,m'n/(7')- (3.1 ! ]( s G ) " ],nk( ) o
The sequential contributior®' (which do depend o) are
given by

g_il(ta,tzytl)

The first term represents the propagation of ¢(BéB)

variable when they can be factorized(&)(B). The second
term represents therefore the genuine unfactorized propag

tion of the (B'B) variables. We are now in a position to oS (00, Sy [ g
obtain the GFE for the third-order optical response Bm H1Fic Br ] 0
“ * “ ! o ’ ! T i ’
PO(t)= fo oltsf0 dtzfo dt;R(t3,t5,t;)E(t—tg) XGud ) s i (7" =7)Gj, (7" = 7")
>< ’ - ¢ _'7'/ + - ' T .
Xg(t_ta_tz)g(t_ts_tz_tl) (312 GI’ r(t3 T/ )GI ] ,kn(tS t2 T/)Gln(tl)a (3 17)
i
We first note that Eq(E7) implies that the two-exciton Ra(ts,t2,t1)
Green’s functionG") enters Eqs(E6), (E10), and (E11) t #'
) = @, @, 0, @ g '
only through the produc6)(7)(I—P). The GFE can be =22 u i . dr’ . dr
obtained by substituting E¢3.10 into Egs.(E6), (E10), and
(E11) taking into acc'ount EqsE9 and (E13. This yields X G T')F,-s irrr(Tﬂ_T’)GT,»(T”_T’)
GFE for R(ts,tz,ty) in terms of the one exciton Green's ' I
function G, the exciton scattering matriiX, and the exciton- XGrr (t3= 7)Gjrjr ni(ta+t,— 7")Gpi(ty).  (3.18
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Equations (3.13—(3.18 show how the time-domain the coherent part Eq$3.14—(3.16 can be represented in a
nonlinear optical response is induced by exciton scatteringnore concise form using the actual times: each of the three
The coherent componeRf contains three contributions pre- terms represents two out of six permutations of three times
sented diagrammatically in Fig. 1. In all cases each of thef interactions with the driving field. However, we are using
three interactions with the optical field creates an excitonthe time intervals for the coherent parts as well since they are
two of these excitons are positive-frequen@f) and their more suitable for the description of time-domain spec-
evolution is described by the Green’s functi@rwhereas the troscopies.
evolution of the third negative frequenéyf)-exciton is de- A notable advantage of this diagrammatic representation
termined by the Green’s functic®®. The contributions pre- is that it allows us to immediately recognize the spatial di-
sented in Figs. (), 1(b) and Xc) differ in that the exciton is rection of the various contributions. To that end, let us rep-
produced by the first, the second and the third interactionsesent the fields in the form
with the field, respectively. The first scattering of the pf ex-

citons occurs at=7'; the last scattering at time=7". The &= [& (D) expikjr—iw;jt)
last scattering although described by the same scattering am- i
plitude, has a different nature compared to the previous ones: +gjk(t)exq —ikjr o], (3.19

two pf excitons annihilate with the nf exciton, forming a
single exciton which propagates by meangcofo form the ~ Within the rotating wave approximation, pf excitons are pro-
signal atr=t. Scattering between pf and nf excitons neverduced by the positive-frequency componénsf the optical
occursf(r"—r’) describes the dynamics of two pf excitons field whereas the nf excit(.)n. is produced by the.negative-
between the first and the last scattering events. frequen(_:y cqmponerﬁ*. This implies that the Con'gnbunons
The two sequential contributions are shown in Fig. 2. InShown in Figs. (), 1(b), and ic) are proportional to
Figs. 2a) and 2b) the nf exciton is created by the first and E1E:E3, £185 &5, and £,6,E5 . Similarly, the two contribu-
the second interaction with the field, respectively. After thelions in Figs. 2a) and 2b) are proportional te€] £,&5 and
second interaction we have one pf and nf exciton in botf1€z €s, respectively. It immediately follows then that each
diagrams. Their coupled propagation due to phonon ex9f the five signals will be generated only in a specific direc-
change is described by the Green’s funct@nAfter the first tion ks as indicated in the figures.

scattering of the pf exciton, the phonon exchange is ne- The third-order optical response has been expressed in

glected since a stronger exciton-exciton scattering proces:[ rms of the Green's function for the propagation of the two-

takes place. Starting at= 7' the system evolves in the same ﬁgﬁ'tspeﬁ#::gif ilr? t?vif-rgzl eTcr][: ('BI'EE Errs?tsii mi?elln tfg'rs‘mseﬁ_c'
way as in the coherent case. P j purely )

We have chosen to express the response function usirl the GFE the two-exciton propagation is expressed in terms

the time intervals between consecutive interactions with the. the efx c;tofn-:;e; c(;ton stcgttelrlgg [Eatf'x- Shecon?, the:[ gbx;)tres—
driving fields rather than the actual times of the interactions[sllzons(g 17)6 .nd(3 fg)??,vr:?%ud y ri?) mi?] erSnl (t:io?l rIfltJhIon
This choice is particularly convenient for the incoherent gs.{s.1/) a ) ch describes the evolution ot the

component Eq93.17) and(3.18. The three contributions to exciton populations and coherences.

