
1

MULTIDIMENSIONAL INTEGRATED ONTOLOGIES: A FRAMEWORK

FOR DESIGNING SEMANTIC DATA WAREHOUSES

Victoria Nebot, Rafael Berlanga, Juan Manuel Pérez, María José Aramburu
Universitat Jaume I

Av. Vicent Sos Baynat, s/n
E-12071 Castelló, Spain

{romerom, berlanga, juanma.perez, aramburu}@uji.es

Torben Bach Pedersen
Aalborg University

Selma Lagerløfs Vej 300,
DK-9220 Aalborg Ø, Denmark

tbp@cs.aau.dk

Abstract. The Semantic Web enables companies and organizations to gather huge
amounts of valuable semantically annotated data concerning their subjects of interest.
Nowadays, many applications attach metadata and semantic annotations taken from
domain and application ontologies to the information they generate. From our point of
view, the concepts in these ontologies could describe the facts, dimensions, categories
and values implied in the analysis subjects of a data warehouse. In this paper we
propose the Semantic Data Warehouse to be a repository of ontologies and semantically
annotated data resources. We also propose an ontology-driven framework to design
multidimensional analysis models for Semantic Data Warehouses. This framework
provides means for building an integrated ontology, called the Multidimensional
Integrated Ontology (MIO), including the classes, relationships and instances that
represent interesting analysis dimensions and measures. The reasoning capabilities of a
MIO can be used to check the properties required by current multidimensional
databases (e.g., dimension orthogonality, category satisfiability, etc.). In this paper we
also sketch how the instance data of a MIO can be translated into OLAP cubes for
analysis purposes. Finally, some implementation issues of the overall framework are
discussed.

Keywords: Data warehouses, Semantic Web, Multi-ontology integration

1. Introduction

The Semantic Web is a rich source of knowledge whose exploitation will open new
opportunities to the academic and business communities. One of these opportunities is
the analysis of information resources for decision support tasks such as the
identification of trends, and the discovery of new decision variables. Semantic
annotations are formal descriptions of information resources which usually rely on
widely accepted domain ontologies. The main reason for using domain ontologies is to
set up a common terminology and logic for the concepts involved in a particular
domain. Semantic annotations are especially useful for describing unstructured, semi-
structured and text data, which cannot be managed properly by current database
systems. Nowadays many applications (e.g., medical applications) attach metadata and
semantic annotations to the information they produce, for example medical image,
laboratory tests, etc. In the near future, large repositories of semantically annotated data

2

will be available, opening new opportunities for enhancing current decision support
systems.

Data warehouse systems are stores of information aimed at analysis tasks. This
information is extracted from existing databases and is pre-processed to harmonize its
syntax and semantics. Thus, one of the main purposes of data warehouse systems is the
integration of information coming from several sources. Afterwards, OLAP systems can
be applied to efficiently exploit the stored information. Both types of systems rely on
multidimensional data models, which distinguish the stored measures from the analysis
dimensions that characterize them.

In this paper we tackle the problem of combining data warehouse and Semantic
Web technologies. Our proposal is a framework for designing multidimensional
analysis models over the semantic annotations stored in a Semantic Data Warehouse
(SDW). In our approach, an SDW is conceived as a XML repository that includes web
resources, domain ontologies and the semantic annotations made with them. Being a
data warehouse, this repository is subject oriented, and therefore it is aimed at recording
only data that is relevant for specific analysis tasks.

Our work is being carried out in the context of a larger research project about the
integration and exploitation of biomedical data provided by clinicians for research tasks.
The framework presented here is based on the specification of a Multidimensional
Integrated Ontology (MIO) over the SDW ontologies in order to retrieve the ontology
classes and instances that will later be used in the multidimensional analysis. To our
best knowledge, our approach is the first one on addressing the following requirements:

 Multi-ontology design. Much semantic data is generated in the context of very
complex scenarios involving several domain ontologies. The framework proposed
in the paper allows the selection of the concepts needed for the analysis through
different ontologies.

 Scalability. As domain ontologies usually have a considerably large size, the
method for building MIOs must be scalable. We will achieve these scalability
requirements by extracting only those modules or fragments that are necessary from
the source ontologies.

 Formally well-founded approach. In order to keep the semantics and inference
mechanisms of the source ontologies, the proposed design process relies on
formalisms that have been widely accepted for the Semantic Web (e.g., Description
Logics).

The main contributions of the paper can be summarized as follows:

1. A framework for designing and building Semantic Data Warehouses.

2. An application scenario and a running use case to establish the requirements and to
illustrate the usefulness of our techniques.

3. A methodology for the design, automatic generation and validation of
Multidimensional Integrated Ontologies. By integrating the concepts and properties
of several ontologies coming from the same application domain, a MIO establishes
the topics, measures, dimensions and hierarchies required by a specific data
analysis application.

4. The automatic construction of a multidimensional cube, according to the
specifications of a MIO, starting from the annotated data stored in the SDW, in
order to allow the analysis of this data by using traditional OLAP operators.

3

5. The study of several alternatives for implementing the proposed SDW.

The rest of the paper is organized as follows. Section 2 describes an application
scenario that motivates our approach. Section 3 reviews the related work including:
Description Logics, OWL and OLAP; the existing approaches to annotate biomedical
data; the combination of Semantic Web and data warehouse technologies; and different
alternatives for exploiting knowledge from multiple ontologies. Section 4 introduces our
approach to a Semantic Data Warehouse. Section 5 explains the methodology proposed
for designing Multidimensional Integrated Ontologies and Section 6 gives some
implementation guidelines. Finally, Section 7 presents some conclusions and future
work.

Biomedical

Activities

semantic

annotations

Application

Ontologies

IM
AGES

G
e

n
o

m
ic

 d
a

ta

Raw data

C
lin

ic
al

 D
at

a

Protein

biomarkers

TM
A

Ech
ogra

phie
s

ECG

CT Scan

DNA Microarray

L
a
b
.
T

e
s
ts

Phys
ic

al

Exa
m

in
atio

n

Treatments

Diagnosis

P
ro

tein

p
ro

files

Figure 1: Generation of semantic annotations in the biomedical domain.

2. Application Scenario & Use Case

In this section we describe an application scenario for an SDW along with a use case
that will serve to define the examples of the rest of the paper. By defining this
application scenario, we will identify a list of requirements that can be considered
common to many applications of SDWs, and that, therefore, can be applied to prove the
usefulness of the framework proposed in this paper.

Our application scenario is Biomedicine in which, at the moment, vast amounts
of semantically annotated data are being generated by many different types of data
management systems (see section 3.2). In order to guide the process of semantically
annotating the data, current data management systems adopt specific application
ontologies relying on one or more widely accepted domain ontologies. A domain
ontology is a very large corpus of semantically related data that describe the knowledge
and vocabularies agreed by the relevant biomedical community. The reader can find a
good review of the main biomedical ontologies in (Rubin et al., 2007).

Figure 1 shows the usual process of generating semantic annotations for the data
elements that biomedical activities produce. The application ontologies that rule the

4

structure of the semantic annotations are located in the core of the data management
system. At the cortex part, we find the different types of complex data elements, coming
from very different biomedical activities and departments, that need to be annotated
before being exploited in the context of an SDW. Typically, semantic annotations are
expressed in XML or RDF formats.

Figure 2. A fragment of an application ontology for Rheumatology.

In the biomedical scenario, semantically annotated data consists of many
different types of data (e.g. lab test reports, ultrasound scans, images, etc.) originating
from heterogeneous data sources. This data also presents complex relationships that
evolve rapidly as new biomedical research methods are applied. As a consequence, this
data cannot be properly managed by current data warehouse technology, mainly
because it is complex, semi-structured, dynamic and highly heterogeneous.

Figure 2 illustrates an ontology fragment for the Rheumatology domain. As the
figure shows, a patient may have different rheumatology reports, authored by some
clinicians, consisting of the results of some blood tests and rheumatologic exams, the
diagnosis of a disease (defined in the domain NCI ontology) and the proposed
treatment. The objective of these examinations is to estimate an overall damage index
by performing some ultrasonography tests. The treatment is modelled as a collection of
drug therapies, sometimes applied in the affected joints. The joint set is compiled from
the GALEN domain ontology. The patient has a genetic profile. The cells and genes
involved in the genetic profiles are described by the GALEN and GO domain
ontologies, respectively.

Although in Figure 2 we have used UML to graphically represent the ontology
fragment, the actual representation formalism will in practice rely on standard
languages such as RDF/S and OWL. External concepts coming from domain ontologies
are represented in the UML diagram with shaded boxes, indicating the source ontology
within the attribute section (e.g. NCI, GO, etc.). Domain ontologies can be used to
control the vocabulary and to bring further semantics to the annotated data. Table 1
shows an example of semantically annotated data generated from the application
ontology of Figure 2 and stored as RDF triples.

Document Entity

 clinicianID

Patient

 age

Gene Profile

Rheumatology Report

 DateOfVisit

Laboratory Blood Test

 laboratoryID

Rheumatologic Exam

 DamageIndex

Treatment

Blood Indicant

 level

Ultrasonography

 physicianID

Blood Cell

 GALEN

Factor

 GALEN

Joint Finding

 score

Synovial Joint

 GALEN

Disease

 NCI

Gene

 GO

Drug Therapy

 dosage
 timing

Drug

 UMLS

Joint Injections

*

*

*

*

*

* *

*

*

*

* *

*

*

*

*

* *

*

0..1 0..1 0..1

has_report has_profile

related_gene

has_diagnosis

has_therapy

affected_joint

has_finding

has_procedure measures_indicant

0..1 optional

composition

aggregation

specialisation

5

Subject Predicate Object

Patient8991u type Patient

Patient8991u age 15

Patient8991u sex Male

Patient8991u has_report RR001u

RR001u type Rheumatology

RR001u dateOfVisit 2008/02/22

RR001u clinicianID Clinician2293u

RR001u has_Diagnosis RA1

RA1 label Rheumatoid_Arthritis
NCI

RA1 type Disease
NCI

RR001u has_Section LBT1234u

… … …

Table 1: Application ontology instances stored as RDF triples.

In the context of this application scenario, our aim is to build a warehouse where
semantically annotated data can be analysed with OLAP-based techniques. As use case,
we propose to analyse the efficacy of different drugs in the treatment of several types of
inflammatory diseases, mainly rheumatic ones. The analysts of this use case should
define the dimensions, measures and facts that will allow the analysis of the semantic
annotations, gathered from several hospitals and, therefore, expressed with different
application ontologies. Notice that at this point, the analyst does neither know the values
nor the roll-up relationships that will eventually be used in the resulting cube. As we
will show, the framework presented in this paper will capture this information from the
application and the domain ontologies involved in the analysis.

Figure 3: Dimensions defined for analyzing rheumatology patients. We use the letter D
for dimensions, F for facts, M for measures and L for dimension levels.

Figure 3 shows the seven dimensions that we have selected in order to study this use
case from different points of view, including: the patient’s age and gender, the subtype
of disease (diagnosis), the biomarkers taken from the patient, the damage index of
patient´s joints and the drugs administered during the follow-up visits of the patient.
Since we consider that the relation that exists between disease symptoms and affected

6

body parts is very relevant for the analysis, we have introduced the category Anatomy in
the disease dimension. The biomarkers of interest include blood cells, blood factors and
genes. The category Tissue has been similarly introduced in the biomarkers dimension in
order to relate biomarkers with their associated tissues.

