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Abstract. The Semantic Web enables companies and organizations to gather huge 
amounts of valuable semantically annotated data concerning their subjects of interest. 
Nowadays, many applications attach metadata and semantic annotations taken from 
domain and application ontologies to the information they generate. From our point of 
view, the concepts in these ontologies could describe the facts, dimensions, categories 
and values implied in the analysis subjects of a data warehouse. In this paper we 
propose the Semantic Data Warehouse to be a repository of ontologies and semantically 
annotated data resources. We also propose an ontology-driven framework to design 
multidimensional analysis models for Semantic Data Warehouses. This framework 
provides means for building an integrated ontology, called the Multidimensional 
Integrated Ontology (MIO), including the classes, relationships and instances that 
represent interesting analysis dimensions and measures. The reasoning capabilities of a 
MIO can be used to check the properties required by current multidimensional 
databases (e.g., dimension orthogonality, category satisfiability, etc.). In this paper we 
also sketch how the instance data of a MIO can be translated into OLAP cubes for 
analysis purposes. Finally, some implementation issues of the overall framework are 
discussed. 
 
Keywords: Data warehouses, Semantic Web, Multi-ontology integration 
 
1. Introduction 
 
The Semantic Web is a rich source of knowledge whose exploitation will open new 
opportunities to the academic and business communities. One of these opportunities is 
the analysis of information resources for decision support tasks such as the 
identification of trends, and the discovery of new decision variables. Semantic 
annotations are formal descriptions of information resources which usually rely on 
widely accepted domain ontologies. The main reason for using domain ontologies is to 
set up a common terminology and logic for the concepts involved in a particular 
domain. Semantic annotations are especially useful for describing unstructured, semi-
structured and text data, which cannot be managed properly by current database 
systems. Nowadays many applications (e.g., medical applications) attach metadata and 
semantic annotations to the information they produce, for example medical image, 
laboratory tests, etc. In the near future, large repositories of semantically annotated data 
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will be available, opening new opportunities for enhancing current decision support 
systems.  

Data warehouse systems are stores of information aimed at analysis tasks. This 
information is extracted from existing databases and is pre-processed to harmonize its 
syntax and semantics. Thus, one of the main purposes of data warehouse systems is the 
integration of information coming from several sources. Afterwards, OLAP systems can 
be applied to efficiently exploit the stored information. Both types of systems rely on 
multidimensional data models, which distinguish the stored measures from the analysis 
dimensions that characterize them. 

In this paper we tackle the problem of combining data warehouse and Semantic 
Web technologies. Our proposal is a framework for designing multidimensional 
analysis models over the semantic annotations stored in a Semantic Data Warehouse 
(SDW). In our approach, an SDW is conceived as a XML repository that includes web 
resources, domain ontologies and the semantic annotations made with them. Being a 
data warehouse, this repository is subject oriented, and therefore it is aimed at recording 
only data that is relevant for specific analysis tasks.  

Our work is being carried out in the context of a larger research project about the 
integration and exploitation of biomedical data provided by clinicians for research tasks. 
The framework presented here is based on the specification of a Multidimensional 
Integrated Ontology (MIO) over the SDW ontologies in order to retrieve the ontology 
classes and instances that will later be used in the multidimensional analysis. To our 
best knowledge, our approach is the first one on addressing the following requirements:  

 Multi-ontology design. Much semantic data is generated in the context of very 
complex scenarios involving several domain ontologies. The framework proposed 
in the paper allows the selection of the concepts needed for the analysis through 
different ontologies.  

 Scalability. As domain ontologies usually have a considerably large size, the 
method for building MIOs must be scalable. We will achieve these scalability 
requirements by extracting only those modules or fragments that are necessary from 
the source ontologies. 

 Formally well-founded approach. In order to keep the semantics and inference 
mechanisms of the source ontologies, the proposed design process relies on 
formalisms that have been widely accepted for the Semantic Web (e.g., Description 
Logics). 

The main contributions of the paper can be summarized as follows: 

1. A framework for designing and building Semantic Data Warehouses. 

2. An application scenario and a running use case to establish the requirements and to 
illustrate the usefulness of our techniques. 

3. A methodology for the design, automatic generation and validation of 
Multidimensional Integrated Ontologies. By integrating the concepts and properties 
of several ontologies coming from the same application domain, a MIO establishes 
the topics, measures, dimensions and hierarchies required by a specific data 
analysis application. 

4. The automatic construction of a multidimensional cube, according to the 
specifications of a MIO, starting from the annotated data stored in the SDW, in 
order to allow the analysis of this data by using traditional OLAP operators. 
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5. The study of several alternatives for implementing the proposed SDW. 

The rest of the paper is organized as follows. Section 2 describes an application 
scenario that motivates our approach. Section 3 reviews the related work including: 
Description Logics, OWL and OLAP; the existing approaches to annotate biomedical 
data; the combination of Semantic Web and data warehouse technologies; and different 
alternatives for exploiting knowledge from multiple ontologies. Section 4 introduces our 
approach to a Semantic Data Warehouse. Section 5 explains the methodology proposed 
for designing Multidimensional Integrated Ontologies and Section 6 gives some 
implementation guidelines. Finally, Section 7 presents some conclusions and future 
work. 
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Figure 1: Generation of semantic annotations in the biomedical domain. 
 

2. Application Scenario & Use Case 

In this section we describe an application scenario for an SDW along with a use case 
that will serve to define the examples of the rest of the paper. By defining this 
application scenario, we will identify a list of requirements that can be considered 
common to many applications of SDWs, and that, therefore, can be applied to prove the 
usefulness of the framework proposed in this paper. 

Our application scenario is Biomedicine in which, at the moment, vast amounts 
of semantically annotated data are being generated by many different types of data 
management systems (see section 3.2). In order to guide the process of semantically 
annotating the data, current data management systems adopt specific application 
ontologies relying on one or more widely accepted domain ontologies. A domain 
ontology is a very large corpus of semantically related data that describe the knowledge 
and vocabularies agreed by the relevant biomedical community. The reader can find a 
good review of the main biomedical ontologies in (Rubin et al., 2007). 

Figure 1 shows the usual process of generating semantic annotations for the data 
elements that biomedical activities produce. The application ontologies that rule the 



4 
 

structure of the semantic annotations are located in the core of the data management 
system. At the cortex part, we find the different types of complex data elements, coming 
from very different biomedical activities and departments, that need to be annotated 
before being exploited in the context of an SDW. Typically, semantic annotations are 
expressed in XML or RDF formats. 

 

 

Figure 2. A fragment of an application ontology for Rheumatology.  
 

In the biomedical scenario, semantically annotated data consists of many 
different types of data (e.g. lab test reports, ultrasound scans, images, etc.) originating 
from heterogeneous data sources. This data also presents complex relationships that 
evolve rapidly as new biomedical research methods are applied. As a consequence, this 
data cannot be properly managed by current data warehouse technology, mainly 
because it is complex, semi-structured, dynamic and highly heterogeneous. 

Figure 2 illustrates an ontology fragment for the Rheumatology domain. As the 
figure shows, a patient may have different rheumatology reports, authored by some 
clinicians, consisting of the results of some blood tests and rheumatologic exams, the 
diagnosis of a disease (defined in the domain NCI ontology) and the proposed 
treatment. The objective of these examinations is to estimate an overall damage index 
by performing some ultrasonography tests. The treatment is modelled as a collection of 
drug therapies, sometimes applied in the affected joints. The joint set is compiled from 
the GALEN domain ontology. The patient has a genetic profile. The cells and genes 
involved in the genetic profiles are described by the GALEN and GO domain 
ontologies, respectively. 

Although in Figure 2 we have used UML to graphically represent the ontology 
fragment, the actual representation formalism will in practice rely on standard 
languages such as RDF/S and OWL. External concepts coming from domain ontologies 
are represented in the UML diagram with shaded boxes, indicating the source ontology 
within the attribute section (e.g. NCI, GO, etc.). Domain ontologies can be used to 
control the vocabulary and to bring further semantics to the annotated data. Table 1 
shows an example of semantically annotated data generated from the application 
ontology of Figure 2 and stored as RDF triples. 
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Subject Predicate Object 

Patient8991u type Patient 

Patient8991u age 15 

Patient8991u sex Male 

Patient8991u has_report RR001u 

RR001u type Rheumatology 

RR001u dateOfVisit 2008/02/22 

RR001u clinicianID Clinician2293u 

RR001u has_Diagnosis RA1 

RA1 label Rheumatoid_Arthritis
NCI

 

RA1 type Disease
NCI

 

RR001u has_Section LBT1234u 

… … … 

Table 1: Application ontology instances stored as RDF triples. 
 

In the context of this application scenario, our aim is to build a warehouse where 
semantically annotated data can be analysed with OLAP-based techniques. As use case, 
we propose to analyse the efficacy of different drugs in the treatment of several types of 
inflammatory diseases, mainly rheumatic ones. The analysts of this use case should 
define the dimensions, measures and facts that will allow the analysis of the semantic 
annotations, gathered from several hospitals and, therefore, expressed with different 
application ontologies. Notice that at this point, the analyst does neither know the values 
nor the roll-up relationships that will eventually be used in the resulting cube. As we 
will show, the framework presented in this paper will capture this information from the 
application and the domain ontologies involved in the analysis. 
 

 
 

Figure 3: Dimensions defined for analyzing rheumatology patients. We use the letter D 
for dimensions, F for facts, M for measures and L for dimension levels.  

 
Figure 3 shows the seven dimensions that we have selected in order to study this use 
case from different points of view, including: the patient’s age and gender, the subtype 
of disease (diagnosis), the biomarkers taken from the patient, the damage index of 
patient´s joints and the drugs administered during the follow-up visits of the patient. 
Since we consider that the relation that exists between disease symptoms and affected 
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body parts is very relevant for the analysis, we have introduced the category Anatomy in 
the disease dimension. The biomarkers of interest include blood cells, blood factors and 
genes. The category Tissue has been similarly introduced in the biomarkers dimension in 
order to relate biomarkers with their associated tissues. 