IV. DISCUSSION

k=k+k-k k=k-kt+k k=-k+k+k _ _ .
Stk kThektk e In this paper we have derived closed Green’s function

expressionsGFE) for the third-order optical response of an

1J
™ k,=k,+k,-k, k,=k,-k,+k,
ta Eas A RS rf' j"r.
Tl
~
t A Fas
t2 k3 k3 -kg 3|
4 , X k,
X k k t o
1 1 1 2 k3 k3
(@) (o) (© t, K, X

FIG. 1. Diagrammatic representation of the three contributions to the coher- -k, Kk,
ent part of the third-order optical response functRf(ts,t,,t;) [(a) Eq.
(3.14), (b) Eq.(3.15, and(c) Eq. (3.16]. Time runs from the bottom to the (@) (o)

top. A single line denotes the one-exciton Green'’s function G, the double ‘
line stands for the exciton scattering matfix Arrows represent the three FIG. 2. The same as Fig. 1 but for the incoherent contribuit{s,t,,t,)
incoming fields and the signal field. An arrow pointing from left to right [(a) Eq. (3.17), (b) Eq. (3.18]. The filled double line describes the irreduc-

(right to left) implies that the incoming; field makes atk; (—k;) contri- ible partG of the Green’s function representing the evolution of the exciton
bution to the signal wave vecté . density matrix, i.e., th&l=(B'B) variables.
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excitonic system coupled to a phonon bath by solving thehe GFE becomes much more cumbersdfn&his can be
nonlinear exciton equatio®EE). The response is recast in understood by recognizing that the dipole operator is the
terms of the exciton Green’s functi@h, the exciton-exciton window through which the system interacts with the field.
scattering matrixC and the Green’s functio® which de- Bosonization tries to work with a basis set that is as close as
scribes incoherent exciton motion induced by the excitonpossible to the system’s eigenstates. However, the dipole op-
phonon scattering. Coupling to phonons is accounted for bgrator, which has a particularly simple form in a zero-order
relaxation kernels whereas optical nonlinearities originatdasis set in real space, becomes quite complex in the eigen-
from exciton-exciton scattering which is describedI_hyThe state represgntatior!. A linear relationship b.et\./veen the dipole
NEE provides a collective oscillator picture for exciton dy- and the exciton variables makes the description of the wave
namics and the nonlinear response. For a linearly driven haRacket created by the interactions with the field much more
monic oscillator all nonlinear responses vanish. Optical nonintuitive and compact.
linearities are generated by the deviations from the linearly ~ The treatment of the optical response of semiconductors
driven harmonic model which enter through anharmonicities@nd molecular systems within the same unified framework
nonlinearities in the expansion of the polarization operator irllows us to establish a clear correspondence between differ-
powers of the primary variables, and the nonboson nature ¢int levels of theory developed for both types of systems. The
the primary variablegdeviations from boson statisticsThe  simplest level which is based on keeping ﬂfe) variables
distinction between these three sources of optical nonlinealone is known as the SBE for the polarization in the theory
ity depends on our choice of dynamical variables since transef semiconductoré and the local field approximations
formations of variables change the commutation relations(LFA) for Frenkel excitons® Adding dephasing through re-
the Hamiltonian and the polarization operator. It is possiblejaxation kernels leads to the SBE for polarizations and popu-
for example, to choose variables such that their commutatiofations for semiconductors, and equations of motion for the
relations become those of bosons; such transformation to b(?r@ and (B'B) variables developed for Frenkel excitofs.
son varlab_les_|s known as bqsomzatmn. The c_IassmaI I|m|t_o he dynamics of(BTB) variables also describes the time-
the bosonization procedure is the transformation to canonicay frequency-resolved fluorescedeThe present article
var|ables(|:e., the variables in which the quson pracket has‘shows that the SBE and LFA theories are essentially the
the canonical form It can be shown that this classical trans- . .

. o same. The proper accounting for two-exciton states has been
formation can always be extended to the bosonization of the

original quantum system. Bosonization is a convenient tool!"St aCh'%Ved by a scheme involving t{&) and (BB)

for classifying the sources of optical nonlinearities as origi-"a”ablesw_E The cogrgsspondmg_equatlons for semiconductors
nating either from statistics or from anharmonicities: theVere derived Iatg?.' The equivalence of these approaches
former are described by nonlinear terms in the expansion df@s been established in Ref. 14 where the exciton represen-
the polarization in boson operators whereas the latter arétion for the two-band model was introduced. However,
given by the anharmonic terms in the Hamiltonian. Practical applications of this theory to semiconductors still
Bosonization is also a common tool for treating System§onstituteanontrivial task because of th&* scaling of the
whose natural variables possess nontrivial commutation reldlumber of two-exciton state. Current applications are there-
tions, i.e., spin system&:*° electron-hole pair&® and Fren- fore limited to some crude approximate models of semicon-
kel excitons*' Bosonization was particularly popular at the ductor superlattices which only take into account a few one-
early stages of condensed matter theory when diagrammat®d two-exciton statéor to special systems such as semi-
perturbative expansions involved systems of free bosons &®nductor quantum wells in a strong magnetic field where
fermions as a referené®.Later it was showf? that non- the two-exciton manifold becomes manageable by virtue of
trivial perturbation theories can be formulated for spin systhe strong symmetr§f

