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ABSTRACT The numerical integration of multidimensional functions using some variables of the sparse

gridmethod for the absorption problem is presented in this paper. Themultivariate quadrature expressions are

constructed by combining tensor of suited one dimensional formula.We develop amultidimensional adaptive

quadrature algorithm for the implementation of sparse grid based on a hierarchical basis. Furthermore,

we obtain a new error bound at each sparse grid point. The numerical examples are shown to demonstrate

the efficiency of our algorithm for the absorption problem and confirm the theoretical estimates.

INDEX TERMS Multidimensional systems, interpolation, grid computing, error analysis, convergence of

numerical methods.

I. INTRODUCTION

Multivariate integrals arise inmany scientific and engineering

application fields such as statistical mechanics, the valuation

of financial derivatives etc. Integration over products of the

unit sphere is equivalent to multiple integration over the unit

sphere. Such multiple integrals can be approximated in a

number of ways, including Monte Carlo methods. Conven-

tional approaches for such approximation are usually limited

by the trouble problem ‘‘curse of dimension’’ [1]. Further-

more, computational complexity research reveals that the

cost of computation grows exponentially as the dimensions

of the problems increase [2]. There are a lot of methods

for numerical computation of multi-dimensional functions

such as Quasi-Monte Carlo approaches [3], lattice rules [4]

and computation methods with artificial neural networks [5].

Each of these approaches has a particular complexity that is

independent of the problem’s dimension. The application of

sparse grid techniques might offer a promising way out.

Sparse grid techniques were firstly introduced by

Smolyak [6] to overcome the curse of dimension to a certain

extent. In this method, multivariate quadrature formulas are

constructed using combinations of tensor products of suited
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1-D formulas. In this way, the numerical accuracy obtain

independent of dimension of the problem up to logarithmic

factors. During recent years, sparse grid method has become

a popular approximation tool for high dimensional problems.

This method has been applied to different computational

tasks by several authors, such as the rectangle rule [7],

the Clenshaw-Curtis rule [8], the Gauss rules [9] and so

on. Further some applications of sparse grid method are

the stochastic simulations [10], wavelet analysis [11], high-

dimensional elliptic problems [12], [13], reaction-diffusion

systems [14], integral equations [15], optimal control prob-

lems [16], and the Fourier transformation [17]. The sparse

grid method has intrinsic distributed structures, so paral-

lel implementation becomes straightforward, in comparison

with the other numerical methods.

It is worth pointing out that a different approach to sparse

grid approximations is the so-called combination technique.

It represents a sparse grid as a superposition of much coarser

full grids. The problem is solved on each of these full grid

independently in the sparse grid space. Under certain con-

ditions, it is shown that the combination technique is equal

to the sparse grid solution [14]. The reference [14] indicates

the combination technique is promising, but it only focuses

on numerical results and error analysis is ignored. It is well

known that error analysis is very important for numerical
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computation. The current paper differs from [14] in that

it focus on error analysis while [14] focuses on numerical

results. Furthermore, we do obtain some results on the upper

bound of approximation error.

The main contributions of this paper are: 1) We develop a

novel algorithm for implementing sparse grid method based

on the hierarchical polynomials for high dimensional numer-

ical integration, the characteristics method addressed in this

paper is causality free and has wonderful parallelism. It can

be easily integrated in a parallel computer with any grid,

such as sparse grids to mitigate the curse of dimensionality.

2) We examine the algorithm theoretically, and prove an

upper bound for the approximation error and approximate it

numerically. 3)We also examine the performance of the algo-

rithm in practice, via two numerical examples with different

dimensions. It is shown that the computation results using

sparse grid method on the absorption problem are much more

accurate than the results using Quasi-Monte Carlo integration

approach in [3].

The rest of this paper is organized as follows. We construct

the hierarchical bases and sparse grid in Section 2. The algo-

rithm and error bound on sparse grids for multidimensional

integration are obtained in Section 3. Two numerical exam-

ples are shown to demonstrate the accuracy, efficiency, and

applications of the proposed method in Section 4.