In this use case, OLAP technologies can be applied to perform useful analysis
operations over the gathered data, as for example:

 By applying roll-up operations, we can aggregate data into coarser granularities
such as drug families, active principles, types of diseases, and so on. On the
contrary, by means of the available drill-down operations, we can refine each of the
analysis dimensions to obtain data with a finer granularity. This kind of operations
can give useful information to the clinicians about the relation between diagnosis
and treatment efficacy.

 By applying selection and projection operations, we can restrict the analysis to
patient subsets according to criteria based on age, sex, affected body parts, etc.

In this section we have defined an application scenario and a use case for the SDWs we
want to achieve. In this scenario we identify the following set of application
requirements:

1. Integration of biomedical data, information and knowledge to gain a comprehensive
view of patients.

2. Scalable data storage functionalities to store the collected semantic information as
well as the relevant application and domain ontologies.

3. Flexible ways of specifying analysis dimensions, measures and facts based on
medical criteria.

4. Easy exploration of large domain ontologies considering their implicit semantics,
and the possible overlapping in their concepts (e.g. mappings).

In the context of other application scenarios these requirements should not be much
different, so from our point of view, they can be considered as a basic set of
requirements for a generic analysis application of an SDW. It is worth mentioning that
the contributions of this paper described in the introduction are aimed at covering all
these requirements.

3. Background and Related Work

In this section we review the basic concepts involved in the representation, generation
and storage of semantic annotations of data, as well as some related work about the
analysis of semantic data.

3.1. OWL, Description Logics and OLAP

The Ontology Web Language (OWL) is a language for the specification of ontologies,
whose definition by the W3C Consortium has empowered the biomedical community to
develop large and complex ontologies like the NCI thesaurus, GALEN, etc. OWL
provides a powerful knowledge representation language that has a clean and well
defined semantics based on Description Logics (DL). Description Logics are a family of
knowledge representation formalisms devised to capture most of the requirements of
conceptual modelling. These formalisms are decidable subsets of First Order Logic that
are expressive enough to capture interesting conceptual modelling properties. The main
purpose of DLs is to provide a formal theory that can be used to validate conceptual

7

schemata (Franconi & Ng, 2000) of heterogeneous databases (Mena et al., 2000), data
warehousing design and multidimensional aggregation modelling (Baader & Sattler,
2003). It is worth mentioning that Baader & Sattler (2003) and Franconi & Ng (2000)
apply DLs in the context of a traditional warehouse. Our proposal is different; we
propose to design the warehouse starting from a collection of semantically annotated
data. We use DLs for helping the warehouse designer to transform ontology fragments
into analysis dimensions, by testing if these dimensions satisfy a set of properties
desirable for OLAP applications.

Let us briefly introduce the basic constructors of Description Logics through the
basic language ALC (Schmidt-Schauss & Smolka, 1991), which is summarised as
follows:

ALC ::= ⊥ | A | C | C | C ⊓ D | C ⊔ D | R.C | R.C

The basic elements of ALC are concepts (classes in OWL notation), which can
be either atomic (A) or derived from other concepts (expressions C and D). Complex
concepts are built by using the classical Boolean operators over concepts, namely: and
(⊓), or (⊔) and not (￢). Value restrictions on the concept individuals (instances in OWL
notation) are represented through roles (object properties in OWL notation), which can
be either existential (R.C) or universal (R.C). The universal concept is denoted with
⊤, whereas the empty concept is denoted with . The empty concept is usually
associated with inconsistencies and contradictions in the ontology.

Currently there exist several reasoners that deal with some Description Logic
languages1, although most of them do not fully support the retrieval of large sets of
asserted instances. Indeed, the complexity of these reasoners is PSpace-complete, which
does not guarantee scalability for large domains.

Additionally, several DL constructors have been proposed to capture the main
elements of conceptual modelling for databases. For example, concrete domains were
introduced to account for the usual data types in a conceptual database schema. It has
been demonstrated that domains like the integers and strings can be easily introduced
into a DL without losing decidability2 (Lutz et al., 2005). Furthermore, users can state
features (i.e., relations between instances and values from these domains) with
predicates expressing value comparisons. OWL languages support these constructors
via the so-called data type properties. Another interesting constructor for OLAP
applications is that of role composition, R ∘ P, which recently has been introduced in
OWL. Role composition allows us to express joined relationships making the
intermediate involved concepts implicit. Reasoning over role compositions has been
shown to be decidable (Horroks & Sattler 2003), but it is not fully supported by current
reasoners yet.

Concerning data warehouse operations, Baader & Sattler (2003) introduced
aggregates over concrete domains. The resulting language is called ALC (∑), and extends
the basic language ALC with concrete domains and a limited set of aggregation
functions, namely: sum, min, max and count. Aggregates are introduced through complex
features of the form (R ◦ u), which relate each instance with the aggregate  over all
the values reachable from R followed by the feature u. For example, we can define the
following complex feature sum(month ◦ income) to relate instances with their annual

1 See http://www.cs.man.ac.uk/~sattler/reasoners.html for an exhaustive list. More information about DLs can
be found at http://dl.kr.org/.
2 This occurs whenever the introduced domain satisfies the so-called admissibility property.

8

incomes. With this complex feature we can ask for employees having annual incomes
greater than 100,000 Euros by means of the concept:

 Employee ⊓ year.>(sum(month ◦ income), 100000)

However, DLs formalisms present important limitations for representing
complex measures and aggregations. Baader & Sattler (2003) also demonstrate that
handling aggregates in DLs usually leads to undecidability problems, even for very
simple aggregates such as sum and count. Moreover, decidable cases present a level of
computational complexity too high for practical real-world applications. Baader and
Sattler indicate that some interesting inference problems for multidimensional models,
such as summarizability, have not been treated by the proposed DLs. Finally, there are
no reasoners able to deal with the advanced features required by these new constructors.

Because of these reasons, we propose a new framework to define an integrated
ontology that will be used to build a multidimensional data schema over which to apply
the OLAP operations required by the analysis tasks. In this way, summarizability will
be ensured by building a valid cube from this multidimensional schema so that
aggregations are performed over it, out of the DL formalism.

3.2. Annotating biomedical data

In the biomedical scenario there exist a large number of initiatives for annotating
biomedical databases for the Semantic Web. For example, in the SEMEDA project,
Köhler et al. (2003) use a controlled vocabulary and an RDF-like ontology to annotate
tables, attributes and their domains to derive cross-references between databases.
ONTOFUSION (Pérez-Rey et al., 2005) is another approach based on the integration of
local conceptual schemata into a global biomedical ontology. A good review of
semantic-based approaches for biomedical data integration can be found in (Louie et al.,
2006). It is worth mentioning that most of the current work in biomedical applications
uses OWL as the representation language for ontologies and semantic annotations.

Currently, there are several ongoing international projects that are aimed at the
interchange of massive biomedical data, for example caBig3, openEHR4 and Health-e-
Child5 to mention a few. These projects also concern the semantic annotation of data
through well-established biomedical ontologies.

Other previous works propose to use OLAP techniques to analyse biomedical
data. In (Wang et al. 2005) OLAP operations are applied to discover new relations
between diseases and gene expressions as well as to find out new classification schemes
for patients. They also propose the use of well-known domain ontologies (e.g., GO6 for
classifying genes and OpenGalen7 for classifying diseases) to define analysis
dimensions. However, the authors do not explain how these ontologies can be translated
into OLAP dimensions and how factual data can be semantically annotated for analysis.
 From all the previous works and projects, three logical data layers can be
identified for the application scenario, namely: the domain ontologies, the data
schemata and the generated data. All this data and knowledge pieces are eventually
expressed in XML, using the different standards best suited for each layer: RDF/S and
OWL for the first one, RDF/S and XML Schema for the second one, and XML for the

3 caBig project: https://cabig.nci.nih.gov/
4 openEHR project: http://www.openehr.org/
5 Health-e-Child project: http://www.health-e-child.org/
6 GO (Gene Ontology): http://www.geneontology.org/
7 Galen ontology: http://www.opengalen.org/open/crm/crm-anatomy.html

9

third one. We also follow this logical structure in our approach to designing an SDW
(see Section 4).

3.3. Data Warehousing and Semantic Web Technologies

In this section we review the work that combines data warehouse and Semantic Web
technologies. We start with two papers that extend the functionality of a data warehouse
with Semantic Web technologies, and then we consider previous works on analysing
semantic data with multidimensional data models.

Priebe & Pernul (2003) propose to use a global ontology to annotate OLAP
reports and other Web resources such as textual documents. Then, users can
contextualise OLAP reports by retrieving the documents related to the metadata (search
keywords) attached to them. Here, the global ontology is expressed in RDF/S and it
contains domain-specific information along with the values of the hierarchies used in
the OLAP database.

Skoutas & Simitsis (2006) work on the automation of the data warehouse’s ETL
process by applying Semantic Web technologies. They propose to build an ontology
that uses OWL constructs to describe and relate the source and target data source
schemata. Afterwards, a reasoner is used for identifying the sequence of operations
needed to load the warehouse. In a more recent paper, Simitsis et al. (2008) present a
template-based natural language generation mechanism to transform both the formal
description of the data sources expressed in the ontology, and the inferred ETL
operations into a narrative textual report more suitable for the user.

The works by Priebe & Pernul (2003) and Skoutas & Simitsis (2006) apply the
Semantic Web infrastructure to extend the functionality of the “traditional” data
warehouses, but they do not address the analysis of data gathered from semantic
sources. In contrast, our proposal consists of a method for designing multidimensional
analysis models over the semantic annotations stored in the SDW. To the best of our
knowledge, there are only two recent papers aimed at analysing semantic data with
multidimensional models, (Romero & Abello, 2007) and (Danger & Berlanga, 2008).

Romero & Abelló (2007) address the design of the data warehouse
multidimensional analysis schema starting from an OWL ontology that describes the
data sources. They identify the dimensions that characterize a central concept under
analysis (the fact concept) by looking for concepts connected to it through one-to-many
relationships. The same idea is used for discovering the different levels of the
dimension hierarchies, starting from the concept that represents the base level. In this
work the input ontology indicates the multiplicity of each role in the relationships; and a
matrix keeps, for each concept, all the concepts that are related by means of a series of
one-to-many relationships. The output of the Romero & Abelló’s method is a star or
snowflake schema that guaranties the summarizability of the data, suitable to be
instantiated in a traditional multidimensional database. The application of this work is
valid in scenarios where a single ontology of reduced size, with multiplicity restrictions,
is used for annotating the source data. However, as discussed in Section 2, a real
application will usually involve different domain ontologies of considerable large size;
and unfortunately, the multiplicity information is rarely found in the source ontologies.

Danger & Berlanga (2008) propose a multidimensional model specially devised
to select, group and aggregate the instances of an ontology. The result of these
operations is a set of tuples, whose members are instances of the ontology concepts.
They also present the adaptation of a feature selection algorithm to discover interesting
potential analysis dimensions. This algorithm builds the dimension hierarchies by
selecting the relationships in the ontology that maximize the information gain. Like

10

Romero & Abelló (2007), Danger & Berlanga only consider scenarios with a single
ontology.

