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Summary. The axioms that characterize the generalized Gini social evaluation
orderings for one-dimensional distributions are extended to the multidimensional
attributes case. A social evaluation ordering is shown to have a two-stage aggrega-
tion representation if these axioms and a separability assumption are satisfied. In
the first stage, the distributions of each attribute are aggregated using generalized
Gini social evaluation functions. The functional form of the second-stage aggre-
gator depends on the number of attributes and on which version of a comonotonic
additivity axiom is used. The implications of these results for the corresponding
multidimensional indices of relative and absolute inequality are also considered.
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1 Introduction

An individual’s well-being depends on many factors, such as income, life ex-
pectancy, and health status. Because of the multidimensional nature of well-being,
univariate indices of income inequality may give a misleading picture of the extent
of inequality within a given population or between different groups of individu-
als. The seminal articles by Kolm (1977) and Atkinson and Bourguignon (1982)
developed dominance criteria that can be used to determine when one multidimen-
sional distribution exhibits more inequality than another. Kolm provided a number
of multi-attribute generalizations of the Pigou–Dalton transfer principle, whereas
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Atkinson and Bourguignon proposed dominance principles that take account of
the positive dependence between the distributions of the different components of
well-being.1

The rankings generated by these dominance principles are incomplete. In many
circumstances, it is useful to have an index of inequality that can be used to compare
any pair of distributions. In the normative approach to inequality measurement, an
inequality index is constructed from a social evaluation ordering (or its represen-
tation, a social evaluation function) of the possible distributions.2 For univariate
distributions, the most commonly-used procedure for deriving a relative (i.e., scale
invariant) inequality index from a social evaluation ordering was independently
proposed by Kolm (1969) and Atkinson (1970) and popularized by Sen (1973).
Kolm (1969) also introduced a procedure for deriving an absolute (i.e., translation
invariant) inequality index from a social evaluation ordering. Multi-attribute gen-
eralizations of the univariate Atkinson–Kolm–Sen and Kolm methodologies have
been proposed by Kolm (1977) and Tsui (1995), respectively.

The normative approach to inequality measurement has been used by Tsui
(1995) to develop multi-attribute generalizations of the univariate Atkinson (1970)
and Kolm (1969)–Pollak (1971) inequality indices. Tsui constructed his indices by
axiomatically characterizing multi-attribute Atkinson and Kolm–Pollak classes of
social evaluation functions. Tsui’s axioms are multivariate generalizations of the
axioms used by Blackorby, Donaldson, and Auersperg (1981) to characterize the
social evaluation functions underlying the univariate Atkinson and Kolm–Pollak
inequality indices.3

The social evaluation functions identified by Tsui have the feature that they can
be constructed in two steps. A utility function is first used to determine the utility
of each person’s allocation and then these utilities are summed to provide the
overall evaluation. Maasoumi (1986) had earlier suggested constructing a multi-
attribute inequality index directly by first using a utility function to generate a
distribution of utilities and then applying a univariate index of inequality to this
distribution to obtain the multi-attribute index’s value. However, as pointed out by
Dardanoni (1995) (see also Weymark, 2004), by applying this two-step procedure
to an inequality index, rather than to a social evaluation function, the resulting
measure may fail to satisfy a multi-attribute version of the Pigou–Dalton transfer
principle.4

In this article, we follow the general approach of Tsui (1995), but consider a dif-
ferent set of axioms. We extend the axioms used by Weymark (1981) to characterize
the generalized Gini social evaluation orderings for one-dimensional distributions

1 For surveys of the literature on multidimensional inequality, see Maasoumi (1999), Savaglio (2004),
and Weymark (2004).

2 A social evaluation ordering is sometimes called a social welfare ordering. See Blackorby, Bossert,
and Donaldson (1999) and Dutta (2002) for surveys of the normative approach to the measurement of
univariate inequality.

3 Tsui (1999) has also axiomatized a class of multi-attribute generalized entropy relative inequality
indices. However, these inequality indices are characterized directly, rather than indirectly using social
evaluation functions.

4 List (1999) has proposed an alternative multi-stage procedure for constructing multi-attribute in-
equality indices that avoids the problem identified by Dardanoni.
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to the multi-attribute case. We show that a social evaluation ordering has a two-
stage aggregation representation if these axioms and a separability assumption are
satisfied. In the first stage, the distributions of each attribute are aggregated using
univariate generalized Gini social evaluation functions. The functional form of the
second-stage aggregator depends on the number of attributes and on which version
of a comonotonic additivity axiom is used. Note that the order in which individuals
and attributes are aggregated is the reverse of the order used by Tsui (1995). We
also determine which of our orderings satisfy the invariance assumptions needed
to generate relative and absolute indices of inequality. The implications of these
results for the functional forms of the corresponding multidimensional indices of
relative and absolute inequality are also considered. Finally, we show that our sep-
arability axioms are inconsistent with a correlation increasing majorization axiom
proposed by Tsui (1999) when individuals are treated symmetrically.

While the normative approach to inequality measurement has not been used
previously to construct multidimensional generalized Gini indices, a number of
multi-attribute generalizations of the univariate Gini index of relative inequality
have been proposed. Using the terminology of Koshevoy and Mosler (1997), these
indices are either distance Ginis or volume Ginis. The former are multidimensional
extensions of the characterization of the Gini index in terms of the expected relative
mean difference of the incomes. See, for example,Arnold (1987) and Koshevoy and
Mosler (1997). The latter are multidimensional extensions of the characterization
of the Gini index in terms of the area between the Lorenz curve and the diagonal of
a unit square. See, for example, Koshevoy and Mosler (1997) and List (1999). For
a discussion of distance- and volume-based multidimensional Ginis, with further
references to the literature, see Mosler (2002).

2 Preliminaries

The set of individuals is N = {1, . . . , n}, with n ≥ 2. The set of attributes
of well-being is Q = {1, . . . , q}, with q ≥ 2. In addition to income, examples
of possible attributes are measures of educational attainment, health status, and
longevity. The q attributes could be incomes in different states of the world, in
which case we are concerned with inequality under uncertainty, as in Ben-Porath,
Gilboa, and Schmeidler (1997) and Gajdos and Maurin (2004). Alternatively, the
attributes could be incomes in different time periods.

An allocation is an n×q real-valued matrix. A generic element of an allocation
matrix X is xij , the quantity of attribute j allocated to individual i. The ith row of a
matrix X is denoted xi·, whereas its jth column is denoted x·j . For all Q0 ⊆ Q for
which Q0 �= ∅, let XQ0 be the sub-allocation matrix of the attributes in Q0. For any
j ∈ Q, if Q0 = {j}, we write x·j instead of X{j}, and if Q0 = {1, . . . , j−1, j+1,
. . . , q}, we write X−j instead of XQ0 . Let Q be the set of ordered bi-partitions of
Q. Formally,

Q = {(Q1, Q2) ⊆ Q × Q|Q1 ∪ Q2 = Q, Q1 ∩ Q2 = ∅, Q1 �= ∅, Q2 �= ∅} .

For all (Q1, Q2) ∈ Q, we sometimes let (XQ1 , XQ2) denote the matrix X .
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The set of all allocation matrices is M and the set of all allocation matrices
whose elements are nonnegative is M+. Let M∗

+ denote the set of allocation
matrices in M+ that have at least one positive element in each column. These three
classes of allocation matrices are the multidimensional analogues of the standard
domains used for univariate distributions of incomes. We also need to consider the
class M∗∗

+ of nonnegative allocation matrices that only differ from the null matrix
in one column. The allocation matrix whose elements are all equal to 0 (resp. 1) is
0 (resp. 1).

A social evaluation is a binary relation � (weakly socially preferred to) on a
set of allocation matrices D. The symmetric and asymmetric factors of � are ∼
and 	, respectively. We assume that D ∈ {M, M+, M∗

+
}

. If not stated explicitly,
D can be any one of these three sets. An allocation matrix X is nonincreasing
comonotonic if x1j ≥ x2j ≥ · · · ≥ xnj for all j ∈ Q. Let DD denote the set of
nonincreasing comonotonic matrices in D.