II. HIERARCHICAL BASES AND SPARSE GRID

There are two different interpolation problems: The first one

is called scattered data interpolation, the information, a vector

of the form (xi, yi) is given and fixed. This problem is to find

a smooth function f , or a polynomial f of minimal degree,

such that f (xi) = yi, for i = 1, 2, · · · , n. The second problem

is how to select interpolation points xi ∈ R
d , which achieve

a good approximation. The sparse grid interpolation problem

is an optimal recovery problem.

Assume that the approximate smooth function f :

[−1, 1]d → R, contains finitely many function values. This

kind of multivariate approximation is part of the solution of

operator equations using Galerkin method.

A. ONE DIMENSIONAL HIERARCHICAL BASES

Let U i be a scheme that uses Ni grid points X i in [−1, 1],

where

X i = {x i1, x
i
2, · · · , x

i
Ni
}

then {U i} is a sequence of functions for quadrature. As a

convention, we always set X0 = ∅ and U
0 to be the zero

function.

If X i−1 ⊂ X i, the grids {X i} are called nested grids. the

grid points can be rearranged in this way

X = X1 ∪ (X2 − X1) ∪ (X3 − X2) ∪ · · · = {x0, x1, x2, · · · }

with {xj, j ∈ I
i} = X i, where I i = {0, 1, · · · ,Ni − 1}.

Suppose that ω(x) > 0, x ∈ [−1, 1] is a weight function,

V1 ⊂ V2 ⊂ · · · ⊂ Vi · · · are a set of finite dimensional spaces

in L2ω([−1, 1]), and {ϕk (x), k = 0, 1, · · · } is a sequence

of basis functions of L2ω([−1, 1]). Vi and ϕk (x) satisfy the

following relationship

Vi = span{ϕk , k ∈ I
i}.

Then the coefficients {bik} can be determined by

f (x ij ) =
∑

k∈I i

bikϕ(x
i
j ), j = 1, · · · ,Ni. (1)

The fast transforms between {bik , k ∈ I
i} and

{f (x ij ), x
i
j ∈ X i} can be obtained when the basis functions

{ϕk} are Chebyshev polynomials or Fourier series. If a set of

basis functions {φk} can be found with Vi = span{φk , k ∈ I
i}

and

φk (xj) = 0, for any j ∈ I
i, k /∈ I

i, (2)

the basis functions {φk , k ∈ I
i} are called a group of hier-

archical bases. The expansion coefficients {bij} don’t rely on

the level of sparse grid, which is one of the most important

property of hierarchical bases. The relative result has been

obtained as follows

Lemma 1 [12]:Hierarchical bases usually exist for nested

schemes in one-dimensional case. Furthermore, a sequence of

hierarchical bases is obtained by

φk (x)=ϕk (x)+
∑

l∈I i

ck,lϕl(x), k ∈1I
i+1, i = 0, 1, 2, · · · ,

(3)

where 1I
i+1 = I

i+1 − I
i, and ck,l = −ϕk (xj)Ajl with

A = (Ajl)l,j∈I i being the inverse matrix of B = (ϕl(xj))l,j∈I i .

B. MULTIDIMENSIONAL HIERARCHICAL INTERPOLATION

ON SPARSE GRIDS

Consider the one-dimensional scheme U
i, we define U

0 =

0, 1i = U
i − U

i−1, then the d-dimensional sparse grid by

Smolyak algorithm is

A(q, d) = U
q
d =

∑

|i|≤q

(1i1 ⊗1i1 ⊗ · · · ⊗1id ), (4)

where i = (i1, i2, · · · , id ) represents multiple indices of grid

levels, ⊗ is a tensor product operation, and |i| = i1 + i2 +

· · · + id for i ∈ N
d . For integers q ≥ d , it is shown that (4) is

equal to

A(q, d)=
∑

q−d+1≤|i|≤q

(−1)q−|i|
(

d − 1

q− |i|

)

(U i1 ⊗ · · · ⊗ U
id ),

(5)

where

(

d − 1

q− |i|

)

is binomial coefficient of selecting (q−|i|)

elements from an (d−1) element set. It is clear that Smolyak

formulas A(q, d) are linear combination of tensor product

operators. In order to compute A(q, d), function values are

only needed to obtain at the sparse grid in the set

H (q, d) =
⋃

q−d+1≤|i|≤q

(X i1 × · · · × X id ), (6)
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FIGURE 1. Sparse grids in [0, 1]2 with q = 6.