As it can be observed, both papers are more concerned with the extraction of
interesting dimensions from isolated ontologies rather than analysing a large set of
stored SDW annotations. Moreover, in a real-world scenario, the SDW can contain
annotations defined in several large inter-linked ontologies. Our contribution in this
context is twofold. First, we define the Semantic Data Warehouse as a new semi-
structured repository consisting of the semantic annotations along with their associated
set of ontologies. Secondly, we introduce the Multidimensional Integrated Ontology as
a method for designing, validating and building OLAP-based cubes for analysing the
stored annotations.

The development of the Semantic Web relies on current XML technology (e.g,
XML Schemas and Web Services). In Perez et al. (2008), we surveyed the combination
of XML and data warehouses. The work on the construction of XML repositories
(Xyleme; 2001) is particularly relevant to the SDW, since the ontologies and their
instance data are typically expressed in XML-like formats. Xyleme (2001) addresses the
problems of gathering, integrating, storing and querying XML documents. In order to
deal with the high level of dynamicity of web data sources, the Xyleme system allows
users to subscribe to changes in an XML document (Nguyen et al., 2001), and applies a
versioning mechanism (Marian et al., 2001) to compute the differences between two
consecutive versions of an XML document.

However, XML techniques for change control are not useful for ontologies, as
we must keep track of non-explicit (i.e. inferred) semantic discrepancies between
versions. Although some preliminary tools exist, like OWLDiff8), further research must
be carried out to study the impact of these changes in the SDW design and its derived
OLAP cubes. In this paper we will not treat ontology versioning as it is out of its scope.
Thus, we assume that the ontologies stored in the SDW are static.

3.4. Multi-ontology scenarios

The application scenario presented in this paper reveals new data acquisition tools being
applied in the biomedical domain. These tools are increasingly incorporating ontology
services that allow end-users (e.g. clinicians) to properly annotate data in a standard and
controlled way. This task is fulfilled by browsing and selecting terms from domain
ontologies and vocabularies (Garwood et al., 2004, Jameson et al., 2008). In order to
integrate and analyze the large amounts of semantic annotations generated by these
tools, we propose the construction of a MIO that gathers only the right amount of
knowledge from the different domain ontologies that were used to annotate the data.

A lot of research works have dealt with multi-ontology scenarios, which is the
key feature of a distributed environment like the Semantic Web. For example, terms and
works encountered in the literature which claim to be relevant include: mapping,
alignment, merging, articulation, fusion, integration and so on (Kalfoglou and
Schorlemmer, 2003). The scope of this paper is not to provide a new framework for
ontology integration and mapping. Instead, we propose the construction of MIOs
specifically designed to meet the requirements and restrictions of the application
scenario presented. However, since there is an extensive literature concerning ontology
modularization and mapping, we will highlight the main approaches devised to deal
with several ontologies along with their suitability for our application scenario. Finally,
we will justify the approach followed to build our MIO framework.

8 OWLDiff: http://sourceforge.net/projects/owldiff

11

OBSERVER (Mena et al., 2000) and OIS (Calvanese et al., 2001) are some of
the first approaches that tackle the problem of semantic information integration between
domain specific ontologies. The former system is based on a query strategy where the
user specifies queries in one ontology's terms and then these queries are expanded to
other ontologies through relationships such as synonymy, hyponymy and hypernymy.
The latter also uses the notion of queries which allow for mapping a concept in one
ontology into an integrated view. However, these approximations are not suitable for
our application scenario since our aim is to construct a new stand-alone ontology
composed by pieces or fragments from several ontologies. Therefore, we have studied
the developments in modular ontologies, since they seem to suit better our purposes.

E-connections (Grau et al., 2005) is a formalism that was designed for
combining different logics in a controlled way. It introduces a new family of properties
called “link” properties which are associated with domains (component ontologies).
Each domain can declare which foreign ontologies it links to. However, E-connections
do not allow the specification of subsumption relationships between concepts coming
from different ontologies and it works only under disjoint domains. Moreover, E-
connections is carried out by extending OWL with new non-standard syntax and
semantics. The Distributed Description Logics (DDL) formalism (Borgida and Serafini,
2003) provides mechanisms for referring to ontology concepts and for defining “bridge
rules” that encode subsumption between concepts of different ontologies. Context OWL
(C-OWL) (Bouquet et al., 2003) is an extension of DDLs that suggests several
improvements, such as a richer family of bridge rules, allowing bridging between roles,
etc. C-OWL also extends OWL syntax and semantics. In contrast, in C-OWL it is not
allowed to reuse foreign concepts in restrictions as in E-connections. There is yet
another approach called Package-based Description Logics (P-DL) (Bao et al., 2006)
that tries to overcome the limitations introduced by E-connections and C-OWL by
allowing both subsumption between different ontologies, and foreign concepts in
restrictions. However, as in the above mentioned approaches, another non-standard
syntax and semantics is introduced and reasoning support is very restricted.

In all previous approaches we can observe serious limitations that prevent us
from using them in the construction of our MIO framework. In first place, they all
introduce changes to the syntax and semantics of OWL, therefore, all the available
infrastructure such as OWL parsers and reasoners would need to be extended.
Moreover, they severely restrict reuse by other organizations and only accept
customized, non-standard toolsets. Concerning reasoning aspects, reasoning with
multiple distributed ontologies can arise some problems with respect to completeness
and performance. Completeness depends on the availability of each local reasoner,
which in a distributed network could be unreachable. Moreover, the communication
costs between nodes in the system can become a bottleneck, since communication
problems can arise. Borgida and Serafini (2003) also establish a connection between DL
and DDL that allow them to transfer theoretical results and reasoning techniques from
the classical DL literature under certain circumstances. Unfortunately, their approach to
construct a global DL ontology implies copying all the axioms of the local ontologies.
In our application scenario, this approach is not scalable since domain ontologies are
usually very large and complex. In order to address the problems of previous
approaches, Stuckenschmidt and Klein (2007) define modular ontologies in terms of a
subset of DDL and provide rationales for the restrictions applied. They compute
subsumption relations between external concepts offline and store them as explicit
axioms in the local ontologies. However, this modular approach can be computationally
very expensive because in the worst case it has exponential cost.

12

We address the previous limitations by proposing the use of alternative
techniques to extract fragments and modules from ontologies and combine them in the
resulting MIO framework, namely: OntoPath (Jiménez-Ruiz et al., 2007) and Upper
Modules (UM) (Jiménez-Ruiz et al., 2008). The application of these tools provides a
viable alternative without changing the current Semantic Web infrastructure. In this
way, ontologies can be expressed using standard OWL syntax and semantics, and
external tools implementing different modularization algorithms extract a fragment or
module according to the specific requirements of the target application. As a result,
module extraction algorithms do not require any change to the OWL semantics.
Moreover, we overcome the scalability problems that may arise when reasoning with
several large ontologies by building a MIO that only comprises the relevant knowledge
(e.g. relevant modules or fragments). Both techniques will be further explained in
Section 5.3.

4. An Approach to Semantic Data Warehouses

We conceive a Semantic Data Warehouse as a semi-structured data warehouse that
stores ontology-based semantic annotations along with the mechanisms that allow the
execution of analysis operations over the stored data. The special features of this kind of
semantically-rich data will require the application of OWL and general XML
technologies when building and managing the warehouse.

In Figure 4, we can distinguish several components of the framework proposed
for designing and analysing the SDW. As we have already stated, the core part of the
framework uses the SDW ontologies to specify a Multidimensional Integrated Ontology
suitable for analysis purposes. In the left side of the figure, we can see the processes in
which the user of the framework (e.g. analyst) actively participates during the design of
the MIO. In the centre of the figure, we show the tools needed to come up with the MIO
and with the subsequent multidimensional cube. Finally, the right side of the figure
shows the logical organization of the data and the schemata of the SDW. We will begin
by explaining the latter.

In a real-world scenario, an SDW requires storing the huge amount of annotated
data to be analysed together with the application ontologies used to generate it.
However, given the complexity of many applications, application ontologies are usually
based on one or more community-agreed ontologies, also denoted domain ontologies,
which should also be part of the warehouse. In this way, the resulting SDW would
include all the data and knowledge necessary for processing complex analysis queries.

The four types of data sets that an SDW stores and their relationships (right side of
Figure 4) are explained in turn:

 A set of domain ontologies that will contain the agreed terminology and
knowledge about the subject of analysis. In our biomedical scenario, this set
consists of the ontologies that could be useful for annotating patient data, such
as UMLS, NCI Ontology, etc.

 A set of application ontologies needed for generating the data that will be
stored in the intended data warehouse. These ontologies resemble database
schemata but they are more flexible in the sense that they allow incomplete,
imprecise and implicit definitions for the generated data. These ontologies will
use the domain ontologies to bring proper meaning to their concepts. In a real-
world scenario, application ontologies should be tailored to the requirements of
the users that will share activities over the generated data. For example, in the

13

biomedical scenario, the application ontology defined by Rheumatology
clinicians will be quite different from that defined by Cardiology specialists.

 The set of ontological instances generated from the previous application
ontologies. This constitutes the main repository of the data warehouse, and it is
assumed to be the largest part of it. The analysis of ontological instances is the
main purpose of the SDW, and new tools able to process complex analysis
operations over them need to be developed.

 The set of MIO ontologies generated during the design process. These
ontologies are the core feature of the SDW. They gather together only the
relevant external knowledge so that later analysis can be performed over the
ontological instances. MIOs can be thought as alternative analysis perspectives
over the ontological instances. Further details about their definition, generation
and validation are given in the next section.

Figure 4. Proposed framework for the design of SDWs.

In order to generate the MIOs for the SDW, we also need a set of mappings between the
ontologies whose domains overlap. This is necessary because different application
ontologies can be using different domain ontologies to denote similar concepts, for
example NCI or Galen for disease concepts. It is also possible that the analyst specifies
dimensions with category levels that involve different domain ontologies. Therefore, we
need mechanisms that reconcile the overlapping concepts borrowed from different
ontologies.

In our work, we represent mappings as 7-tuples id, s1, s2, O1, O2, R, , where id
is the unique identifier of the mapping, s1 and s2 are symbols from ontologies O1 and O2
respectively, R is the mapping relationship between these symbols, namely: equivalence

14

(≡), subsumption (⊑) and disjointness (), and  is a confidence value in the range
[0,1], which is usually estimated by the tool that discovered the mapping. From now on,
an ontology symbol s that is transformed from the ontology O1 to O2 by using a
mapping m, is denoted with sO1

m

 O2.
The next section is completely devoted to describing the framework presented in

Figure 4, which comprises the workflow for building the MIO and performing analysis
operations over the stored data.

5. Multidimensional Integrated Ontologies (MIOs)

In this section we describe a technique for defining multidimensional conceptual
schemata as a first step to analyze SDWs. A Multidimensional Integrated Ontology
(MIO) can be considered as a customized ontology whose concepts and roles represent
dimensions, categories, measures and facts. This ontology must also include all the
axioms and assertions necessary for validating the intended multidimensional data
model. As a result, MIOs can be used for both guiding designers in the definition of the
analysis dimensions, and checking the resulting model for some interesting properties
which ensure that valid final cubes will result.

Figure 5. Analyzing an SDW through a MIO.

Figure 5 shows the intermediate role played by a MIO during the design and analysis of
an SDW. On one hand, the MIO represents a consistent subset of the data from the
SDW which covers the requirements stated by the analyst. On the other hand, this
subset of data is used to build well-formed OLAP cubes for the multidimensional
analysis.