In this use case, OLAP technologies can be applied to perform useful analysis 
operations over the gathered data, as for example: 

 By applying roll-up operations, we can aggregate data into coarser granularities 
such as drug families, active principles, types of diseases, and so on. On the 
contrary, by means of the available drill-down operations, we can refine each of the 
analysis dimensions to obtain data with a finer granularity. This kind of operations 
can give useful information to the clinicians about the relation between diagnosis 
and  treatment efficacy. 

 By applying selection and projection operations, we can restrict the analysis to 
patient subsets according to criteria based on age, sex, affected body parts, etc. 

In this section we have defined an application scenario and a use case for the SDWs we 
want to achieve. In this scenario we identify the following set of application 
requirements: 

1. Integration of biomedical data, information and knowledge to gain a comprehensive 
view of patients. 

2. Scalable data storage functionalities to store the collected semantic information as 
well as the relevant application and domain ontologies. 

3. Flexible ways of specifying analysis dimensions, measures and facts based on 
medical criteria. 

4. Easy exploration of large domain ontologies considering their implicit semantics, 
and the possible overlapping in their concepts (e.g. mappings). 

In the context of other application scenarios these requirements should not be much 
different, so from our point of view, they can be considered as a basic set of 
requirements for a generic analysis application of an SDW. It is worth mentioning that 
the contributions of this paper described in the introduction are aimed at covering all 
these requirements. 

3. Background and Related Work 

In this section we review the basic concepts involved in the representation, generation 
and storage of semantic annotations of data, as well as some related work about the 
analysis of semantic data.  

3.1. OWL, Description Logics and OLAP 

The Ontology Web Language (OWL) is a language for the specification of ontologies, 
whose definition by the W3C Consortium has empowered the biomedical community to 
develop large and complex ontologies like the NCI thesaurus, GALEN, etc. OWL 
provides a powerful knowledge representation language that has a clean and well 
defined semantics based on Description Logics (DL). Description Logics are a family of 
knowledge representation formalisms devised to capture most of the requirements of 
conceptual modelling. These formalisms are decidable subsets of First Order Logic that 
are expressive enough to capture interesting conceptual modelling properties. The main 
purpose of DLs is to provide a formal theory that can be used to validate conceptual 
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schemata (Franconi & Ng, 2000) of heterogeneous databases (Mena et al., 2000), data 
warehousing design and multidimensional aggregation modelling (Baader & Sattler, 
2003). It is worth mentioning that Baader & Sattler (2003) and Franconi & Ng (2000) 
apply DLs in the context of a traditional warehouse. Our proposal is different; we 
propose to design the warehouse starting from a collection of semantically annotated 
data. We use DLs for helping the warehouse designer to transform ontology fragments 
into analysis dimensions, by testing if these dimensions satisfy a set of properties 
desirable for OLAP applications. 

Let us briefly introduce the basic constructors of Description Logics through the 
basic language ALC (Schmidt-Schauss & Smolka, 1991), which is summarised as 
follows: 

ALC  ::=  ⊥ | A | C | C | C ⊓ D | C ⊔ D | R.C | R.C 

The basic elements of ALC are concepts (classes in OWL notation), which can 
be either atomic (A) or derived from other concepts (expressions C and D). Complex 
concepts are built by using the classical Boolean operators over concepts, namely: and 
(⊓), or (⊔) and not (￢). Value restrictions on the concept individuals (instances in OWL 
notation) are represented through roles (object properties in OWL notation), which can 
be either existential (R.C) or universal (R.C). The universal concept is denoted with 
⊤, whereas the empty concept is denoted with . The empty concept is usually 
associated with inconsistencies and contradictions in the ontology. 

Currently there exist several reasoners that deal with some Description Logic 
languages1, although most of them do not fully support the retrieval of large sets of 
asserted instances. Indeed, the complexity of these reasoners is PSpace-complete, which 
does not guarantee scalability for large domains. 

Additionally, several DL constructors have been proposed to capture the main 
elements of conceptual modelling for databases. For example, concrete domains were 
introduced to account for the usual data types in a conceptual database schema. It has 
been demonstrated that domains like the integers and strings can be easily introduced 
into a DL without losing decidability2 (Lutz et al., 2005). Furthermore, users can state 
features (i.e., relations between instances and values from these domains) with 
predicates expressing value comparisons. OWL languages support these constructors 
via the so-called data type properties. Another interesting constructor for OLAP 
applications is that of role composition, R ∘ P, which recently has been introduced in 
OWL. Role composition allows us to express joined relationships making the 
intermediate involved concepts implicit. Reasoning over role compositions has been 
shown to be decidable (Horroks & Sattler 2003), but it is not fully supported by current 
reasoners yet. 

Concerning data warehouse operations, Baader & Sattler (2003) introduced 
aggregates over concrete domains. The resulting language is called ALC (∑), and extends 
the basic language ALC with concrete domains and a limited set of aggregation 
functions, namely: sum, min, max and count. Aggregates are introduced through complex 
features of the form (R ◦ u), which relate each instance with the aggregate  over all 
the values reachable from R followed by the feature u. For example, we can define the 
following complex feature sum(month ◦ income) to relate instances with their annual 

                                                 
1 See http://www.cs.man.ac.uk/~sattler/reasoners.html for an exhaustive list. More information about DLs can 
be found at http://dl.kr.org/. 
2 This occurs whenever the introduced domain satisfies the so-called admissibility property. 
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incomes. With this complex feature we can ask for employees having annual incomes 
greater than 100,000 Euros by means of the concept: 

 Employee ⊓ year.>(sum(month ◦ income), 100000) 

However, DLs formalisms present important limitations for representing 
complex measures and aggregations. Baader & Sattler (2003) also demonstrate that 
handling aggregates in DLs usually leads to undecidability problems, even for very 
simple aggregates such as sum and count. Moreover, decidable cases present a level of 
computational complexity too high for practical real-world applications. Baader and 
Sattler indicate that some interesting inference problems for multidimensional models, 
such as summarizability, have not been treated by the proposed DLs. Finally, there are 
no reasoners able to deal with the advanced features required by these new constructors. 

Because of these reasons, we propose a new framework to define an integrated 
ontology that will be used to build a multidimensional data schema over which to apply 
the OLAP operations required by the analysis tasks. In this way, summarizability will 
be ensured by building a valid cube from this multidimensional schema so that 
aggregations are performed over it, out of the DL formalism. 

3.2. Annotating biomedical data 

In the biomedical scenario there exist a large number of initiatives for annotating 
biomedical databases for the Semantic Web. For example, in the SEMEDA project, 
Köhler et al. (2003) use a controlled vocabulary and an RDF-like ontology to annotate 
tables, attributes and their domains to derive cross-references between databases. 
ONTOFUSION (Pérez-Rey et al., 2005) is another approach based on the integration of 
local conceptual schemata into a global biomedical ontology. A good review of 
semantic-based approaches for biomedical data integration can be found in (Louie et al., 
2006). It is worth mentioning that most of the current work in biomedical applications 
uses OWL as the representation language for ontologies and semantic annotations. 

Currently, there are several ongoing international projects that are aimed at the 
interchange of massive biomedical data, for example caBig3, openEHR4 and Health-e-
Child5 to mention a few. These projects also concern the semantic annotation of data 
through well-established biomedical ontologies. 

Other previous works propose to use OLAP techniques to analyse biomedical 
data. In (Wang et al. 2005) OLAP operations are applied to discover new relations 
between diseases and gene expressions as well as to find out new classification schemes 
for patients. They also propose the use of well-known domain ontologies (e.g., GO6 for 
classifying genes and OpenGalen7 for classifying diseases) to define analysis 
dimensions. However, the authors do not explain how these ontologies can be translated 
into OLAP dimensions and how factual data can be semantically annotated for analysis. 
 From all the previous works and projects, three logical data layers can be 
identified for the application scenario, namely: the domain ontologies, the data 
schemata and the generated data. All this data and knowledge pieces are eventually 
expressed in XML, using the different standards best suited for each layer: RDF/S and 
OWL for the first one, RDF/S and XML Schema for the second one, and XML for the 

                                                 
3   caBig project: https://cabig.nci.nih.gov/ 
4   openEHR project: http://www.openehr.org/ 
5   Health-e-Child project: http://www.health-e-child.org/ 
6   GO (Gene Ontology): http://www.geneontology.org/ 
7   Galen ontology: http://www.opengalen.org/open/crm/crm-anatomy.html 
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third one. We also follow this logical structure in our approach to designing an SDW 
(see Section 4). 

3.3. Data Warehousing and Semantic Web Technologies 

In this section we review the work that combines data warehouse and Semantic Web 
technologies. We start with two papers that extend the functionality of a data warehouse 
with Semantic Web technologies, and then we consider previous works on analysing 
semantic data with multidimensional data models. 

Priebe & Pernul (2003) propose to use a global ontology to annotate OLAP 
reports and other Web resources such as textual documents. Then, users can 
contextualise OLAP reports by retrieving the documents related to the metadata (search 
keywords) attached to them. Here, the global ontology is expressed in RDF/S and it 
contains domain-specific information along with the values of the hierarchies used in 
the OLAP database. 

Skoutas & Simitsis (2006) work on the automation of the data warehouse’s ETL 
process by applying Semantic Web technologies. They propose to build an ontology 
that uses OWL constructs to describe and relate the source and target data source 
schemata. Afterwards, a reasoner is used for identifying the sequence of operations 
needed to load the warehouse. In a more recent paper, Simitsis et al. (2008) present a 
template-based natural language generation mechanism to transform both the formal 
description of the data sources expressed in the ontology, and the inferred ETL 
operations into a narrative textual report more suitable for the user. 

The works by Priebe & Pernul (2003) and Skoutas & Simitsis (2006) apply the 
Semantic Web infrastructure to extend the functionality of the “traditional” data 
warehouses, but they do not address the analysis of data gathered from semantic 
sources. In contrast, our proposal consists of a method for designing multidimensional 
analysis models over the semantic annotations stored in the SDW. To the best of our 
knowledge, there are only two recent papers aimed at analysing semantic data with 
multidimensional models, (Romero & Abello, 2007) and (Danger & Berlanga, 2008).  