For any x ∈ R
n, x̃ is the permutation of x for which x̃1 ≥ x̃2 ≥ · · · ≥ x̃n.5

Let R
n∗
+ = R

n
+ \ {(0, . . . , 0)}. For D ∈ {R

n, Rn
+, Rn∗

+ }, a generalized Gini social
evaluation function is a function g : D → R for which

g(x) =
n∑

i=1

aix̃i, ∀x ∈ D, (1)

where 0 < a1 ≤ a2 ≤ · · · ≤ an and
∑n

i=1 ai = 1. The Gini social evaluation
function is the special case of (1) in which ai = (2i − 1)/n2 for all i ∈ N .

For any x ∈ R
n, µ(x) is the mean of x. For any X ∈ D, we let Xµ denote the

matrix for which every entry in the jth column is equal to µ(x·j).

3 Multidimensional generalized Gini axioms

In this section, we introduce the axioms that are used in Section 4 to characterize a
number of classes of multidimensional generalized Gini social evaluation orderings.
The first axiom requires � to be a complete preorder.

Ordering (ORD). The binary relation� is reflexive, complete, and transitive onD.

The next axiom says that a strict ranking of two allocation matrices X and Y
is invariant to small perturbations of these matrices.

Continuity (CONT). The sets {Y ∈ D|Y 	 X} and {Y ∈ D|X 	 Y } are open
for all X ∈ D.6

The monotonicity axiom says that if X is obtained from Y by increasing at least
one person’s allocation of some attribute without decreasing anyone’s allocation of
any attribute, then X is strictly preferred to Y .

5
R, R+, and R++ denote the set of real numbers, nonnegative real numbers, and positive real

numbers, respectively.
6 A matrix in D can be thought of as a vector in R

nq . A subset of D is open if the corresponding set
of vectors is open in R

nq .
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Monotonicity (MON). For all X, Y ∈ D,

[(xij ≥ yij , ∀(i, j) ∈ N × Q) & (X �= Y )] ⇒ X 	 Y.

The anonymity axiom says that it is a matter of social indifference if the indi-
vidual allocations are permuted.

Anonymity (ANON). For all n × n permutation matrices Π and all X ∈ D,
X ∼ ΠX .

In order for a social evaluation ordering on univariate distributions of income to
serve as a satisfactory foundation for an inequality index, it should satisfy the Pigou
(1912)–Dalton (1920) transfer principle. A Pigou–Dalton transfer is a transfer of
income from a richer to a poorer individual that diminishes the absolute value
of the difference between their incomes. The (weak form of the) Pigou–Dalton
transfer principle says that if distribution x can be obtained from distribution y by
a sequence of Pigou–Dalton transfers, then x is socially weakly preferred to y.

A number of different multi-attribute generalizations of the Pigou–Dalton trans-
fer principle have been proposed (see Kolm, 1977; Marshall and Olkin, 1979;
Savaglio, 2004). We consider two of them.

After a Pigou–Dalton transfer of income between two individuals, the income of
each of these individuals is a convex combination of the two pre-transfer incomes.
In the multi-attribute case, a univariate Pigou–Dalton transfer can be applied to each
attribute. With a uniform Pigou–Dalton transfer, the same convex combinations are
used for each attribute.

Definition. For all X, Y ∈ D, X is obtained from Y by a uniform Pigou–Dalton
transfer if X �= Y and there exist i1 and i2 in N and λ ∈ (0, 1) such that (i)
xi1j = λyi1j + (1 − λ)yi2j for all j ∈ Q, (ii) xi2j = (1 − λ)yi1j + λyi2j for all
j ∈ Q, and (iii) xi· = yi· for all i /∈ {i1, i2}.

If allocation X can be obtained from allocation Y by a finite sequence of such
transfers, then X is said to uniformly Pigou–Dalton majorize Y .

Definition. For all X, Y ∈ D, X uniformly Pigou–Dalton majorizes Y , denoted
X 	U Y , whenever X can be obtained from Y by a finite sequence of uniform
Pigou–Dalton transfers.

The binary relation 	U is a partial order of D. This partial order is used to define
our first multi-attribute Pigou–Dalton transfer principle.

Weak Uniform Pigou–Dalton Majorization (WUPM). For all X, Y ∈ D,

X 	U Y ⇒ X � Y.

In the univariate case, distribution x is obtained from distribution y by a finite
sequence of Pigou–Dalton transfers if and only if x is obtained by premultiplying
y by a bistochastic matrix that is not a permutation matrix.7 Uniform majorization
is the multi-attribute analogue of this construction.

7 See Hardy, Littlewood, and Pólya (1934) or Marshall and Olkin (1979). A nonnegative square
matrix is bistochastic if all of its row and column sums are equal to 1.
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Definition. For all X, Y ∈ D, X uniformly majorizes Y , denoted X 	B Y , if
there exists an n × n bistochastic matrix B such that X = BY and X is not a
permutation of the rows of Y .

The partial order 	B is used to define our second multi-attribute Pigou–Dalton
transfer principle.

Weak Uniform Majorization (WUM). For all X, Y ∈ D,

X 	B Y ⇒ X � Y.

The univariate analogues of 	U and 	B are equivalent. This equivalence also
holds if n=2 when q ≥ 2. However, if q≥2 and n≥3, X 	U Y implies X 	B Y ,
but the reverse implication need not hold. Thus, Weak Uniform Majorization is
a stronger condition than Weak Uniform Pigou–Dalton Majorization (see Kolm,
1977; Marshall and Olkin, 1979).8

Weymark (1981) introduced a comonotonic additivity axiom for the ranking of
one-dimensional income distributions. It requires the ranking of two comonotonic
distributions to be invariant to the addition of a third comonotonic distribution to
both of the original distributions. The rationale offered for this axiom is that each
person’s income may come from a number of different sources (wages, interest,
etc.) and if the incomes from all but one source of income are the same in the two
distributions of total income, then the ranking of these distributions should only
depend on the distributions of income from the variable source.

We consider two multi-attribute extensions of this axiom. In both cases, we
require the ranking of two nonincreasing comonotonic allocation matrices X and
Y by � to be invariant to the common addition of a third allocation matrix Z
that is also nonincreasing comonotonic. Our Weak Comonotonic Additivity axiom
applies if X and Y differ in only one attribute and Z only has non-zero values for
this attribute. In our Strong Comonotonic Additivity axiom, the distributions of any
attribute in X , Y , and Z are permitted to differ from one another.

Weak Comonotonic Additivity (WCA). For all X, Y ∈ DD and all Z ∈ DD ∪
M∗∗D

+ for which there exists a j0 ∈ N such that (i) x·j = y·j for all j �= j0 and (ii)
zij = 0 for all i ∈ N and all j �= j0,

X � Y ⇔ X + Z � Y + Z.

Strong Comonotonic Additivity (SCA). For all X, Y ∈ DD and all Z ∈ DD ∪
M∗∗D

+ ,
X � Y ⇔ X + Z � Y + Z.

Note that if the domain is M∗
+, the allocation matrix Z that is added to both X

and Y is not in the domain if Z ∈ M∗∗D
+ . However, it is nevertheless the case that

X +Z and Y +Z are in the domain, which is all that is needed for our comonotonic
additivity principles to apply.

8 the terminology used here is based on Tsui (1999). In the terminology of Marshall and Olkin (1979),
X �U Y is equivalent to saying that Y chain majorizes X and X �B Y is equivalent to saying that
Y majorizes X .



