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INTRODUCTION

The role of intermolecular forces in modern science is becoming ever more
prominent, as increasing numbers of chemists and physicists turn to the
investigation of condensed matter phenomena and biological systems.
Although the subject is hardly novel, the state of our knowledge of inter-
molecular forces and their associated potential energy surfaces is, never-
theless, remarkably primitive. For example, isotropic descriptions of the
pairwise interactions between most of the common small molecules have
existed for many years, but the anisotropy of these interactions still remains
largely uncharacterized—even after nearly two decades of investigation
with the most sophisticated experimental and theoretical techniques avail-
able! Furthermore, anisotropy is a dominant feature of systems that have
the most significance, viz. those exhibiting hydrogen bonding.

This state of affairs seems all the more surprising when one considers that
detailed theoretical formulations have been developed (1) for describing the
three types of weak attractive interactions that occur between a pair of
molecules, viz. electrostatic, induction, and dispersion forces, and that at
least the low-order parameters that describe these interactions (polar-
izabilities, dipole moments, quadrupole moments) are generally well-
known. However, as we elaborate upon in this review, it is our lack of
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370 COHEN & SAYKALLY

knowledge of the higher-order terms in the radial and multipole expansions
of the attractive forces and of the anisotropic components of the exchange
repulsion that preclude a more complete understanding of intermolecular
forces.

The use of modern high-resolution spectroscopy and molecular beam
techniques for the study of intermolecular forces has been reviewed
recently by Hutson (2). Microwave spectroscopy has now been employed
in the study of a large collection of weakly bound complexes (3). Although
this collective work has given us considerable qualitative insight into the
nature of weak intermolecular anisotropy, microwave spectra do not
explore sufficiently large ranges of the large amplitude coordinates to
permit the extraction of an accurate intermolecular potential energy sur-
face (IPS). Mid- and near-infrared (IR) laser methods have similarly been
used to study many weakly bound complexes over the last decade. The
difficulty with this approach is that it usually does not probe the large
amplitude coordinate of the complexes with sufficient sensitivity, and only
in very special cases has a ground state IPS actually been extracted from
such experiments. Dramatic progress in this area has been realized in the
last few years (4, 5), however, wherein the capability has been developed
to study low frequency vibrations in complexes through hotbands and
combination bands associated with the monomer fundamentals (6). As
Hutson (2) discussed, the use of molecular beam scattering methods and
other techniques for studying intermolecular forces suffer from a variety
of other limitations.

During the last several years, the rapid development for far-IR laser
spectroscopic techniques, which are capable of measuring the low-fre-
quency vibrations of the van der Waals bonds in weakly bound complexes
(7-10), has produced an extensive new data base, from which the intimate
details of intermolecular interactions can be deduced, at least in principle.
We call this new approach vibration-rotation-tunneling (VRT) spec-
troscopy, because the transitions that are measured are either stretching
vibrations of the van der Waals bonds, or hindered rotation-tunneling
states of the constituent monomers; hence, the terminology is generally
applicable to all weakly bound complexes.

The design and construction of tunable far-IR laser of spectrometers
used for VRT spectroscopy has been described in detail in a recent review
(11, 12). The investigations of weakly bound complexes, conducted by the
four groups currently pursuing far-IR-VRT spectroscopy, is detailed in a
separate review (13). In Table 1, we list the molecules studied to date by
this method and the appropriate references.

To actually extract a detailed characterization of intermolecular forces
from VRT spectra, a general mathematical inversion scheme must exist
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Table 1 Clusters that have been studied by tunable far-
IR laser spectroscopy

Cluster Reference Cluster Reference
ArHCI 7,8,9, 10 (NH,), 27
ArHBr 4 H,0-CO 28
ArH,O 15-19 H,0O-N, 29
ArNH, 20-22 H,0-CH, 30
(HCD, 23,24 Ar,HCl 31
(H,0), 25,26

through which the highly accurate VRT spectroscopy measurements can
be analyzed in terms of an anisotropic multidimensional potential surface
without significant loss in the quality of information. Generally, this
implies that the various dynamical simplifications that are usually invoked
to interpret the measurements of intermolecular properties (adiabatic
approximations, distortion methods, etc.) out of mathematical necessity,
must be avoided, or at least employed only with careful scrutiny. For-
tunately, the recent experimental advances have been paralleled by simi-
larly dramatic theoretical progress in our ability to address the dynamics
of multidimensional systems. The discrete variable representation (DVR)
(32), the pseudospectral method (33), and collocation method (34) are
among the most powerful of these new dynamics methods. When coupled
with the enhanced computational capability now available with the current
generation of supercomputers, this scenario represents a truly revolu-
tionary advance in our ability to address both intermolecular forces and
the multidimensional intermolecular dynamics associated with them.

