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Abstract

Objective: Monitoring athlete internal workload exposure, including prevention of
catastrophic non-contact knee injuries, relies on the existence of a custom early-warning
detection system. This system must be able to estimate accurate, reliable, and valid
musculoskeletal joint loads, for sporting maneuvers in near real-time and during match
play. However, current methods are constrained to laboratory instrumentation, are
labor and cost intensive, and require highly trained specialist knowledge, thereby
limiting their ecological validity and wider deployment. An informative next step
towards this goal would be a new method to obtain ground kinetics in the field.
Methods: Here we show that kinematic data obtained from wearable sensor
accelerometers, in lieu of embedded force platforms, can leverage recent supervised
learning techniques to predict near real-time multidimensional ground reaction forces
and moments (GRF/M). Competing convolutional neural network (CNN) deep learning
models were trained using laboratory-derived stance phase GRF/M data and simulated
sensor accelerations for running and sidestepping maneuvers derived from nearly half a
million legacy motion trials. Then, predictions were made from each model driven by
five sensor accelerations recorded during independent inter-laboratory data capture
sessions. Results: The proposed deep learning workbench achieved correlations to
ground truth, by maximum discrete GRF component, of vertical Fz 0.97, anterior Fy

0.96 (both running), and lateral Fx 0.87 (sidestepping), with the strongest mean
recorded across GRF components 0.89, and for GRM 0.65 (both sidestepping).
Conclusion: These best-case correlations indicate the plausibility of the approach
although the range of results was disappointing. The goal to accurately estimate near
real-time on-field GRF/M will be improved by the lessons learned in this study.

Supplementary material available
(digitalathlete.org)
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Significance: Coaching, medical, and allied health staff could ultimately use this
technology to monitor a range of joint loading indicators during game play, with the aim
to minimize the occurrence of non-contact injuries in elite and community-level sports.

Keywords Biomechanics · Wearable sensors · Simulated accelerations ·
Workload exposure · Sports analytics · Deep learning

1 Introduction

One of the perpetual problems facing sports biomechanists is the difficulty translating
the accuracy and multidimensional fidelity of laboratory-based measurements and
downstream analysis into the sporting arena [14, 22]. In pursuit of the monitoring of the
multiple contributors to player welfare, of acute and chronic injury risk plus external
and internal workload exposure [25, 58], coaches today are forced to make local
interpretations of surrogate measures [8, 9, 54]. Traditional outputs of biomechanical
analyses, ground reaction forces and moments from embedded force plates and for
example knee joint moments (KJM) from calculations of inverse dynamics, which could
be considered candidate variables of interest to the monitoring ensemble, have so far
been captive to the laboratory [12,18,25,44,58]. Using catastrophic non-contact knee
injuries as an example, there is a gap between the understanding of the mechanisms of
anterior cruciate ligament injury, and the ability to monitor the collection of associated
risk parameters during a game [5, 15, 20,33].

The traditional approach to biomechanical analysis begins with laboratory
retro-reflective optical motion capture recorded in synchronization with analog force
plate output [14,42]. The University of Western Australia holds a legacy archive of
movement data, and this was considered an advantage and enabler for the current data
science investigation. The major advantage of inertial measurement units (IMU) over
optical motion capture is the relative ease of on-field application away from the
laboratory, however, there are several limitations to the currently accepted linear
processing of their telemetry output. An IMU typically contains three discrete devices:
an accelerometer (linear acceleration); gyroscope (angular velocity); and magnetometer
(to derive orientation) [13]. These IMU sensors are often used alongside global
positioning system (GPS) trackers in a combined unit which allows positional
information (facilitating game strategy and tactical analysis) to be included in workload
exposure estimations [10, 25, 27, 58]. In processing IMU outputs, linear statistics tend to
be based on gross assumptions, which for example can mistake overfitting for
personalization [9, 11, 24,54,62]. Scientific investigation to employ IMU for movement
classification and load estimation has so far shown more success with basic movements
and/or unidimensional GRF analysis [17, 50, 56,59]. The IMU hardware also has
inherent physical characteristics and design features which need to be carefully
controlled. The three sensors have relative or independent coordinate systems, and
vendors use proprietary algorithms based on Kalman filters [13, 35, 43] and custom
orientation calibration [39,41,51] to determine the device position with respect to the
laboratory global origin. Both the accelerometer and gyroscope are susceptible to linear
(or quadratic) drift depending on the application of integration calculations [13]. The
magnetometer is affected particularly by the proximity of ferromagnetic materials which
can be a problem with laboratory and field equipment [2, 13]. One common error is the
misinterpretation of IMU results during treadmill activities where anteroposterior
acceleration is naturally minimized [17,31,37,61]. Wearable devices are also prone to
task-dependent fixation and skin artefacts, in other words powerful movement types
necessitate a more stable attachment to the body, for example throwing or explosive
change of direction activities, or any movement where the IMU is at the distal end of
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the moment arm [13,35]. All these issues are compounded when multiple devices are
deployed per participant, each of which must be synchronized, and where bandwidth to
a Bluetooth or Wi-Fi bridge is shared. In a team situation, one of the most challenging
problems is the logistics of managing the consistency of device hardware and software
versions [10, 47]. In short, IMU devices are often preferred over optical motion capture
for ease of setup and preservation of ecological validity, however, their use comes with a
set of constraints and limitations, some of which have remained difficult to
solve [14, 22,58].