Multidimensional generalized Gini indices 477

The one-dimensional counterparts of the preceding axioms characterize the
class of generalized Gini social evaluation functions with positive weights (see
Weymark, 1981).9

If the conditional ordering of some subset of the variables obtained by fixing the
values of the remaining variables is independent of the values of the conditioning
variables, then the first set of variables is separable from the second. The next
two axioms are concerned with the separability of � across attributes. The set of
attributes Q1 ⊆ Q is separable from the complementary set of attributes if the set
of all variables ij for which i ∈ N and j ∈ Q1 is separable from the variables
associated with the attributes not in Q1. Weak Attribute Separability requires that
there exist some attribute that is separable from the other attributes. StrongAttribute
Separability strengthens this condition by requiring any subset of the attributes to
be separable from the other attributes.10

Weak Attribute Separability (WSEP). There exists j0 ∈ Q such that for all x·j0 ,
y·j0 , X̄−j0 , and Z̄−j0 ,(

x·j0 , X̄−j0

) � (y·j0 , X̄−j0

)⇔ (
x·j0 , Z̄−j0

) � (y·j0 , Z̄−j0

)
.

Strong Attribute Separability (SSEP). For all (Q1, Q2) ∈ Q and all XQ1 , YQ1 ,
X̄Q2 , and Z̄Q2 ,(

XQ1 , X̄Q2

) � (YQ1 , X̄Q2

)⇔ (
XQ1 , Z̄Q2

) � (YQ1 , Z̄Q2

)
.

4 Multidimensional generalized Gini social evaluation orderings

In this section, we show that if multi-attribute versions of the axioms that charac-
terize the class of generalized Gini social evaluation orderings for univarate dis-
tributions are combined with SSEP, then the social evaluation ordering can be
represented by a two-stage aggregator function. In the first stage, the distributions
of each attribute are aggregated using attribute specific univariate generalized Gini
social evaluation functions. In the second stage, the values of these generalized
Ginis are aggregated. The functional form of the second-stage aggregator depends
on which version of our comonotonic additivity axiom is used and on the number
of attributes.

Our characterization theorems do not depend on whether our multi-attribute
generalization of the Pigou–Dalton transfer principle is WUPM or WUM. In gen-
eral, WUPM and WUM are not equivalent if q ≥ 2. However, in the presence of
ANON and SSEP, the implications of WUPM and WUM can be determined one
attribute at a time. Consequently, as we show in Theorem 1, WUPM and WUM
place equivalent restrictions on a social evaluation ordering if it satisfies ANON
and SSEP.

9 Weymark (1981) axiomatized the class of generalized Gini absolute inequality indices. It is straight-
forward to modify his analysis in order to obtain an axiomatization of the class of generalized Gini social
evaluation functions. The weights in his representation theorem need not be positive because he did not
employ a monotonicity assumption.

10 Each of the allocation matrices considered in these axioms must be in D. See Blackorby, Primont,
and Russell (1978) for further discussion of these separability axioms.
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Theorem 1. Suppose that D ∈ {M, M+, M∗
+
}

. If the binary relation � on D
satisfies SSEP and ANON, then � satisfies WUM if and only if it satisfies WUPM.

Proof. Because X 	U Y implies X 	B Y for all X, Y ∈ D, if � satisfies WUM,
it also satisfies WUPM. Hence, we only need to show that the converse implication
holds.

Suppose that � satisfies SSEP, ANON, and WUPM. Let X, Y ∈ D be such that
X 	B Y . Let X̂1 = (x·1,1−1) and Ŷ 1 = (y·1,1−1). Two cases may arise. In the
first case, x·1 = y·1 or x·1 is a permutation of y·1. By ANON, it then follows that
X̂1 ∼ Ŷ 1. In the second case, x·1 is not a permutation of y·1. Then, X̂1 is obtained
from Ŷ 1 by a finite sequence of uniform Pigou–Dalton transfers. Therefore, because
� satisfies WUPM, we have X̂1 � Ŷ 1. Hence, in both cases, X̂1 � Ŷ 1. But this
implies, by SSEP, that X1 � Y , where X1 = (x·1, Y−1).

By the same reasoning as above, we have (x·2,1−2) � (y·2,1−2), and there-
fore, by SSEP, that X2 � X1, where X2 = (x·2, X1

−2). Because X1 � Y ,
transitivity of � then implies that X2 � Y . Note that X2 = (X{1,2}, YQ\{1,2}).

By iterating this process on Q, we conclude that X � Y . ��

In view of Theorem 1, either WUPM or WUM can be used in our set of axioms.
For concreteness, we use WUPM. In all of the characterization theorems in this
section, we suppose that the social evaluation ordering � satisfies ORD, CONT,
MON, ANON, WUPM, and SSEP.

As is well-known, the functional structure implications of separability axioms
that operate on all ordered bi-partitions of a set of variables depend on whether the
number of variables being partitioned is two or whether it is three or more (see, for
example, Blackorby, Primont, and Russel, 1978). With SSEP, the variables being
partitioned are the attributes. We first consider the case in which there are three or
more attributes. In this case, Theorem 2 shows that � can be represented by a two-
stage aggregator function, as described above, where the second-stage aggregator
is a continuous, increasing additive function of the generalized Gini aggregators
used in the first stage if WCA is added to the six axioms listed in the preceding
paragraph.

Theorem 2. Suppose that D = M (resp. D = M+, resp. D = M∗
+). If q > 2,

then the binary relation � on D satisfies ORD, CONT, MON, ANON, WUPM,
SSEP, and WCA if and only if there exists an n×q matrix A of positive coefficients
with a·j nondecreasing and

∑n
i=1 aij = 1 for all j ∈ Q and there exist q continuous

increasing functions vj : R → R (resp. vj : R+ → R, resp. vj : R++ → R) such
that

X � Y ⇔
q∑

j=1

vj

(
n∑

i=1

aij x̃ij

)
≥

q∑
j=1

vj

(
n∑

i=1

aij ỹij

)
, ∀X, Y ∈ D. (2)

Furthermore, the functions vj are unique up to a common increasing affine trans-
formation and the matrix of coefficients A is unique.
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Proof. We establish the sufficiency part of the theorem for the domain D = M.11

By Theorem I in Debreu (1954), we know that if � satisfies ORD, CONT, and MON,
then there exists a continuous, increasing function f : D → R that represents �.
Furthermore, for all j ∈ Q, SSEP implies that the jth attribute is separable from
the the complementary set of attributes. Note that MON implies that every attribute
is essential.12 Because q > 2, Theorem 3 in Debreu (1960) applies. Hence, there
exist q continuous and increasing functions Uj : R

n → R such that

X � Y ⇔
q∑

j=1

Uj(x·j) ≥
q∑

j=1

Uj(y·j), ∀X, Y ∈ D. (3)

The functions Uj are unique up to a common increasing affine transformation.
Consider any X ∈ D. For all j ∈ Q, we define the binary relation �j on R

n

by setting

y·j �j z·j ⇔ (X−j , y·j) � (X−j , z·j), ∀y·j , z·j ∈ R
n. (4)

Because of SSEP, �j does not depend on the choice of the matrix X . For all j ∈ Q,
(3) implies that �j can be represented by Uj .

Consider any j ∈ Q. Because � satisfies CONT andANON, �j is a continuous,
symmetric ordering of R

n. Now, consider any y·j , z·j , t·j ∈ R
n and any X ∈ DD.

By (4), ỹ·j �j z̃·j implies (X−j , ỹ·j) � (X−j , z̃·j). Note that (X−j , ỹ·j) and
(X−j , z̃·j) both belong to DD. Applying WCA, we obtain

(X−j , ỹ·j) � (X−j , z̃·j) ⇔ (X−j , ỹ·j) + (0−j , t̃·j) � (X−j , z̃·j) + (0−j , t̃·j).

Equivalently,

(X−j , ỹ·j) � (X−j , z̃·j) ⇔ (X−j , ỹ·j + t̃·j) � (X−j , z̃·j + t̃·j).

We have thus shown that

ỹ·j �j z̃·j ⇔ ỹ·j + t̃·j �j z̃·j + t̃·j , ∀y·j , z·j , t·j ∈ R
n.