FIGURE 2. Sparse grids in [0, 1]2 with q = 8.

FIGURE 3. Sparse grids in [0, 1]3 with q = 6.

where X i = {x i1, x
i
2, · · · , x

i
Ni
} ⊂ [−1, 1] indicates the set of

points used by U
i.

Then the numbers Ni of knots which are used in the

formulas U
i can be specified. To get nested sets of points,

i.e., X i ⊂ X i+1 and thereby H (q, d) ⊂ H (q + 1, d), Ni can

be selected as










N1 = 1, X1 =

{1

2

}

Ni = 2i−1 + 1, X i =
{k − 1

2i−1
|k = 1, 2, · · · ,Ni

}

.

(7)

It is well known that sparse grids have a hierarchical struc-

ture. The set of grid points contains several layers of subsets

for each variable. These subsets have a telescope structure.

Four plots of 2-D and 3-D sparse grids are shown in

Figure 1-4 for q = 6 and 8. If q = 8, the sparse points has

385 grid points whereas the corresponding tensor grid, has

FIGURE 4. Sparse grids in [0, 1]3 with q = 8.

TABLE 1. Number of points in the spars grid.

(26+1)2 = 4225 points. The difference becomes increasingly

significant for higher dimensions.

Smolyak formulas based on polynomial interpolation at the

extrema of the Chebyshev polynomials are investigated in this

paper. For any choice of Ni > 1 these knots are given by

x ij = −cos
π (j− 1)

Ni − 1
, j = 1, 2, · · · ,Ni (8)

Furthermore, if Ni = 1, then x i1 = 0. The function ϕ(x ij )

in (1) are characterized by the demand that U i reproduces all

polynomials of degree less than Ni.

It is also important to choose N1 = 1 if we want to optimal

recovery for relatively large d , because the number of points

in other cases used by A(q, d) increases very fast with d . The

number of points in the sparse grid is shown in Table 1.

For sparse grids, a novel algorithm can be designed with

the properties of hierarchical bases as follows. Let f ∈

C([−1, 1]d ), for d = 1, the interpolation operator U i will

be obtained as

U
i(f ) =

∑

k∈I i

bikϕk (x)

where bik is deduced from (1). Further, we have

U
i(f ) =

∑

k∈I i

bikφk (x), 1i(f )(x) =
∑

k∈1I i

bikφk (x).

where 1I
i = I

i − I
i−1 Therefore, (4) can be rewritten as

U
q
d (f )(x) =

∑

d≤i≤q

∑

k∈1I i1×···×1I id

bk1,··· ,kdφk1 (x1)

· · ·φkd (xd ) =
∑

k∈I
q
d

bkφk(x), (9)
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where x = (x1, · · · , xd ), φk(x) = φk1 (x1) · · ·φkd (xd ), and

I
q
d =

⋃

d≤|i|≤q

1I
i1 × · · · ×1I

id . (10)

We can determine the expansion coefficients {bk,k ∈ I
q
d } by

f (xj) =
∑

k∈I
q
d

bkφk(xj) ∀j ∈ I
q
d . (11)

Hence, an interpolation operator A(q, d) is defined that maps

the function values on the grid H (q, d) onto the space

V (q, d) = span{φk,k ∈ I
q
d }.

III. ALGORITHM AND ERROR ANALYSIS

In this section, we will describe the new algorithm in detail

for the transformation between {f (xj)} and {bk} in (11), and

we will show the error estimation of this method.