tems using the highly nonboson spin variables including The GFE expressions derived in this paper have no ana-
nonzero temperatures. Nonboson commutation relations aldegue in the semiconductor literature. Similar expressions
do not pose a major difficulty in theories of nonlinear opticalhave been derived earlier for aggregates made out of two-
response of Frenkel exciton systems, which are based dgvel molecules using Green’s function techniques in the fre-
equations of motion for one- and two-exciton quency domain with partial resummation of the principal
variablest®!%28|n this paper we found the choice of dynami- contributions in exciton phonon couplid§In this paper we

cal variables that makes the polarization operator linear ifhave extended the GFE of Ref. 24 to a more general exciton
the exciton variables to be the most adequate. These varsystem and derived them in a more intuitive way using the
ables appear naturally for the two-band semiconductor modé\lEE and applying certain approximations for the relaxation
or for molecular aggregates made out of two-level mol-kernels [Egs. (2.20—(2.24] rather than factorization
ecules. For other systens.g., aggregates of three level mol- schemes for higher-order exciton variables. It is not possible
ecules this can be arranged by a proper transformation. Thigo derive these expressions by factorizing the variables them-
choice of variables greatly simplifies the GFE: the coherenselves. The present derivation clarifies the physical signifi-
contribution is represented by the product of four one-cance of the response function in the time domain, and
exciton Green'’s functions and the exciton scattering matrixshould be particularly useful for the analysis of femtosecond
and the incoherent contribution has a simple form as wellmeasurements. The GFE describe the combined effects of
Bosonization does not simplify the treatment, on the contraryexciton population-relaxations and coherent two-exciton mo-
it generates nonlinearities in the polarization operators antion, which is absolutely necessary for a proper description
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of pump-probe and three-pulse photon echo spectroscopiesith

An expression that interpolates k;e}ween the }heories of Refs. HeEHe[a], (A3)
22 and 19 and incorporates batBB) and(B'B) variables

was derived in Ref. 23. The present theory is more general -3 dH[h] lﬂ (Ad)
and the expressions are not additive in the contributions of int oh il 99, 4=0 a:

both types of variables. The ability of the GFE to adequately
describe femtosecond spectroscopy of molecular aggregates Equations(Al) and (2.3) express the total Hamiltonian
has been demonstrated by application to pump-probe spectrain terms of its electronic patt. To defineH., we con-

of the LH2 harvesting antenna of purple bactéfialhe  sider an assembly ofN+ 1)-level molecules. Assuming bi-
theory presented here which avoids the explicit calculatioary intermolecular interactions and using the basis set of
of two-exciton states and allows us to make use of symmemolecular eigenstates, our most general Hamiltonian is
tries is an important step towards its application to realistic mzn

. . _ i i ij,kl _ij Kl

semiconductor materials as well. He_; Z Qnon+ %;1 %l I Pn (A5)
The interpretation of optical nonlinearities in terms of - '

exciton scattering is particularly useful for molecular aggre-wherep,)=|i), (j| withi,j=0, ... N is a complete set of

gates. First, the local form of tHe andP operatoré and the  operators for thenth molecule. The first term in EqA5)

form of the scattering matriX’ given by Eq.(F10) implies  describes the molecular Hamiltonians while the second term
that it can be obtained by inverting ahx N matrix rather — represents intermolecular interactions. The parameters de-
than anN?x N2 tetradic matrix2® Second, this interpretation Nnoted byh are now given by, andJy;". The interaction

constitutes a real space picture of optical response which igamiltonianH;y can be Writtez in a form
m#n

very appealing: due to the local structure of the polarization — — W i K
operatoré the driving field interacts with individual chro- Hint:; ; QnoPnlat En i%l > I aPmon da -
mophores. This implies that aggregate structure can be di- (AB)

rectly probed using two-dimensional time-domain spectros- ) .
copy by examining the cross peaks in the double FourieFauation(A2) together with(2.3), (AS), and(A6) represent

transforms of the response functidfsThis is analogous to the most general Hamiltonian of a molecular aggregate lin-

multidimensional NMR® and Raman ectd techniques. early coupled to harmonic bath. _ .
The aggregate driven by an external fiéldr) is repre-

sented by the total HamiltonidiEq. (2.7)] with the polariza-
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ably by making use of the fact that the energy spacings be-
APPENDIX A: HAMILTONIAN FOR AN AGGREGATE tween molecular level@\Q) are usually much larger than
OF MULTILEVEL MOLECULES typical values] of intermolecular interaction¥< A (). How-
ever, there still might be closely lying levels. We shall there-
fore separate the molecular levels into groups using the fol-
lawing prescription: the energy spacings between any two
evels within a group is not larger thanJ, and the spacings
Petween any two levels which belong to different groups is
pwuch larger thad. In the zeroth approximation, we can then
neglect intermolecular couplings between levels which be-
long to different groups. The neglected terms can subse-
quently be taken into account perturbatively. The only ex-
H=Hh(q)]+Hgp. (A1)  ception is when, for example, the energy of a state whereby
1 is the electronic part which depends on a set offwo molecules are excited in molecular states belonging to