Therefore, �j satisfies Axiom 4 in Weymark (1981). Hence, by MON and Theo-
rem 3 in Weymark (1981), there exist aij > 0, i ∈ N , such that

x̃·j �j ỹ·j ⇔
n∑

i=1

aij x̃ij ≥
n∑

i=1

aij ỹij , ∀x·j , y·j ∈ R
n.13 (5)

11 In each of our characterization theorems, necessity is easily verified, so we only establish the
sufficiency part of these theorems. For the domain M+ (resp. M∗

+), R
n must be changed to R

n
+

(resp. R
n∗
+ ) throughout the proof and the function vj is defined on R+ (resp. R++), but otherwise the

argument is identical.
12 The jth attribute is essential if there exist values for the allocations of the other attributes such that

the conditional ordering of the allocations of the jth attribute is not the trivial one in which all allocations
are indifferent to each other.

13 Weymark’s theorem is for vectors in R
n
+, but it also holds for vectors in R

n.
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Normalizing by setting
∑

i aij = 1, the sequence of weights (aij)i is unique.
WUPM implies that �j satisfies the unidimensional Pigou–Dalton transfer princi-
ple, which in turn implies that a1j ≤ a2j ≤ · · · ≤ anj .

Define the function Gj : R
n → R by setting

Gj(x·j) =
n∑

i=1

aij x̃ij , ∀x·j ∈ R
n. (6)

Because �j is symmetric, (5) implies that Gj is a continuous representation of �j .
Because Uj is also a continuous representation of �j , there exists a continuous,
increasing function vj : R → R such that Uj = vj ◦ Gj .

The preceding argument holds for all j ∈ Q. It then follows that (3) can be
rewritten as (2). Because the functions Uj are unique up to a common increasing
affine transformation, so are the functions vj . ��

SSEP and ORD imply that the conditional ordering of the distributions of any
attribute are independent of the values of the other variables. The proof of Theorem
2 shows that the properties of these orderings that are inherited from the axioms of
the theorem are exactly those properties that are used to characterize the univari-
ate generalized Ginis. This accounts for the functional structure of the first-stage
aggregators. The additive structure of the second-stage aggregator follows from a
standard separability theorem for three or more variables.

In Theorem 3, we consider the same set of axioms as in Theorem 2, but now
suppose that there are only two attributes. Reasoning as in the proof of Theorem 2,
the first-stage aggregators are generalized Ginis. However, because the separability
axiom only operates on bi-partitions of two attributes, we can no longer conclude
that the second-stage aggregator is additive.

Theorem 3. Suppose that D = M (resp. D = M+, resp. D = M∗
+). If q = 2,

then the binary relation � on D satisfies ORD, CONT, MON, ANON, WUPM,
SSEP, and WCA if and only if there exists an n×2 matrix A of positive coefficients
with a·j nondecreasing and

∑n
i=1 aij = 1 for all j ∈ {1, 2} and there exists a

continuous increasing function V : R
2 → R (resp. V : R

2
+ → R, resp V : R

2
++ →

R) such that

X � Y ⇔ V

(
n∑

i=1

ai1x̃i1,

n∑
i=1

ai2x̃i2

)
≥ V

(
n∑

i=1

ai1ỹi1,

n∑
i=1

ai2ỹi2

)
,

∀X, Y ∈ D. (7)

Furthermore, the function V is unique up to an increasing transformation and the
matrix of coefficients A is unique.

Proof. As in the proof of Theorem 2, we only consider the domain M as it is trivial
to modify the proof so that it applies to the other two domains.

We know from the proof of Theorem 2 that ORD, CONT, MON, and SSEP
imply that � can be represented by a continuous, increasing function f : D → R.
Furthermore, for all j ∈ Q, the jth attribute is essential and separable from the the
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complementary set of attributes. Hence, by Lemma 1 in Gorman (1968), there exist
three continuous increasing functions U0 : U1(R2) × U2(R2) → R, U1 : R

2 → R,
and U2 : R

2 → R such that

X � Y ⇔ U0(U1(x·1), U2(x·2)) ≥ U0(U1(y·1), U2(y·2)), ∀X, Y ∈ D.

For j = 1, 2, define �j as in (4). Reasoning as in the proof of Theorem 2, �j can
be represented by Uj and there exist two nondecreasing series of positive weights
(aij)i for which

∑n
i=1 aij = 1 such that

x·j �j y·j ⇔ Gj(x·j) ≥ Gj(y·j), ∀x·j , y·j ∈ R
n,

where Gj is defined in (6). Furthermore, each of these series of weights is unique.
Therefore, for j = 1, 2, there exists a nondecreasing continuous function vj : R →
R such that Uj = vj ◦ Gj . Substituting in (6), we obtain

X � Y ⇔ U0(v1(G1(x·1)), v2(G2(x·2)) ≥ U0(v1(G1(y·1)), v2(G2(y·2))),
∀X, Y ∈ D. (8)

Defining the function V : R
2 → R by setting V (α, β) = U0(v1(α), v2(β)) for all

(α, β) ∈ R
2 and substituting V into (8), we obtain (7). Clearly, (7) is also satisfied

if V is subjected to an increasing transformation. ��
The final characterization theorem in this section strengthens WCA to SCA.

Theorem 4 shows that the second-stage aggregator in this case must be linear for
any number of attributes (greater than or equal to 2). As in Theorems 2 and 3, the
first-stage aggregators are generalized Ginis.

Theorem 4. Suppose that D ∈ {M, M+, M∗
+
}

. The binary relation � on D sat-
isfies ORD, CONT, MON,ANON,WUPM, SSEP, and SCA if and only if there exists
an n×q matrix A of positive coefficients with a·j nondecreasing and

∑n
i=1 aij = 1

for all j ∈ Q and a vector γ ∈ R
q
++ with

∑q
i=1 γj = 1 such that

X � Y ⇔
q∑

j=1

(
γj

n∑
i=1

aij x̃ij

)
≥

q∑
j=1

(
γj

n∑
i=1

aij ỹij

)
, ∀X, Y ∈ D. (9)

Furthermore, the matrix of coefficients A and the vector γ are unique.

Proof. We first show that ORD, CONT, and SCA imply that � can be represented
by a linear functional on DD, the set of nonincreasing comonotonic matrices in D.
For X ∈ DD, let E(X) = {Y ∈ D|Y ∼ X} and B(X) = {Y ∈ D|Y 	 X}. The
argument used byWeymark (1981) in the proof of his Theorem 3 shows that E(X) is
a convex set.14 By interpreting elements of DD as vectors in R

nq, MON then implies
that E(X) is the restriction of an (nq − 1)-dimensional hyperplane in R

nq to DD.
Hence, the indifference contours of � in DD are parallel (qn − 1)-dimensional
hyperplanes. For an arbitrary Z ∈ B(X), we choose a matrix B ∈ M in the

14 Weymark’s argument is for the set of nonincreasing vectors in R
n
+, but his argument applies equally

well to the domain DD.
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subspace of normals to E(X) so that
∑n

i=1
∑q

j=1 bijzij >
∑n

i=1
∑q

j=1 bijxij .
Thus,

X � Y ⇔
n∑

i=1

q∑
j=1

bijxij ≥
n∑

i=1

q∑
j=1

bijyij , ∀X, Y ∈ DD.

Because SCA implies WCA, Theorem 2 applies if q > 2 and Theorem 3 applies
if q = 2. Consider any X, X ′ ∈ D for which each column of X ′ can be obtained
by a permutation of the corresponding column of X . It then follows from either (2)
or (7) that X ∼ X ′. Hence,

X � Y ⇔
n∑

i=1

q∑
j=1

bij x̃ij ≥
n∑

i=1

q∑
j=1

bij ỹij , ∀X, Y ∈ D. (10)

In order for (10) to be consistent with (2) and (7), the functions vj , j ∈ N , in (2)
and the function V in (7) must be linear. Thus, (9) holds. The uniqueness of A and
γ then follow from the corresponding uniqueness results in Theorems 2 and 3. ��

The key insight underlying the proof of Theorem 4 is that ORD, CONT, and SCA
imply that � can be represented by a linear functional on the set of nonincreasing
comonotonic matrices in D. This is only consistent with what has been established
in Theorems 2 and 3 if the second-stage aggregator function is linear.