Romero & Abelló (2007) address the design of the data warehouse 
multidimensional analysis schema starting from an OWL ontology that describes the 
data sources. They identify the dimensions that characterize a central concept under 
analysis (the fact concept) by looking for concepts connected to it through one-to-many 
relationships. The same idea is used for discovering the different levels of the 
dimension hierarchies, starting from the concept that represents the base level. In this 
work the input ontology indicates the multiplicity of each role in the relationships; and a 
matrix keeps, for each concept, all the concepts that are related by means of a series of 
one-to-many relationships. The output of the Romero & Abelló’s method is a star or 
snowflake schema that guaranties the summarizability of the data, suitable to be 
instantiated in a traditional multidimensional database. The application of this work is 
valid in scenarios where a single ontology of reduced size, with multiplicity restrictions, 
is used for annotating the source data. However, as discussed in Section 2, a real 
application will usually involve different domain ontologies of considerable large size; 
and unfortunately, the multiplicity information is rarely found in the source ontologies. 

Danger & Berlanga (2008) propose a multidimensional model specially devised 
to select, group and aggregate the instances of an ontology. The result of these 
operations is a set of tuples, whose members are instances of the ontology concepts. 
They also present the adaptation of a feature selection algorithm to discover interesting 
potential analysis dimensions. This algorithm builds the dimension hierarchies by 
selecting the relationships in the ontology that maximize the information gain. Like 
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Romero & Abelló (2007), Danger & Berlanga only consider scenarios with a single 
ontology. 

As it can be observed, both papers are more concerned with the extraction of 
interesting dimensions from isolated ontologies rather than analysing a large set of 
stored SDW annotations. Moreover, in a real-world scenario, the SDW can contain 
annotations defined in several large inter-linked ontologies. Our contribution in this 
context is twofold. First, we define the Semantic Data Warehouse as a new semi-
structured repository consisting of the semantic annotations along with their associated 
set of ontologies. Secondly, we introduce the Multidimensional Integrated Ontology as 
a method for designing, validating and building OLAP-based cubes for analysing the 
stored annotations. 

The development of the Semantic Web relies on current XML technology (e.g, 
XML Schemas and Web Services). In Perez et al. (2008), we surveyed the combination 
of XML and data warehouses. The work on the construction of XML repositories 
(Xyleme; 2001) is particularly relevant to the SDW, since the ontologies and their 
instance data are typically expressed in XML-like formats. Xyleme (2001) addresses the 
problems of gathering, integrating, storing and querying XML documents. In order to 
deal with the high level of dynamicity of web data sources, the Xyleme system allows 
users to subscribe to changes in an XML document (Nguyen et al., 2001), and applies a 
versioning mechanism (Marian et al., 2001) to compute the differences between two 
consecutive versions of an XML document.  

However, XML techniques for change control are not useful for ontologies, as 
we must keep track of non-explicit (i.e. inferred) semantic discrepancies between 
versions. Although some preliminary tools exist, like OWLDiff8), further research must 
be carried out to study the impact of these changes in the SDW design and its derived 
OLAP cubes. In this paper we will not treat ontology versioning as it is out of its scope. 
Thus, we assume that the ontologies stored in the SDW are static. 

3.4. Multi-ontology scenarios 

The application scenario presented in this paper reveals new data acquisition tools being 
applied in the biomedical domain. These tools are increasingly incorporating ontology 
services that allow end-users (e.g. clinicians) to properly annotate data in a standard and 
controlled way. This task is fulfilled by browsing and selecting terms from domain 
ontologies and vocabularies (Garwood et al., 2004, Jameson et al., 2008). In order to 
integrate and analyze the large amounts of semantic annotations generated by these 
tools, we propose the construction of a MIO that gathers only the right amount of 
knowledge from the different domain ontologies that were used to annotate the data.  

A lot of research works have dealt with multi-ontology scenarios, which is the 
key feature of a distributed environment like the Semantic Web. For example, terms and 
works encountered in the literature which claim to be relevant include: mapping, 
alignment, merging, articulation, fusion, integration and so on (Kalfoglou and 
Schorlemmer, 2003). The scope of this paper is not to provide a new framework for 
ontology integration and mapping. Instead, we propose the construction of MIOs 
specifically designed to meet the requirements and restrictions of the application 
scenario presented. However, since there is an extensive literature concerning ontology 
modularization and mapping, we will highlight the main approaches devised to deal 
with several ontologies along with their suitability for our application scenario. Finally, 
we will justify the approach followed to build our MIO framework. 

                                                 
8   OWLDiff: http://sourceforge.net/projects/owldiff 
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OBSERVER (Mena et al., 2000) and OIS (Calvanese et al., 2001) are some of 
the first approaches that tackle the problem of semantic information integration between 
domain specific ontologies. The former system is based on a query strategy where the 
user specifies queries in one ontology's terms and then these queries are expanded to 
other ontologies through relationships such as synonymy, hyponymy and hypernymy. 
The latter also uses the notion of queries which allow for mapping a concept in one 
ontology into an integrated view. However, these approximations are not suitable for 
our application scenario since our aim is to construct a new stand-alone ontology 
composed by pieces or fragments from several ontologies. Therefore, we have studied 
the developments in modular ontologies, since they seem to suit better our purposes. 

E-connections (Grau et al., 2005) is a formalism that was designed for 
combining different logics in a controlled way. It introduces a new family of properties 
called “link” properties which are associated with domains (component ontologies). 
Each domain can declare which foreign ontologies it links to. However, E-connections 
do not allow the specification of subsumption relationships between concepts coming 
from different ontologies and it works only under disjoint domains. Moreover, E-
connections is carried out by extending OWL with new non-standard syntax and 
semantics. The Distributed Description Logics (DDL) formalism (Borgida and Serafini, 
2003) provides mechanisms for referring to ontology concepts and for defining “bridge 
rules” that encode subsumption between concepts of different ontologies. Context OWL 
(C-OWL) (Bouquet et al., 2003) is an extension of DDLs that suggests several 
improvements, such as a richer family of bridge rules, allowing bridging between roles, 
etc. C-OWL also extends OWL syntax and semantics. In contrast, in C-OWL it is not 
allowed to reuse foreign concepts in restrictions as in E-connections.  There is yet 
another approach called Package-based Description Logics (P-DL) (Bao et al., 2006) 
that tries to overcome the limitations introduced by E-connections and C-OWL by 
allowing both subsumption between different ontologies, and foreign concepts in 
restrictions. However, as in the above mentioned approaches, another non-standard 
syntax and semantics is introduced and reasoning support is very restricted.  

In all previous approaches we can observe serious limitations that prevent us 
from using them in the construction of our MIO framework. In first place, they all 
introduce changes to the syntax and semantics of OWL, therefore, all the available 
infrastructure such as OWL parsers and reasoners would need to be extended. 
Moreover, they severely restrict reuse by other organizations and only accept 
customized, non-standard toolsets. Concerning reasoning aspects, reasoning with 
multiple distributed ontologies can arise some problems with respect to completeness 
and performance. Completeness depends on the availability of each local reasoner, 
which in a distributed network could be unreachable. Moreover, the communication 
costs between nodes in the system can become a bottleneck, since communication 
problems can arise. Borgida and Serafini (2003) also establish a connection between DL 
and DDL that allow them to transfer theoretical results and reasoning techniques from 
the classical DL literature under certain circumstances. Unfortunately, their approach to 
construct a global DL ontology implies copying all the axioms of the local ontologies. 
In our application scenario, this approach is not scalable since domain ontologies are 
usually very large and complex. In order to address the problems of previous 
approaches, Stuckenschmidt and Klein (2007) define modular ontologies in terms of a 
subset of DDL and provide rationales for the restrictions applied. They compute 
subsumption relations between external concepts offline and store them as explicit 
axioms in the local ontologies. However, this modular approach can be computationally 
very expensive because in the worst case it has exponential cost. 
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We address the previous limitations by proposing the use of alternative 
techniques to extract fragments and modules from ontologies and combine them in the 
resulting MIO framework, namely: OntoPath (Jiménez-Ruiz et al., 2007) and Upper 
Modules (UM) (Jiménez-Ruiz et al., 2008). The application of these tools provides a 
viable alternative without changing the current Semantic Web infrastructure. In this 
way, ontologies can be expressed using standard OWL syntax and semantics, and 
external tools implementing different modularization algorithms extract a fragment or 
module according to the specific requirements of the target application. As a result, 
module extraction algorithms do not require any change to the OWL semantics. 
Moreover, we overcome the scalability problems that may arise when reasoning with 
several large ontologies by building a MIO that only comprises the relevant knowledge 
(e.g. relevant modules or fragments). Both techniques will be further explained in 
Section 5.3. 

4. An Approach to Semantic Data Warehouses 

We conceive a Semantic Data Warehouse as a semi-structured data warehouse that 
stores ontology-based semantic annotations along with the mechanisms that allow the 
execution of analysis operations over the stored data. The special features of this kind of 
semantically-rich data will require the application of OWL and general XML 
technologies when building and managing the warehouse.  

In Figure 4, we can distinguish several components of the framework proposed 
for designing and analysing the SDW. As we have already stated, the core part of the 
framework uses the SDW ontologies to specify a Multidimensional Integrated Ontology 
suitable for analysis purposes. In the left side of the figure, we can see the processes in 
which the user of the framework (e.g. analyst) actively participates during the design of 
the MIO. In the centre of the figure, we show the tools needed to come up with the MIO 
and with the subsequent multidimensional cube. Finally, the right side of the figure 
shows the logical organization of the data and the schemata of the SDW. We will begin 
by explaining the latter. 

In a real-world scenario, an SDW requires storing the huge amount of annotated 
data to be analysed together with the application ontologies used to generate it. 
However, given the complexity of many applications, application ontologies are usually 
based on one or more community-agreed ontologies, also denoted domain ontologies, 
which should also be part of the warehouse. In this way, the resulting SDW would 
include all the data and knowledge necessary for processing complex analysis queries. 

The four types of data sets that an SDW stores and their relationships (right side of 
Figure 4) are explained in turn: 
 

 A set of domain ontologies that will contain the agreed terminology and 
knowledge about the subject of analysis. In our biomedical scenario, this set 
consists of the ontologies that could be useful for annotating patient data, such 
as UMLS, NCI Ontology, etc. 