Following the notation of Figure 4, the framework workflow has the following
four phases:

Phase 1. MIO Definition: In this step, the analyst manually describes the topic of
analysis, measures and dimensions that constitute the multidimensional
conceptual schemata. In order to accomplish this task, the analyst applies a
Symbol Searcher, which retrieves the symbols (concepts and properties) to be
used in the analysis from the SDW domain ontologies.

Phase 2. MIO Generation: Once the analyst has defined the MIO, the Module

Extractor tool automatically generates the corresponding ontology with the
following elements:

15

1. A set of modules having the necessary knowledge to make inferences with
the external symbols included in the MIO. For example, the application
ontology of Figure 2 uses external symbols to define the diagnosis of a
disease. These symbols come from the NCI ontology, which contains axioms
that are necessary for reasoning.

2. A top-level ontology with the knowledge required to integrate the previous
modules. The top-level ontology is the result of the union of the upper
modules (UM) extracted from the used domain ontologies in the MIO.
Additionally, a set of axioms derived from the ontology mappings are
included to reconcile overlapping concepts.

3. The local axioms derived from the definitions given by the analyst when
defining the MIO (Phase 1).

Phase 3. MIO Validation: To conclude the design phase, the resulting ontology is
validated in the Consistency Checker tool in order to ensure that it will be able to
generate the target cubes. If there is any inconsistency, the user is allowed to change
axioms of the MIO so that a valid cube can be obtained.

Phase 4. Analysis Phase: During this phase, all the instances that will be used for

generating the facts and dimensions for an OLAP cube, are retrieved by the Instance

Extractor. Furthermore, there is a complex process called OWLtoMDS which must
take into account the restrictions of the target OLAP tool (e.g. if it only allows strict
hierarchies, level stratification, covering hierarchies, etc.) to transform the
hierarchies of the MIO into suitable ones for analysis. Due to the inherent
complexity of this task, it is out of the scope of this paper to provide a description of
these transformations. However, we believe a formal method should be designed,
which should take into account the analyst preferences regarding the definition of
category levels, stratification and so on while making the process as easy and
automatic as possible (Pedersen et al, 1999). Finally, facts are generated by applying
some Transformations to the retrieved instances so that they conform to the
multidimensional schema. In this step, ontology mappings can be required to
transform instances that are non-compliant with the MIO. As a result, the final
OLAP cube is generated. In the next subsections we will discuss the details of the
design phase of the proposed methodology by means of a running example.

5.1. Phase 1: Defining the MIO

A MIO definition specifies a set of dimensions and measures that can be extracted from
the Semantic Data Warehouse ontologies. The design process proposed here consists of
five steps in which the analyst applies the available ontologies to design a new one with
the elements needed for analysis task. The five steps are as follows: to select the topic of
analysis, to specify the dimensions of analysis, to select the measures, to define
potential roll-up relationships, and finally, to specify the instances to be analysed. We
will develop the use case specified in Section 2 in order to illustrate the steps of the
design process of the MIO. Remember that the objective of the use case is to analyse the
efficacy of different drugs in the treatment of several types of inflammatory diseases,
mainly rheumatic ones.

Step 1. In the first step, the topic of analysis is defined by selecting the concepts that are
the focus of the analysis from the application ontologies. We denote by CO a concept C
taken from the ontology O. In our running example, the chosen concept is Patient

Rheuma.

16

Notice that Patient
Rheuma represents all the patients defined in the Rheumatology

application ontology.

Step 2. Next, the concepts that will be used in the dimensions of analysis must be
specified (see Table 2). In this step, the local concepts of the categories in each
dimension are first defined and then related to the external concepts coming from the
ontologies used for the stored annotations. The following table shows the concepts
selected for defining the dimensions included in the MIO specified for the analysis case
of our running example.

Dim. Description Associated local concepts Associated external concepts

D1 Diseases associated to body parts {Disease
LOCAL

, Anatomy
LOCAL

} {Disease
LOCAL ⊑

Rheumatoid_Arthritis
NCI

,

Anatomy
LOCAL

 ⊑

Anatomy_Kind
NCI

}

D2 Drugs used in treatments {Drug
LOCAL

} { Drug
LOCAL

 ⊑ Drug
UMLS

}

D3 Patient age {Age
LOCAL

, AgeGroup
LOCAL

}

D4 Patient sex {Sex
LOCAL

}

D5 Biomarkers associated to tissues {Biomarker
LOCAL

, Tissue
LOCAL

} { Biomarker
LOCAL ⊑

AbsoluteMeasurement
GALEN

,

 Biomarker
LOCAL

 ⊑

Gene
UMLS_GENE

, Tissue
LOCAL

 ⊑

Tissue
GALEN

,

Tissue
LOCAL

 ⊑ Tissue
NCI

 }

D6 Damage Index {DamageIndex
LOCAL

,

DamageIndex_Group
LOCAL

}

D7 Follow-up (number of visit) {NumberOfVisit
LOCAL

}

Table 2. Concepts associated to the ontology dimensions and external concepts they
relate to.

In order to relate these local concepts to external ones, a set of axioms has been stated
(see col. 4 of Table 2). For example, the axiom Disease

LOCAL
 ⊑ Rheumatoid_Arthritis

NCI
states that the symbols used for the disease dimension will be the same as those used in
the domain ontology NCI under the concept Rheumatoid_Arthritis. Then, it will be
possible to do the same inferences over these symbols as over the original ontology. In
other words, the semantics given by the NCI ontology is assumed for our Disease
dimension.

As for dimension D5, the analyst wants to relate biomarkers (e.g. blood indicants
and genes) to tissues. We have performed a review of the main biomedical ontologies
searching for this kind of information and we have found GALEN to contain
information about blood indicants and its relation to tissues (this relation is trivial since
blood indicants measure blood cells, which are found in blood tissue). However, we
have not found one or more ontologies that explicitly relate genes to specific cells or
tissues. Thus, we have decided to define a tailored ontology that contains this
information. Both the classification of genes and cells have been taken from UMLS.
Then, we have manually established the corresponding relations based on the literature.
We have named this ontology UMLS_GENES.

17

It is important to notice that in the application ontology of our example, there are
no concepts associated with Age, so the dimension D3 must be derived from the data
type property age. In this case, we have created the new concept Age whose instances
will be derived from age range values. The concept AgeGroup is defined locally to
account for the different patient age groups, for example: newborn, child, juvenile, adult
and elderly people. The transformation of numerical values into Age instances is
performed during the construction of the OLAP cube.

Step 3. The next step of the process consists of selecting the candidate measures coming
from the data type properties existing in the application ontology. In our running use
case, the DamageIndex could be a measure. The measure that counts the number of
affected cases, like the other aggregation measures (e.g.: sum, avg, etc.), cannot be
specified at this stage due to the DL expressivity limitations. This kind of measures will
be defined and calculated during the analysis phase over the cube built from the MIO.
As a consequence, measures are treated as dimensions in the MIO, like in (Pedersen et
al., 2001).

Step 4. Roll-up relationships are the next elements to be defined. Local roll-up
properties are represented as R_Ci_Cj, denoting that instances of the concept Ci will be
rolled-up to instances of the concept Cj. As Table 2 shows, the local concepts
Disease

LOCAL and Anatomy
LOCAL have been defined to represent the categories of dimension

D1. Then, the roll-up relationship R_Disease_Anatomy
LOCAL is created and relates both

categories through the next local axiom:

Disease
LOCAL

 ⊑ R_Disease_Anatomy
LOCAL

.Anatomy
LOCAL

which restricts the local concept Disease to roll up to an Anatomy concept. Analogous
axioms are added for the rest of dimension categories. In Step 2 both local concepts
have associated to external ones (Rheumatoid_Arthritis

NCI and Anatomy_Kind
NCI

respectively). Therefore, the system will try to find an external roll-up relationship (e.g.
path of subsequent concepts and properties) in external ontologies that connects both
external concepts. In this case, the following path has been found:

Rheumatoid_Arthritis
NCI

/ Disease_Has_Associated_Anatomic_Site
NCI

/ Anatomy_Kind
NCI

Therefore, the following axiom associates the local roll-up property defined with the
external roll-up property found in the ontology:

Disease_Has_Associated_Anatomic_Site
NCI ⊑ R_Disease_ Anatomy

LOCAL

Table 3 shows the set of local roll-up relationships along with their corresponding
external ones defined for each dimension of the running example.

18

Dim. Local roll-up relationship External roll-up relationship

Axiom associating local and external roll-ups

D1 R_Disease_ Anatomy
LOCAL

 Rheumatoid_Arthritis
NCI

/

Disease_Has_Associated_Anatomic_Site
NCI

/

Anatomy_Kind
NCI

Disease_Has_Associated_Anatomic_Site
NCI ⊑

R_Disease_ Anatomy
LOCAL

D3 R_Age_AgeGroup
LOCAL

D5 R_Biomarker_Tissue
LOCAL

 Gene
UMLS_GENE

 / Located_In
UMLS_GENE

 / Cell
UMLS_GENE

 m
 NCI

/

Anatomic_Structure_Is_Physical_Part_Of
NCI

 / Tissue
NCI

Located_In
UMLS_GENE

 ∘
Anatomic_Structure_Is_Physical_Part_Of

NCI
 ⊑

R_Biomarker_Tissue
LOCAL

D5 R_Biomarker_Tissue
LOCAL

 AbsoluteMeasurement
GALEN

/

isCountConcentrationOf
GALEN

 / Cell
GALEN

 /

isInSuspensionWithin
GALEN

 / Tissue
GALEN

isCountConcentrationOf
GALEN

 ∘ isInSuspensionWithin
GALEN

 ⊑ R_Biomarker_Tissue
LOCAL

D6 R_DamageIndex_DamageI

ndexGroup
LOCAL

Table 3. Roll-up axioms defined for the MIO of the use case. We use the DL constructor ∘ to

represent the role composition. Additionally, we use s
O1

m

 O2 to denote a transformation of symbol s

from ontology O1 to O2 by using a mapping m.

The local axioms that represent roll-up relationships are defined, when possible,
composing roles (object properties) from the external ontologies. The external roll-up
relationship found for R_Biomarker_Tissue

LOCAL involves two different ontologies
(UMLS_GENE and NCI). We have made use of mappings in order to relate cells of
both ontologies.

Step 5. In the last step of the MIO design process, the instances to be analyzed are
specified through a local concept that involves all the dimensions and measures
previously defined:

Patient
LOCAL

 ≡ hasDim_D1
LOCAL

. Disease
LOCAL

 ⊓ hasDim_D2
LOCAL

.Drug
LOCAL

 ⊓

hasDim_D3
LOCAL

.Age
LOCAL

 ⊓ hasDim_D4
LOCAL

.Sex
LOCAL

 ⊓ hasDim_D5
LOCAL

.Biomarkers
LOCAL

 ⊓

hasDim_D6
LOCAL

.DamageIndex
LOCAL

 ⊓ hasDim_D7
LOCAL

.NumberOfVisit
LOCAL

Additionally, a set of local axioms must be stated to relate dimension properties to
external properties. Table 4 shows the axioms proposed for the running example. It is
worth mentioning that D5 (biomarkers) involves three different parts of the application
ontology, namely: blood cell, factors and genes.