5 Invariance axioms

In the normative approach to inequality measurement for one-dimensional dis-
tributions, an inequality index is derived from a social evaluation function (see
Section 8). A relative inequality index is invariant to a proportional change in all
incomes, whereas an absolute inequality index is invariant if a common amount
is added to or subtracted from all incomes. In order for an inequality index to be
a relative (resp. absolute) index, the underlying social evaluation ordering must
be homothetic (resp. translatable). The axioms introduced in this section provide
multi-attribute generalizations of these invariance properties for the social evalua-
tion ordering �.

Weak Homotheticity simply extends the requirement that the social evaluation
ordering be homothetic to the multi-attribute case.

Weak Homotheticity (WHOM). For all X, Y ∈ D and all λ > 0,

X � Y ⇔ λX � λY.

If there is only one attribute, homotheticity of the social evaluation ordering is
equivalent to requiring that the ordering be invariant to any change in the units in
which the attribute is measured. Tsui (1995) has suggested that the same invari-
ance property should hold in the multi-attribute case. In other words, independent
changes in the units in which different attributes are measured should not affect the
social evaluation ordering, a property we call Strong Homotheticity.
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Strong Homotheticity (SHOM). For all X, Y ∈ D and all q×q diagonal matrices
Λ for which λjj > 0 for all j ∈ Q,

X � Y ⇔ XΛ � Y Λ.

SHOM is a natural assumption if the attributes are different kinds of goods,
such as income and life expectancy. However, if different attributes are incomes in
different states or time periods, then the attributes should be measured in the same
units, in which case SHOM is inappropriate.

The multi-attribute analogue of the requirement that the social evaluation or-
dering be translatable is Weak Translatability.

Weak Translatability (WTRA). For all X, Y ∈ D and all λ ∈ R for which
X + λ1 ∈ D and Y + λ1 ∈ D,

X � Y ⇔ X + λ1 � Y + λ1.

In the one-attribute case, translatability of the social evaluation ordering is
equivalent to requiring the ordering to be invariant to any change in the origin
from which the quantity of the attribute is measured. Strong Translatability, an
axiom proposed by Tsui (1995), extends this condition by requiring that the social
evaluation ordering be invariant to independent changes in the origins from which
the quantities of the various attributes are measured. As with SHOM, this condition
is inappropriate if there are attributes that should be measured using the same scale.

Strong Translatability (STRA). For all X, Y ∈ D and all q×q diagonal matrices
Λ for which X + 1Λ ∈ D and Y + 1Λ ∈ D,

X � Y ⇔ X + 1Λ � Y + 1Λ.

These four invariance axioms are closely related to axioms used in the literature
on social choice with interpersonal comparisons of utility.15 In this literature, a so-
cial welfare ordering is defined on distributions of utilities, one for each person. A
social welfare ordering is ratio-scale measurable and fully comparable if the rank-
ing of any two utility vectors is invariant to a proportional scaling of all utilities and
it is ratio-scale measurable if the factor of proportionality can be person-specific.
Similarly, a social welfare ordering is translation-scale measurable and fully com-
parable if the ranking of any two utility vectors is invariant when a common amount
is added to or subtracted from all utilities and it is translation-scale measurable
when the amounts added or subtracted can be person-specific. Although social wel-
fare orderings are defined on vectors of utilities and the social evaluation orderings
considered here are defined on allocation matrices, we are nevertheless able to ex-
ploit social choice theorems that use these ratio-scale and translation-scale axioms
in Sections 6 and 7 to help characterize classes of multidimensional generalized
Gini relative and absolute inequality indices.

15 For an introduction to this literature, see Bossert and Weymark (2004).
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6 Homothetic social evaluation orderings

Normative indices of relative inequality are constructed using homothetic social
evaluation orderings. In this section, for each of the theorems in Section 4, we
consider the implications of also requiring the social evaluation function to satisfy
one of our homotheticity axioms. When defining relative inequality indices, it is
customary to assume that there is a positive amount of each attribute. Accordingly,
in this section, we suppose that the domain of the social evaluation ordering is M∗

+.
If there are at least three attributes and the axioms in Theorem 2 are supple-

mented with WHOM, then the functional form of the second-stage aggregator
must be a mean of order r function. In other words, the function that aggregates the
values of the generalized Ginis for the q attributes must be a constant-elasticity-of-
substitution function. When r = 0, this aggregator is a Cobb–Douglas function.

Theorem 5. If q > 2, then the binary relation � on M∗
+ satisfies ORD, CONT,

MON, ANON, WUPM, SSEP, WCA, and WHOM if and only if there exists an
n × q matrix A of positive coefficients with a·j nondecreasing and

∑n
i=1 aij = 1

for all j ∈ Q, a vector γ ∈ R
q
++ with

∑q
j=1 γj = 1, and a scalar r such that

X�Y ⇔

 q∑

j=1

γj

(
n∑

i=1

aij x̃ij

)r



1
r

≥

 q∑

j=1

γj

(
n∑

i=1

aij ỹij

)r



1
r

, ∀X,Y ∈ M∗
+,

(11)

if r �= 0 and

X � Y ⇔
q∏

j=1

(
n∑

i=1

aij x̃ij

)γj

≥
q∏

j=1

(
n∑

i=1

aij ỹij

)γj

, ∀X, Y ∈ M∗
+, (12)

if r = 0. Furthermore, the matrix of coefficients A, the vector γ, and the scalar r
are unique.

Proof. ByTheorem 2, the axioms used inTheorem 5 imply that (2) must be satisfied.
Let W : R

q
++ → R be defined by setting

W (g) =
q∑

j=1

vj(gj), ∀g ∈ R
q
++, (13)

where the functions vj are the functions that appear in (2). Because these functions
are continuous and increasing, so is W . Because � satisfies WHOM, (2) implies
that W is ratio-scale measurable and fully comparable. Hence, by Theorem 2 in
Blackorby and Donaldson (1982), W must be a mean of order r function. That is,
there exists a vector γ ∈ R

q
++with

∑q
j=1 γj = 1 and a scalar r such that

W (g) =


 q∑

j=1

γj(gj)r




1
r

, ∀g ∈ R
q
++, (14)
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if r �= 0 and

W (g) =
q∏

j=1

(gj)γj , ∀g ∈ R
q
++, (15)

if r = 0. It then follows from (2), (13), (14), and (15) that (11) and (12) hold. In
view of the normalization adopted for γ, the parameters A, γ, and r are unique. ��

The sufficiency part of the proof of Theorem 5 exploits the fact that we know
from Theorem 2 that the social evaluation ordering can be represented by a two-
stage aggregator function and that the first-stage aggregators are generalized Ginis.
WHOM implies that the second-stage aggregator function is ratio-scale measurable
and fully comparable and this permits us to use a result from the social choice liter-
ature due to Blackorby and Donaldson (1982) to characterize the set of admissible
second-stage aggregators.

The characterization in Theorem 5 makes essential use of our earlier result that
the second-stage aggregator is additively separable. If there are only two attributes,
the second-stage aggregator need not be separable. Thus, when the axioms in The-
orem 3 are supplemented with WHOM, the only additional structure placed on the
function V in (7) is that it is homothetic.16

Our next theorem demonstrates that the second-stage aggregator in Theorem 5
must be a Cobb–Douglas function if WHOM is strengthened to SHOM. Further,
this conclusion holds if there are two or more attributes, not just if there are at least
three.

Theorem 6. If q ≥ 2, then the binary relation � on M∗
+ satisfies ORD, CONT,

MON, ANON, WUPM, SSEP, WCA, and SHOM if and only if there exists an n×q
matrix A of positive coefficients with a·j nondecreasing and

∑n
i=1 aij = 1 for all

j ∈ Q and a vector γ ∈ R
q
++ with

∑q
j=1 γj = 1 such that (12) holds. Furthermore,

the matrix of coefficients A and the vector γ are unique.