 A set of application ontologies needed for generating the data that will be 
stored in the intended data warehouse. These ontologies resemble database 
schemata but they are more flexible in the sense that they allow incomplete, 
imprecise and implicit definitions for the generated data. These ontologies will 
use the domain ontologies to bring proper meaning to their concepts. In a real-
world scenario, application ontologies should be tailored to the requirements of 
the users that will share activities over the generated data. For example, in the 
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biomedical scenario, the application ontology defined by Rheumatology 
clinicians will be quite different from that defined by Cardiology specialists. 

 The set of ontological instances generated from the previous application 
ontologies. This constitutes the main repository of the data warehouse, and it is 
assumed to be the largest part of it. The analysis of ontological instances is the 
main purpose of the SDW, and new tools able to process complex analysis 
operations over them need to be developed. 

 The set of MIO ontologies generated during the design process. These 
ontologies are the core feature of the SDW. They gather together only the 
relevant external knowledge so that later analysis can be performed over the 
ontological instances. MIOs can be thought as alternative analysis perspectives 
over the ontological instances. Further details about their definition, generation 
and validation are given in the next section. 

 

Figure 4. Proposed framework for the design of SDWs. 

In order to generate the MIOs for the SDW, we also need a set of mappings between the 
ontologies whose domains overlap. This is necessary because different application 
ontologies can be using different domain ontologies to denote similar concepts, for 
example NCI or Galen for disease concepts. It is also possible that the analyst specifies 
dimensions with category levels that involve different domain ontologies. Therefore, we 
need mechanisms that reconcile the overlapping concepts borrowed from different 
ontologies.  

In our work, we represent mappings as 7-tuples id, s1, s2, O1, O2, R, , where id 
is the unique identifier of the mapping, s1 and s2 are symbols from ontologies O1 and O2 
respectively, R is the mapping relationship between these symbols, namely: equivalence 
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(≡), subsumption (⊑) and disjointness (), and  is a confidence value in the range 
[0,1], which is usually estimated by the tool that discovered the mapping. From now on, 
an ontology symbol s that is transformed from the ontology O1 to O2 by using a 
mapping m, is denoted with sO1

m

 O2.  
The next section is completely devoted to describing the framework presented in 

Figure 4, which comprises the workflow for building the MIO and performing analysis 
operations over the stored data.  

5. Multidimensional Integrated Ontologies (MIOs) 

In this section we describe a technique for defining multidimensional conceptual 
schemata as a first step to analyze SDWs. A Multidimensional Integrated Ontology 
(MIO) can be considered as a customized ontology whose concepts and roles represent 
dimensions, categories, measures and facts. This ontology must also include all the 
axioms and assertions necessary for validating the intended multidimensional data 
model. As a result, MIOs can be used for both guiding designers in the definition of the 
analysis dimensions, and checking the resulting model for some interesting properties 
which ensure that valid final cubes will result. 
 

 

Figure 5. Analyzing an SDW through a MIO. 
 
Figure 5 shows the intermediate role played by a MIO during the design and analysis of 
an SDW. On one hand, the MIO represents a consistent subset of the data from the 
SDW which covers the requirements stated by the analyst. On the other hand, this 
subset of data is used to build well-formed OLAP cubes for the multidimensional 
analysis. 

Following the notation of Figure 4, the framework workflow has the following 
four phases: 

Phase 1. MIO Definition: In this step, the analyst manually describes the topic of 
analysis, measures and dimensions that constitute the multidimensional 
conceptual schemata. In order to accomplish this task, the analyst applies a 
Symbol Searcher, which retrieves the symbols (concepts and properties) to be 
used in the analysis from the SDW domain ontologies.  

Phase 2. MIO Generation: Once the analyst has defined the MIO, the Module 

Extractor tool automatically generates the corresponding ontology with the 
following elements: 
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1. A set of modules having the necessary knowledge to make inferences with 
the external symbols included in the MIO. For example, the application 
ontology of Figure 2 uses external symbols to define the diagnosis of a 
disease. These symbols come from the NCI ontology, which contains axioms 
that are necessary for reasoning. 

2. A top-level ontology with the knowledge required to integrate the previous 
modules. The top-level ontology is the result of the union of the upper 
modules (UM) extracted from the used domain ontologies in the MIO. 
Additionally, a set of axioms derived from the ontology mappings are 
included to reconcile overlapping concepts. 

3. The local axioms derived from the definitions given by the analyst when 
defining the MIO (Phase 1). 

Phase 3. MIO Validation: To conclude the design phase, the resulting ontology is 
validated in the Consistency Checker tool in order to ensure that it will be able to 
generate the target cubes. If there is any inconsistency, the user is allowed to change 
axioms of the MIO so that a valid cube can be obtained. 

 
Phase 4. Analysis Phase: During this phase, all the instances that will be used for 

generating the facts and dimensions for an OLAP cube, are retrieved by the Instance 

Extractor. Furthermore, there is a complex process called OWLtoMDS which must 
take into account the restrictions of the target OLAP tool (e.g. if it only allows strict 
hierarchies, level stratification, covering hierarchies, etc.) to transform the 
hierarchies of the MIO into suitable ones for analysis. Due to the inherent 
complexity of this task, it is out of the scope of this paper to provide a description of 
these transformations. However, we believe a formal method should be designed, 
which should take into account the analyst preferences regarding the definition of 
category levels, stratification and so on while making the process as easy and 
automatic as possible (Pedersen et al, 1999). Finally, facts are generated by applying 
some Transformations to the retrieved instances so that they conform to the 
multidimensional schema. In this step, ontology mappings can be required to 
transform instances that are non-compliant with the MIO. As a result, the final 
OLAP cube is generated. In the next subsections we will discuss the details of the 
design phase of the proposed methodology by means of a running example. 

5.1. Phase 1: Defining the MIO 

A MIO definition specifies a set of dimensions and measures that can be extracted from 
the Semantic Data Warehouse ontologies. The design process proposed here consists of 
five steps in which the analyst applies the available ontologies to design a new one with 
the elements needed for analysis task. The five steps are as follows: to select the topic of 
analysis, to specify the dimensions of analysis, to select the measures, to define 
potential roll-up relationships, and finally, to specify the instances to be analysed. We 
will develop the use case specified in Section 2 in order to illustrate the steps of the 
design process of the MIO. Remember that the objective of the use case is to analyse the 
efficacy of different drugs in the treatment of several types of inflammatory diseases, 
mainly rheumatic ones.   
 
Step 1. In the first step, the topic of analysis is defined by selecting the concepts that are 
the focus of the analysis from the application ontologies. We denote by CO a concept C 
taken from the ontology O. In our running example, the chosen concept is Patient

Rheuma. 



16 
 

Notice that Patient
Rheuma represents all the patients defined in the Rheumatology 

application ontology. 
 
Step 2. Next, the concepts that will be used in the dimensions of analysis must be 
specified (see Table 2). In this step, the local concepts of the categories in each 
dimension are first defined and then related to the external concepts coming from the 
ontologies used for the stored annotations. The following table shows the concepts 
selected for defining the dimensions included in the MIO specified for the analysis case 
of our running example.  
 

Dim. Description Associated local concepts Associated external concepts 

D1 Diseases associated to body parts {Disease
LOCAL

, Anatomy
LOCAL

} {Disease
LOCAL ⊑ 

Rheumatoid_Arthritis
NCI

, 

Anatomy
LOCAL

  ⊑ 

Anatomy_Kind
NCI 

} 

D2 Drugs used in treatments {Drug
LOCAL

} { Drug
LOCAL

 ⊑  Drug
UMLS

} 

D3 Patient age {Age
LOCAL

, AgeGroup
LOCAL

}  

D4 Patient sex {Sex
LOCAL

}  

D5 Biomarkers associated to tissues {Biomarker
LOCAL

, Tissue
LOCAL

} { Biomarker
LOCAL ⊑ 

AbsoluteMeasurement
GALEN

, 

 Biomarker
LOCAL

 ⊑ 

Gene
UMLS_GENE

, Tissue
LOCAL

 ⊑  

Tissue
GALEN

, 

Tissue
LOCAL

 ⊑  Tissue
NCI

 } 

D6 Damage Index {DamageIndex
LOCAL

, 

DamageIndex_Group
LOCAL

} 

 

D7 Follow-up (number of visit) {NumberOfVisit
LOCAL

}  

Table 2. Concepts associated to the ontology dimensions and external concepts they 
relate to. 

 
In order to relate these local concepts to external ones, a set of axioms has been stated 
(see col. 4 of Table 2). For example, the axiom Disease

LOCAL
 ⊑ Rheumatoid_Arthritis

NCI 
states that the symbols used for the disease dimension will be the same as those used in 
the domain ontology NCI under the concept Rheumatoid_Arthritis. Then, it will be 
possible to do the same inferences over these symbols as over the original ontology. In 
other words, the semantics given by the NCI ontology is assumed for our Disease 
dimension.  

As for dimension D5, the analyst wants to relate biomarkers (e.g. blood indicants 
and genes) to tissues. We have performed a review of the main biomedical ontologies 
searching for this kind of information and we have found GALEN to contain 
information about blood indicants and its relation to tissues (this relation is trivial since 
blood indicants measure blood cells, which are found in blood tissue). However, we 
have not found one or more ontologies that explicitly relate genes to specific cells or 
tissues. Thus, we have decided to define a tailored ontology that contains this 
information. Both the classification of genes and cells have been taken from UMLS. 
Then, we have manually established the corresponding relations based on the literature. 
We have named this ontology UMLS_GENES. 



17 
 

It is important to notice that in the application ontology of our example, there are 
no concepts associated with Age, so the dimension D3 must be derived from the data 
type property age. In this case, we have created the new concept Age whose instances 
will be derived from age range values. The concept AgeGroup is defined locally to 
account for the different patient age groups, for example: newborn, child, juvenile, adult 
and elderly people. The transformation of numerical values into Age instances is 
performed during the construction of the OLAP cube.  
 
Step 3. The next step of the process consists of selecting the candidate measures coming 
from the data type properties existing in the application ontology. In our running use 
case, the DamageIndex could be a measure. The measure that counts the number of 
affected cases, like the other aggregation measures (e.g.: sum, avg, etc.), cannot be 
specified at this stage due to the DL expressivity limitations. This kind of measures will 
be defined and calculated during the analysis phase over the cube built from the MIO. 
As a consequence, measures are treated as dimensions in the MIO, like in (Pedersen et 
al., 2001). 
 