19

Dim. Axioms associated to cube definition

D1 has_Report
Rheuma ∘ has_diagnosis

Rheuma
 ⊑ hasDim_D1

LOCAL

D2 has_Report
Rheuma ∘ has_Section

Rheuma ∘ has_therapy
Rheuma ∘ has_drug

Rheuma ⊑

hasDim_D2
LOCAL

D3 age
Rheuma

 ⊑ hasDim_D3
LOCAL

D4 sex
Rheuma

 ⊑ hasDim_D4
LOCAL

D5 has_Report
Rheuma ∘ has_Section

Rheuma ∘ measures_indicant
Rheuma ∘

has_Blood_Cell
Rheuma

 ⊑ hasDim_D5
LOCAL

D5 has_Report
Rheuma ∘ has_Section

Rheuma ∘ measures_indicant
Rheuma ∘

has_Blood_Factor
Rheuma

 ⊑ hasDim_D5
LOCAL

D5 has_Profile
Rheuma ∘ related_gene

Rheuma
 ⊑ hasDim_D5

LOCAL

D6 has_Report
Rheuma ∘ has_Section

Rheuma ∘ DamageIndex
Rheuma

 ⊑ hasDim_D6
LOCAL

D7 has_Report
Rheuma ∘ dateOfVisit

Rheuma
 ⊑ hasDim_D7

LOCAL

Table 4. Axioms associated with the intended facts of the target cube.

5.2 Phase 2: MIO generation

After completing the design of the MIO, the analyst has defined the topic of the
analysis, the external concepts associated with dimensions, the roll-up relationships
between dimension concepts and their links to external properties. Next, the system will
automatically generate the MIO. This will consist of the following three elements:

()
Di

MIO LocalAxioms Di TopicAxioms ExternalAxioms




The set of local axioms for each dimension Di, denoted LocalAxioms(Di), will be built
as the union of all the relevant specifications of the design process. For example, for the
dimension D1 we have:

LocalAxioms(D1)={

Disease
LOCAL

 ⊑ Rheumatoid_Arthritis
NCI

,

Disease
LOCAL

 ⊑ R_Disease_Anatomy
LOCAL

.Anatomy
LOCAL

,

Anatomy
LOCAL

 ⊑ Anatomy_Kind
NCI

,

Disease_Has_Associated_Anatomic_Site
NCI ⊑ R_Disease_ Anatomy

LOCAL
,

has_Report
Rheuma ∘ has_diagnosis

Rheuma
 ⊑ hasDim_D1

LOCAL

}

The TopicAxioms will also be built from the specifications previously made for the topic
of analysis and the measures. In our example, we will have:

TopicAxioms = {

Patient
LOCAL

 ≡ hasDim_D1
LOCAL

. Disease
LOCAL

 ⊓ hasDim_D2
LOCAL

.Drug
LOCAL

 ⊓

hasDim_D3
LOCAL

.Age
LOCAL

 ⊓ hasDim_D4
LOCAL

.Sex
LOCAL

 ⊓ hasDim_D5
LOCAL

.Biomarkers
LOCAL

 ⊓

hasDim_D6
LOCAL

.DamageIndex
LOCAL

 ⊓ hasDim_D7
LOCAL

.NumberOfVisit
LOCAL

 }

20

Therefore, at this stage it only remains to generate the ExternalAxioms element. The
following section deals with this issue, and the subsequent section explains how to
validate the resulting ontology.

5.3. Bringing external knowledge to the MIO

Concepts that will be used in the different dimensions are defined locally, but the user
defines them in terms of the concepts located in external ontologies. Thus, a MIO
consists of all the local axioms asserted by the user plus external knowledge that can
affect the symbols of the MIO. It is desirable to integrate this external knowledge
because of three reasons:

1. Semantic annotations made with symbols from domain ontologies can imply

definitions and relationships that are implicit. Thus, by enriching the MIO with new
hierarchical dimensions relying on the relationships provided by domain ontologies,
we can discover implicit knowledge. In other words, bringing in the knowledge
related to the symbols of the warehouse semantic annotations, allows us to infer
implicit fact-dimension relationships useful for analysis.

2. Given that a MIO contains a set of external axioms that provides a consistent and

simplified version of the original ontologies focused on a topic of analysis, it
constitutes a piece of knowledge that can be reused. For example, this MIO can be a
good starting point to guide users in the definition of a multidimensional cube for
analysis purposes. There exists some preliminary work in this line that could benefit
from MIOs (e.g. Romero & Abelló 2007).

3. A MIO is a new consistent ontology that derives from the SDW ontologies. This

means that it can contain new concepts and roles that must be satisfiable with
respect to the semantics of the original ontologies. We assume that the original
ontologies are already consistent, and therefore satisfiability must be checked only
for the MIO local concepts. In this way, although large MIOs can be defined by re-
using existing knowledge, the cost of checking it for consistency is limited to the
new concepts introduced by the analyst.

The construction of the MIO with external knowledge coming from the domain
and application ontologies is carried out by using both the query language OntoPath
(Jimenez-Ruiz et al., 2007) and some module extraction approaches recently proposed
in (Jimenez-Ruiz et al., 2008).

OntoPath is a novel retrieval language for specifying and retrieving relevant
ontology fragments. This language is intended to extract customized stand-alone
ontologies from very large, general-purpose ones. In a typical OntoPath query, the
desired detail level in the concept taxonomies as well as the properties between
concepts that are required by the target applications are easily specified. The syntax and
aims of OntoPath resemble XPath’s in the sense that they are simple and they are
designed to be included in other XML-based applications (e.g. transformations sheets,
semantic annotation of web services, etc.). In our approach for building the MIO,
OntoPath is used to retrieve the different dimension hierarchies along with the
corresponding roll-up properties from the domain ontologies used to annotate patients.
The retrieval of these ontology fragments is based on the analysis dimensions proposed
by the analyst. Following the running example, the following queries would be run in
order to extract the dimension hierarchies:

21

D1  Rheumatoid_Arthritis

NCI
/ Disease_Has_Associated_Anatomic_Site

NCI
/ Anatomy_Kind

NCI

D2  Drug
UMLS

D5  Gene
UMLS_GENE

 / Located_In
UMLS_GENE

 / Cell
UMLS_GENE

 m
 NCI

 /

Anatomic_Structure_Is_Physical_Part_Of
NCI

 /Tissue
NCI

D5  AbsoluteMeasurement
GALEN

 / isCountConcentrationOf
GALEN

 / Cell
 GALEN

 /

isInSuspensionWithin
GALEN

 /Tissue
GALEN

As it can be observed, through simple path queries of subsequent concepts and
properties, we obtain the fragments corresponding to the different dimension
hierarchies. Notice that we make use of mappings in D5 in order to connect overlapping
concepts in different ontologies. OntoPath is also used for extracting the part of the
application ontology schema relevant for analysis purposes; the concepts and properties
that define the facts of analysis. In our example, the OntoPath query shown in Figure 6
is evaluated to determine the relevant elements of the application ontology involved in
the analysis task.

Patient

Rheuma

[age
Rheuma

]

[sex
Rheuma

]

[has_Profile / * / related_gene / *]

 [has_Report
Rheuma

/ *

 [has_diagnosis
Rheuma

/ *]

 [dateOfVisit
Rheuma

/ *]

 [has_Section
Rheuma

/ *

[DamageIndex
Rheuma

]

[has_therapy
Rheuma

/ *

[has_drug
Rheuma

/ *

]

[measures_indicant
Rheuma

/ *

[has_Blood_Cell
Rheuma

 / *]

[has_Blood_Factor
Rheuma

/*]

]

]

]

Figure 6. OntoPath query for the application ontology of the use case. In OntoPath, the
symbol “*” denotes any concept, and nested expressions (e.g. tree branches) are in

brackets like in XPath.

Moreover, we use a logic-based approach of modular reuse of ontologies to extract the
upper knowledge of all the external symbols that appear in the MIO. This modular
approach is safe, since the meaning of the imported symbols is not changed, and
economic, since only the module relevant for a given set of symbols (called signature) is
imported. They also guarantee that no entailments are lost compared to the import of the
whole ontology. We particularly extract Upper Modules (UM), which are based on ⊥-
locality and are suitable for refinement. That is, we extract the upper knowledge of all
the external symbols of the MIO.

22

In our use case, we group the external symbols according to the external
ontologies they are pointing to. Then, a module containing the upper knowledge of each
signature is extracted. The external signatures for our use case are the following ones:

Sig

Rheuma
={Patient

Rheuma
}

Sig
NCI

= { Disease_Has_Associated_Anatomic_Site
NCI

 , Cell
NCI

, Tissue
NCI

, Anatomy_Kind
NCI

,

Rheumatoid_Arthritis
NCI

, Anatomic_Structure_Is_Physical_Part_Of
NCI

}

Sig
UMLS_GENE

 = { Gene
UMLS_GENE

, Located_In
UMLS_GENE

, Cell
UMLS_GENE

 }

Sig
GALEN

 = {AbsoluteMeasurement
GALEN

, isCountConcentrationOf
GALEN

, Cell
GALEN

,

isInSuspensionWithin
GALEN

, Tissue
GALEN

}

The top knowledge ontology is composed by the union of the upper modules
extracted plus some additional axioms derived from the stored mappings that allow
merging the upper knowledge of overlapping concepts. Mappings are stored in the data
warehouse as 7-tuples id, s1, s2, O1, O2, R, , where s1 and ss are symbols from
ontologies O1 and O2 respectively,  is a confidence value and R is the mapping
relationship between these symbols, namely: equivalent (≡), subsumption (⊑) and
disjointness (⊥). For each pair of top knowledge concepts s1, s2 for which a mapping is
recorded, we add the corresponding axiom according to the mapping relationship:
equivalentTo(e1, e2) for (≡), subClassOf(e1, e2) for (⊑) and disjoint(e1, e2) for (⊥).

As an example of the type of knowledge extracted with the previous approaches,
in Figure 7, we show a fragment of the axioms extracted with the UM approach and the
OntoPath tool about the concept Rheumatoid_Arthritis under Disease

NCI.

Upper Module Ontopath-based Module

Rheumatoid_Arthritis ⊑ Autoimmune_Disease

Autoimmune_Disease ⊑ Immune_System_Disorder

Immune_System_Disorder ⊑

Non-Neoplastic_Disorder_by_Special_Category

Non-Neoplastic_Disorder_by_Special_Category ⊑

Non-Neoplastic_Disorder

 Rheumatoid_Arthritis ⊑

 Disease_Has_Associated_Anatomic_Site.

Connective_and_Soft_Tissue

Stills_Disease ⊑ Rheumatoid_Arthritis

Oligoarticular_Stills_Disease ⊑ Stills_Disease

Synovial_Membrane ⊑

Connective_and_Soft_Tissue

Figure 7. External knowledge involved in Rheumatoid_Arthritis.

Finally, in the current implementation, the MIO is composed by a set of OWL files
connected through “import” statements gathering together the local axioms, topic
axioms and external axioms.

5.4. Phase 3: MIO Validation

The MIOs are validated at two levels: schema and instance. At the former level, we
check that the generated ontology is consistent with respect to all the asserted axioms:
local and external ones. If the ontology is not consistent, then we cannot generate a
valid OLAP cube for it and the ontology should be fixed. For this purpose, it is
necessary to detect invalid dimensions that constitute potentially not valid cubes. At the

23

second level, once the multidimensional ontology is validated, it must be populated with
instances from the data warehouse. The issues of this process will be explained in the
following section.