In this review, we describe an approach for directly determining multi-
dimensional intermolecular potential energy surfaces from VRT spectra
of binary van der Waals complexes measured with tunable far-IR lasers.
This is by no means the only way to approach the potential inversion
problem, and it may not be the best. It is, however, quite general and
possesses a compelling degree of computational simplicity. Morcover, this
same formalism is equally well adapted for analysis of mid-IR, microwave,
or stimulated emission pumping spectra of weakly bound complexes. As
such, it should be useful to a reasonably large audience.

COORDINATE SYSTEMS AND HAMILTONIANS:
THE PSEUDODIATOMIC APPROACH

As the starting point of a general formalism for treating VRT spectra of
a pair of interacting molecules, we make the central assumption that the
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interacting monomers are not significantly affected by the weak van der
Waals forces. The properties of the binary complex (e.g. dipole moment,
electric field gradient, magnetic dipole moment) are then given simply by
the projections of the relevant monomer properties onto the principal
inertial axes of the complex. These are then easily corrected for the small
(ca. 1%) polarization effects that accompany weak bond formation (35).
The canonical view of molecular structure in terms of a single deep
minimum in the electronic potential energy surface, and the associated
embedding of space- and body-fixed coordinate systems through the Eck-
hart conditions (36), is entirely abandoned in this description. Instead, we
describe the complex in the language of scattering theory, viz. in terms of
large amplitude dynamics of a set of Jacobi coordinates over a multi-
dimensional IPS, which has a complicated topology (multiple minima and
barriers). The set of generalized Jacobi coordinates appropriate for a
complete description of the dynamics of a general complex, composed of
two interacting polyatomic fragments, consists of five angles and a single

-distance (Figure 1). The R vector joins the centers of mass of the two

interacting monomers, pointing from molecule A toward molecule B, and
defines the weak bond axis; 0, and 0y are the angles between R and an
appropriate symmetry axis in each monomer, ¢ and ¢y describe rotation
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Figure 1 The Jacobi coordinate system for the intermolecular degrees of freedom of a
polyatom-polyatom complex.
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of each monomer about these symmetry axes, and y = ya—Yg is the
dihedral angle between them. Thus, to describe the large amplitude dynam-
ics of an arbitrary binary complex, one must solve a coupled six-dimen-
sional problem in this set of internal coordinates, which is a formidable
task by any standard.

The end-over-end rotation of the entire complex would normally (36)
be described by a set of three Euler angles («, 8, y), defined with respect to
a space-fixed axis system (X, Y, Z). In the pseudodiatomic approach, the
complex is instead viewed as a diatomic molecule, with the respective
monomer masses M, and M, concentrated at the center-of-mass positions
along the R vector. The end-over-end rotation can then be described by
only two Euler angles, with the third set equal to zero.

Brocks et al (37) have used this pseudodiatomic embedding approach
to derive the Hamiltonian for a general binary complex in body-fixed
coordinates, thereby circumventing the complications in this procedure
that are well known to scattering theorists and spectroscopists. They
choose the R vector as the body-fixed z axis, and define a set of angular
momentum operators:

J=j+1
J=Ja+t/s 1.

Here, / is the end-over-end rotation of the pseudodiatom, j, and jg are the
angular momenta of the individual polyatomic fragments A and B, and J
is the total angular momentum. With the two-angle embedding approach,
the commutation properties of J in body-fixed coordinates are not the
usual.ones (space-fixed or body-fixed); hence, J is termed a pseudoangular
momentum operator. As a result of this complication, standard angular
momentum results cannot be used without special considerations when a
pseudodiatomic embedding procedure is used. This presents no additional
complications, however, when a suitably chosen basis is used.