A. ALGORITHM

First of all, let’s consider the transformation on the two

dimensional tensor product grid X1 × X2 = {(xj1 , xj2 ), j1 ∈

I
1, j2 ∈ I

2}. Then we have

f (xj) =
∑

k∈I1×I1

bkφk(xj) ∀j ∈ I
1 × I

1.

The coefficient {bk,k ∈ I
1 × I

1} can be obtained by two

dimensional transforms on {f (xj), j ∈ I
1×I1}, one along the

first dimensional, and another along the second dimension,

i.e.,

b′k1,j2 =
∑

j1∈I
1

f (xj1 , xj2 )Tj1,k1 , bk1,k2=
∑

j2∈I
1

b′k1,j2Tj2,k2

or

b′′j1,k2 =
∑

j2∈I
1

f (xj1 , xj2 )Tj2,k2 , bk1,k2=
∑

j1∈I
1

b′′j1,k2Tj1,k1 ,

where T is the inverse matrix of (φk (xj))k,j. According to

property (2), the values of b′j1,k2 and b′′k1,j2 don’t rely on

grid level. So all the coefficient {bk,k ∈ I
5
2 } (cf. Fig.1(b))

can be computed. We can easily extend the procedure to

d-dimensional cases. The exact procedures are shown in

Algorithm 1 as follows.

Algorithm 1 Fast Forward Transform on Sparse Grid

Input: q, d,X
q
d , {f (xj), j ∈ I

q
d }.

Output: {bk,k ∈ I
q
d |f (xj) =

∑

k∈I
q
d
bkφk(xj)}

bj← f (xj) for j ∈ I
q
d

for d ′ = 1 to d do

for all i′ = (i1, · · · , id ′−1, id ′+1, · · · , id ) do

one dimensional transform along the d ′dimension.

end for

end for

B. ERROR ANALYSIS

For sparse grid’s error estimation, thework of Peherstorfer [6]

and Bungartz [1] is referred for the reader. It is well known

that the size of sparse grids increases with the dimension d

on the order of

O(N (log(N )d−1),

that is in contrast to the size of the corresponding dense grid

O(N d ),

where the measurement level of refinement of the sparse grid

is N = 2q−d and q − d . It is obvious that the accuracy has

relationship with the number of grid points. For instance, here

is a well known fact that an upper bound of interpolation error

satisfies

‖ e ‖L2= O(N−2(log(N ))d−1).

A small price in terms of accuracy with sparse grid is paid

compared with a dense grid which is O(N−2).

Suppose that P(k, d) is the polynomial’s space in d dimen-

sions of total degree at most k , then we can get the facts

from [18].

Lemma 2: The formula A(q, d) is exact on

E(q, d)=
∑

i|=q

(

P(Ni1−1, 1)
⊗

· · ·
⊗

P(Nid−1, 1)
)

, (12)

and

dimP(k, d) =

(

k + d

d

)

≈
1

k!
dk (13)

Lemma 3: The formula A(d+k, d) is exact for all polyno-

mials of degree k , and in the sequel, if let d →∞ and fix k ,

then the number of knots used by A(q, d) are approximated

to 2k

k!
dk .

The proof of the two lemmas can be found in [18].

In fact, if {a1, a2, · · · , ak} is an arbitrary set of real num-

bers, then a polynomial of degree k is expressible in terms

of the generalized monomials. This fact has the following

analog.

Theorem 1: Let a1, a2, · · · , ak be k arbitrary real num-

bers, and let p be any polynomial of degree k . Then there

exist constants A0,A1, · · · ,Ak such that

p(s) = A0 + A1

(

s+ a1
1

)

+ · · · + Ak

(

s+ ak
k

)

(14)

identically in s.

Proof: Evidently the statement of the theorem is true for

k = 0. We proceed by induction with respect to k and assume

that the theorem is true for some nonnegative integer k − 1.

If

p(s) = c0s
k + c1s

n−1 + · · · + ck

then the polynomial

q(s) = p(s)− c0k!