A MIO is a formal ontology in which all the knowledge has been included in order
to perform the appropriate inferences and queries. This knowledge can also be used for
checking certain properties and in this way, ensuring that not-valid final cubes will not
result. In (Hurtado & Mendelzon, 2002) a set of structural constraints are applied to
check some interesting properties of heterogeneous dimensions. These properties could
be checked over the MIO ontology to indicate to the analyst that potential problems
could arise in the final OLAP-based cube. Unfortunately, some of these properties can
only be checked once the cube is formed (e.g. summarizability) as they depend on the
specific dimension values and aggregation functions defined for the target cube. The set
of properties that we can check in the multidimensional ontology are the following:

 Disjointness. The member set of two categories belonging to the same dimension

must be disjoint. Notice that with this constraint Stratification is also achieved, as
any instance of a category can only roll up to an upper category instance.

 Category satisfiability. Another inference problem stated in (Hurtado &
Mendelzon, 2002) is the satisfiability of a category in a dimension schema.
Basically, this means that at least there exists an instance of the schema in which the
member set of the category is not empty. This is equivalent to the problem of
checking the satisfiability of the dimension classes with respect to the axioms of the
MIO.

 Shortcut free. This property is also known as “non-covering” in the OLAP

literature (Pedersen et al. 2001). A shortcut occurs when a fact can be rolled up from
a category Ci to another Cj without passing through an intermediate category Cx that
connects both of them. This is true when the MIO contains the roles R_Ci_Cx ,
R_Cx_Cj and R_Ci_Cj. In other words, the graph formed by the concepts (nodes) and
the set of roll-up relationships (edges) of each dimension, must not contain
redundant edges. Moreover, ensuring that this graph is connected, and assuming that
every instance can roll up to an instance of the concept Thing (⊤), we also ensure the
Up-Connectivity property.

 Orthogonality. This is the property of having a set of dimensions without
dependency relationships. Dimension dependencies produce sparse cubes, as many
combinations of dimension values are disallowed. Having dependent dimensions is
considered a bad conceptual design (Abelló, 2002), although sometimes this is
desired by the designer. In our case, we have to check when two categories of
different dimensions are somehow related. Thus, first it must be ensured that the
concepts of two different dimensions are all disjoint, and second that there does not
exist any chain of properties relating two concepts of different dimensions (Romero
& Abelló, 2007).

 Summarizability (Lenz & Shoshani, 1997). The only way to achieve this property
is by ensuring all the previous properties plus the functionality of all the roll-up
properties. As it is difficult to ensure functionality from the original ontologies, this
property will be checked over the final generated facts and dimensions. Notice that
some multidimensional models (e.g. Pedersen et al., 2001) are able to deal with

24

many-to-many relationships. This means that forcing functionality will depend on
the features of the target multidimensional model.

In the running example, disjointness is achieved by asserting the following axiom:

alldisjoint(Disease
LOCAL

,Anatomy
LOCAL

, Biomarker
LOCAL

,Tissue
LOCAL

, Age
LOCAL

, AgeGroup
LOCAL

, ,

Sex
LOCAL

, Drug
LOCAL

, Follow-up
LOCAL

, DamageIndex
LOCAL

, DamageIndexGroup
LOCAL

)

The resulting MIO is satisfiable and shortcut free. However, it can be demonstrated by
using the axioms of the MIO that dimensions D1 and D5 are dependent, and therefore
not completely orthogonal. For example, the following axioms show a dependency
between the disease RA and the biomarker IL6:

 Rheumatoid_Arthritis ⊑ Disease ⊓
  Disease_Has_Associated_Anatomic_Site.
Connective_and_Soft_Tissue

 Connective_and_Soft_Tissue ⊑ Tissue

 IL6 ⊑ Biomarker ⊓  Expressed_In_Cell.Synovial_Cell

 Synovial_Cell ⊑ Cell ⊓ Anatomic_Structure_Is_Physical_Part_Of.Synovial_Membrane

 Synovial_Membrane ⊑ Connective_and_Soft_Tissue

Here, we can conclude that both concepts are related somehow with
Connective_and_Soft_Tissue. Similarly, we can find some dependency between RA and
blood sample biomarkers as RA is an autoimmune disease that mainly affect to
macrophage cells in the blood. Indeed, the original definition of biomarker is that it
provides clues to diagnose a disease, thus the strong dependency between both
concepts.

5.5. Phase 4: OLAP-based analysis

Before building the target OLAP-based cube, the MIO must be properly populated with
the instances from the Semantic Data Warehouse that satisfy both the MIO and the set
of specific roll-up relationships between them. This process consists of two phases: (1)
the retrieval of ontological instances from the data warehouse, and (2) the
transformation of the instances with an appropriate granularity for the OLAP cube.
Additionally, the cube dimensions and their possible categories must be also built from
the MIO concepts and roles. Subsequent sections describe these aspects with detail.

5.5.1. Instance Retrieval

Application ontology instances are stored in a RDF triple store like 3store (Harris and
Gibbins, 2003) as shown in Table 1. The objective of this phase is to retrieve the
appropriate instances that can populate the MIO. In order to accomplish this task we
have considered two approaches. The first one seems the most straightforward and
consists of using the triple store reasoning capabilities in order to extract all the required
instances. A triple store such as 3store claims to support efficient processing of RDQL
queries and RDF(S) entailments (RDF(S) entailments are not implemented in SparQL,
the successor of RDQL). Therefore, it is trivial to translate the OntoPath query of Figure
6 into a set of RDQL queries that use the reasoning capabilities provided to extract the
instances. However, some experiments have demonstrated that this kind of triple store is
not scalable when dealing with RDF(S) entailments over ontologies of considerable size
(e.g. a few thousand concepts and properties). Thus, a more long term solution must be
devised.

25

 The second approach consists of leaving the RDF(S) entailments to OntoPath
and use the triple store with the inference capabilities off. The OntoPath query of
Figure 6 used for extracting the part of the AO schema relevant for analysis purposes is
the one that dictates the instances to be retrieved from the SDW. The result of the above
mentioned query is twofold. On one hand, OntoPath returns the sub-ontology that
matches the query in the form of OWL primitives. This feature is useful when
extracting the AO schema as well as the different fragments corresponding to the
dimension hierarchies from domain ontologies in order to build the MIO. On the other
hand, OntoPath can present the result of a query as a result set consisting of all the
different sub-graphs of an ontology that match the query (RDFS entailments). Then,
every OntoPath sub-graph from the result set can be translated into an appropriate RDF
query language, such as SparQL. That is, every possible sub-graph returned by
OntoPath corresponds to a SparQL query without RDFS entailments. Figure 8 shows
part of the OntoPath query for our use case, the OntoPath result set and the translation
of each sub-graph into SparQL.

OntoPath Query

Patient
Rheuma

 [has_Report
Rheuma

/ * / has_Section
Rheuma

/ * / has_therapy
Rheuma

/ * / has_drug
Rheuma

/ *

]

OntoPath Result Set (sub-graphs matching) SparQL Translation

Patient
Rheuma

 [has_Report
Rheuma

/

Rheumatology_Report / has_Section
Rheuma

/

Treatment / has_therapy
Rheuma

/ Drug_Therapy /

has_drug
Rheuma

/ Drug
UMLS

]

SELECT *

WHERE {

 ?person type Patient .

 ?person has_Report ?report .

 ?report type Rheumatology_Report .
 ?report has_Section ?section .

 ?section type Treatment .

 ?section has_therapy ?t .

 ?t type Drug_Therapy .

 ?t has_drug ?drug .

 ?drug type DrugUMLS

}

Patient
Rheuma

 [has_Report
Rheuma

/

Rheumatology_Report / has_Section
Rheuma

/

Treatment / has_therapy
Rheuma

/ Joint_Injections

/ has_drug
Rheuma

/ Drug
UMLS

]

SELECT *

WHERE {

 ?person type Patient .

 ?person has_Report ?report .

 ?report type Rheumatology_Report .
 ?report has_Section ?section .

 ?section type Treatment .

 ?section has_therapy ?t .

 ?t type Joint_Injections .

 ?t has_drug ?drug .

 ?drug type DrugUMLS

}

Figure 8. Translating from OntoPath sub-graphs into SparQL. Notice the OntoPath query
results in two sub-graphs since the range of has_therapy

Rheuma matches Drug_Therapy and also
Joint_Injections, which is a subclass of Drug_Therapy.

5.5.2. Instance transformations

There are two kinds of transformations that must be applied to the retrieved instances
and values in order to obtain consistent MIO instances, namely: 1) to convert data type
values (or data type property ranges) into new instances and, 2) to change instance
identifiers and instance types according to the existing mappings.
 The first kind of transformation is applied when a roll-up property is required
over values instead of instances. For example, to roll up the feature hasAge into

26

ageGroup we first need to convert ages (integer numbers) into instances, for example the
value 32 is converted into the instance Age_32. This instance belongs to the class
Age

LOCAL which has been defined in the MIO. Now, we can assert that Age_32 rolls up to
the instance adult through the role R_Age_AgeGroup.

The second kind of transformations allows instances coming from different
application ontologies to be expressed in the same terms within the MIO. This is
performed by applying the existing mappings between the domain ontologies. For
example, in our use case we have adopted NCI to represent disease concepts. If we want
to include instances from an application ontology that uses GALEN for representing
diseases, then we need to translate their instances to NCI terminology. This means to
change their names as well as their types to NCI vocabulary.

Notice that mapping-based transformations can produce both incomplete and
imprecise facts. Incomplete facts can be generated if the class of an instance has no
(direct or inferred) mapping associated to the target ontology. Imprecise facts are
generated when the mapping is inherited (i.e. it occurs for some super-class of the
instance’s class), and therefore the instance must be expressed with a broader concept.

Another required transformation for instances consists of changing the detail
level at which they are expressed in the ontologies. For example, in the application
ontology shown in Figure 2, all the instances related to drugs are borrowed from the
domain ontology UMLS, but their type within the application ontology will be always
Drug. This is because when the clinician is prescribing a drug to the patient, she is not
concerned with the whole taxonomy in which the drug is placed but just with the drug’s
name. However, when analyzing patient data, the UMLS taxonomy for drugs is
necessary to define dimension D2, and therefore the instances must have associated its
actual type. For example, in Table 5, the instance Infliximab will change its type from
Drug

Rheuma to AntiRheumaticAgent
UMLS.

Considering our use case, Table 5 shows a subset of the instances that populate
the local concept Patient

LOCAL. In this case, the dimension D3 has been generated by
transforming the values of the data type property hasAge of the Rheumatology
application ontology. Instances in dimensions D1, D2 and D5 have changed its type to
that of the domain ontologies from which they are taken.

ID D1 D2 D3 D4 D5 D6 D7
8787u RA1 Infliximab Age32 Male Neutrophil 12 1

8991u JIA1 Etacernept Age15 Male RF- 7 1

8991u JIA1 Etacernept Age15 Male CProtein+ 7 3

8882u RA2 Naproxen Age27 Female HLA+ 14 1

8882u RA2 Naproxen Age27 Female HLA- 1 2

9912u SD1 Methotrexate Age34 Male ESR 12 1

Table 5. Example of instances that populate the concept Patient
LOCAL in the MIO of the

proposed use case. For biomarker instances (D5), we use the symbols + /– to denote
presence/absence and / for high/low levels.

5.5.3. Generating cube dimensions

During the generation of the final analysis cube, the symbols of the MIO are interpreted
as elements of the target multidimensional data model. Thus, concepts, properties and
instances of the MIO will be interpreted as dimensions, categories, members, attributes
and facts of the multidimensional model. Depending on the restrictions of the target
multidimensional model, it can be necessary to transform some of the MIO symbols

27

with the purpose of obtaining the proper interpretation. Moreover, many symbols of the
ontology could be interpreted in different ways, resulting in very different cubes.