An emerging alternative method of processing IMU data output is deep learning (or
deep neural network, DNN), which is a type of an artificial intelligence system based on
a learning model rather than a task-specific algorithm [40]. The successful deployment
of DNN machine learning for practical biomechanical applications benefits from a
multidisciplinary sport science and computer science approach and early researchers
have applied this technology with IMU to classify gait, predict vertical GRF (Fz); or
segment orientation [2, 28, 29, 31,61, 63]. Recent CNN models, e.g. AlexNet and ResNet,
are highly successful at classifying image contents [26, 38], and it is possible using
fine-tuning (transfer learning) to leverage these existing CNNs for related applications
and from fewer training samples (i.e. thousands instead of millions) with concomitant
reductions in CPU and GPU processing cost.

Figure 1. Deep learning
workbench for
biomechanics. The sequence
of data science techniques
used by the study. The
practical application of
these steps, and ultimate
prediction of GRF/M
waveforms, is described in
the Data representation &

model training subsection of
the Methods.

Figure 2. Study overall
design.

A major step towards model deployment and acceptance in the field is proving its
accuracy and validity in sub-optimal or adversarial conditions. Previous work has tested
CNN models using a conventional 80:20 split of homogeneous archive movement data to
predict three dimensional (3D) GRF/M and KJM from marker trajectories. This was
achieved by building a “deep learning workbench” which (a) flattened 3D marker
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trajectories to 2D images in order to allow fine-tuning of image classification deep
models; (b) transplanted Euclidean loss into the final CNN layer to facilitate
multivariate regression; and (c) realized improvements in downstream KJM model
accuracy by leveraging earlier GRF/M success [32, 33] (Figure 1). The current
investigation began by investigating model performance using a training-set of
simulated accelerations, against a test-set of recorded sensor accelerations, both with
corresponding GRF/M. This required the workbench to be extended to (d) synthesize
accelerations from marker trajectories, and (e) to automatically re-orient independent
acceleration coordinate systems so that they are aligned with the global coordinates.

Figure 3. Location of five
sensor accelerometers. Each
sensor is shown artificially colored
and labeled (LJMU naming con-
vention). Inset, for the thigh and
shank locations, the accelerometer
was attached to a rigid plate.

The contribution
of this study is to investigate
the resilience of the workbench
when faced with a test-set of sensor
accelerations recorded independently
of the primary researcher (and
inter-laboratory), thus providing a
real-world scenario and reducing the
possibility of home-game advantage
or bias. Because the telemetry
was provided by another laboratory,
calibration parameters such
as coordinate system, direction of
travel, number, type and location of
sensor accelerometers, even the make
and model of the force plate systems,
required subsequent data preparation

and representation to be more generalized. Prediction analysis was carried out using the
Caffe deep learning framework [30] on two different CNN models, CaffeNet (a derivative
of AlexNet) and ResNet, both via double-cascade learning, using weights from earlier
marker trajectories to GRF/M models, themselves fine-tuned from ImageNet source big
data [26,38]. The CNN models were trained using accelerations simulated from an
archive of marker trajectory data captured at The University of Western Australia
(UWA, Perth, Western Australia), and tested with sensor accelerations recorded at
Liverpool John Moores University (LJMU, Liverpool, UK). The accuracy and validity of
the approach was tested by reporting correlations between CNN predicted and ground
truth GRF/M over 100 % of time-normalized stance for two sports-related movement
patterns, running and sidestepping. The hypothesis was that CNN models can establish
the location of sensor accelerometers via the signature pattern of 3D accelerations, and
that this would be demonstrated by mean GRF and GRM correlations > 0.80 across
all movement types and stance limb combinations. It was anticipated that the results of
this study would add to the understanding of the performance of CNN models driven by
3D accelerations, and contribute to future practitioners’ placement of sensor
accelerometers for optimum results.

2 Methods

2.1 Design & setup

The overall design of the study is shown in Figure 2. For the current investigation, the
training and test data were from different sources. A UWA archive of marker
trajectories and GRF/M data from a 17–year period from 2001–2017 was used to train
the CNN models. Gathered from multiple biomechanics laboratories, the training data
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files selected from the total of 458,372 shared common optical motion capture setup
(12–20 Vicon camera models MCam2, MX13 and T40S; Oxford Metrics, Oxford, UK),
analog force plate configuration (Advanced Mechanical Technology Inc, Watertown,
MA), data capture software (Vicon Workstation v4.6 to Nexus v2.5), and young adult
athletic participant cohort (male 59.9 %, female 40.1 %, height 1.770 ± 0.101 m, and
mass 74.9 ± 34.1 kg). The UWA optical marker set has varied over this period from
24–67 passive retro-reflective markers. However, for this investigation a subset of five
markers were used (sacrum SACR; bilateral thigh xTH2, and tibia xTB2, UWA naming
convention), selected for their proximity to the sensor locations in the test-set
(Figure 3), and which made the selection of samples different to earlier studies [32–34].