Proof. By Theorems 2 and 3, the axioms used in Theorem 6 imply that there exists
an n×q matrix A of positive coefficients with a·j nondecreasing and

∑n
i=1 aij = 1

for all j ∈ Q and there exists a continuous increasing function V : R
q
++ → R such

that

X�Y ⇔V

(
n∑

i=1

ai1x̃i1, . . . ,

n∑
i=1

aiqx̃iq

)
≥V

(
n∑

i=1

ai1ỹi1, . . . ,

n∑
i=1

aiq ỹiq

)
,

∀X, Y ∈ M∗
+.17

By SHOM, V is ratio-scale measurable. Hence, by Theorem 4 in Tsui and Wey-
mark (1997), V is a continuous increasing transform of a Cobb–Douglas function
with positive coefficients. That is, V must be a continuous increasing transform
of a function of the form given in (15). The uniqueness of A and γ (given the
normalization rule for γ) follows from Theorems 2 and 3. ��

16 To economize on space, we do not state this result formally.
17 When q > 2, we also know from Theorem 2 that V is additive.
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When q > 2, Theorem 6 is a corollary to Theorem 5. SHOM implies that the
second-stage aggregator function is separable, and this is enough separability for
the q > 2 characterization to also hold when q = 2.

The second-stage aggregator function in (9) is linear. Consequently, the social
evaluation orderings identified in Theorem 4 also satisfy WHOM. Note that, when
q > 2, this linear aggregator is obtained by setting r = 1 in Theorem 5. However, if
SHOM is added to the axioms in Theorem 4, an impossibility theorem is obtained
because having a linear second-stage aggregator is inconsistent with Theorem 6.

Theorem 7. If q ≥ 2, there is no binary relation � on M∗
+ that satisfies ORD,

CONT, MON, ANON, WUPM, SSEP, SCA, and SHOM.

Proof. On the contrary, suppose that there exists a � that satisfies these eight
axioms. Then, by Theorem 4, (9) must hold and by Theorem 6, (12) must hold.
However, (9) and (12) are inconsistent. ��

7 Translatable social evaluation orderings

Normative indices of absolute inequality are constructed from translatable social
evaluation orderings. In this section, we provide the corresponding results for trans-
latable social evaluation orderings to those established in the preceding section for
homothetic social evaluation orderings. For simplicity, we now suppose that the
domain of the social evaluation ordering is M.

If WTRA is used instead of WHOM in Theorem 5 and the domain is changed
from M∗

+ to M, then the second-stage aggregator must be a Kolm–Pollak function.
Of particular note is that linear aggregation functions are members of this class.

Theorem 8. If q > 2, then the binary relation � on M satisfies ORD, CONT,
MON, ANON, WUPM, SSEP, WCA, and WTRA if and only if there exists an
n × q matrix A of positive coefficients with a·j nondecreasing and

∑n
i=1 aij = 1

for all j ∈ Q, a vector γ ∈ R
q
++, and a scalar r such that

X�Y ⇔1
r

ln


 q∑

j=1

γj exp

(
r

n∑
i=1

aij x̃ij

)
≥1

r
ln


 q∑

j=1

γj exp

(
r

n∑
i=1

aij ỹij

)
,

∀X, Y ∈ M, (16)

if r �= 0 and

X � Y ⇔
q∑

j=1

γj

(
n∑

i=1

aij x̃ij

)
≥

q∑
j=1

γj

(
n∑

i=1

aij ỹij

)
, ∀X, Y ∈ M, (17)

if r = 0. Furthermore, the matrix of coefficients A, the vector γ, and the scalar r
are unique.
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Proof. With the following modifications, the proof of this theorem is the same as the
proof of Theorem 5. Because � satisfies WTRA instead of WHOM, the function W
(now defined on R

q) is translation-scale measurable and fully comparable. Hence,
by Theorem 3 in Blackorby and Donaldson (1982), W must be a Kolm–Pollak
function. That is, there exists a vector γ ∈ R

q
++ with

∑q
j=1 γj = 1 and a scalar r

such that

W (g) =
1
r

ln


 q∑

j=1

γj exp(rgj)


 , ∀g ∈ R

q, (18)

if r �= 0 and

W (g) =
q∑

j=1

γjgj , ∀g ∈ R
q, (19)

if r = 0. ��
If q = 2, the axioms in Theorem 8 characterize the subset of the social evaluation

orderings characterized in Theorem 3 for which the function V in (7) is translatable.
If STRA is substituted for SHOM in Theorem 6 and the domain is changed

from M∗
+ to M, then the second-stage aggregator must be linear.

Theorem 9. If q ≥ 2, then the binary relation � on M satisfies ORD, CONT,
MON, ANON, WUPM, SSEP, WCA, and STRA if and only if there exists an n× q
matrix A of positive coefficients with a·j nondecreasing and

∑n
i=1 aij = 1 for all

j ∈ Q and a vector γ ∈ R
q
++ such that (17) holds. Furthermore, the matrix of

coefficients A and the vector γ are unique.

Proof. With the following modifications, the proof of this theorem is the same as
the proof of Theorem 6. Because � satisfies STRA instead of SHOM, the function
V (now defined on R

q) is translation-scale measurable. Hence, by Theorem 8.1 in
Bossert and Weymark (2004), V must be a continuous increasing transform of a
function of the form given in (19). ��

In Theorems 5 and 6, the second-stage aggregation function represents a binary
relation R on R

q
++. We can define an ordering R∗ on R

q by setting uR∗v ⇔
(exp(u1), . . . , exp(uq))R(exp(v1), . . . , exp(vq)) for all u, v ∈ R

q. The ordering
R is continuous, increasing, and ratio-scale measurable and fully comparable (resp.
ratio-scale measurable) if and only if R∗ is continuous, increasing, and translation-
scale measurable and fully comparable (resp. translation-scale measurable). This
observation accounts for why the functional forms of the second-stage aggregators
in Theorems 8 and 9 are obtained from those in Theorems 5 and 6 by a simple
exponential change of variables.

Note that the social evaluation orderings identified in Theorem 4 also satisfy
STRA (and, hence, WTRA). Thus, Theorem 9 also characterizes all of the social
evaluation orderings on M that satisfy ORD, CONT, MON,ANON, WUPM, SSEP,
SCA, and WTRA (resp. STRA). Because the second-stage aggregator is linear, the
conflict we found in Theorem 7 with SHOM does not arise if STRA is used instead.
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8 Multidimensional inequality indices

The Atkinson (1970)–Kolm (1969)–Sen (1973) and Kolm (1969) procedures for
constructing univariate indices of relative and absolute inequality, respectively,
both employ a particular representation of the social evaluation function known
as the equally-distributed-equivalent income function. The equally-distributed-
equivalent income associated with a given univariate income distribution is the
per capita income that, if distributed equally, is socially indifferent to the actual in-
come distribution. The equally-distributed-equivalent income function assigns the
equally-distributed-equivalent income to each income distribution in the domain.
The Atkinson–Kolm–Sen inequality index measures inequality by computing the
ratio of the equally-distributed-equivalent income to the mean income and subtract-
ing this value from 1. This index is a relative index if the social evaluation function
is homothetic. The Kolm inequality index measures inequality by the difference be-
tween the mean income and the equally-distributed-equivalent income. This index
is an absolute index if the social evaluation function is translatable.

In this section, we describe how the multi-attribute generalizations of the Atkin-
son – Kolm – Sen and Kolm inequality indices due to Kolm (1977) and Tsui (1995),
respectively, are constructed. We also derive the functional forms of these indices
for some of the social evaluation orderings characterized in the preceding sections.
See Tsui (1995) and Weymark (1999, 2004) for further discussion of this approach
to measuring multidimensional inequality.

As a domain, we use M∗
+ when we consider relative inequality indices and we

use M when we consider absolute inequality indices. Throughout this section, we
suppose that the social evaluation function � satisfies the following basic properties:
ORD, CONT, MON, ANON, and WUPM.