the same group is close to the energy of a state when a single

molecule is excited to a molecular state which belongs to

Eq. (2.3]. The parameters of the electronic Hamiltonian another group. Thg calculation the!ﬁ becomes tedious_. As an
depend on the set of oscillator coordinatgsq,, . This de-  €X@mple, we consider resonant third-ordigur-wave mix-

pendence is the origin of the exciton-phonon coupling. Wéng) nonlinear spectroscopy. In this case, we can pick up a

shall expand these parameters in a Taylor series around tﬁéngle group of states on each molecule that can be reso-
A — . . nantly excited from the ground state by a single interaction
equilibrium valuesg of the bath coordinates in the ground

electronic state. We can then recast Bl) in a form of a with the driving field. We will refer to these states as mo-
. ' L lecular single-excitedMSE) states. Another group of states
generalized Davydov Hamiltonian:

participating in resonant third-order response are those that
H=He+Hpn+Hin, (A2) can be excited by a single interaction with the field starting

In this Appendix we sketch a derivation of the exciton
representatiodEgs. (2.2 —(2.5)] for an arbitrary molecular
aggregate. We consider a molecular aggregate made out
interacting multilevel molecules linearly coupled to a har-
monic bath which represents intramolecular, intermolecula
as well as solvent degrees of freedom. The Hamiltonian o
the joint electronic and nuclegbath degrees of freedom
can be written in the form

HereHg[q
parameters represented by H,, is the phonon(bath
Hamiltonian representing a set of harmonic oscillajeese
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with one of the_MSE states: In general, thg ;tates can be é—n éTm +é; én = s b bL +6;rn Bn = s
classified as either collective double-excitatioGGDE) T 1 e 2 22 2 Z(BZ)
whereby two different molecules are excited or molecular

double-excitedMDE) states, where a single molecule is ex- and all the other anticommutators are zero. We adopt the
cited to a molecular state which belongs to a group differenfollowing convention for indices: Latin indices with a sub-
from MSE. On each molecule we are now left with two script 1(2), i.e.,my (m,), stand for electrongholes. A par-
groups of states: MSE and MDE. The aggregate states irficle (electron-hole pajris denoted by a Latin index with no
volved in third-order nonlinear are either singly excited subscriptm=(m;m,).

(MSE) or doubly excited(either MDE or CDH. We can The polarization operatd? has the form
neglect couplings between these groups, which is a general- o o
ized Heitler-London approximation. The CDE and MDE are ~ P= , Fmyn, (@ DY +Dn 2 ). (B3)

strongly coupled when the MDE energies lie withirfrom MmNz

twice the energies of MSE. In summary, for resonant third-Following the derivation of Ref. 14 we introduce the particle
order nonlinear spectroscopy we can use a model with thre@lectron-holg operators
groups of molecular states; the ground state, MSE, and ~t ot . R
MDE. There are three groups of the global aggregate states Bmm,=28m,Pm,» Bmm,=bm,am,- (B4)

involved in the third-order response; the ground state, single\-Ne can express the commutation relations of particle opera-

excited states and double excited states. These states z%re . A . )
. . . L ors as well as the Hamiltonian in terms of an infinite series
strongly coupled by intermolecular interactions within a

group, the coupling between different groups can be ne@f normally ordered qperatofs’r andB. This can be accom-
glected. plished in the following way. Expressing the commutation

To establish the exciton oscillator picture of optical re-relations ofB and BTJ” terms of the electron and the hole
sponse, we introduce creatiogannihilation operators operators,b,a’, andb™ we can project the Hamiltonian and
éxj(énj) of MSE wherej denotes thgth MSE on thenth  the right-hand siderhs) of the commutation relations into
molecule. Denoting the ground state of the aggregat€y the subspaces with the given number of excitgtioqs. We then
we defineB/ |Q) to be a normalized single-excited state make an ansatz and assume that the Hamiltonian and the
whereby thenth molecules are in the stal), which belongs commutation relations can be expanded in a power series

to MSE, and all other molecules are in the ground state. Thivolving normally ordered products of operators. Because
At . . . . the Hamiltonian conserves the number of particles, each term
statesB, j|Q> constitute the manifold of single-excited states

of the aggregate. The CDE states are generated b§}1oqu contain an equal number of creati®hand annihila-

é:rnjéMQ) for m=n. In order to treat the MDE and CDE in tion B operators. We can easily determine the expansion co-

a similar manner and at the same time maintain an oscillatg#fficients starting with the zero-order terrtia B and BT)A,
picture, we would like to avoid the introduction of additional making use of the fact that an operatef ...B'B...B
operators; it is natural to represent the MDE states in a formwvhich contains creation andh annihilation operators is zero

E“;L{ngm). Assuming that the number of MSE statesMs ~ ©On all the subspace of state containing less thercitations.

we haveM (M +1)/2 MDE states given bﬁliBTm”Q)' T_his method allows us to determine _the coeffiqients succes-
sively, order by order. For calculating the third-order re-
sponse, we need to expand the Hamiltonian up to the fourth

APPENDIX B: EXCITON HAMILTONIAN FOR THE order and the commutation relations up to the second éfder.