A dimension concept (e.g. Disease) is usually interpreted as a dimension
category of the multidimensional data model. However, the members of these categories
can be either the instances or the subclasses of the dimension concept. In the second
case, as subclasses can be also hierarchically organised, they can produce further
categories in the dimension. Figure 9 shows examples of these two interpretations. The
members of the category Anatomy are the different anatomical instances (e.g. different
body parts of each patient), whereas the members of the category Disease are the names
of the sub-classes of Disease. Notice that two sub-categories are defined due to the
hierarchical relationships between these sub-classes.

Figure 9. Two different interpretations for defining a dimension category.

Concerning the cube roll-up relationships between dimension categories, we also have
different interpretations depending on the interpretation adopted for the involved
categories. Thus, we have three possible interpretations, namely:

1. If both categories have instance members, then R_Ci_Cj is interpreted at instance
level too, and therefore each asserted triple (i1, r, i2) associated to R_Ci_Cj defines a
roll-up relation RU(i1, i2).

2. If the lower category contains instance members and the upper one contains class
names, then we interpret R_Ci_Cj as before, but the roll-up relation is set to
RU(i1,Cx), with CxType(i2) and Cx ⊑ Cj.

3. If the related categories Ci and Cj contain class names, and they are connected with
a roll-up role R_Ci_Cj, then we have two possible situations:

 If there are no asserted instances associated to R_Ci_Cj, for each R ⊑R_Ci_Cj
such that C’idomain(R) and C’jrange(R), a roll-up relation RU(C’i,C’j) is set.

 Otherwise, the asserted triples (i1, r, i2) associated to R_Ci_Cj defines a roll-up
relation RU(Cx, Cy) where CxType(i1) and Cx ⊑ Ci and CyType(i2) and Cy ⊑Cj.

It is worth mentioning that the selection of the interpretation is done by the analyst.
Figure 10 shows examples of these three interpretations for some categories defined in
the use case.

28

Figure 10. Different interpretations for roll-up relationships: instance-instance,
instance-class and class-class roll-ups

Another relevant aspect to take into consideration when building roll-up hierarchies is
the multiplicity between related categories. Ideally, each roll-up relationship should
have a predominant multiplicity of many-to-one in order to properly aggregate data. In
our use case, the role R_Disease_Anatomy however has a one-to-many predominant
multiplicity, which means that it is not useful for aggregating data in the resulting cube.
In order to include Anatomical information in the cube, we can either use the inverse
role R_Anatomy_Disease or include Anatomy data in some attribute of the Disease
members. The former solution is not valid in our use case as in the application ontology
Anatomy concepts (e.g. SynovialJoint) and Disease concepts are not related to each other
and therefore we cannot state reliable roll-up relations. In the second solution, we can
only use anatomical data to restrict the diseases that the clinician wants to analyze.
Finally, it is worth mentioning that Disease and Anatomy cannot be defined as two
different dimensions because they are dependent on each other.

In order to complete the cube definition, additional member attributes can be
taken from any of the properties associated to the MIO concepts that do not participate
in the roll-up relationships.

The whole translation process from MIO to the target cube is a very complex
task that will determine the possible analysis tasks to be performed through OLAP
operations. As a consequence, this process deserves more attention in the future work in
order to automate it as much as possible. A good starting point is the methods presented
in (Pedersen et al., 1999).

6. Implementation Issues

Currently we have partially implemented the proposed framework for SDWs. In this
section we describe the main issues we have addressed during this preliminary
implementation.
 In our first approach we have adopted the tried-and-tested “data warehousing”
approach. Here, all source data is first extracted from the data sources (in our case both
external, web-based sources and internal sources). Then, the data is transformed and
various validation checks are performed. Some checks are completed before
transformations are performed, and some after transformations (e.g., into a dimension)
are performed, as described in Section 5. In order for the data to comply with the

29

constraints, some data cleansing will be performed, e.g., new dimension members may
be added in order to balance the hierarchy to achieve summarizability. Finally, the
transformed data is stored in the SDW database. Because of the complex RDF-based
structure of the ontologies, we have chosen an RDF triplestore, specifically 3store
(Harris and Gibbins, 2003). Although 3store provides a limited form of logical
reasoning based on the RDFS subClassOf hierarchies, it does not scale well. The reason
is that it makes explicit all the entailments of the ontology. In this way, we have used
3store only for storing large sets of instances generated by the application ontologies,
assuming that these ontologies do not contain large concept hierarchies and therefore do
not require large sets of entailments.
 Regarding the domain ontologies, the SDW must also provide the storage and
querying mechanisms for them. Currently, there are a few approaches to store and query
large OWL ontologies (Lu et al., 2007, Roldán-García et al., 2008). The main difference
between these approaches and triplestores is that OWL stores must allow entailments
with the same expressivity of the stored ontologies, which goes beyond the hierarchies
defined in RDFS. Unfortunately, current OWL stores are not able to handle very large
expressive ontologies, nor does current reasoners support secondary storage.

In our current implementation we have used both OntoPath and a series of
labelling-based indexes specially designed to handle very large OWL-based ontologies
(Nebot and Berlanga, 2008). These indexes allow the fast retrieval of sub-graphs and
the fast construction of upper modules as those required by our methodology. It is worth
mentioning that with these indexes we are able to check if one concept subsumes
another by simply comparing two intervals. We have evaluated these indexes over the
UMLS meta-thesaurus, which contains 1.5 million concepts and 13 million
relationships. By using OntoPath indexes, we are able to build upper modules for
signatures of hundreds of concepts in a few minutes. In this way, we achieve the
scalability of the system by efficiently building customized modules, which can be
handled by current reasoners.

Following the running example, in Table 6 we show some statistics about the
different fragments extracted from external domain ontologies in order to enrich the
dimension hierarchies. As it can be seen, the relative size of the fragments compared to
the whole ontologies is drastically reduced, which shows the scalability of the MIOs
used for analysis purposes. Similarly, Table 7 shows statistics about the top knowledge
ontology, which is also part of the MIO. The top knowledge ontology is composed by
the union of the upper modules extracted plus some additional axioms derived from the
stored mappings that allow merging the upper knowledge of overlapping concepts.
Once more scalability is assured since the size of the top knowledge is insignificant
compared to the size of the original ontologies.

 # classes # properties # subclass ax. relative size %

D1 (NCI) 65 1 65 0.24 %
D2 (UMLS) 699 0 1526 0.046 %
D5 (GALEN) 58 2 75 1.97 %
D5 (GO/NCI) 114 1 114 0.00027%

Table 6. Statistics about fragments extracted for dimension hierarchies.

30

 # classes # properties # subclass

axioms

total

axioms

relative size %

D1 (NCI) 22 2 24 36 0.19 %
D2 (UMLS) 0 0 0 0 -
D5 (GALEN) 34 23 34 67 2.8 %
D5 (UMLS/NCI) 46 1 92 92 0.00011%
(RHEUMA) 1 0 1 1 -

Table 7. Statistics about top knowledge extracted from every ontology.

Concerning the ontology mappings, despite the large number of semi-automatic

approaches that exist to generate them (see surveys presented in (Choi et al., 2006,
Euzenat, 2007), current precision results are not good enough to make the automatic
transformations proposed in this paper reliable. Moreover, most ontology matchers can
only handle small ontologies (Hu et al., 2008), which limit their usefulness in our
scenario. Fortunately, in our application scenario about Biomedicine, there exists a great
interest in integrating existing knowledge resources. As a result, most ontologies are
being annotated with UMLS terms and other standard vocabularies (e.g. NCI), which
notably eases the mapping problem. Our preliminary experiments by using these
vocabularies to link domain ontologies are promising.

7. Conclusions and Future Work

In this paper we have set the bases for the multidimensional analysis of Semantic Web
data in a data warehouse. We have reviewed the work that combines data warehouse
and semantic web technologies. From this review we conclude that XML-related
technologies are becoming mature enough to enable the construction of semi-structured
web data repositories. We have also highlighted the promising usage of the Semantic
Web languages to integrate distributed data warehouses and to describe and automate
the ETL process of a data warehouse. Regarding the analysis of semantically annotated
data, the existing alternatives are only valid for single and small ontologies.
Unfortunately, many real applications imply several large inter-linked ontologies.

As a solution, we have defined the Semantic Warehouse as an XML repository
of ontologies and semantically annotated data of a particular application domain; and
we have proposed a new framework to design conceptual multidimensional models
starting from a set of application and domain ontologies. Our approach has a number of
advantages. For example, the users can easily state facts and dimensions of analysis by
selecting the relevant concepts from the ontologies. The methodology’s underlying
multidimensional model is very simple, only facts, measures, dimensions, categories
and roll-up relationships need to be identified. This will allow us to implement the
model in almost any existing multidimensional database by performing the proper
transformations. Regarding the scalability of the approach, we are able to manage large-
sized ontologies by selecting fragments representing semantically complete knowledge
modules.

Modeling diagrams such as those proposed in (Abelló et al., 2006; Franconi &
Ng, 2000) can be very helpful to guide users when defining a MIO. As future work, we
plan to study how they can be coupled with ontology editors and reasoners to facilitate
the creation of MIOs. Another interesting research line is to define appropriated
indexing schemes for SDWs that enable the interaction of reasoners with OLAP tools.

31

Finally, we consider that addressing the temporal aspects of the semantic annotations,
and the incremental consistency checking and reasoning with our MIO-based approach
are also very attractive challenges.

In the future work we plan to carry out a deeper study of alternative
implementations of SDWs. The main drawbacks of the current implementation include
that the data may become outdated due to sources updates and that the extraction and
validation process takes a long time to perform. A problematic issue which is particular
to SDWs is that especially external data may have such a bad quality that the validation
checks may disallow their integration in the materialized data warehouse, even if some
parts of the data have sufficient quality. In this way, the options are either to allow bad
data quality or to refuse some data to be admitted into the SDW.

An alternative to the materialized approach consists of a virtual implementation.
That is, the SDW only exists as a collection of metadata, pointing to the underlying
(external and internal) data sources. The actual extraction of data from the sources is not
done until query time. This also means that the validation and other constraint checks
will have to be done at query time. Here, the main difference from the materialized
implementation is that only the data items and ontology parts directly related to the
specific query being executed are extracted, transformed, and validated. This approach
is quite similar to the virtual OLAP-XML integration engine (Pedersen et al., 2002).
During query processing, a triplestore can be used for intermediate storage and
processing (validation inference, etc.). Again, it will in the long term be more optimal to
develop a dedicated query engine for this particular scenario. Because of the smaller
data volumes, both a triplestore-based and a dedicated solution will be able to perform
almost all processing in main memory. The advantages include that data is always up-
to-date, and that the initial processing cost is lower. Additionally, data that has partially
bad quality can be handled easily as long as the problems do not affect the queries at
hand. The main drawback is that queries will be much slower. To avoid this, a mixed
implementation can be the solution.

Acknowledgements

This work was supported by the Danish Research Council for Technology and
Production, through the framework project “Intelligent Sound” (FTP No. 26-04-0092),
and the Spanish National Research Project TIN2008-01825/TIN.

References

Abelló, A. (2002). YAM2: A Multidimensional Conceptual Model. PhD thesis,
Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de
Catalunya (Spain).