The Hamiltonian for a general binary complex can be expressed as (37)

H = H,+Hg+ Kinr+ Viners 2.

where the Hamiltonians for the individual nontunneling polyatomic frag-
ments (H, and Hg) are assumed to be separable from the kinetic and
potential energy operators for the complex (Knr and Viyr). Because the
vibrational frequencies of the chemical bonds in the monomers are gen-
erally one to two orders of magnitude higher than is typical for van der
Waals bonds, averaging the total Hamiltonian (2) over the high frequency
motions is a good approximation. One thus obtains an effective Hamil-
tonian for each individual monomer vibrational state. The effective mono-
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mer Hamiltonians, H, and Hg, then assume the usual Watson form (36),
by employing vibrationally averaged rotational constants and using com-
ponents of angular momentum operators defined in their respective prin-
cipal axis systems. The orientations of the monomers with respect to the
body-fixed pseudodiatomic frame are given by two sets of Euler angles w,
and wy, which include the angles 04 g, ¥4 5, and y,  described above. The
interaction potential depends on only five of these six angles, as only the
relative orientation of the fragments must be specified.
The internal kinetic energy operator is
h? 9 0

—_— [E— —_— 2 ——
TR aRR 6R+2 e S22 =27+ 7). 3.

Kinr = —
Brocks et al (37) define the operators J and J. The first term in Equation
3 describes the vibrational motion along the van der Waals bond,;
the second characterizes the psendodiatomic rotation and the Coriolis
interactions.

The potential energy operator (V1) for the interacting fragments is
actually the IPS that we seek to extract from the VRT data. The IPS is
averaged over the monomer vibrational states and can be expressed in
various forms. For molecules containing at least several heavy atoms, it is
quite common to expand the potential as a sum of attractive and repulsive
contributions between individual atoms within the complex. Such site-site
potentials have been used in comparison of equilibrium structures of
strongly anisotropic systems with the geometry of the potential minimum
(38), but have not actually been used to fit spectroscopic data. A more
useful approach for our purposes is to expand the IPS in a series of Wigner
rotation matrices, expressed in the body-fixed Euler angles w, and wy. For
a general binary cluster this becomes (37)

VINT(R: Wy, Wp) = Z VLA,KA,LB,KB,L(R)ALA,KA,LB,KB,L(wAa wg).
LaK
LBI,\KB‘,AL

AL, ko Ly ko i{@a, 0B) = 877 (2L+1)"?

L L L R .
) A;A <M‘: - ABJA O>-D]M§AKA(XA, OA’ (ﬁA)D%‘;ﬁ\KA(XB’ 039 ¢B)s 4.

where the functions Dk (w) are normalized Wigner D-matrices and (...)
is a 3—j symbol. This form of the potential operator reflects the special
nature of the weak bond and allows for several approximations that take
advantage of the well-known properties of integrais over products of
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Wigner D-matrices. The indices K, and Kj range from — L, to L, and
— Ly to Lg, respectively. The index L is the vector sum of L, and Lg.

The values of the indices L and K and the relative contributions of
different terms in the expansion are subject to symmetry constraints: For all
molecules, L, + Ly+ L = even number (39); for electrostatic interactions
expressed as a multipole expansion, L = L, + Lg; and for molecules with a
C, axis, only values for which K mod(n) = 0 are nonzero. This expansion
reduces to atom-polyatom and atom-diatom expressions when Ly = 0,
and has been used in slightly modified forms in direct fits of a parameterized
IPS to spectroscopic data for Rg—H, (40), —HX (41-45), —H,0 (46),
and —NH; (21) complexes, as well as for CH,—H,0 (30) and (HF), (47).
Several different formulations of these potential functions are commonly
used, including expansions in spherical harmonics and Legendre poly-
nomials for atom-molecule interactions. Functions are often used with
normalization appropriate to the function with one more or one less degree
of freedom to facilitate comparison between different complexes. Care
must be taken that proper scaling for normalization has been considered
when comparing the coefficients V(R) from different treatments.