TWO-BAND MODEL The total Hamiltonian is finally given by Eq$2.2—(2.9),

. . . . . with
In this Appendix we derive the exciton representation
[Egs.(2.2—(2.5)] for semiconductors, starting with the two- ~ hp o=t 80 4 Smon t82 + Wi monones (B5)
b dH It .i]_?5051 11 2''2 171 Ti2t2 11720172
and Hamiltoniarf>>

. o~ A Unni=— > [tO 8. 0n1. 001+ S tZ 8416,
_ (1) A&t 2) pt mn,kl mykq “mok, ©ngly ©nyly myky "myk, Ongly Onoly
A %1 than 8, an, mzan tie)n b, b, 4
1 2
1 + 5m1k15m2k2t511)ll‘5n2|2+ 5m1k1 5m2k25nll 1t512%2]
- (1) o L
+ 2 mlnzlklll lenlkll 1 8m;8n, 3,81 1 i
1 + Z[Vm1n1k1|15m2k25n2|2
2 > V@, BBl BB
2mz”Ezkz'z Manakalz Nz kel +5m1k15“1'1\/g2)“2k2'2]’ (B6)
1 Nt Ay oA A and P in Eq. (2.5 represents the deviation from particle
T pt - S
+ 2. nZ( | Win,n,l1k,@m, Pn, Pk 21 (B1)  poson statistics and is given by
11128211
A ay - I : 1
whereanl(anl) and bnz(bnz) are the annihilatior{creation P= E['p(l)_;,_'p(z)]. (B7)
Fermi operators of electrons and holes, respectively, satisfy-
ing the commutation relations Here P (P?) is the electron(hole) permutation operator:
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for phonon assisted variables which will be closed using Eg.
(C5). The projection operator technique will not be used
hereafter.

o o Substituting Eq.{(2.4) into Eq. (2.10 we obtain the re-
The parameters,,,, andU -, may be derived in a simi- laxation terms which enter Eq&.11)—(2.14) in a form:

lar way.

Pl =5 .8

mn,pq M1dyg

pl”lé\mzpz&“zqz’

(B8)

mn,pq m2q25p2n25mlpl5nlq1-

BmZE hmn,aBg(;]()fl'E an,kl;az<kcll,)n;a* (CG)
APPENDIX C: ELIMINATION OF PHONON VARIABLES
In this Appendix we derive expressions for the relax- Ymnzz WmZ% kl_ayf(fll_)a, (C7)

ation terms B,,Y 0, Nyj, and Z,,; which enter Egs.

(2.1D)—(2.14. The relaxation superoperators will be calcu-

lated perturbatively to second order in the exciton-phonon ¢ =S (e N@N@ (C9)
coupling. Our calculation is based on equations of motion for g Imatimpa Tim;atimj, e’

phonon-assisted variables. The projection operator technique

will be used to justify a factorization scheme which allows

us to close the system of equations. To set the stage we note Zmn,j = 2 (Wnﬂ,kl;azw,)j;a—Zm,i;ﬁj,a), (C9
that the full system-bath density matgxcan be represented
in a form

whereVn .« andhiZ,., are defined by
p=p" 2| 0XQI+ 2 pi (@B} B B B
an,kl;aEZUmn,kl;a_zg Pmn,pkhpl,a
+ 2 phnn (DBLBAQNQI+ 2 pi ()81 ©)

_2% Pmn,qupq,kI;aa (C10
X(QUBy+ 2 pioi)(@)BRBQNQIB; +H.e (CD
szr)xkl;ozE 5manI,a+ka1a5nl+an,kl;a- (Cll)

In Eq. (C1) |Q) denotes the ground state of the exciton
system,q=(q,..d,r) represents the nuclear variables in ) ]
Liouville space where L and R stand for left and right vari- In Eds-(C6)—(C9) we have introduced the phonon-assisted
ables of nuclear wave packeié'(qg), and the indexe pa-  Variables
rametrizes nuclear oscillatofEqg. (2.3)].

Higher-order terms i andB' are omitted in Eq(C1) B, =(B.X), Y. .=(BnB.X),
since they are not involved in the third-order optical re- (C12
sponse. The projection operator technique starts by introduc- NG E<|§T|§, X<5)> 7 E<|§.’ff3 5 X(S)>
ing the projection operator® and Q with M ATNEMTe /o TLa AT M e 7