The test-set was derived from multi data capture sessions conducted between
November 2017 to February 2018 at LJMU using Visual3D v6.01 (C-Motion Inc,
Germantown, MD). Five Noraxon DTS-3D 518 accelerometers (Noraxon Inc, Scottsdale,
AZ) were attached to each of five team-sport athletes (male 80.0 %, female 20.0 %,
height 1.829 ± 0.080 m, and mass 75.6 ± 11.1 kg) at locations selected for their
relevance to an independent study on body segment accelerations (pelvis Pelv; bilateral
thigh x Th, and shank x Sh, LJMU naming convention) [59] (Figure 3).

Figure 4. Visualization of
NORM- (left), and
PCA-aligned 3D
accelerations (right), sample
sidestep right stance
limb. Greater signal energy is
evident in the stance limb sensors
R Th and R Sh. NORM-aligned
accelerations sacrifice
dimensionality information and
hence the three vectors are
identical. PCA-aligned
accelerations demonstrate a
sweep of information towards
Anterior Accx (forward, red).

2.2 Data preparation

Use of the existing data archive was permitted under UWA ethics exemption
RA/4/1/8415 (training), and the new data capture was carried out under LJMU ethics
approval 17/SPS/043 (test). Data processing was conducted with MATLAB R2017b
(MathWorks, Natick, MA) and Python 2.7 (Python Software Foundation, Beaverton,
OR), both selected for availability of function libraries. In the case of MATLAB, for
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access to the Biomechanical ToolKit 0.3 (Barre and Armand, 2014), and for Python, to
conduct low-level image processing using the OpenCV environment, and native HDF5
file handling (opencv.org, hdfgroup.org). The operating system was Ubuntu v16.04
(Canonical, London, UK), running on a desktop PC, Core i7 4GHz CPU, with 32GB
RAM and NVIDIA multi-GPU configuration (TITAN X & TITAN Xp; NVIDIA
Corporation, Santa Clara, CA).

The data preparation phase was designed to maximize the integrity of the source
marker trajectories, sensor accelerations, and force plate data ahead of model training
and prediction. The intention was to minimize capture errors (original and new),
duplicate files, and select high-quality data rows with labeled marker trajectories
(training), sensor accelerations (test), and associated GRF/M. Each trial was
normalized to stance phase, and trimmed according to custom lead-in periods to best
inform the model as defined by earlier prototypes [33, 34,45,52].

Basic kinematic templates (based on movement at the sacrum) were used to identify
running and sidestepping/cutting in the training and test data
(running >= 2.16 m/s [55]). The sidestepping movement type in particular was selected
for its relevance to sporting movements, and knee injury risk, but also for its greater
complexity compared with the literature. The majority of trials exhibited right stance
limb, with the movement towards the left (a small proportion of sidestepping with
crossover technique were removed). The running movement in the test data capture was
also sub-categorized into slow (2–3 m/s), moderate (4–5 m/s), and fast (> 6 m/s)
trials.

Registration of a successful foot-strike (FS) onto the force plate, and subsequent
toe-off (TO), were both automatically detected using accepted vertical force and stance
limb parameters [46, 48,57], which were then translated to the test accelerations by
virtue of synchronized force plate and accelerometer telemetry. The lack of a
foot-mounted sensor meant the determination of FS from minimum vertical acceleration
at this location was unavailable [7], and accelerations from the shank sensor were found
to be unreliable for this purpose. Identification of the TO gait event from IMU data was
considered out of scope for this study, being the primary research objective of other
investigations [1, 3, 23].

Virtual IMUs were placed on the mocap skeletons by converting the training-set of
marker trajectories into accelerations via double-differentiation, thereby simulating
sensor accelerometer data. Since an accelerometer is a free body with an independent
coordinate system [41], in order to model the relationship between 3D accelerations and
GRF/M, the accelerations (both those synthesized and recorded) were required to be
aligned. Two mathematical methods for automatically re-orienting the accelerations
were tested and reported. The first, was to combine the three directional components
into one acceleration magnitude via Euclidean Norm (Figure 4, left). The second,
employed Principal Component Analysis (PCA) via Singular Value Decomposition
(SVD), whereby a custom rotation matrix was assembled with the ability to re-orient
3D accelerations in the direction of the greatest PCA energy (i.e. forward, for all
movement types being investigated). For the training data, a one-off re-orientation was
applied by calculating the PCA rotation matrix according to the 3D acceleration at the
sacrum location and applying this to all five virtual accelerations. Only one rotation
matrix was necessary for the simulated accelerations because their source marker
trajectories were aligned with the laboratory global coordinate system. For the test-set
of recorded sensor accelerations, these were all independent and hence an individual
rotation matrix was calculated and applied to each. With this test cohort, the effect of
PCA can be seen in the sweep of acceleration energy towards the forward
(anteroposterior) direction (Figure 4, right).
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2.3 Data representation & model training

Model training and prediction was carried out using the Caffe deep learning
framework [30]. Fine-tuning CNN models allows for new investigations with smaller
sample sizes to improve their performance by leverage weighting relationships built on
earlier training at scale. In deep learning terms, the number of training samples in this
study (minimum 1,176, maximum 5,378) was small, and therefore the problem was a
candidate for fine-tuning [38]. A derivative of the 2012 IVSLRC (image-net.org)
challenge winner AlexNet called CaffeNet had been selected as the strongest model in a
similar investigation, and the double-cascade approach (CaffeNet through GRF/M to
KJM) had also demonstrated a significant improvement in correlations of
+ 4.2 % [32,33]. For comparison, and to test a deeper more general model, this
investigation also reports a second CNN, ResNet-50, the 2015 IVSLRC challenge
winner [26].