Step 4. Roll-up relationships are the next elements to be defined. Local roll-up 
properties are represented as R_Ci_Cj, denoting that instances of the concept Ci will be 
rolled-up to instances of the concept Cj. As Table 2 shows, the local concepts 
Disease

LOCAL and Anatomy
LOCAL have been defined to represent the categories of dimension 

D1. Then, the roll-up relationship R_Disease_Anatomy
LOCAL  is created and relates both 

categories through the next local axiom: 

Disease
LOCAL

 ⊑  R_Disease_Anatomy
LOCAL

.Anatomy
LOCAL 

which restricts the local concept Disease to roll up to an Anatomy concept. Analogous 
axioms are added for the rest of dimension categories. In Step 2 both local concepts  
have associated to external ones (Rheumatoid_Arthritis

NCI and Anatomy_Kind
NCI 

respectively). Therefore, the system will try to find an external roll-up relationship (e.g. 
path of subsequent concepts and properties) in external ontologies that connects both 
external concepts. In this case, the following path has been found: 

Rheumatoid_Arthritis
NCI 

/ Disease_Has_Associated_Anatomic_Site
NCI   

/ Anatomy_Kind
NCI

  

Therefore, the following axiom associates the local roll-up property defined with the 
external roll-up property found in the ontology: 

Disease_Has_Associated_Anatomic_Site
NCI   ⊑  R_Disease_ Anatomy

LOCAL 

Table 3 shows the set of local roll-up relationships along with their corresponding 
external ones defined for each dimension of the running example. 
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Dim. Local roll-up relationship External roll-up relationship 

Axiom associating local and external  roll-ups  

D1 R_Disease_ Anatomy
LOCAL

 Rheumatoid_Arthritis
NCI 

/ 

Disease_Has_Associated_Anatomic_Site
NCI   

/ 

Anatomy_Kind
NCI

  

Disease_Has_Associated_Anatomic_Site
NCI   ⊑  

R_Disease_ Anatomy
LOCAL

 

D3 R_Age_AgeGroup
LOCAL

  

D5 R_Biomarker_Tissue
LOCAL

 Gene
UMLS_GENE

 / Located_In
UMLS_GENE

 / Cell
UMLS_GENE

 m
 NCI

/ 

Anatomic_Structure_Is_Physical_Part_Of
NCI

 / Tissue
NCI

 

Located_In
UMLS_GENE

 ∘ 
Anatomic_Structure_Is_Physical_Part_Of

NCI
  ⊑ 

R_Biomarker_Tissue
LOCAL

 

D5 R_Biomarker_Tissue
LOCAL

 AbsoluteMeasurement
GALEN 

/ 

isCountConcentrationOf
GALEN

 / Cell
GALEN

 / 

isInSuspensionWithin
GALEN

 / Tissue
GALEN

 

isCountConcentrationOf
GALEN

 ∘ isInSuspensionWithin
GALEN

  ⊑ R_Biomarker_Tissue
LOCAL

 

D6 R_DamageIndex_DamageI

ndexGroup
LOCAL

 

 

Table 3. Roll-up axioms defined for the MIO of the use case. We use the DL constructor ∘ to 

represent the role composition. Additionally, we use  s
O1

m

 O2 to denote a transformation of symbol s 

from ontology O1 to O2 by using a mapping m.  
 
The local axioms that represent roll-up relationships are defined, when possible, 
composing roles (object properties) from the external ontologies. The external roll-up 
relationship found for R_Biomarker_Tissue

LOCAL  involves two different ontologies 
(UMLS_GENE and NCI). We have made use of mappings in order to relate cells of 
both ontologies.  
 
Step 5. In the last step of the MIO design process, the instances to be analyzed are 
specified through a local concept that involves all the dimensions and measures 
previously defined: 

Patient
LOCAL

 ≡ hasDim_D1
LOCAL

. Disease
LOCAL 

 ⊓  hasDim_D2
LOCAL

.Drug
LOCAL

 ⊓ 

hasDim_D3
LOCAL

.Age
LOCAL

 ⊓ hasDim_D4
LOCAL

.Sex
LOCAL

 ⊓ hasDim_D5
LOCAL

.Biomarkers
LOCAL

 ⊓  

hasDim_D6
LOCAL

.DamageIndex
LOCAL

 ⊓ hasDim_D7
LOCAL

.NumberOfVisit
LOCAL

  

Additionally, a set of local axioms must be stated to relate dimension properties to 
external properties. Table 4 shows the axioms proposed for the running example. It is 
worth mentioning that D5 (biomarkers) involves three different parts of the application 
ontology, namely: blood cell, factors and genes. 
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Dim. Axioms associated to cube definition 

D1  has_Report
Rheuma ∘ has_diagnosis

Rheuma
 ⊑ hasDim_D1

LOCAL
 

D2 has_Report
Rheuma ∘ has_Section

Rheuma ∘ has_therapy
Rheuma ∘ has_drug

Rheuma   ⊑ 

hasDim_D2
LOCAL

 

D3 age
Rheuma

 ⊑ hasDim_D3
LOCAL

 

D4 sex
Rheuma

 ⊑ hasDim_D4
LOCAL

 

D5 has_Report
Rheuma ∘ has_Section

Rheuma ∘ measures_indicant
Rheuma ∘ 

has_Blood_Cell
Rheuma

 ⊑ hasDim_D5
LOCAL

 

D5 has_Report
Rheuma ∘ has_Section

Rheuma ∘ measures_indicant
Rheuma ∘ 

has_Blood_Factor
Rheuma

 ⊑ hasDim_D5
LOCAL

 

D5 has_Profile
Rheuma ∘ related_gene

Rheuma
 ⊑ hasDim_D5

LOCAL
 

D6  has_Report
Rheuma ∘ has_Section

Rheuma ∘ DamageIndex
Rheuma 

 ⊑ hasDim_D6
LOCAL

 

D7 has_Report
Rheuma ∘ dateOfVisit

Rheuma 
 ⊑ hasDim_D7

LOCAL
 

Table 4. Axioms associated with the intended facts of the target cube. 
 

5.2   Phase 2: MIO generation 

After completing the design of the MIO, the analyst has defined the topic of the 
analysis, the external concepts associated with dimensions, the roll-up relationships 
between dimension concepts and their links to external properties. Next, the system will 
automatically generate the MIO. This will consist of the following three elements: 
 

( )
Di

MIO LocalAxioms Di TopicAxioms ExternalAxioms


  

 

The set of local axioms for each dimension Di, denoted LocalAxioms(Di), will be built 
as the union of all the relevant specifications of the design process. For example, for the 
dimension D1 we have: 

LocalAxioms(D1)={  

Disease
LOCAL

 ⊑ Rheumatoid_Arthritis
NCI

,  

Disease
LOCAL

  ⊑  R_Disease_Anatomy
LOCAL

.Anatomy
LOCAL

,  

Anatomy
LOCAL

 ⊑ Anatomy_Kind
NCI

,  

Disease_Has_Associated_Anatomic_Site
NCI   ⊑  R_Disease_ Anatomy

LOCAL
, 

has_Report
Rheuma ∘ has_diagnosis

Rheuma
 ⊑ hasDim_D1

LOCAL 

} 

 
The TopicAxioms will also be built from the specifications previously made for the topic 
of analysis and the measures. In our example, we will have: 

 
TopicAxioms = { 

Patient
LOCAL

 ≡   hasDim_D1
LOCAL

. Disease
LOCAL 

 ⊓  hasDim_D2
LOCAL

.Drug
LOCAL

 ⊓ 

hasDim_D3
LOCAL

.Age
LOCAL

 ⊓  hasDim_D4
LOCAL

.Sex
LOCAL

 ⊓ hasDim_D5
LOCAL

.Biomarkers
LOCAL

 ⊓  

hasDim_D6
LOCAL

.DamageIndex
LOCAL

 ⊓ hasDim_D7
LOCAL

.NumberOfVisit
LOCAL

 } 
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Therefore, at this stage it only remains to generate the ExternalAxioms element. The 
following section deals with this issue, and the subsequent section explains how to 
validate the resulting ontology. 

5.3. Bringing external knowledge to the MIO 

Concepts that will be used in the different dimensions are defined locally, but the user 
defines them in terms of the concepts located in external ontologies. Thus, a MIO 
consists of all the local axioms asserted by the user plus external knowledge that can 
affect the symbols of the MIO. It is desirable to integrate this external knowledge 
because of three reasons: 
 
1. Semantic annotations made with symbols from domain ontologies can imply 

definitions and relationships that are implicit. Thus, by enriching the MIO with new 
hierarchical dimensions relying on the relationships provided by domain ontologies, 
we can discover implicit knowledge. In other words, bringing in the knowledge 
related to the symbols of the warehouse semantic annotations, allows us to infer 
implicit fact-dimension relationships useful for analysis. 

 
2. Given that a MIO contains a set of external axioms that provides a consistent and 

simplified version of the original ontologies focused on a topic of analysis, it 
constitutes a piece of knowledge that can be reused. For example, this MIO can be a 
good starting point to guide users in the definition of a multidimensional cube for 
analysis purposes. There exists some preliminary work in this line that could benefit 
from MIOs (e.g. Romero & Abelló 2007). 

 
3. A MIO is a new consistent ontology that derives from the SDW ontologies. This 

means that it can contain new concepts and roles that must be satisfiable with 
respect to the semantics of the original ontologies. We assume that the original 
ontologies are already consistent, and therefore satisfiability must be checked only 
for the MIO local concepts. In this way, although large MIOs can be defined by re-
using existing knowledge, the cost of checking it for consistency is limited to the 
new concepts introduced by the analyst. 

The construction of the MIO with external knowledge coming from the domain 
and application ontologies is carried out by using both the query language OntoPath 
(Jimenez-Ruiz et al., 2007) and some module extraction approaches recently proposed 
in (Jimenez-Ruiz et al., 2008). 