To derive physical insight into the forces that give rise to the IPS, it is
useful to express the interaction potential as the sum of four anisotropic
terms

V(R,O0p, P, Op, @5, X) = Verectrostatic(Rs Oas P, 05, @5, %)
+ I/induction(R, BAD qSAa HBa d)B’ X) + Vdispcrsion(R, 0A5 ¢A’ 0B> d)B: X)
+ Vrepu!sion(R, 9A9 ¢As 9Ba ¢5 X), 5«

and to expand each of these terms in a series of orthogonal polynomials,
as in Equation 4. Functional forms for the expansion coefficients V(R)
(radial strength functions) are available for the electrostatic interaction
and the induction forces, which involve dipole-dipole polarizabilities (a;)
and dipole-quadrupole polarizabilities (4y;) (48). We reproduce the low-
order equations here, arranged in the form of Equation 4.

1
;lnduclion = z Z - g (47T) 3z

Lalel £, 21
Ka:Kp
y Crt+ DA+ 1D QRA+3)(0A+3) QLA+ 1)(2Lg+1) |2
2L+1
(1 a+1

x C(Li+1244+1£;00003 £a 1 £a+1
I, L, L
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X r—(£a+ A+ 4o (LpKs)
X Z C(ALAl as KAKAKA) QL WkA QY AKAAL, K, Lok (Da, WB).-

KaKa
In Equation 6, C(... . ;.. .)is a Clebsch-Gordon coefficient, and the quantity
in brackets { } is a 9—j symbol. For the induction energy associated with
the charge distribution of molecule B and polarizability of molecule A, the
subscripts A, B are interchanged:

. (L)! iz
Vetectostatic = Z (=1)" [(2LA+ WQRLg+ 1)!:|

LuLg
KaKp,L
~(L+1)
X O k,QroxR ¢ ALk Lok (@a, @p) T
CEaKaLKsl
V dispersion = z TR ALAKAL,,KBL(CUAy wg). 8.
LaLy.L
KA’KB

The molecular multipole moments, Qyy, and static polarizabilities, o},
used in these equations are expressed in irreducible spherical tensor form.
Table 2 provides the low-order constants, defined in terms of Cartesian
components with a normalization consistent with Equation 4. Exact cal-
culation of the dispersion coefficients requires knowledge of the frequency-
dependent polarizabilities. C¢ constants are available from dipole oscillator
strength distributions for some systems, or they may be estimated, as
Buckingham et al (1) discuss. Higher-order isotropic dispersion constants
have been estimated by using static polarizabilities (4244, 46) and cal-
culated by ab initio theory (49).

By using these expressions and the molecular constants (dipole and

Table 2 Transformation from Cartesian to spherical multipole
moments and polarizabilities

Qoo=¢ Q= \/%(oxx_eyy"'zw"y)
=1 Ou-n = (—D"0u
s 1(3\ 1
o V2 +in) a11(00) = — §<Z7t>$(axx+°‘w+au)

Q=10 1/ 3 2 1
5 2,4(20) = E(ﬁ)ﬁ(au_ E(axx+ayy))
Qs = — §(0x2+i0yz)
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quadrupole moments, polarizabilities, etc.) obtained from either expert-
ment or ab initio theory, it is possible to fix some of the leading con-
tributions to the attractive portion of the IPS and then explore the con-
tribution of the repulsive forces and higher-order attractive interactions.
Intermolecular repulsion resulting from the overlap of clectronic
wavefunctions on different species rises exponentially at short range. As
discussed by Buckingham et al (1), single-center expansions converge very
slowly to true molecular shapes. It is better to expand the repulsive inter-
action as

Arepulsion((DA: wB) e lonopR=Ruwp o] 9 .

where the functions A epuision(Wa, Wp), f(wWa, wy), and R, (wa, wp) are sep-
arately expanded in a series of orthogonal polynomials. Anisotropy in
Areputsion and Ry, are important at the low energies sampled by the bound
states; anisotropy in f is well known from molecular beam scattering
results, but has not yet been shown to be important in the bound reglon
of a van der Waals potential.