O=I1-7P. (2 with s=p,q;X%=q, ,XP=p,.
N To obtain the relaxation terms we use equations of
We defineP as an operator acting in the nuclear space withy,qtion for the phonon-assisted variablg. (Clg)]. The
() () = (i) rhs of these equations will contain the phonon assisted vari-
Por i@ =pola)Trolp™ 7 (@)], ©3 ables, exciton variabld€q. (2.9)] and new variables of the
where po(q) is the equilibrium nuclear wave packet in the fom <l‘3nx(as)xgs’)>,<|§m|§nx£¥s)x(ﬁs’)>'<{3Lgnxgs)x%s’)>, and
ground electronic state. Since to zeroth order in exciton—BTB B X(S)X(S')) However. all new variables come with
phonon coupling the nuclear motions are uncoupled we havge jomonTa 7t ’ ) .
coefficients proportional to the exciton-phonon coupling. It
;,(T):f;;,(T)_ (C4) is clearly seen from Eq4C6)—(C9) that in order to obtain
. o _ the relaxation terms in second order in the coupling, the
Applying Eq.(C4) to Eq.(C1) implies that to zeroth order in - pnonon-assisted variables should be calculated in first order.
exciton phonon coupling the following factorization holds  Tpjs implies that the new variables should be taken in zeroth
<|§.T BIB, B p 0.0 as) order and we can apply the factorization of EG5) which
1 e PmPag FatBy - HBs closes the equations. After applying the factorization of Eq.
Bt ata A (C5H), the equations of motion for the phonon-assisted vari-
=(Bi, BiBi, Bi)TrlPey Pals,  dspo(@]. ables can be represented in a form
(CH

We have applied the projection operator technique toldx(as)

—i (—=s)_; h
derive Eq.(C5). The derivation involves equations of motion = dr lvaXq Iﬁspz MmN (€13
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dB{, We start by noting that EqSC13—(C17) can be for-
i— — 2 Bl —iv By mally written in the operator form:
A(q)

o

i
_ - _hA@ _ AP _\w(@
:2 hmn;aW(c»zS)Bn+E an,klz(ksl,)n;a I dr hAa maAa \N(a (T)’
AP (DD

a

7 i —hAWMP i 2 A (d) _\p\/(P)
+ 2% Vinnid;aWs Zig o= E'XE I— A +im,w A, =WP(7),
) s 2w where A® denotes the variablex(®, B ,Y® N©®  and
—2 SRR~ 2 ERYi., (C14 7. WS is the rhs of the corresponding equation, whereas
h is the linear operator representing the free evolution of
.dYET??"I;a 2 h2 . (-s) each variablgin the absence of relaxatiprEach of the vari-
"9 mnki Yki;a 10 aYmna ables has a differertt, as can be seen from EqeC13—
(C17. We further introduce the set of the Green’s functions
=> Wrﬁr)l,kmw(as)Ykl—Eﬁl)B(n?;)a—5%1)55{?){1 of these operators which satisfy the equations
g .
, |d——hg=|5(7-). (D2)
=2 EnBL (C19 T
The solution of Eq(D1) can be represented in a form
dN®
. i ) (5) _ (S) N _(.—S) . o
=gy~ 2 (MmN NiZ o) = TNy 2 A;fv(r):—lf dt| cog @, 1) GOWD (7—1)
0
— T (s) (s s —
—Z (him;aWa ij W, Nimhmj) I5spNimhmj;uz + Sin(wat)g(t)W(ap)(T—t) 1
—EMBIEF +£MBY), (C16 ) (D3)
e AP (7)=—i f dt{ cog w,t) GHWP (7—1)
. mn,j;a . _ 0
I dTJ _2 (hgg,klzl((?,)j;a_Z(rr?z\,i;ahij)_|UaZ§nn,Sj);a
— M, ,SiN @) GOW P (r—1)].
=2 WOh2) . Zki— Zmnihij o) It follows from Eq. (D2) that the Green’s functiong(7)
satisfy the condition
_igspz ij;azmn,k_gﬁnl)Nﬁwsj);a_gﬁwl)N(r:J};a g(T )Q(H)=Q(T +7J) (D4)
SinceG( 1) describes the evolution of the exciton vari-
' ; ) (2) -
- Em,nkNﬁsﬂaJFg,(l)Yﬂ;a, (17 ables alone, the Green’s functlogﬁ'f'mn and G mnr 1€

lated to the variablebl;; andZ;; \, respectively, can be ex-
pressed in terms of the Green’s functiofig, and G2,

where we have used the notatior9)=(q),(—q)=(p) i . .
which are related t®,, andY,, variables(one-exciton and

and
two-exciton Green's functions
o=t ol = —m o, 0 :
Gijimn= gim(T)gnj(T)u
1 Bw, D5
WO=T 0,8 @1= 5ot 22| (©18 G (91 DO °o
i Equations(C13—(C17 may be solved as follows: we
WP =Tr [ poGapo(a)]=— > first solv_e.Eq.(.C14) taking in_to account only the first-order
in the driving field terms. Using E4D3) we findB!® (B'®
with 8= (kT) %, T being the temperature. is the first-order contribution in the driving field 8'%) in

Equations(C13—(C17) constitute a closed system of terms of B. We then substitut'® into Egs. (C15 and
equations for the phonon-assisted variabB8,Y(®,N®),  (c16). Solving Eqs.(C15 and (C16) by applying Eq.(D3)
andZ®. The relaxation terms are obtained in Appendix Dwe expres&® andN® in terms ofB,Y,N, and the driving

upon substituting the solutions of Eq&C13—(C17) into  field. We then substituthl’® andY® in Eq.(C17) and solve