OntoPath is a novel retrieval language for specifying and retrieving relevant 
ontology fragments. This language is intended to extract customized stand-alone 
ontologies from very large, general-purpose ones.  In a typical OntoPath query, the 
desired detail level in the concept taxonomies as well as the properties between 
concepts that are required by the target applications are easily specified. The syntax and 
aims of OntoPath resemble XPath’s in the sense that they are simple and they are 
designed to be included in other XML-based applications (e.g. transformations sheets, 
semantic annotation of web services, etc.).  In our approach for building the MIO, 
OntoPath is used to retrieve the different dimension hierarchies along with the 
corresponding roll-up properties from the domain ontologies used to annotate patients. 
The retrieval of these ontology fragments is based on the analysis dimensions proposed 
by the analyst. Following the running example, the following queries would be run in 
order to extract the dimension hierarchies: 



21 
 

 
D1     Rheumatoid_Arthritis

NCI 
/ Disease_Has_Associated_Anatomic_Site

NCI
/ Anatomy_Kind

NCI    

D2     Drug
UMLS    

D5    Gene
UMLS_GENE

 / Located_In
UMLS_GENE

 / Cell
UMLS_GENE

 m
 NCI

 /  

Anatomic_Structure_Is_Physical_Part_Of
NCI

 /Tissue
NCI 

D5     AbsoluteMeasurement
GALEN

 / isCountConcentrationOf
GALEN

 / Cell
 GALEN

 / 

isInSuspensionWithin
GALEN

 /Tissue
GALEN

 

 
As it can be observed, through simple path queries of subsequent concepts and 
properties, we obtain the fragments corresponding to the different dimension 
hierarchies. Notice that we make use of mappings in D5 in order to connect overlapping 
concepts in different ontologies. OntoPath is also used for extracting the part of the 
application ontology schema relevant for analysis purposes; the concepts and properties 
that define the facts of analysis. In our example, the OntoPath query shown in Figure 6 
is evaluated to determine the relevant elements of the application ontology involved in 
the analysis task. 

 
Patient

Rheuma
   

[age
Rheuma 

] 

[sex
Rheuma

] 

[has_Profile / * / related_gene / * ] 

 [ has_Report
Rheuma 

/ *  

 [ has_diagnosis
Rheuma 

/ *]  

 [dateOfVisit
Rheuma 

/ *  ] 

  [ has_Section
Rheuma 

/ * 

[DamageIndex
Rheuma 

 ] 

[has_therapy
Rheuma 

/ *  

[ has_drug
Rheuma 

/ *
  
] 

[measures_indicant
Rheuma 

/ *  

[ has_Blood_Cell
Rheuma

 / * ] 

[ has_Blood_Factor
Rheuma 

/* ] 

           ]  

  ] 

 ] 

Figure 6. OntoPath query for the application ontology of the use case. In OntoPath, the 
symbol “*” denotes any concept, and nested expressions (e.g. tree branches) are in 

brackets like in XPath.  
 
Moreover, we use a logic-based approach of modular reuse of ontologies to extract the 
upper knowledge of all the external symbols that appear in the MIO.  This modular 
approach is safe, since the meaning of the imported symbols is not changed, and 
economic, since only the module relevant for a given set of symbols (called signature) is 
imported. They also guarantee that no entailments are lost compared to the import of the 
whole ontology. We particularly extract Upper Modules (UM), which are based on ⊥-
locality and are suitable for refinement. That is, we extract the upper knowledge of all 
the external symbols of the MIO.  
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In our use case, we group the external symbols according to the external 
ontologies they are pointing to. Then, a module containing the upper knowledge of each 
signature is extracted. The external signatures for our use case are the following ones: 

 
Sig

Rheuma
={Patient

Rheuma
}   

Sig
NCI 

= { Disease_Has_Associated_Anatomic_Site
NCI

 , Cell
NCI

, Tissue
NCI

, Anatomy_Kind
NCI

,  

Rheumatoid_Arthritis
NCI

, Anatomic_Structure_Is_Physical_Part_Of
NCI

}  

Sig
UMLS_GENE

 = { Gene
UMLS_GENE

, Located_In
UMLS_GENE

, Cell
UMLS_GENE

 }   

Sig
GALEN

 = {AbsoluteMeasurement
GALEN

, isCountConcentrationOf
GALEN

,  Cell
GALEN

, 

isInSuspensionWithin
GALEN

, Tissue
GALEN

} 

The top knowledge ontology is composed by the union of the upper modules 
extracted plus some additional axioms derived from the stored mappings that allow 
merging the upper knowledge of overlapping concepts. Mappings are stored in the data 
warehouse as 7-tuples id, s1, s2, O1, O2, R, , where s1 and ss are symbols from 
ontologies O1 and O2 respectively,  is a confidence value  and R is the mapping 
relationship between these symbols, namely: equivalent (≡), subsumption (⊑) and 
disjointness (⊥). For each pair of top knowledge concepts s1, s2 for which a mapping is 
recorded, we add the corresponding axiom according to the mapping relationship: 
equivalentTo(e1, e2) for (≡), subClassOf(e1, e2) for (⊑) and disjoint(e1, e2) for  (⊥).  

As an example of the type of knowledge extracted with the previous approaches, 
in Figure 7, we show a fragment of the axioms extracted with the UM approach and the 
OntoPath tool about the concept Rheumatoid_Arthritis under Disease

NCI. 
 

Upper Module  Ontopath-based Module 

Rheumatoid_Arthritis ⊑  Autoimmune_Disease 

 

Autoimmune_Disease ⊑  Immune_System_Disorder 

 

Immune_System_Disorder ⊑ 

Non-Neoplastic_Disorder_by_Special_Category 

 

Non-Neoplastic_Disorder_by_Special_Category ⊑   

Non-Neoplastic_Disorder 

 Rheumatoid_Arthritis ⊑ 

 Disease_Has_Associated_Anatomic_Site. 

Connective_and_Soft_Tissue 

 

Stills_Disease ⊑ Rheumatoid_Arthritis 

 

Oligoarticular_Stills_Disease ⊑ Stills_Disease 

 

Synovial_Membrane ⊑ 

Connective_and_Soft_Tissue 

Figure 7. External knowledge involved in Rheumatoid_Arthritis. 

Finally, in the current implementation, the MIO is composed by a set of OWL files 
connected through “import” statements gathering together the local axioms, topic 
axioms and external axioms. 

5.4. Phase 3: MIO Validation 

The MIOs are validated at two levels: schema and instance. At the former level, we 
check that the generated ontology is consistent with respect to all the asserted axioms: 
local and external ones. If the ontology is not consistent, then we cannot generate a 
valid OLAP cube for it and the ontology should be fixed. For this purpose, it is 
necessary to detect invalid dimensions that constitute potentially not valid cubes. At the 
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second level, once the multidimensional ontology is validated, it must be populated with 
instances from the data warehouse. The issues of this process will be explained in the 
following section. 

A MIO is a formal ontology in which all the knowledge has been included in order 
to perform the appropriate inferences and queries. This knowledge can also be used for 
checking certain properties and in this way, ensuring that not-valid final cubes will not 
result. In (Hurtado & Mendelzon, 2002) a set of structural constraints are applied to 
check some interesting properties of heterogeneous dimensions. These properties could 
be checked over the MIO ontology to indicate to the analyst that potential problems 
could arise in the final OLAP-based cube. Unfortunately, some of these properties can 
only be checked once the cube is formed (e.g. summarizability) as they depend on the 
specific dimension values and aggregation functions defined for the target cube. The set 
of properties that we can check in the multidimensional ontology are the following: 
 
 Disjointness. The member set of two categories belonging to the same dimension 

must be disjoint. Notice that with this constraint Stratification is also achieved, as 
any instance of a category can only roll up to an upper category instance. 

 

 Category satisfiability. Another inference problem stated in (Hurtado & 
Mendelzon, 2002) is the satisfiability of a category in a dimension schema. 
Basically, this means that at least there exists an instance of the schema in which the 
member set of the category is not empty. This is equivalent to the problem of 
checking the satisfiability of the dimension classes with respect to the axioms of the 
MIO. 

 
 Shortcut free. This property is also known as “non-covering” in the OLAP 

literature (Pedersen et al. 2001). A shortcut occurs when a fact can be rolled up from 
a category Ci to another Cj without passing through an intermediate category Cx that 
connects both of them. This is true when the MIO contains the roles R_Ci_Cx , 
R_Cx_Cj and R_Ci_Cj. In other words, the graph formed by the concepts (nodes) and 
the set of roll-up relationships (edges) of each dimension, must not contain 
redundant edges. Moreover, ensuring that this graph is connected, and assuming that 
every instance can roll up to an instance of the concept Thing (⊤), we also ensure the 
Up-Connectivity property.  

 

 Orthogonality. This is the property of having a set of dimensions without 
dependency relationships. Dimension dependencies produce sparse cubes, as many 
combinations of dimension values are disallowed. Having dependent dimensions is 
considered a bad conceptual design (Abelló, 2002), although sometimes this is 
desired by the designer. In our case, we have to check when two categories of 
different dimensions are somehow related. Thus, first it must be ensured that the 
concepts of two different dimensions are all disjoint, and second that there does not 
exist any chain of properties relating two concepts of different dimensions (Romero 
& Abelló, 2007). 

 

 Summarizability (Lenz & Shoshani, 1997). The only way to achieve this property 
is by ensuring all the previous properties plus the functionality of all the roll-up 
properties. As it is difficult to ensure functionality from the original ontologies, this 
property will be checked over the final generated facts and dimensions. Notice that 
some multidimensional models (e.g. Pedersen et al., 2001) are able to deal with 
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many-to-many relationships. This means that forcing functionality will depend on 
the features of the target multidimensional model. 