MULTIDIMENSIONAL DYNAMICS:
COMPUTATIONAL STRATEGIES

Exact Methods

Having expressed the Hamiltonian that describes the vibrations, hindered
rotations, and overall rotation of the complex in an appropriate form, we
then compute the bound states for the problem by solving the Schrodinger
equation. The problem of solving a set of coupled, multidimensional
differential equations has recently received considerable attention. We
note, in particular, the recent review by Baci¢ & Light (50). The most
successful new methods employ a mixed basis set/pointwise approach.
The power of these methods derives from their capabilities to obtain
the eigenvalues and eigenvectors of the Hamiltonian accurately, without
requiring that multidimensional integrals be computed to determine the
matrix elements. Only the value of the IPS and the basis set on a grid of
points 1s required. This effects a considerable savings in the time required
to generate the eigenvalues of the Hamiltonian and in the complexity of
the computational procedure.

Several pointwise methods have been implemented in the solution of the
Schrodinger equation for molecular systems. Friesner and coworkers (33)
have developed the pseudospectral method, principally in connection with
the electronic structure problem. This approach is related to, but varies
slightly from, the two methods that have been more extensively applied to
the problem of heavy particle dynamics on an IPS with many strongly
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coupled degrees of freedom. These two methods are the DVR, which has
been developed by Light and coworkers (32), and the collocation method,
which has generated a renewed interest for chemical applications since the
recent work of Peet & Yang (34, 51-54). In the DVR, one solves the
Schrodinger equation by expanding the wavefunction as a direct product
of an orthonormal basis set in each coordinate. The basis is then related
by a unitary transformation to one in which the coordinate operators are
diagonal. For example, the effect of the operator R on the DVR function
|@;(R)) 1s to generate the eigenvalue R;, which is a point in the configuration
space of the problem:

RD(R)> = RI|®(R)). 10.

One then makes the approximation that the integrals over the IPS can be
evaluated by quadrature on the DVR points, which results in a diagonal
form for the matrix representation of the IPS. The Hamiltonian matrix in
this formulation is sparse, because the only off-diagonal coupling terms
result from the kinetic energy operators. The DVR has been applied to
the study of highly excited vibrational levels of covalently bound species
(H,O, HCN) (55, 56) and to the calculation of energies for two-dimensional
van der Waals systems, e.g. Ar-HCI (57) and Ar-HCN (58). The DVR is
advantageous because the Hamiltonian matrix is symmetric, and small
subspaces of the matrix may be evaluated in a recursive procedure of
diagonalization and truncation. This allows for accurate evaluation of the
eigenvalues of a large matrix by diagonalization of a series of smaller
matrices, which translates into considerable computational savings, as the
computer time is roughly proportional to the cube of the matrix dimension.
The DVR method suffers from one major drawback, however, especially
for application to weakly bound complexes that contain polyatomic mol-
ecules: A strict requirement for the implementation of a DVR is that the
basis set be expressed as a direct product of functions in each coordinate.
Basis functions that are the most natural choice for nonlinear systems,
which exhibit large amplitude hindered rotation, viz. spherical harmonics
or Wigner D-matrices, are compound functions spanning two or three
coordinates, respectively, for which a direct product is not defined. For
such problems, the collocation method is more efficient.

The collocation method has been applied to solution of one-, two-, and
three-dimensional problems. Yang & Peet (34) studied the convergence of
the method when it is applied to solve for the energies of a Morse oscillator.
They then showed that the method could be applied to the solution of the
Hamiltonian for the rotating Ar-HCI problem (51, 52), and they used a
nondirect product basis to evaluate the eigenvalues of Ar-CQO, (54). While
addressing these two-dimensional systems, they also described an iterative
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method for solving the large matrix eigenvalue problem represented by
the multidimensional collocation equations. The collocation method is
considerably simpler and more transparent than the DVR, but it also has
some deficiencies. The collocation matrix equation appears in the form of
a generalized unsymmetric eigenvalue problem. Formally, complex and
spurious eigenvalues and nonorthogonal eigenvectors may arise from such
a matrix, although in our experience, such results actually represent inade-
quate convergence of the basis set or the points and are easily recognized
and circumvented by simply increasing the number of basis functions and
points.