(

s+ ak
k

)

(15)
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TABLE 2. Computational results for the test inegral.

is of degree k − 1. since the leading coefficient of

(

s+ ak
k

)

is

sk

k!
.

By the induction hypothesis, q can be represented in the form

q(s) = A0 + A1

(

s+ a1
1

)

+ · · · + Ak

(

s+ ak−1
k − 1

)

Solving (15)for p(s) we obtain a representation of the desired

form (14), where Ak = c0k!. �

Let’s define the space

V k
d ={f : [−1, 1]

d → R|Dαf continuous if αi ≤ k for all i}

with the norm

‖ f ‖W k,∞= max{‖
∂ |i|

∂x
i1
1 · · · ∂x

id
d

f ‖L∞ |1 ≤ i1, · · · , id ≤ k},

then the interpolation of f on a sparse grid satisfies

‖ e ‖W k,∞= O
( (logM )(k+2)(d−1)+1

M k

)

,

whereM represents the sparse grid points. Furthermore, let’s

define

θi = max
x

Ni
∑

j=1

|ϕij (x
i
j )|

for i ≥ 1. Note that the number of sparse grids is the Lebesgue

constant for polynomial interpolations. So we can define

Sl =
∑

i=l

θi1θi2 · · · θid .

Thenwewill prove an upper bound for error e in the following

theorem.

Theorem 2: Assume that ǫ > 0 is an upper bound of the

numerical error at each grid point, then we have

‖ e ‖L∞< ǫ

q
∑

l=q−d+1

(

d − 1

q− l

)

Sl (16)

Proof: It is obvious that
∑

|i|=l

∑

1≤k≤Ni

|ϕ
i1
k1
⊗ · · · ⊗ ϕ

id
kd
|

=
∑

i=l

N1
∑

k1=1

· · ·

Nd
∑

k1=d

|ϕ
i1
k1
⊗ · · · ⊗ ϕ

id
kd
|

=
∑

i=l

(

N1
∑

k1=1

|ϕ
i1
k1
|
)

⊗ · · · ⊗
(

Nd
∑

kd=1

|ϕ
id
kd
|
)

≤
∑

i=l

θi1θi2 · · · θid

for any x ∈ [0, 1]d and any integer l > d − 1, we obtain
∑

|i|=l

∑

1≤k≤Ni

|ϕ
i1
k1
⊗ · · · ⊗ ϕ

id
kd
| ≤ Sl . (17)

Then the upper bound (16) is a corollary of equation (17). �

IV. NUMERICAL EXAMPLES

In this section, we investigate two numerical examples, both

of which are based on sparse grid method by applying them

to two different systems, where they have exact solutions.

In particular, we examine the computational efficiency and

accuracy of the new method and compare them with other

existing methods.

A. SIX DIMENSIONAL INTEGRATION PROBLEM

Once we have computed a sparse grid interpolation of an

objective function, we can compute the integral value of it

for the given range. Consider the following six dimensional

integral problem which is from [15] as follows

f (x) =

∫

[0,1]d
(1+

1

d
)d

d
∏

i=1

(xi)
1
d dx. (18)

The exact value of the integral is equal to 1. we reproduce the

results for Smolyak quadrature formulas with the trapezoidal

rule (trapez), the Clenshaw-Curits (clenshaw) formulas, and

the Gauss-Patterson (patterson) formulas as univariate basis

integration routines for dimension d = 6 in Table 2.

It is shown in Table 2 that the Patterson formula performs

best if the ratio of error to sparse grid points is considered.

The Clenshaw-Curits and trapezoidal rules perform worst

probably because the function evaluations in the origin but not

location are required. The superiority of Patterson formulas

over Clenshaw-Curtis formulas in sparse grid decreases with

rising dimension d . This can be accounted to the fact that the

Clenshaw-Curtis formulas requires less function evaluations

for the same classical polynomial exactness for q < 2d .