We begin by considering relative indices of inequality. In the univariate case,
the value of the Atkinson–Kolm–Sen inequality index for a given distribution has
a natural interpetation. It is the fraction of the aggregate income that could be de-
stroyed if incomes are equalized and the resulting distribution is socially indifferent
to the original distribution. The Kolm (1977) multi-attribute generalization of this
index measures the inequality of an allocation by the fraction of the aggregate
amount of each attribute that could be destroyed if every attribute is equalized and
the resulting allocation is indifferent to the original allocation according to �.

Formally, we first define the function ∆R : M∗
+ → R by setting, for each

X ∈ M∗
+, ∆R(X) equal to the scalar that solves

∆R(X)Xµ ∼ X. (20)

Our assumptions ensure that ∆R is well-defined. The multi-attribute Kolm inequal-
ity index associated with � is the function IR : M∗

+ → R defined by

IR(X) = 1 − ∆R(X), ∀X ∈ M∗
+. (21)

If � satisfies WHOM, then IR is a relative index.
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For example, when � is defined as in (11), (20) is satisfied if


 q∑

j=1

γj

(
n∑

i=1

aij∆R(X)µ(x·j)

)r



1
r

=


 q∑

j=1

γj

(
n∑

i=1

aij x̃ij

)r



1
r

, ∀X ∈ M∗
+.

Hence,

∆R(X) =

[∑q
j=1 γj (

∑n
i=1 aij x̃ij)

r
] 1

r

[∑q
j=1 γjµ(x·j)r

] 1
r

, ∀X ∈ M∗
+.

Therefore,

IR(X) = 1 −
[∑q

j=1 γj (
∑n

i=1 aij x̃ij)
r
] 1

r

[∑q
j=1 γjµ(x·j)r

] 1
r

, ∀X ∈ M∗
+, (22)

is the multi-attribute Kolm inequality index corresponding to (11).
This index has a particularly simple form if r = 1, γj = 1/q for all j ∈ Q,

and the Gini social evaluation function is used as the first-stage aggregator for each
attribute. In this case, (22) becomes

IR(X) =

∑q
j=1 µ(x·j)IRG(x·j)∑q

j=1 µ(x·j)
, ∀X ∈ M∗

+, (23)

where IRG(x·j) is the relative Gini inequality index evaluated at the distribution x·j .
This index differs from the arithmetic mean of the relative Gini inequality indices
for the individual attributes, which Koshevoy and Mosler (1997, p. 275) describe
as being a “popular approach” to measuring multidimensional inequality, because
the weights in (23) depend on the relative quantities of the attributes.

Similar calculations show that the multi-attribute Kolm inequality index corre-
sponding to (12) is

IR(X) = 1 −
∏q

j=1 (
∑n

i=1 aij x̃ij)
γj∏q

j=1 µ(x·j)γj
, ∀X ∈ M∗

+. (24)

If γj = 1/q for all j ∈ Q and the Gini social evaluation function is used as the
first-stage aggregator for each attribute, then (24) simplifies to

IR(X) = 1 −
q∏

j=1

(ERG(x·j))
1
q , ∀X ∈ M∗

+, (25)

where ERG(x·j) = 1 − IRG(x·j) is the relative Gini equality index evaluated at the
distribution x·j .

We now consider absolute indices of inequality. The univariate Kolm inequal-
ity index is equal to the amount of income that could be taken away from every
individual in order to obtain a distribution that is socially indifferent to the original
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distribution if incomes are equalized. The generalization of this index proposed by
Tsui (1995) measures inequality by the amount of each attribute that could be taken
away from every individual in order to obtain an allocation that is indifferent to the
original allocation according to � if the distribution of each attribute is equalized.

To define Tsui’s index formally, we first define the function ∆A : M → R by
setting, for each X ∈ M, ∆A(X) equal to the scalar that solves

Xµ − ∆A(X)1 ∼ X. (26)

Our assumptions ensure that ∆A is well-defined. The multi-attribute Tsui inequality
index associated with � is the function IA : M → R defined by

IA(X) = ∆A(X), ∀X ∈ M. (27)

If � satisfies WTRA, then IA is an absolute index.
We illustrate the construction of IA using the social evaluation orderings in (16)

and (17). In the case of (16), (26) is satisfied if

1
r

ln


 q∑

j=1

γj exp

(
r

n∑
i=1

aij [µ(x·j) − ∆A(X)]

)
 =

1
r

ln


 q∑

j=1

γj exp

(
r

n∑
i=1

aij x̃ij

)
 , ∀X ∈ M.

Hence, the multi-attribute Tsui inequality index corresponding to (16) is

IA(X) = ∆A(X) =
1
r

ln

[ ∑q
j=1 γj exp (rµ(x·j))∑q

j=1 γj exp (r
∑n

i=1 aij x̃ij)

]
, ∀X ∈ M. (28)

Similarly, the multi-attribute Tsui inequality index corresponding to (17) is

IA(X) = ∆A(X) =
q∑

j=1

γj

[
µ(x·j) −

n∑
i=1

aij x̃ij

]
, ∀X ∈ M. (29)

If γj = 1/q for all j ∈ Q and the Gini social evaluation function is used as the
first-stage aggregator for each attribute, then (29) simplifies to

IA(X) =
q∑

j=1

[
IAG(x·j)

q

]
, ∀X ∈ M, (30)

where IAG(x·j) is the absolute Gini inequality index evaluated at the distribution
x·j . Thus, in contrast to the relative case, the arithmetic average of the absolute Gini
inequality indices for the individual attributes is a multi-attribute index of absolute
inequality that is consistent with our approach.
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9 Correlation increasing majorization

WUPM and WUM are multi-attribute generalizations of the Pigou–Dalton transfer
principle that ensure that the social evaluation is inequality averse in the sense that
mean-preserving decreases in the spreads of the attribute distributions are socially
desirable. WUPM and WUM only capture one aspect of inequality aversion. When
there is more than one attribute, inequality can also be decreased by reducing the
positive dependence between the rows of the allocation matrix. In this section, we
consider one way in which social evaluations can be required to exhibit this kind
of inequality aversion.18

The positive dependence between the rows of an allocation matrix can be in-
creased by rearranging two individuals’ allocations in such a way that one of these
individuals receives at least as much of every attribute as the other and strictly more
of at least one attribute (and this was not the case before the rearrangement). Fol-
lowing Tsui (1999), we call such a rearrangement a correlation-increasing transfer.

Definition. For all X, Y ∈ D, Y is obtained from X by a correlation-increasing
transfer if X �= Y , X is not a permutation of Y , and there exist i1, i2 ∈ N such
that (i) yi1j = min{xi1j , xi2j} for all j ∈ Q, (ii) yi2j = max{xi1j , xi2j} for all
j ∈ Q, and (iii) yi· = xi· for all i /∈ {i1, i2}.

By considering finite sequences of such transfers, we can define the following
partial order on the set of allocation matrices D.

Definition. For all X, Y ∈ D, Y is more correlated than X , denoted Y 	C X ,
whenever Y can be obtained from X by a finite sequence of correlation-increasing
transfers.

A sequence of correlation-increasing transfers increases inequality and pre-
serves the mean value of each attribute. Hence, it is socially undesirable.

Correlation Increasing Majorization (CIM). For all X, Y ∈ D,

Y 	C X ⇒ X 	 Y.19

CIM was introduced into the inequality literature by Tsui (1999). It is based
on the concept of a multivariate arrangement increasing function due to Boland
and Proschan (1988). Reservations about this axiom have been raised by Bour-
guignon and Chakravarty (2003) because CIM does not take account of individual
preferences. They note that if everyone has the same utility function, there are two
attributes, and Y 	C X , then the value of a utilitarian social evaluation function
decreases when moving from Y to X if the attributes are complements (it increases
if the attributes are substitutes), which is inconsistent with CIM. See Tsui (1999)
for further discussion of this axiom and its relationship to similar principles used
in statistics and in the measurement of risk.

18 For an overview of different positive dependency concepts, see Joe (1997).
19 Tsui’s definition of �C permits the sequence of correlation-increasing transfers to be supplemented

with permutations of the individual allocations.
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Note that CIM is stated in terms of the strict social evaluation relation	, whereas
WUPM and WUM use the weak relation �. Strong versions of the latter axioms
can be obtained by replacing � with 	 in their definitions.