Both AlexNet and ResNet-50 CNN are image classifiers which did not match the
required four dimensional input (3D accelerations plus time) and six vector GRF/M
waveform output. In order to fine-tune (double-cascade) from these CNN and leverage
their existing training, the aligned 4D acceleration inputs were flattened into 2D images
by representing the five sensor locations on the horizontal axis, stance-normalized time
frames upwards on the vertical axis, and by use of the Python SciPy imsave function to
map the 3D accelerations onto the RGB colorspace [21, 36] (Figure 5). Then, so that
they would generate GRF/M waveforms (not simply label classifications), the output
layer of each CNN was modified from a SoftMax binary to a Euclidean loss layer, which
turned the CNN into a multivariate regression network. Most CNNs are classifiers
which means the number of features in their output layer is naturally small because it
only contains weighting predictions for a discrete set of labels. The high capture
frequency of the force plate analog data now being output by the modified network
resulted in a non-standard CNN profile (output features >> input features) which was
addressed by reducing the number of output features via PCA [32].

Figure 5. Contact sheets
of test accelerations flattened
into 2D images. Sidestep-
ping movement combined left
and right stance, 43 samples,
NORM-aligned accelerations (left)
loss of directional information
causes monochrome images, PCA-
aligned (right) retains color.

The accuracy and validity of
the approach was measured by comparing
the correlation of values predicted by
the CNN models with the ground truth
GRF/M over 100 % of time-normalized
stance. For further comparison,
relative root mean squared error rRMSE
was reported for individual use-cases [53].
CNN model predictions were conducted
using a single fold of each movement type
and stance limb iteration, including an
overlaid combination which flipped the
left stance limb onto the right, to test the
effectiveness of this data augmentation
and whether the increase in
training samples improved performance.
Using the simulated accelerations as the

training sets, and the recorded accelerations as the test sets generated variable ratios of
training to test samples, however always in favor of the training-set as per convention.
For time brevity, single fold experiments were conducted, earlier investigations having
demonstrated similarity between single and k-fold analysis [32].

All CNN models and related digital material supporting this study have been made
available (digitalathlete.org).
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Figure 6. Ground truth
GRF versus predicted
response. Test-set ground truth
mean GRF (blue, ticks), and
predicted response (red),
CaffeNet shown left r(Fmean)
0.89, ResNet-50 right r(Fmean)
0.87, both double-cascade,
interlaced output, correlations
over 100 % stance phase, 25
samples. Cohort selected for
strongest r(Fmean) by CNN
(sidestep off the left stance limb),
min/max range (shaded areas)
and mean (solid lines) depicted.

3 Results

Compared with ground truth GRF/M, sets of correlations were compared for the two
CNN models CaffeNet (Table 1) and ResNet-50 (Table 2), both modes of acceleration
re-orientation Euclidean Norm (accNORM) and alignment by PCA rotation matrix
(accPCA), for discrete GRF/M channels Fx, Fy, Fz, Mx, My, Mz, and their overall
means Fmean and Mmean. Experiments 1.1 and 2.1 list the correlations for the marker
to GRF/M models used as seeds for the double-cascade, and are included as reference
information.

The strongest individual GRF channel correlation was considered first. Across the
three GRF channels Fx, Fy, Fz, the highest correlation was found for vertical Fz

0.97 (rRMSE 13.92 %) using CaffeNet (accNORM, experiment 1.8) for moderate speed
running off the left stance limb. By channel, anterior Fy was predicted with a
correlation up to 0.96 (rRMSE 17.06 %), and lateral Fx 0.87 (rRMSE 21.56 %) both
with ResNet-50 off the left stance limb, the former for slow running (accPCA,
experiment 2.21), the latter sidestepping (accNORM, experiment 2.24). Results are
shown bolded in their respective tables.

The mean of the three GRF, r(Fmean) achieved 0.89 for CaffeNet (accNORM,
experiment 1.24), by comparison, ResNet-50 managed 0.87 (accNORM, experiment
2.24), both for the same corresponding experiment with a sidestep off the left stance
limb (Figures 6 & 8). The mean of the three GRM, r(Mmean) proved less than
satisfactory, CaffeNet making 0.65 (accPCA, experiment 1.29), and ResNet-50 0.65
(accPCA, experiment 2.29), again both for the same sidestep off the right stance limb
(Figures 7 & 8).
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Figure 7. Ground truth
GRM versus predicted
response. Test-set ground truth
mean GRM (blue, ticks), and
predicted response (red),
CaffeNet shown left r(Mmean)
0.65, ResNet-50 right r(Mmean)
0.65, both double-cascade,
interlaced output, correlations
over 100 % stance phase, 18
samples. Cohort selected for
strongest r(Mmean) by CNN
(sidestep off the right stance
limb), min/max range (shaded
areas) and mean (solid lines)
depicted.