 
In the running example, disjointness is achieved by asserting the following axiom: 

alldisjoint( Disease
LOCAL

,Anatomy
LOCAL

, Biomarker
LOCAL

,Tissue
LOCAL

, Age
LOCAL

, AgeGroup
LOCAL

, , 

Sex
LOCAL

, Drug
LOCAL

, Follow-up
LOCAL

, DamageIndex
LOCAL

, DamageIndexGroup
LOCAL

) 

The resulting MIO is satisfiable and shortcut free. However, it can be demonstrated by 
using the axioms of the MIO that dimensions D1 and D5 are dependent, and therefore 
not completely orthogonal. For example, the following axioms show a dependency 
between the disease RA and the biomarker IL6: 

 Rheumatoid_Arthritis ⊑  Disease ⊓ 
    Disease_Has_Associated_Anatomic_Site. 
Connective_and_Soft_Tissue 

 Connective_and_Soft_Tissue ⊑ Tissue 

 IL6 ⊑ Biomarker ⊓  Expressed_In_Cell.Synovial_Cell 

 Synovial_Cell  ⊑  Cell ⊓ Anatomic_Structure_Is_Physical_Part_Of.Synovial_Membrane 

 Synovial_Membrane  ⊑  Connective_and_Soft_Tissue 

Here, we can conclude that both concepts are related somehow with 
Connective_and_Soft_Tissue. Similarly, we can find some dependency between RA and 
blood sample biomarkers as RA is an autoimmune disease that mainly affect to 
macrophage cells in the blood. Indeed, the original definition of biomarker is that it 
provides clues to diagnose a disease, thus the strong dependency between both 
concepts. 

5.5. Phase 4: OLAP-based analysis 

Before building the target OLAP-based cube, the MIO must be properly populated with 
the instances from the Semantic Data Warehouse that satisfy both the MIO and the set 
of specific roll-up relationships between them. This process consists of two phases: (1) 
the retrieval of ontological instances from the data warehouse, and (2) the 
transformation of the instances with an appropriate granularity for the OLAP cube. 
Additionally, the cube dimensions and their possible categories must be also built from 
the MIO concepts and roles. Subsequent sections describe these aspects with detail. 

5.5.1. Instance Retrieval 

Application ontology instances are stored in a RDF triple store like 3store (Harris and 
Gibbins, 2003) as shown in Table 1. The objective of this phase is to retrieve the 
appropriate instances that can populate the MIO. In order to accomplish this task we 
have considered two approaches. The first one seems the most straightforward and 
consists of using the triple store reasoning capabilities in order to extract all the required 
instances. A triple store such as 3store claims to support efficient processing of RDQL 
queries and RDF(S) entailments (RDF(S) entailments are not implemented in SparQL, 
the successor of RDQL). Therefore, it is trivial to translate the OntoPath query of Figure 
6 into a set of RDQL queries that use the reasoning capabilities provided to extract the 
instances. However, some experiments have demonstrated that this kind of triple store is 
not scalable when dealing with RDF(S) entailments over ontologies of considerable size 
(e.g. a few thousand concepts and properties). Thus, a more long term solution must be 
devised. 
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 The second approach consists of leaving the RDF(S) entailments to OntoPath 
and use the triple store with the inference capabilities off.  The OntoPath query of 
Figure 6 used for extracting the part of the AO schema relevant for analysis purposes is 
the one that dictates the instances to be retrieved from the SDW. The result of the above 
mentioned query is twofold. On one hand, OntoPath returns the sub-ontology that 
matches the query in the form of OWL primitives. This feature is useful when 
extracting the AO schema as well as the different fragments corresponding to the 
dimension hierarchies from domain ontologies in order to build the MIO. On the other 
hand, OntoPath can present the result of a query as a result set consisting of all the 
different sub-graphs of an ontology that match the query (RDFS entailments). Then, 
every OntoPath sub-graph from the result set can be translated into an appropriate RDF 
query language, such as SparQL. That is, every possible sub-graph returned by 
OntoPath corresponds to a SparQL query without RDFS entailments.  Figure 8 shows 
part of the OntoPath query for our use case, the OntoPath result set and the translation 
of each sub-graph into SparQL. 
 
OntoPath Query 

Patient
Rheuma

  [has_Report
Rheuma 

/ * / has_Section
Rheuma 

/ * / has_therapy
Rheuma 

/ * / has_drug
Rheuma 

/ *
  
] 

OntoPath Result Set (sub-graphs matching) SparQL Translation 

Patient
Rheuma

  [has_Report
Rheuma 

/ 

Rheumatology_Report / has_Section
Rheuma 

/ 

Treatment / has_therapy
Rheuma 

/ Drug_Therapy / 

has_drug
Rheuma 

/ Drug
UMLS  

] 

 

SELECT * 

WHERE { 

 ?person type Patient . 

 ?person has_Report ?report . 

 ?report type Rheumatology_Report . 
 ?report has_Section ?section . 

 ?section type Treatment . 

 ?section has_therapy ?t . 

 ?t type Drug_Therapy . 

 ?t has_drug ?drug . 

 ?drug type DrugUMLS  

} 

Patient
Rheuma

  [has_Report
Rheuma 

/ 

Rheumatology_Report / has_Section
Rheuma 

/ 

Treatment / has_therapy
Rheuma 

/ Joint_Injections 

/ has_drug
Rheuma 

/ Drug
UMLS  

] 

 

SELECT * 

WHERE { 

 ?person type Patient . 

 ?person has_Report ?report . 

 ?report type Rheumatology_Report . 
 ?report has_Section ?section . 

 ?section type Treatment . 

 ?section has_therapy ?t . 

 ?t type Joint_Injections . 

 ?t has_drug ?drug . 

 ?drug type DrugUMLS  

} 

Figure 8. Translating from OntoPath sub-graphs into SparQL. Notice the OntoPath query 
results in two sub-graphs since the range of has_therapy

Rheuma matches Drug_Therapy and also 
Joint_Injections, which is a subclass of Drug_Therapy. 

 

5.5.2. Instance transformations 

There are two kinds of transformations that must be applied to the retrieved instances 
and values in order to obtain consistent MIO instances, namely: 1) to convert data type 
values (or data type property ranges) into new instances and, 2) to change instance 
identifiers and instance types according to the existing mappings. 
 The first kind of transformation is applied when a roll-up property is required 
over values instead of instances. For example, to roll up the feature hasAge into 
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ageGroup we first need to convert ages (integer numbers) into instances, for example the 
value 32 is converted into the instance Age_32. This instance belongs to the class 
Age

LOCAL which has been defined in the MIO. Now, we can assert that Age_32 rolls up to 
the instance adult through the role R_Age_AgeGroup. 

The second kind of transformations allows instances coming from different 
application ontologies to be expressed in the same terms within the MIO. This is 
performed by applying the existing mappings between the domain ontologies. For 
example, in our use case we have adopted NCI to represent disease concepts. If we want 
to include instances from an application ontology that uses GALEN for representing 
diseases, then we need to translate their instances to NCI terminology. This means to 
change their names as well as their types to NCI vocabulary. 

Notice that mapping-based transformations can produce both incomplete and 
imprecise facts. Incomplete facts can be generated if the class of an instance has no 
(direct or inferred) mapping associated to the target ontology. Imprecise facts are 
generated when the mapping is inherited (i.e. it occurs for some super-class of the 
instance’s class), and therefore the instance must be expressed with a broader concept. 

Another required transformation for instances consists of changing the detail 
level at which they are expressed in the ontologies. For example, in the application 
ontology shown in Figure 2, all the instances related to drugs are borrowed from the 
domain ontology UMLS, but their type within the application ontology will be always 
Drug. This is because when the clinician is prescribing a drug to the patient, she is not 
concerned with the whole taxonomy in which the drug is placed but just with the drug’s 
name. However, when analyzing patient data, the UMLS taxonomy for drugs is 
necessary to define dimension D2, and therefore the instances must have associated its 
actual type.  For example, in Table 5, the instance Infliximab will change its type from 
Drug

Rheuma to AntiRheumaticAgent
UMLS. 

Considering our use case, Table 5 shows a subset of the instances that populate 
the local concept Patient

LOCAL. In this case, the dimension D3 has been generated by 
transforming the values of the data type property hasAge of the Rheumatology 
application ontology. Instances in dimensions D1, D2 and D5 have changed its type to 
that of the domain ontologies from which they are taken. 
 

ID D1 D2 D3 D4 D5 D6 D7 
8787u RA1 Infliximab Age32 Male Neutrophil 12 1 

8991u JIA1 Etacernept Age15 Male RF- 7 1 

8991u JIA1 Etacernept Age15 Male CProtein+ 7 3 

8882u RA2 Naproxen Age27 Female HLA+ 14 1 

8882u RA2 Naproxen Age27 Female HLA- 1 2 

9912u SD1 Methotrexate Age34 Male ESR 12 1 

Table 5. Example of instances that populate the concept Patient
LOCAL in the MIO of the 

proposed use case. For biomarker instances (D5), we use the symbols + /– to denote 
presence/absence and / for high/low levels. 

 

5.5.3. Generating cube dimensions 

During the generation of the final analysis cube, the symbols of the MIO are interpreted 
as elements of the target multidimensional data model. Thus, concepts, properties and 
instances of the MIO will be interpreted as dimensions, categories, members, attributes 
and facts of the multidimensional model. Depending on the restrictions of the target 
multidimensional model, it can be necessary to transform some of the MIO symbols 



27 
 

with the purpose of obtaining the proper interpretation. Moreover, many symbols of the 
ontology could be interpreted in different ways, resulting in very different cubes. 

A dimension concept (e.g. Disease) is usually interpreted as a dimension 
category of the multidimensional data model. However, the members of these categories 
can be either the instances or the subclasses of the dimension concept. In the second 
case, as subclasses can be also hierarchically organised, they can produce further 
categories in the dimension. Figure 9 shows examples of these two interpretations. The 
members of the category Anatomy are the different anatomical instances (e.g. different 
body parts of each patient), whereas the members of the category Disease are the names 
of the sub-classes of Disease. Notice that two sub-categories are defined due to the 
hierarchical relationships between these sub-classes. 
 

 

Figure 9. Two different interpretations for defining a dimension category. 
 
Concerning the cube roll-up relationships between dimension categories, we also have 
different interpretations depending on the interpretation adopted for the involved 
categories. Thus, we have three possible interpretations, namely: 

1. If both categories have instance members, then R_Ci_Cj  is interpreted at instance 
level too, and therefore each asserted triple (i1, r, i2) associated to R_Ci_Cj defines a 
roll-up relation RU(i1, i2). 

2. If the lower category contains instance members and the upper one contains class 
names, then we interpret R_Ci_Cj as before, but the roll-up relation is set to 
RU(i1,Cx), with  CxType(i2) and Cx ⊑ Cj. 