CIM is a majorization axiom that has no univariate counterpart. By definition,
CIM takes account of the dependencies that exist between the distributions of
different attributes. The theorems in the preceding sections all employ SSEP as
one of their axioms. SSEP requires the conditional distribution of any attribute to
be independent of the distributions of the other attributes. This separability of the
social evaluation ordering � across attributes creates a tension between CIM and
SSEP. This tension is also present if SSEP is weakened to WSEP. This conflict is
fundamental: If � satisfies ANON, it is not possible to satisfy both CIM and WSEP.

Theorem 10. Suppose that D ∈ {M, M+, M∗
+
}

. Then, there does not exist a
binary relation � on D that satisfies ANON, WSEP, and CIM.

Proof. Let � be a binary relation on D satisfying WSEP and ANON. By WSEP,
there exists an attribute j0 such that j0 is separable from the attributes in Q \ {j0}.
Let X ∈ D be defined by setting (i) xij = 1 for all j �= j0 and all i ∈ N and
(ii) xij0 = i for all i. Define Y ∈ D by setting (i) yij = xij for all j �= j0 and
all i ∈ N and (ii) yij0 = n − i + 1 for all i ∈ N . Note that Y is obtained from
X by a permutation of the rows of X . Hence, by ANON, X ∼ Y . Now, consider
the matrices X ′ and Y ′ obtained from X and Y , respectively, by replacing, for all
j �= j0 and all i ∈ N , xij and yij0 with i. Because j0 is separable from Q \ {j0},
X ∼ Y implies that X ′ ∼ Y ′. The columns of X ′ are all identical, whereas those
of Y ′ are not. Consequently, X ′ 	C Y ′, which violates CIM. ��

As noted in Section 2, the framework used here has also been employed to
analyze the measurement of inequality under uncertainty. In this interpretation, the
ijth entry in an allocation matrix is the income (or the interpersonally comparable
utility) of individual i in state j. An important feature of this model is that the units
in which incomes in different states are measured are the same. If � is interpreted as
being the preference relation of a social decision-maker, then Theorem 10 implies
that CIM must be violated if � treats individuals symmetrically and it respects the
axioms of expected utility theory applied to allocation matrices. This follows be-
cause the expected utility axioms include an independence assumption that implies
SSEP and, hence, WSEP. This raises the question as to which, if any, model of
decision-making under uncertainty is compatible with ANON and CIM.

Schmeidler (1989) has suggested representing a preference over uncertain out-
comes by a Choquet integral with respect to a non-additive measure. This model
does not employ the independence assumption of expected utility theory. Neverthe-
less, by adapting an example due to Ben-Porath, Gilboa, and Schmeidler (1997), we
are able to show that Schmeidler’s proposal is inconsistent with CIM if � satisfies
ANON.

Suppose that � is represented by a Choquet functional V on D. A subset S
of D is comonotonic if for all X, Y ∈ S, xij > xi′j′ implies that yij ≥ yi′j′ .20

20 Note the use of a common unit of measurement in this definition.
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A Choquet functional is linear on any cone of comonotonic allocation matrices.
Suppose that n = q = 2. By ANON, we have

X =
(

1 0
0 0

)
∼
(

0 0
1 0

)
= Y.

If Z is comonotonic with both X and Y , then the linearity of V implies that
V (X + Z) = V (X) + V (Z) and V (Y + Z) = V (Y ) + V (Z), from which it
follows that V (X + Z) = V (Y + Z). The matrix

Z =
(

1 1
1 0

)

is such a matrix. Hence, X ∼ Y implies that

X ′ =
(

2 1
1 0

)
∼
(

1 1
2 0

)
= Y ′,

where X ′ = X +Z and Y ′ = Y +Z. Clearly, X ′ 	C Y ′. Therefore, Schmeidler’s
model is not compatible with both ANON and CIM.21

Ben-Porath, Gilboa, and Schmeidler (1997) have suggested that instead of us-
ing Schmeidler’s model when measuring inequality under uncertainty, one should
instead represent � by a multiple-priors (min-of-means) functional. A functional
V on D is a multiple-priors functional if there exists a compact and convex set C
of probability measures over the product space N × Q such that for all X ∈ D,
V (X) = minp∈C

∑
i,j pijxij , where pij is the probability put by p on the ijth

entry in an allocation matrix. This kind of functional was introduced by Gilboa and
Schmeidler (1989).

More precisely, Ben-Porath, Gilboa, and Schmeidler (1997) have suggested
using a multiple-priors functional J constructed using the following procedure.
Let J1 (resp. J2) be a multiple-priors functional defined on R

n (resp. R
q). For all

X ∈ D, J1 ∗ J2 is defined by first applying J2 to each row of X and then applying
J1 to the resulting n-dimensional vector. The functional J2 ∗J1 is defined similarly
by permuting the roles of J1 and J2. Note that both J1∗J2 and J2∗J1 are two-stage
aggregators. The functional J is defined by setting J = α(J1∗J2)+(1−α)(J2∗J1),
where α ∈ [0, 1] is a fixed parameter. J is a multiple-priors functional defined on
D.

The multiple-priors model is flexible enough to be compatible with both ANON
and CIM. To see why, consider the special case in which J1 is the relative Gini
operator and J2 is the expectation operator with respect the the uniform probability
distribution over Q. Then, J is given by

J(X) = αIRG(µ(x1·), . . . , µ(xn·)) + (1 − α)
q∑

j=1

1
q
IRG(x·j), ∀X ∈ D. (31)

21 For the multidimensional distance and volume Gini indices considered by Koshevoy and Mosler
(1997), it is readily verified that the allocation matrices X′ and Y ′ are regarded as exhibiting the same
degree of inequality even though X′ is more correlated than Y ′.
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Observe that the second term of the right-hand-side of (31) is invariant to any
correlation-increasing transfer. On the other hand, if Y is obtained from X by a fi-
nite sequence of correlation-increasing transfers, then (µ(x1·), . . . , µ(xn·)) strictly
Lorenz dominates (µ(y1·), . . . , µ(yn·)). Because the Gini index is coherent with
the Lorenz ordering, it follows that

IRG(µ(x1·), . . . , µ(xn·)) > IRG(µ(y1·), . . . , µ(yn·)).

Hence, provided that α �= 0, J satisfies CIM. Clearly, J also satisfies ANON.
The preceding discussion also shows that the more general model considered by

Gajdos and Maurin (2004), which allows for J1 and J2 to be chosen from a larger
class of functionals than the multiple-priors class and which permits aggregators
of J1 ∗ J2 and J2 ∗ J1 in addition to convex combinations, is also compatible with
CIM and ANON.

10 Concluding remarks

The social evaluation orderings axiomatized in this article all have representations
that can be expressed in terms of a two-stage aggregation procedure. In the first
stage, the distributions of each attribute are aggregated using generalized Gini social
evaluation functions. The value of the representation function is then determined
by aggregating these generalized Ginis. When an inequality index is derived from
a social evaluation ordering having this structure, it is a simple matter to determine
the contribution of each attribute to overall inequality. However, as Theorem 10
demonstrates, the cost of having this aggregation property is that it is not possible to
satisfy CIM. How serious this drawback is depends on the appeal of CIM, which, as
we have noted, is an axiom that has been criticized by Bourguignon and Chakravarty
(2003). For those who find CIM appealing, our results provide a benchmark from
which to judge the role that axioms like CIM play in determining the functional
structure of an inequality index.

The work of List (1999) and Tsui (1999) sheds some light on the classes of in-
equality indices that satisfy the inequality counterparts of CIM and either WUPM
or WUM. However, as List notes, Tsui employs a controversial decomposability ax-
iom. On the other hand, List’s indices all use a utility function to reduce the problem
to one of univariate inequality measurement and this may be seen as being unduly
restrictive. There is therefore much scope for further axiomatic investigations of
multidimensional inequality.
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