4 Discussion

Convention dictates that research in the biomechanical sciences is strictly controlled by
the primary researcher. The use of broad data sets to train (or fine-tune) deep learning
models already breaks this paradigm, but this study went further by inviting a test-set
of experiments conducted independently at LJMU, where much of the study design and
instrumentation was different to that used for the historical UWA data capture used to
train the CNN models. Performance under these conditions would address the most
common criticism that somehow the deep learning model had prior knowledge of test
samples (or home-game advantage).

As demonstrated by this study, the use of strategies to automatically re-orient 3D
accelerations freed the operator from the typical requirements of an initialization
posture or sensor calibration. Both the Euclidean Norm and PCA rotation matrix
methods solve a major hurdle for adoption in the field while being more elegant than
previous solutions [39, 41,43,51,61,63]. The only drawback being the look-ahead
processing requirement which makes either solution ‘near’real-time, but this is
outweighed by the advantages including being agnostic to the direction of participant
travel. With no clear separation of performance characteristics, the two re-orientation
methods warrant further investigation, particularly when mathematically the Euclidean
Norm solution is more straightforward to implement whereas the PCA approach is a
richer source of vector information.
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Figure 8. Ground truth
GRF/M versus predicted
response. Bland-Altman
representations of Figures 6 & 7.
The marker color from dark to
light illustrates time from FS.

In the competition between the classic CaffeNet model [38] and the more recent
ResNet-50 [26], CaffeNet seemed to perform more strongly where there was greater
signal strength, e.g. Fz, r(Fmean). ResNet-50, on the other hand, outperformed
CaffeNet in conditions of greater noise, e.g. Fx, which reflects the suitability of the
models to each particular use-case, due to either CNN architecture or initial model
training. It was theorized that coarse networks like CaffeNet will perform better than
deeper networks when the raw source has been blown up to meet the image input
requirements, in this case five sensors interpolated to 227 pixels.

The LJMU test running data capture was carried out at a number of different speeds
and acceleration/deceleration profiles. In experiments, these were initially grouped by
stance limb, and subsequently by a custom L & R combination overlay technique.
Time-normalizing the input data according to stance, was expected to reduce the effect
of different running speeds, however, variance remained in the results: CaffeNet being
the strongest performer, accNORM, running subtypes r(Fmean) 0.72 ± 0.10
(accNORM, experiments 1.2–1.11), r(Fmean) 0.74 ± 0.09 (accPCA, experiments
1.12–1.21); and some of the highest correlations were seen with the samples of running
at moderate speed, perhaps due to conformity with the source UWA training data.

Mean GRF Fmean for ResNet-50 combined stance limb variants outperformed the
weakest single limb versions (e.g. experiments 2.30 vs 2.22 and 2.23). This is an
important finding because a stance-independent model would be far more applicable to
game scenarios where the landing limb is unpredictable, and would remove a layer of
movement classification hierarchy from the system. The strength of ResNet over
CaffeNet in this use-case reflects the preference of deeper CNN architectures to reward
greater raw detail with higher learning capacity. This is because these more recent
models retain the original size and granularity of the input image through a much
longer sequence of convolutions. In other words, ResNet combined L & R models
performed better than a rudimentary mean, and highlights the generalization of the
proposed method.
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Table 1. CaffeNet GRF/M component and mean correlations by movement type, stance limb, and motion capture (acceleration
orientation) method. CNN double-cascade single fold, output channels interlaced and PCA-reduced, 100 % stance.

Experiment Movement Stance Motion UWA training LJMU test r(Fx) r(Fy) r(Fz) r(Mx) r(My) r(Mz) r(Fmean) r(Mmean)