3. If the related categories Ci and Cj contain class names, and they are connected with 
a roll-up role R_Ci_Cj, then we have two possible situations: 

 If there are no asserted instances associated to R_Ci_Cj, for each R ⊑R_Ci_Cj 
such that C’idomain(R) and C’jrange(R), a roll-up relation RU(C’i,C’j) is set. 

 Otherwise, the asserted triples (i1, r, i2) associated to R_Ci_Cj defines a roll-up 
relation RU(Cx, Cy) where CxType(i1) and Cx ⊑ Ci and CyType(i2) and Cy ⊑Cj. 

It is worth mentioning that the selection of the interpretation is done by the analyst. 
Figure 10 shows examples of these three interpretations for some categories defined in 
the use case. 
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Figure 10. Different interpretations for roll-up relationships: instance-instance, 
instance-class and class-class roll-ups  

Another relevant aspect to take into consideration when building roll-up hierarchies is 
the multiplicity between related categories. Ideally, each roll-up relationship should 
have a predominant multiplicity of many-to-one in order to properly aggregate data. In 
our use case, the role R_Disease_Anatomy however has a one-to-many predominant 
multiplicity, which means that it is not useful for aggregating data in the resulting cube. 
In order to include Anatomical information in the cube, we can either use the inverse 
role R_Anatomy_Disease or include Anatomy data in some attribute of the Disease 
members. The former solution is not valid in our use case as in the application ontology 
Anatomy concepts (e.g. SynovialJoint) and Disease concepts are not related to each other 
and therefore we cannot state reliable roll-up relations. In the second solution, we can 
only use anatomical data to restrict the diseases that the clinician wants to analyze. 
Finally, it is worth mentioning that Disease and Anatomy cannot be defined as two 
different dimensions because they are dependent on each other. 

In order to complete the cube definition, additional member attributes can be 
taken from any of the properties associated to the MIO concepts that do not participate 
in the roll-up relationships. 

The whole translation process from MIO to the target cube is a very complex 
task that will determine the possible analysis tasks to be performed through OLAP 
operations. As a consequence, this process deserves more attention in the future work in 
order to automate it as much as possible. A good starting point is the methods presented 
in (Pedersen et al., 1999). 

6. Implementation Issues 

Currently we have partially implemented the proposed framework for SDWs. In this 
section we describe the main issues we have addressed during this preliminary 
implementation. 
 In our first approach we have adopted the tried-and-tested “data warehousing” 
approach. Here, all source data is first extracted from the data sources (in our case both 
external, web-based sources and internal sources). Then, the data is transformed and 
various validation checks are performed. Some checks are completed before 
transformations are performed, and some after transformations (e.g., into a dimension) 
are performed, as described in Section 5. In order for the data to comply with the 
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constraints, some data cleansing will be performed, e.g., new dimension members may 
be added in order to balance the hierarchy to achieve summarizability. Finally, the 
transformed data is stored in the SDW database. Because of the complex RDF-based 
structure of the ontologies, we have chosen an RDF triplestore, specifically 3store 
(Harris and Gibbins, 2003). Although 3store provides a limited form of logical 
reasoning based on the RDFS subClassOf hierarchies, it does not scale well. The reason 
is that it makes explicit all the entailments of the ontology. In this way, we have used 
3store only for storing large sets of instances generated by the application ontologies, 
assuming that these ontologies do not contain large concept hierarchies and therefore do 
not require large sets of entailments. 
 Regarding the domain ontologies, the SDW must also provide the storage and 
querying mechanisms for them. Currently, there are a few approaches to store and query 
large OWL ontologies (Lu et al., 2007, Roldán-García et al., 2008). The main difference 
between these approaches and triplestores is that OWL stores must allow entailments 
with the same expressivity of the stored ontologies, which goes beyond the hierarchies 
defined in RDFS. Unfortunately, current OWL stores are not able to handle very large 
expressive ontologies, nor does current reasoners support secondary storage. 

In our current implementation we have used both OntoPath and a series of 
labelling-based indexes specially designed to handle very large OWL-based ontologies 
(Nebot and Berlanga, 2008). These indexes allow the fast retrieval of sub-graphs and 
the fast construction of upper modules as those required by our methodology. It is worth 
mentioning that with these indexes we are able to check if one concept subsumes 
another by simply comparing two intervals. We have evaluated these indexes over the 
UMLS meta-thesaurus, which contains 1.5 million concepts and 13 million 
relationships. By using OntoPath indexes, we are able to build upper modules for 
signatures of hundreds of concepts in a few minutes. In this way, we achieve the 
scalability of the system by efficiently building customized modules, which can be 
handled by current reasoners. 

Following the running example, in Table 6 we show some statistics about the 
different fragments extracted from external domain ontologies in order to enrich the 
dimension hierarchies. As it can be seen, the relative size of the fragments compared to 
the whole ontologies is drastically reduced, which shows the scalability of the MIOs 
used for analysis purposes. Similarly, Table 7 shows statistics about the top knowledge 
ontology, which is also part of the MIO. The top knowledge ontology is composed by 
the union of the upper modules extracted plus some additional axioms derived from the 
stored mappings that allow merging the upper knowledge of overlapping concepts. 
Once more scalability is assured since the size of the top knowledge is insignificant 
compared to the size of the original ontologies. 

 
 # classes # properties # subclass ax. relative size % 

D1 (NCI) 65 1 65 0.24 % 
D2 (UMLS) 699 0 1526 0.046 % 
D5 (GALEN) 58 2 75 1.97 % 
D5 (GO/NCI) 114 1 114 0.00027% 

Table 6. Statistics about fragments extracted for dimension hierarchies. 
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 # classes # properties # subclass 

axioms 

# total 

axioms 

relative size % 

D1 (NCI) 22 2 24 36 0.19 % 
D2 (UMLS) 0 0 0 0 - 
D5 (GALEN) 34 23 34 67 2.8 % 
D5 (UMLS/NCI) 46 1 92 92 0.00011% 
(RHEUMA) 1 0 1 1 - 

Table 7. Statistics about top knowledge extracted from every ontology. 

 
Concerning the ontology mappings, despite the large number of semi-automatic 

approaches that exist to generate them (see surveys presented in (Choi et al., 2006, 
Euzenat, 2007), current precision results are not good enough to make the automatic 
transformations proposed in this paper reliable. Moreover, most ontology matchers can 
only handle small ontologies (Hu et al., 2008), which limit their usefulness in our 
scenario. Fortunately, in our application scenario about Biomedicine, there exists a great 
interest in integrating existing knowledge resources. As a result, most ontologies are 
being annotated with UMLS terms and other standard vocabularies (e.g. NCI), which 
notably eases the mapping problem. Our preliminary experiments by using these 
vocabularies to link domain ontologies are promising. 

 

7. Conclusions and Future Work 

In this paper we have set the bases for the multidimensional analysis of Semantic Web 
data in a data warehouse. We have reviewed the work that combines data warehouse 
and semantic web technologies. From this review we conclude that XML-related 
technologies are becoming mature enough to enable the construction of semi-structured 
web data repositories. We have also highlighted the promising usage of the Semantic 
Web languages to integrate distributed data warehouses and to describe and automate 
the ETL process of a data warehouse. Regarding the analysis of semantically annotated 
data, the existing alternatives are only valid for single and small ontologies. 
Unfortunately, many real applications imply several large inter-linked ontologies.  

As a solution, we have defined the Semantic Warehouse as an XML repository 
of ontologies and semantically annotated data of a particular application domain; and 
we have proposed a new framework to design conceptual multidimensional models 
starting from a set of application and domain ontologies. Our approach has a number of 
advantages. For example, the users can easily state facts and dimensions of analysis by 
selecting the relevant concepts from the ontologies. The methodology’s underlying 
multidimensional model is very simple, only facts, measures, dimensions, categories 
and roll-up relationships need to be identified. This will allow us to implement the 
model in almost any existing multidimensional database by performing the proper 
transformations. Regarding the scalability of the approach, we are able to manage large-
sized ontologies by selecting fragments representing semantically complete knowledge 
modules. 

Modeling diagrams such as those proposed in (Abelló et al., 2006; Franconi & 
Ng, 2000) can be very helpful to guide users when defining a MIO. As future work, we 
plan to study how they can be coupled with ontology editors and reasoners to facilitate 
the creation of MIOs. Another interesting research line is to define appropriated 
indexing schemes for SDWs that enable the interaction of reasoners with OLAP tools. 
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Finally, we consider that addressing the temporal aspects of the semantic annotations, 
and the incremental consistency checking and reasoning with our MIO-based approach 
are also very attractive challenges. 

In the future work we plan to carry out a deeper study of alternative 
implementations of SDWs. The main drawbacks of the current implementation include 
that the data may become outdated due to sources updates and that the extraction and 
validation process takes a long time to perform. A problematic issue which is particular 
to SDWs is that especially external data may have such a bad quality that the validation 
checks may disallow their integration in the materialized data warehouse, even if some 
parts of the data have sufficient quality. In this way, the options are either to allow bad 
data quality or to refuse some data to be admitted into the SDW.  

An alternative to the materialized approach consists of a virtual implementation. 
That is, the SDW only exists as a collection of metadata, pointing to the underlying 
(external and internal) data sources. The actual extraction of data from the sources is not 
done until query time. This also means that the validation and other constraint checks 
will have to be done at query time. Here, the main difference from the materialized 
implementation is that only the data items and ontology parts directly related to the 
specific query being executed are extracted, transformed, and validated. This approach 
is quite similar to the virtual OLAP-XML integration engine (Pedersen et al., 2002). 
During query processing, a triplestore can be used for intermediate storage and 
processing (validation inference, etc.). Again, it will in the long term be more optimal to 
develop a dedicated query engine for this particular scenario. Because of the smaller 
data volumes, both a triplestore-based and a dedicated solution will be able to perform 
almost all processing in main memory. The advantages include that data is always up-
to-date, and that the initial processing cost is lower. Additionally, data that has partially 
bad quality can be handled easily as long as the problems do not affect the queries at 
hand. The main drawback is that queries will be much slower. To avoid this, a mixed 
implementation can be the solution. 
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