Egs.(C6)—(C9). Eq. (C17 which yieldsZ!® in terms ofB,Y,N,Z, and the

driving field. We next solve Eq(C14) and substituteX(®)
APPENDIX D: PHONON-INDUCED RELAXATION together with NS),Y(QS), and fo) found earlier into Eq.
SUPEROPERATORS

(C14). By solving Eqg.(C14 we obtain the contribution to

In this Appendix we solve Eq4C6)—(C9) and (C13-  B'® to third-order in the driving field. After finishing this
(C18 for the relaxation terms which yield closed expres-straightforward but tedious procedure we express the phonon
sions for the relaxation operators. assisted variableB(® Y@ N(@ andz{® in terms of the
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exciton variabled,Y,N,Z, and the driving field. These ex- vy ) ) 2.2

pressions involve the one- and two-exciton Green’s functions  Rmaki(D)==12% G o (DM (1),
Gmn(7) and gmnk|(1-) as well as the phonon Green’s func- (D16)
tions M ,(7) defined by

RA(D)= =12 G (DG (D7 SpraM i 1 (1)

1 w,
Ma(T)Ezm - {COU('BZ )cof{waT)—iSin(cuaT) . i
o _5mm’5II/Mnr'n k’k(t)+ 5k’k5m’m

(D6)
The relaxation terms are obtained by substituting these ex- ><M§11,'nl?”,(— ) = SkkOn: nMn}n? (=]
pressions into EqEC6)—(C9). These expressions for the re- (D17)
laxation terms involve the one- and two-exciton Green'’s . o )
functionsG andG @ as well as the collectivébath coordi-  INvoking the Markov approximation, we obtain E¢8.20 -

nate Green’s function® ) (7) with i,j=1,2,3 defined by ~ (2:23 where the relaxation superoperatdtg,, Rmn and
R are defined by

MB(n=2 hi/&hM (7). (D7) »
Tm=2 | dtRES. (DG, (1), (D18)
—_— — nl 0 ’

where we have definetl(?)..=hmna, N w:a=Vmnkia: .
and ﬁ(nf% k.« Nas been defined earli¢Eq. (C11)]. For ex- Rmnki= 2 dtR:;rTm n,(t)g(Y)T, (b, (D19

ample m'n’ -0
- RI"= fdtRNN G, (1)Garn(t). D20
E]gl-nslj kl— 2 Ij kl; a a(T)' (D8) mzn 1j;m’n’ ( )gm m( )gn n( ) ( )

Equation(D18) can be derived as follows: neglecting relax-

The phonon Green's functioid (1)(7) can be conveniently iion B.(7—1) is given by

expressed in terms of tensor spectral densifiéd)(w):

Bu(r—t)=2>, G| (1)By(7). (D21)

Substituting this into the rhs of ED11) results immedi-

Bw o ately in Eq.(2.20 together with Eq(D18). EquationgD19)

X CO“’(T) cow7)—isinwT)|. (D9  and (D20) are obtained in a similar way. The zero-order

Green’s functiongEq. (D2)] represent the free evolution
with the spectral densities defined by when the relaxation terms are neglected. The effect of these
Green’s functions in EqgD18)—(D20) can be interpreted as
Clil)(@)= z hehl) a transformation to a rotating frani&!®
2m,w, h,
X2 S(w—w,)— S(w+w,)]. (D10

APPENDIX E: GREEN'S FUNCTION EXPRESSION
In what follows we first neglect the relaxation terms involv- FOR NONLINEAR OPTICAL RESPONSE FUNCTIONS
ing the driving field. The remaining relaxation terms can be

recast in the following form: In this Appendix we derive expressions for the time-

domain third order response functi®fts,t,,t;) which con-
. I nects the third-order polarizatioR®)(7) with the driving
Br() =2, fo dtRyn(1)Br(7—1), (D11 field [Eq. (3.12]. To that end, we need to evaludg(7)

andZy () to third order in the driving field&(7) and sub-

) 2y stitute them into Eq(2.8). We first find the first-order term
Ymn(T):E J;) dtRy (D Yi(7—1), (D12 Bgl)(r) using Eq.(2.25
BWY(r =ifwdt G EY(7—1) . (E1)
Nij(r) =2 f AR mn(ONma(7— 1), (D13) V(=] 4 Gan(BE (7

Hereafter all summations are performed over repeating
. indices. Substitutindd,(7) obtained from Eq(E1) into Egs.
Zpnj() =2 f ARG i (D Zii( 7). (D14 (2.29 and (3.12, we obtain the second-order terms of
Ymn(T) andNij(T):
The relaxation superoperators in E¢g811)—(D14) have the

form: Ymn(T):izf dtzj dtl 2 Ginerm’n’(tZ)Gk’k(tl)
0 0 m’n’kk’ Y
REA(D==12 G (DM (D), (D15) XED (Tt EP (1=t~ 1), (E2
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Njj(m)=—i J dtzf dt; > {Gii/(tr+ 1) G/ (1) 7 (1= 1) & (7= t= 1) + Gy (1) G, (L + 1) & (7= t,— 1)