index type limb capture2 samples samples

1.11 Sidestep R marker 3194 (80.0 %) 798 (20.0 %) 0.98 0.98 0.99 0.97 0.97 0.98 0.98 0.98

1.2 Run (acceleration) L accNORM 1176 (97.8 %) 27 (2.2 %) 0.25 0.57 0.93 -0.10 -0.66 -0.21 0.58 -0.32

1.3 Run (acceleration) R accNORM 2704 (99.2 %) 22 (0.8 %) 0.27 0.59 0.84 0.00 0.70 0.24 0.57 0.32

1.4 Run (deceleration) L accNORM 1176 (98.6 %) 17 (1.4 %) 0.39 0.89 0.74 0.45 -0.14 -0.36 0.67 -0.02

1.5 Run (deceleration) R accNORM 2704 (99.4 %) 15 (0.6 %) 0.32 0.90 0.74 0.62 0.02 0.16 0.65 0.27

1.6 Run (fast) L accNORM 1176 (97.8 %) 27 (2.2 %) 0.40 0.85 0.94 0.17 -0.03 0.07 0.73 0.07

1.7 Run (fast) R accNORM 2704 (99.0 %) 26 (1.0 %) 0.42 0.83 0.94 0.12 0.36 0.15 0.73 0.21

1.8 Run (moderate) L accNORM 1176 (97.6 %) 29 (2.4 %) 0.56 0.95 0.97 0.58 0.23 0.40 0.83 0.40

1.9 Run (moderate) R accNORM 2704 (98.9 %) 30 (1.1 %) 0.65 0.95 0.96 0.54 0.27 0.17 0.85 0.32

1.10 Run (slow) L accNORM 1176 (98.1 %) 23 (1.9 %) 0.49 0.95 0.93 0.56 0.07 0.19 0.79 0.27

1.11 Run (slow) R accNORM 2704 (98.8 %) 34 (1.2 %) 0.45 0.95 0.96 0.41 -0.10 -0.14 0.79 0.05

1.12 Run (acceleration) L accPCA 1176 (97.8 %) 27 (2.2 %) 0.33 0.61 0.92 -0.15 -0.68 0.09 0.62 -0.25

1.13 Run (acceleration) R accPCA 2704 (99.2 %) 22 (0.8 %) 0.33 0.70 0.88 0.06 0.59 0.51 0.64 0.39

1.14 Run (deceleration) L accPCA 1176 (98.6 %) 17 (1.4 %) 0.54 0.89 0.70 0.33 -0.16 -0.30 0.71 -0.05

1.15 Run (deceleration) R accPCA 2704 (99.4 %) 15 (0.6 %) 0.40 0.88 0.71 0.74 0.09 0.30 0.66 0.38

1.16 Run (fast) L accPCA 1176 (97.8 %) 27 (2.2 %) 0.33 0.86 0.94 0.13 0.21 0.26 0.71 0.20

1.17 Run (fast) R accPCA 2704 (99.0 %) 26 (1.0 %) 0.35 0.85 0.95 0.32 0.22 0.02 0.71 0.19

1.18 Run (moderate) L accPCA 1176 (97.6 %) 29 (2.4 %) 0.62 0.95 0.96 0.75 -0.01 0.61 0.85 0.45

1.19 Run (moderate) R accPCA 2704 (98.9 %) 30 (1.1 %) 0.62 0.95 0.96 0.59 0.21 0.25 0.84 0.35

1.20 Run (slow) L accPCA 1176 (98.1 %) 23 (1.9 %) 0.57 0.95 0.92 0.45 -0.07 0.18 0.81 0.18

1.21 Run (slow) R accPCA 2704 (98.8 %) 34 (1.2 %) 0.52 0.96 0.96 0.51 0.52 0.27 0.81 0.43

1.22 Run L accNORM 1176 (90.5 %) 123 (9.5 %) 0.42 0.84 0.91 0.33 -0.09 0.02 0.72 0.09

1.23 Run R accNORM 2704 (95.5 %) 127 (4.5 %) 0.45 0.86 0.91 0.35 0.25 0.11 0.74 0.24

1.24 Sidestep L accNORM 1386 (98.2 %) 25 (1.8 %) 0.87 0.90 0.89 0.57 0.32 0.63 0.89 0.51

1.25 Sidestep R accNORM 3992 (99.6 %) 18 (0.4 %) 0.79 0.91 0.85 0.48 0.70 0.68 0.85 0.62

1.26 Run L accPCA 1176 (90.5 %) 123 (9.5 %) 0.48 0.85 0.90 0.30 -0.14 0.22 0.75 0.13

1.27 Run R accPCA 2704 (95.5 %) 127 (4.5 %) 0.47 0.88 0.91 0.40 0.34 0.23 0.75 0.32

1.28 Sidestep L accPCA 1386 (98.2 %) 25 (1.8 %) 0.86 0.91 0.87 0.61 0.29 0.64 0.88 0.51

1.29 Sidestep R accPCA 3992 (99.6 %) 18 (0.4 %) 0.79 0.89 0.85 0.55 0.69 0.71 0.84 0.65

1.30 Run combined L & R accNORM 3880 (93.9 %) 250 (6.1 %) 0.37 0.85 0.91 0.32 0.28 0.07 0.71 0.22

1.31 Sidestep combined L & R accNORM 5378 (99.2 %) 43 (0.8 %) 0.84 0.91 0.88 0.59 0.49 0.03 0.88 0.37

1.32 Run combined L & R accPCA 3880 (93.9 %) 250 (6.1 %) 0.41 0.86 0.91 0.30 0.23 0.05 0.73 0.19

1.33 Sidestep combined L & R accPCA 5378 (99.2 %) 43 (0.8 %) 0.82 0.91 0.83 0.69 0.44 -0.01 0.85 0.37

1Seed for double-cascade model weights.
2Acceleration re-orientation via Euclidean Norm (accNORM) or PCA rotation matrix (accPCA).
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Table 2. ResNet-50 GRF/M component and mean correlations by movement type, stance limb, and motion capture (accelera-
tion orientation) method. CNN double-cascade single fold, output channels interlaced and PCA-reduced, 100 % stance.