In essence, the collocation method amounts to an n-point quadrature
approximation to the Rayleigh-Ritz variational method for solving the
Schrodinger equation. The procedure for applying the collocation method
is to expand a trial wavefunction as a linear combination of # basis
functions. These functions are then considered an exact solution of the
Schrodinger equation at # collocation points. The points are chosen to be
an appropriate set of quadrature points in the configuration space of the
problem. The resulting n coupled equations then appear in the form of a
generalized eigenvalue problem:

{H—E¥}c = 0. 11.

Here, H is a matrix with elements H; given by H|W,> evaluated at the
collocation point j, and ¥ is a matrix with column vectors |¥;)> evaluated
at the collocation point j, and ¥ is a matrix with column vectors |¥,>
evaluated at the same set of points. The label i ranges from 1 to n, the
number of basis functions in the trial wavefunction. The label j spans the
same range, but identifies the point in configuration space at which the
matrix element has been evaluated. Standard eigenvalue routines which
return eigenvalues (E) and the matrix of eigenvectors (c), are available in
the common mathematical libraries for solving the unsymmetrical matrix
equation.

We begin implementation of the numerical procedures by expanding the
wavefunction as a product of angular and radial functions:

max max

J JR

'//J(“: ﬂy 1;:9 GA) ¢As 935 ¢Ba X) = Z Z

Q=—J j=I0] js=0

Ja J Js ( )]A—]B‘*Q
x Xi
kAzjl\ ]Bgo ks-z‘ln ’z:l QAZQB wE V2i+1

" *
x(;; o é)Dz,nA(x,aA,d)A)D%k ©,05, ) Diiay, B 2. 12,
A B
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The angular functions are chosen to be products of Wigner D-matrices
for the monomers A and B and for the overall pseudodiatomic rotation,
to utilize the general results of Brocks et al (37). The radial functions y,(R)
can be considered a set of distributed gaussians, or a set of orthonormal
functions that represent the bound and unbound solutions to a suitable
model one-dimensional problem. These primitive functions are then sym-
metrized to transform according to-the irreducible representations (I') of
the molecular symmetry group for the complex. The Hamiltonian does
not mix functions of different symmetry or total angular momentum.

We then operate on the symmetrized wavefunction with the Hamiltonian,
multiply on the left by the complex conjugate of the spatial wavefunction,
and integrate over a, 8,y to reduce the problem to one that involves
only the internal coordinates. This gives the set of coupled differential
equations, which we solve by collocation. Cohen & Saykally (46) describe
this procedure in detail for the specific case of an atom-polyatom
complex.

The next step in application of the collocation method is to choose a set
of n quadrature points, one corresponding to each basis function. Because
symmetry operations have been applied to reduce the size of the Hamil-
tonian matrices, the range at which the points are chosen must also be
appropriately reduced. The points should be chosen from the smallest
interval of configuration space, which is mapped onto the rest of the
configuration space by successive symmetry operations. In Ar-H,0, for
example, this symmetry occurs in the ¢ coordinate, which represents
the angle of internal rotation about the C,, axis, for which the interval
0 < ¢ < n/2 is mapped onto the range 0 — 27, by symmetry operations of
the molecular symmetry group. The choice of collocation points 1s dis-
cussed in more detail in references 46, 52, and 59.

Once the collocation points are chosen, the coupled equations are evalu-
ated on the grid of collocation points, and the resulting matrix is diagonal-
ized by standard numerical methods. The results obtained by using col-
location are not variational, in the sense of a strict upper bound to the
eigenvalues that would be obtained with an infinite basis set. They are,
however, an approximation for the results that would be obtained in a
variational calculation with accuracy of a numerical quadrature on the
collocation points. Peet & Yang (34, 51-54) showed the rate of convergence
to be roughly exponential for some one- and two-dimensional problems.
The absolute level of convergence depends on the details of the particular
system in question, including the reduced mass, the monomer rotational
constants, and the magnitude of the anisotropy. The most strongly bound
states, which are usually the ones accessed spectroscopically, are more
easily converged than highly excited levels. In fits to experimental data,
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one attempts to reproduce vibrational frequencies and rotational spacings
to about 1 part in 10°-10%. Thus, the calculated eigenvalues must be
converged to at least this level of accuracy.