XEP(T=12)+ Gy ) ([ Gy (1) 1+ 8 G (1) 16 (= 1) €0 (7=t =11}, (E3)
where we have used E¢3.11) and introduced the notation
Sk =E Smict £ St Edmk - (E4

The third-order term irZ,,,; is obtained upon substitution of Eq&2) and (E3) into Eq.(2.28 and making use of Eq
(3.8). A convenient representation is obtained by introducing a response furi’q;iqr(tg,tz,tl) by

Zung (9= | s [ "0t [ "t 2 (15,10 ) - 1)t Bt -1, (9
which adopts a form
Zinj(tasta 1) = =12 {Gi) 1 (ta+ 1) G (1) Gt ! ) otk + Gl (1) G (3 + )
XGijr (o ty) i il )+ G (1) G (et 1) G (1) by e tf 2l
+G i (13)G] (1) G (8 [ Gin(t0) S+ G Gl (t) T o tf P P} (E6)

where we have used the notation

Hiank= 2 Snict i St 26mn= 22 Pompitt” =22 Pamrsiirs - (E7
Substituting Eqs(E2), (E3), (E5) and (E6) into Eq.(2.25, we obtain
B3 (r)= f:dtg,f:dtzfoxdtlém(tg,,tz,tl)e(r—ts)g(T—ts—tz)g( T—t3—t,—ty), (E9
with
~ A~ t3 A
Br(ts t2,t) =B (ts,tp,t,) + fo dtBiY(t,t3—t,t,,ty), (E9)
and
B (t3,t2,t1) = =i {Gnm (ta) Gt (to+ 1) G, (t) play 47 7+ G (1) Gii (1) G (to+ t) i el el
+ G (t2)Gij 7 (1) [ Gini(12) 8 e 3Gy () Taans) sk 11l Y = G ()
XGE(TK’I’(IZ)GJ’J'(tl)/‘L(n?’) kI;I(<l’I)’ "““11)} (E10
B (t,ta—t,tp,t) =14 Vi, kl{Gmit)GH nrme (T3t = t)G, j(ta— t)Gk'k"(tl)MJ ;(nl)m, kr,U«kn)+Gms(t)
X Gl (ta= 1G], (ta = )G (o t) il 1P+ Grnd Gl e (ta— 1)
G/, (tat tatty = 1)Gijr (t) phymy 141 14+ Grnd DGy (ta= )G (ta= )G (L)

t
X[Gi”k’(tl)ﬁj’q’_‘—5i"|’Gk’j”(tl)];E*|l)m’ ,,lLl, ,(Lk,}. (Ell)

Here we have used the following notation: DA
Rts,ty,t1) =2 uiB(ts s ty)

2) 5
Mo =2 %= 22 Prakonitt =22 Prokrshti 75 - + 2 i ihemn(ta ta th). (E13
(B12 APPENDIX F: THE EXCITON SCATTERING MATRIX
In this Appendix we derive a closed expression for the
The response function adopts the final form exciton scattering matriX’. To get it in a simpler form we
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first include the relaxation operators for one- and two-
exciton variables in the matricésg,, andU,,, . To that end
we represent the two-exciton relaxation matRy,,,, in a
form

Rmn,kI: Omi n1+ T midni + ZFZmn,kl

—227)) Pmn,kprpl—zé PonpaRoqkts  (F1)

and introduce the renormalized matridesand U by
Amn=Nmn= T, (F2)
Umnki=Umnki—iRmni (F3)

whereV is expressed in terms &f andh by [see Eq(2.16)]

vmn,klzzomn,kl_ Zzp Pmn,pkﬁpl_ 2% Pmn,pqopq,kl .

(F4)
Equations(2.25—(2.28 can then be rearranged by eliminat-
ing the relaxation termE andR while substituting the renor-
malized values oh andU given by Eqs(F2)—(F4). In what
follows we will only use the renormalized values. The tet-
radic scattering matriX’ is defined by Eq(3.10. In matrix
form it reads

> G:TTr:,k’l’(t)(ak’kél’l_Pk’l’,kl)
K

t 7
=Fronu(h+ > | d7” f d7'Frnmns (t=17")
m'n’k’l’ 40 0
XT et (7' = ) F iy ja(7), (F5)

Equation (3.10 can be easily solved by switching to the
frequency domain

T(t)= J g—:e*iwtﬂw), (F6)
where it assumes the form
GY(w)(I=P)=F () +F(o)T(0)F(0), (F7)
yielding
T(0)=—[F(&)] *+[F(0)] 6" (w)(1-P)
X[F(w)] ™ (F8

In the frequency domain we have

G(w)=(w—h)"1, Flw)=(o—hel+leh)
(F9
GY(w)=[w—(I-P)(Ioh+hel)-2(1-P)0] ™
Substituting Eqs(F9) into Eq. (F8) yields
I'(w)=[1+PhPF(w)—2(1-P)UF(w)] !

X[~ oP+2(1-P)U]. (F10

whereh{? is the free-boson part of the two-exciton Hamil-
tonian with matrix element

Chernyak, Zhang, and Mukamel

hi?=hel+1eh. (F11)

Equations(F6) and (F10 form a closed expression for the
exciton scattering matrix.
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