Experiment Movement Stance Motion UWA training LJMU test r(Fx) r(Fy) r(Fz) r(Mx) r(My) r(Mz) r(Fmean) r(Mmean)

index type limb capture2 samples samples

2.11 Sidestep R marker 3194 (80.0 %) 798 (20.0 %) 0.98 0.98 0.99 0.97 0.97 0.98 0.99 0.97

2.2 Run (acceleration) L accNORM 1176 (97.8 %) 27 (2.2 %) 0.16 0.45 0.89 0.04 -0.22 0.03 0.50 -0.05

2.3 Run (acceleration) R accNORM 2704 (99.2 %) 22 (0.8 %) 0.14 0.63 0.84 0.09 0.57 0.40 0.54 0.35

2.4 Run (deceleration) L accNORM 1176 (98.6 %) 17 (1.4 %) 0.14 0.88 0.67 0.40 0.10 -0.18 0.56 0.11

2.5 Run (deceleration) R accNORM 2704 (99.4 %) 15 (0.6 %) 0.25 0.88 0.73 0.53 -0.02 0.07 0.62 0.19

2.6 Run (fast) L accNORM 1176 (97.8 %) 27 (2.2 %) -0.04 0.84 0.93 0.26 -0.10 0.07 0.58 0.08

2.7 Run (fast) R accNORM 2704 (99.0 %) 26 (1.0 %) 0.35 0.84 0.94 0.09 0.28 0.06 0.71 0.14

2.8 Run (moderate) L accNORM 1176 (97.6 %) 29 (2.4 %) 0.50 0.94 0.95 0.22 -0.02 0.15 0.80 0.12

2.9 Run (moderate) R accNORM 2704 (98.9 %) 30 (1.1 %) 0.59 0.93 0.94 0.17 -0.03 -0.11 0.82 0.01

2.10 Run (slow) L accNORM 1176 (98.1 %) 23 (1.9 %) 0.48 0.94 0.89 0.66 0.03 0.17 0.77 0.29

2.11 Run (slow) R accNORM 2704 (98.8 %) 34 (1.2 %) 0.51 0.95 0.94 0.55 -0.02 -0.16 0.80 0.12

2.12 Run (acceleration) L accPCA 1176 (97.8 %) 27 (2.2 %) 0.27 0.46 0.91 -0.13 -0.10 0.06 0.54 -0.06

2.13 Run (acceleration) R accPCA 2704 (99.2 %) 22 (0.8 %) 0.11 0.62 0.87 0.18 0.49 0.39 0.54 0.35

2.14 Run (deceleration) L accPCA 1176 (98.6 %) 17 (1.4 %) 0.28 0.89 0.74 0.40 -0.39 -0.23 0.64 -0.08

2.15 Run (deceleration) R accPCA 2704 (99.4 %) 15 (0.6 %) 0.16 0.88 0.75 0.39 -0.05 0.01 0.60 0.11

2.16 Run (fast) L accPCA 1176 (97.8 %) 27 (2.2 %) 0.02 0.80 0.92 0.07 -0.01 0.06 0.58 0.04

2.17 Run (fast) R accPCA 2704 (99.0 %) 26 (1.0 %) 0.39 0.83 0.94 0.44 0.10 0.13 0.72 0.23

2.18 Run (moderate) L accPCA 1176 (97.6 %) 29 (2.4 %) 0.39 0.94 0.93 0.73 0.02 0.42 0.75 0.39

2.19 Run (moderate) R accPCA 2704 (98.9 %) 30 (1.1 %) 0.53 0.95 0.96 0.47 0.29 0.15 0.81 0.30

2.20 Run (slow) L accPCA 1176 (98.1 %) 23 (1.9 %) 0.22 0.92 0.89 0.62 -0.09 0.14 0.68 0.22

2.21 Run (slow) R accPCA 2704 (98.8 %) 34 (1.2 %) 0.43 0.96 0.95 0.46 -0.28 -0.19 0.78 -0.01

2.22 Run L accNORM 1176 (90.5 %) 123 (9.5 %) 0.23 0.81 0.88 0.27 -0.05 0.08 0.64 0.10

2.23 Run R accNORM 2704 (95.5 %) 127 (4.5 %) 0.39 0.86 0.91 0.26 0.13 0.08 0.72 0.16

2.24 Sidestep L accNORM 1386 (98.2 %) 25 (1.8 %) 0.87 0.90 0.85 0.70 0.27 0.56 0.87 0.51

2.25 Sidestep R accNORM 3992 (99.6 %) 18 (0.4 %) 0.78 0.89 0.80 0.58 0.65 0.65 0.82 0.63

2.26 Run L accPCA 1176 (90.5 %) 123 (9.5 %) 0.16 0.78 0.89 0.33 -0.07 0.08 0.61 0.11

2.27 Run R accPCA 2704 (95.5 %) 127 (4.5 %) 0.33 0.87 0.92 0.32 0.16 0.15 0.71 0.21

2.28 Sidestep L accPCA 1386 (98.2 %) 25 (1.8 %) 0.84 0.89 0.83 0.58 0.24 0.52 0.86 0.44

2.29 Sidestep R accPCA 3992 (99.6 %) 18 (0.4 %) 0.75 0.88 0.82 0.61 0.63 0.70 0.82 0.65

2.30 Run combined L & R accNORM 3880 (93.9 %) 250 (6.1 %) 0.32 0.86 0.91 0.26 0.03 0.04 0.70 0.11

2.31 Sidestep combined L & R accNORM 5378 (99.2 %) 43 (0.8 %) 0.82 0.90 0.82 0.51 0.44 0.01 0.85 0.32

2.32 Run combined L & R accPCA 3880 (93.9 %) 250 (6.1 %) 0.34 0.86 0.92 0.33 0.05 0.07 0.71 0.15

2.33 Sidestep combined L & R accPCA 5378 (99.2 %) 43 (0.8 %) 0.81 0.91 0.84 0.53 0.43 -0.14 0.85 0.27

1Seed for double-cascade model weights.
2Acceleration re-orientation via Euclidean Norm (accNORM) or PCA rotation matrix (accPCA).
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The major limitation of this study is the selection of sensor locations. Whereas the
shank sensor accelerations were able to successfully identify stance limb (Figure 4), the
vertical acceleration profile at the shank was found to be insufficient to identify the FS
event. The lack of mediolateral acceleration energy for running trials was cited for the
low Fx and associated mean GRF correlations, due to the CNN model being unable to
distinguish signal from noise for these movements. The same symptom of the model
misinterpreting noise was considered a contributor to lower GRM correlations. This
finding demonstrated the importance of sensors being located as distal as possible in
each plane from the center of mass, in order to maximize acceleration profiles, moreover
the improvement in correlation performance for sidestepping illustrated the ability of
CNN models to distinguish sensor locations by establishing unique internal 3D
acceleration signatures. This location awareness is despite a combined acceleration lag
and smoothing effect most notable in the response from FS [49], contributed to by the
evolution of the workbench code-base from marker-based motion capture input, which