Abelló, A., Samos, J., and Saltor, F. (2006). Yam2: a multidimensional conceptual

model extending UML. Information Systems, 31(6), pages 541-567.

Baader, F. and Sattler, U. (2003). Description logics with aggregates and concrete

domains. Information Systems, 28(8), pages 979-1004.

Bao, J., Caragea, D., and Honavar, V. (2006). Package-based description logics –
preliminary results. International Semantic Web Conference, pages 967-969.

32

Beyer, K., Chambérlin, D., Colby, L. S., Özcan, F., Pirahesh, H., and Xu, Y.(2005).
Extending XQuery for analytics. In Proc. of the ACM SIGMOD International
Conference on Management of Data, pages 503-514.

Borgida, A. and Serafini, L. (2003). Distributed description logics: Assimilating

information from peer sources. Journal on Data Semantics, 1, pages 153-184.

Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., and Stuchenschmidt, H.
(2003). C-OWL: Contextualizing ontologies. Second International Semantic Web
Conference, pages 164-179.

Bruckner, R. M., Ling, T. M., Mangisengi, O., and Tjoa, A. M. (2001). A framework for

a multidimensional OLAP model using topic maps. In Proc. of the 2nd International
Conference on Web Information Systems Engineering, pages 109-118.

Calvanese, D., Giacomo, G. D., and Lenzerini, M. (2001). A framework for ontology

integration. In Semantic Web Working Symposium, pages 303-316.

Choi, N., Song, I-Y, Han H. (2006). A survey on ontology mapping. SIGMOD Record,
35(3), pp 34-41.

Cuenca-Grau, B. and Kutz, O. (2007). Modular ontology languages revisited. In Proc.
of the IJCAI-2007 Workshop on Semantic Web for Collaborative Knowledge
Acquisition.

Cuenca-Grau, B., Parsia, B., Sirin, E., and Kalyanpur, A. (2005). Automatic partitioning

of OWL ontologies using E-connections. In Description Logics, volume 147 of CEUR
Workshop Online Proceedings.

Daconta, M. C., Smith, K. T., and Obrst, L. J. (2003). The Semantic Web: A guide to the

future of XML, web services, and knowledge management. John Wiley and Sons, Inc.,
New York.

Danger, R. and Berlanga, R. (2008). A Semantic Web approach for ontological

instances analysis. Communications in Computer and Information Science, 22, pages
269-282.

Euzenat, J. and Shvaiko, P. (2007). Ontology Matching. Springer-Verlag Heidelberg,
Berlin.

Franconi, E. and Ng, G. (2000). The i.com tool for intelligent conceptual modeling. In
Proc. of the 7th International Workshop on Knowledge Representation Meets
Databases, pages 45-53.

Garwood, K., McLaughlin, T., Garwood, C., Joens, S., Morrison, N., Taylor, C. F.,
Carroll, K., Evans, C., Whetton, A. D., Hart, S., Stead, D., Yin, Z., Brown, A. J.,
Hesketh, A., Chater, K., Hansson, L., Mewissen, M., Ghazal, P., Howard, J., Lilley, K.
S., Gaskell, S. J., Brass, A., Hubbard, S. J., Oliver, S. G., and Paton, N. W. (2004).
PEDRo: a database for storing, searching and disseminating experimental proteomics

data. BMC Genomics, 5(68).

33

Golfarelli, M., Rizzi, S., and Vrdoljak, B. (2001). Data warehouse design from XML

sources. In Proc. of the 4th ACM International Conference on Data Warehousing and
OLAP, pages 40-47.

Harris, S. and Gibbins, N. (2003). 3store: Efficient Bulk RDF Storage. Proc. of the First
International Workshop on Practical and Scalable Semantic Systems, volume 89 of
CEUR Workshop Online Proceedings.

Horrocks, I. and Sattler, U. (2003) Decidability of SHIQ with complex role inclusion

axioms. International Joint Conference on Artificial Intelligence, pages 343-348.

Hu, W., Qu, Y., Cheng, G. (2008). Matching large ontologies: A divide-and-conquer

approach. Data and Knowledge Engineering, 67, pages 140-160.

Hurtado, C. A. and Mendelzon, A. O. (2002). OLAP dimension constraints. In Proc.
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 169-179.

Hurtado, C. A., Gutiérrez, C., and Mendelzon, A. O. (2005). Capturing summarizability

with integrity constraints in OLAP. ACM Transactions on Database Systems, 30(3),
pages 854-886.

Jameson, D., Garwood, K., Garwood, C., Booth, T., Alper, P., Oliver, S., and Paton, N.
(2008). Data capture in bioinformatics: requirements and experiences with Pedro.
BMC Bioinformatics, 9(183).

Jensen, M. R., Møller, T. H., and Pedersen, T. B. (2001). Specifying OLAP cubes on

XML data. Journal of Intelligent Information Systems, 17(2/3), pages 255-280.

Jiménez-Ruiz, E., Berlanga, R., Nebot, V., and Sanz, I. (2007). OntoPath: A Language

for Retrieving Ontology Fragments. In Robert Meersman and Zahir Tari, Eds., Proc. of
On the Move to Meaningful Internet Systems, pages 897-914.

Jiménez-Ruiz, E., Cuenca-Grau, B., Sattler, U., Schneider, T., and Berlanga, R. (2008).
Safe and economic re-use of ontologies: A logic-based methodology and tool support.
In Proc. of the 5th European Semantic Web Conference, pages 185-199.

Kalfoglou, Y. and Schorlemmer, M. (2003). Ontology mapping: the state of the art. The
Knowledge Engineering Review, 18(1), pages 1-31.

Köhler, J., Philippi, S., and Lange, M. (2003). Semeda: ontology based semantic

integration of biological databases. Bioinformatics, 19(18), pages 2420-2427.

Lenz, H., Shoshani, A. (1997). Summarizability in OLAP and statistical data bases.
Ninth International Conference on Scientific and Statistical Database Management,
pages 132- 143.

Louie, B., Mork, P., Martin-Sanchez, F., Halevy, A., and Tarczy-Hornoch, P. (2006).
Data integration and genomic medicine. Journal of Biomedical Informatics 10(1), pages
5-16.

34

Lu, J., Ma, L., Zhang, L., Brunner, J.-S., Wang, C., Pan, Y., and Yu, Y. (2007). SOR: A

practical system for ontology storage, reasoning and search. In Proc. of the 33th
International Conference on Very Large Data Bases, pages 1402-1405.

Lutz, C., Areces, C., Horrocks, I., and Sattler, U. (2005). Nominals, and Concrete

Domains. Journal of Artificial Intelligence 23, pages 667-726.

Mangisengi, O., Huber, J., Hawel, C. and Essmayr, W. (2001). A framework for

supporting interoperability of data warehouse islands using XML. In Proc. of the Third
International Conference on Data Warehousing and Knowledge Discovery, pages 328-
338.

Marian, A., Abiteboul, S., Cóbena, G., and Mignet, L. (2001). Change-centric

management of versions in an XML warehouse. In Proc. of the 27th International
Conference on Very Large Data Bases, pages 581-590.

Mena, E., Illarramendi, A., Kashyap, V., and Sheth, A. P. (2000). Observer: An

approach for query processing in global information systems based on interoperation

across pre-existing ontologies. Distributed and Parallel Databases, 8(2), pages 223-271.

Nebot, V. and Berlanga, R. (2009). Building Ontologies from Very Large Knowledge

Resources. In Proc. Of 11th International Conference on Enterprise Information Systems
(submitted).

Nguyen, T. B., Abiteboul, S., Cóbena, G., and Preda, M. (2001a). Monitoring XML data

on the web. In Proc. of the 2001 ACM SIGMOD International Conference on
Management of Data, pages 437-448.

Nguyen, T. B., Tjoa, A. M. and Mangisengi, O. (2001b). Meta Cube-X: An XML

Metadata Foundation of Interoperability Search among Web Data Warehouses. In
Proc. of the Third International Workshop on Design and Management of Data
Warehouses, volume 39 of CEUR Workshop Online Proceedings.

Pedersen, D., Riis, K., and Pedersen, T. B. (2002). XML-extended OLAP querying. In
Proc. of the 14th International Conference on Scientific and Statistical Database
Management, pages 195-206.

Pedersen, T. B., Jensen, C. S., and Dyreson, C. E. (1999). Extending practical pre-

aggregation in on-line analytical processing. In Proc. of the 25th International
Conference on Very Large Data Bases, pages 663-674.

Pedersen, T. B., Jensen, C. S., and Dyreson, C. E. (2001). A foundation for capturing

and querying complex multidimensional data. Information Systems 26(5), pages 383-
423.

Pérez J.M., Berlanga R., Aramburu M.J. and Pedersen, T.B (2008). Integrating data

warehouses with web data: A survey. IEEE Transactions on Knowledge and Data
Engineering, 20(7), pages 940-955.

Pérez-Rey, D., Maojo, V., García-Remesal, M., Alonso-Calvo, R., Billhardt, H., Martin-
Sánchez, F., and Sousa, A. (2005). Ontofusion: Ontology-based integration of genomic

and clinical databases. Compututers in Biology and Medicine, 36(7-8), pages 712-730

35

Pokorny, J. (2001). Modelling stars using XML. In Proc. of the Furth ACM
International Conference on Data Warehousing and OLAP, pages 24-31.

Priebe, T., and Pernul, G. (2003) Ontology-based integration of OLAP and information

retrieval. In Proc. of the 14th International Workshop on Database and Expert Systems
Applications, pages 610-614.

Roldán-García, M. del M., Aldana-Montes, J.F. (2008). DBOWL: Towards a scalable

and persistent OWL reasoner. In the Third International Conference on Internet and
Web Applications and Services, pages 174-179.

Romero, O., and Abelló, A. (2007). Automating multidimensional design from

ontologies. In Proc. of the 10th International Workshop on Data Warehousing and
OLAP, pages 1-8.

Rubin, D.L., Shah, N.H. and Noy, N.F. (2007). Biomedical ontologies: a functional

perspective. Briefings in Bionformatics 9(1), pages 75-90.

Schaerf, A. (1994). Reasoning with individuals in concept languages. Data Knowledge
Engineering, 13(2), pages 141-176.

Schmidt-Schauss, M. and Smolka, G. (1991). Attributive concept descriptions with

complements. Artificial Intelligence, 48(1), 1-26.

Simitsis, A., Skoutas, D., and Castellanos, M. (2008). Natural language reporting for

ETL processes. In Proc. of the ACM 11th International Workshop on Data Warehousing
and OLAP, pages 65-72.

Skoutas, D., and Simitsis, A. (2006). Designing ETL processes using Semantic Web

technologies. In Proc. of the ACM 9th International Workshop on Data Warehousing
and OLAP, pages 67-74.

Stuckenschmidt, H. and Klein, M. C. A. (2007). Reasoning and change management in

modular ontologies. Data and Knowledge Engineering, 63(2), pages 200-223.

Wang, L., Zhang, A., and Ramanathan, M. (2005). Biostar models of clinical and

genomic data for biomedical data warehouse design. International Journal of
Bioinformatics Research and Applications, 1(1), pages 63-80.

Whoweda. The Web Warehousing and Mining Group. (1997). Retrieved October 14,
2006 from http://www.cais.ntu.edu.sg:8000/˜whoweda.

Xyleme (2001). A dynamic warehouse for XML data of the Web. IEEE Data
Engineering Bulleting, 24(2), pages 40-47.