B. ABSORPTION PROBLEM

Monte Carlo methods are always used to solve integral equa-

tions associatedwith transport. The behavior of quasi-random

172474 VOLUME 7, 2019
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sequences in this setting was studied by Sarkar and Prasa

in [19], where a fairly simple one dimensional absorption

problem was investigated. In order to illustrate a higher-

dimensional case, we consider the same absorption problem

from Morokoff in [3], given by the integral equation

y(x) = x +

∫ 1

x

γ y(z)dz (19)

which describes particles traveling through a one dimensional

slab of length one. In each step the particle travels a distance

that is uniformly distributed on [0,1]. This may cause it to exit

the slab; otherwise, it may be absorbed with probability 1−γ

before the next step. In the equation, x describes the current

position of the particle, and y(x) gives the probability that the

particle will eventually leave the slab given that it has already

made it to x. The quantity of interest to compute is then y(0),

the probability that a particle entering the slab will leave the

slab. The problem’s solution is

y(x) =
1

γ
−

1− γ

γ
eγ (1−x). (20)

The solution can also be rewritten by the infinite dimen-

sional integral over the unit cube

y(x) =

∫

[0,1]∞

∞
∑

n=0

Fn(x, z)dz, (21)

with

Fn(x, z)=γ n
n

∏

j=1

θ
(

(1− x)−

n
∑

j=1

zj
)

θ
(

n+1
∑

j=1

zj−(1−x)
)

, (22)

where θ is the Heaviside function

θ (s) =

{

1, s ≥ 0

0, s < 0.
(23)

Two alternate representations are given in [3], the first being

an infinite integral with an integrand with a jump, and the sec-

ond one with a smooth integrand. The sparse grid method

in this paper doesn’t work well for the first representation,

since it is a non-smooth function where the discontinuities are

not parallel to the coordinate direction. However, in case of

the second representation, we can compute the very accurate

results using sparse grid method.

In this frame work, the solution of the absorption problem

can be represented as

ỹ(x) =

∫

[0,1]d

d−1
∑

n=0

Fn(x, z)dz, (24)

But the integrand is discontinuous in this formulation, which

has a negative effect on the performance of the sparse grid

method. Alternatively, we can replace the functional Fn(x, z)

by F ′n(x, z) in the infinite-dimensional integral, and the same

TABLE 3. Computational results for the absorption problem.

solution can be obtained, the more information of this result

can be found in [3]. Here F ′n(x, z) is given by

F ′n(x, z)=γ n(1− x)n
(

n−1
∏

j=1

(zj)
n−j

)(

1−(1−x)

n
∏

j=1

zj
)

. (25)

Then we can perform an analogous truncation at finite dimen-

sion d . Here the solution of the absorption problem is approx-

imated using sparse grid method with d = 20, γ = 0.5, and

the initial particle position x = 0. For comparison, we also

compute the integral using quasi-Monte Carlo method in [3]

with the same number of points. Table 3 shows the computa-

tional results of using the two different methods respectively.

It is clearly shown that the error of sparse grid method is less

than quasi-Monte Carlo method.

V. CONCLUSIONS AND DISCUSSIONS

The sparse grid approach is one of the popular methods

recently used to reduce the computational cost associated

with spatial discretization in solving high dimensional inte-

gration problems. In this paper, we proposed an efficient algo-

rithm for the implementation of sparse grid method based on

a nested quadrature. A novel approach for the transformation

between the values at each sparse grid and the coefficients of

expansion in the hierarchical bases is developed by using the

properties of hierarchical bases. Furthermore, another advan-

tage of our method is that the accuracy of the interpolated

solution can be numerically checked pointwise, and a theo-

rem on the error upper bound is proved. Numerical examples

have verified the effectiveness and feasibility of our schemes.

It is shown that the sparse grid method is more accurate and

efficient than Quasi-Monte Carlo integration approach in [3].

The algorithm proposed in the paper is essential to solve a

few of high dimensional integration problems at a reasonable

cost. Further progress on acceleration can be achieved by a

parallelization of the method based on sparse grid which is

subject to future work.
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