down-sampled input accelerations to 250 Hz, and the proprietary on-board telemetry
filtering. The models showed agreement between the two methods (p < 0.05) apart
from the difficulty with predicting Fx and Mx, Fz and Mz, particularly at the FS ramp
(Figure 8, [6]).

Overall, the performance of the deep learning workbench for GRF correlations was
impressive when compared with the literature (traditional linear and data science
methods) against a hypothesis more demanding than the unidirectional vGRF (Fz),
movement classification, or counting of steps most commonly
investigated [2, 4, 17, 19,28,29,31,50,56,59–61,63]. While the unidirectional two-mass
model approach of Clark et al. [16], for example, reported encouraging agreement of
R2 = 0.95 ± 0.04, this was for the vertical force component of running only. In
contrast, the multidimensional mass-spring-damper model investigation by Verheul et
al. [60], reported errors in resultant GRF loading rate of 31 % during accelerations and
34 % of RMSE during decelerations. This suggests that the use of physical models has
limitations for more dynamic multidimensional team-sport specific tasks, providing
further support for the use of a deep learning approach as presented in this paper. This
study’s hypothesis of mean GRF and GRM correlations > 0.80 was supported for
sidestepping r(Fmean) regardless of re-orientation methods, CNN models, and stance
limb, including the combined experiment 1.31 (CaffeNet, accNORM) which achieved
0.88. It was noted that the definition of LJMU sidestepping execution at 90◦ was more
aggressive than that of UWA at 45–60◦, but that suspected homogeneity in FS pattern
inherent to sidestepping with respect to running outweighed any protocol disadvantage.

The deep learning workbench employed by this study has demonstrated applicability
to biomechanics 4D input and multivariate waveform output. The success of this
approach was partly due to the custom nature of the code development, rather than the
use of off-the-shelf functions. Plus, these results would not have been possible without
headless background batch operation, and on-the-fly generation of CNN architecture
and hyperparameter optimization instructions (‘prototxt’ files) allowing for the drop-in
of different models as required.

Future investigations should focus on expanding the number of test participants. To
improve acceleration signature identification and subsequent model performance, it is
strongly recommended to include sensors located at C7 (as typical for team sport) and
on each foot. The addition of gyroscope and magnetometer sensor telemetry is expected
to increase correlations (the Noraxon sensors used in this study provided 3D linear
accelerations only), but would require synthesizing or gathering such information for
model training.
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5 Conclusions

A biomechanically relevant system of on-field workload exposure monitoring and acute
injury prediction could be a revolutionary contribution to player game preparedness and
career longevity. Through a unique “deep learning workbench for biomechanics”, using
legacy marker trajectory trials against new (and independent) accelerometer-driven
data capture, the results from this study improve on the literature, but under more
challenging sport-related tasks and systematic conditions that make it more relevant for
on-field use. Model performance was dependent on gross movement pattern (running or
sidestepping) which will be improved by more sophisticated type classification. Both
CaffeNet and ResNet-50 demonstrated the ability to profile sensor body location from
acceleration signatures. Efforts to address the limitations of no distal sensor location
(including C7 and both feet), number of test participants and training samples, and
downstream smoothing effects are expected to strengthen the accuracy for all movement
types, and particularly the moments of ground kinetics, which could open up this
technology for practical application and potentially the prediction of joint kinetics and
tissue loading. These results would not have been possible without the multidisciplinary
collaboration between sport science and computer science, but the dogma of the
invested linear approach and perceived data ownership remain a barrier to adoption.
The harvesting of existing team IMU telemetry archives using a deep learning
workbench as presented here has the potential to trigger a revolution in the accuracy
and validity of wearable sensors from community fitness to professional sport.
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