The first step in a fit of experimental data to the IPS is to choose an
appropriate set of unknowns to vary in the potential expansion of Equation
5. A typical (40, 42, 46) procedure is to fix all the molecular constants
required to calculate the attractive forces through the nth power of R at
known values and then to lump all of the attractive terms of higher order
into a single expansion that varies as the n+ 1 power of R:

VATTRACTIVE = VFIX+ Cn+ l(wAa CUB)Iz_’H— L 13.

This reduces the number of unknown parameters substantially. To reduce
the parameter space further, the well depth e(Ry; w4, wg) is typically
expanded at the position of the radial minimum R,(w,,wp) for each
angular configuration in a series of orthogonal polynomials. The
coefficients A epusion(@a,ws) and C,, (wa, wp) are then determined by
requiring that

V(Rm; Wa, wB) = - E(Rma Wa, wB)a 14,
and
V/(Rm, Wa, (,OB) = 0, 15‘

where the prime indicates the first derivative with respect to R. This
procedure, first employed by Hutson and LeRoy in fits to Rg-H, spectra,
reduces the number of parameters, as both Apuion(@a, ws) and -
C.,+ 1(w,, wp) are determined by fitting e(w,, wg). It also focuses attention
on the region of the IPS that is sampled most extensively by the spec-
troscopic data, viz. the region surrounding the potential minimum.

The numerical procedures outlined in this section have been
implemented in determination of the IPS of ArH,O (46). The well depth
(0, ¢), the position of the radial minimum R, (8, ¢), and the repulsive
exponent f(6, ¢) were expanded in a series of symmetry adapted renor-
malized spherical harmonics, rather than the Wigner D matrices of Equa-
tion S. In our initial study, nine potential parameters, including &, &0,
€20, €225 RGo, RTo, R0, R5,, and Bgg, were allowed to vary in a fit to an
experimental data set, which consisted of four VRT band origins and seven
rotational term values. Higher order anisotropies in ¢, R™, and S were
fixed at zero. Contours of the resulting IPS, denoted AW1, are shown in
Figures 2 and 3.

The eigenvalues of the Hamiltonian were obtained by using a basis set
of 11 radial functions and 1015 angular functions, depending on the sym-
metry of the subblock, for J = 0. The J = 1 eigenvalues required (2J+1)
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Figure 2 A cut through the AW intermolecular potential surface of Ar-H,O with ¢ = 0.
All four atoms are coplanar, R is the center of mass separation, and # is the angle between
the H,O C,, axis and the R vector. The hydrogen atoms point toward the argon at § = 0°
and away at = 180°.

more angular functions. This basis gave convergence of 0.02 cm™! for the
intermolecular vibrational frequencies used in the fit and 0.0001 cm~'
for rotational term values. Three of the four possible symmetries were
required to calculate all of the observed frequencies. Each call to the
eigenvalue subroutine required two minutes of central processing unit
(CPU) time on a CRAY-XMP/14. For nine parameters, each least squares
iteration required about 20 minutes. Approximately ten hours of CPU
time were used to obtain a converged fit.
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Approximate Methods

The details given above for the exact atom-polyatom calculation illustrate
the level of computational effort required to properly analyze VRT spectra
of a three-dimensional system. Extension to systems with more degrees of
freedom clearly requires much more effort (computation time increases
~1000-fold with each added degree of freedom). Therefore, approximate
methods must be employed, at least with present technology. Moreover,
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Figure 3 A cut through the AW1 surface at Ar-H,0 at R = 3.65 A. The ¢ coordinate

specifies rotation of the H,O about its C,, axis. The other coordinates are discussed in Figure
2 and the text.

although the use of the collocation method, or another suitable com-
putational approach for obtaining the exact eigenvalues and eigenvectors
for the full multidimensional problem, is essential for extracting a quan-
titatively accurate IPS, approximate treatments of the dynamics can actu-
ally offer deeper insight into the relationship between anisotropy in the
IPS and the experimental observables. The most revealing approximations
are those that are based on approximate separability of the internal coor-
dinates, particularly the reversed adiabatic approximation (RAA), which
Hutson (60-62) discusses extensively. In this treatment, the angular and
radial motions are presumably separable. To the extent that this assump-
tion holds (severe breakdown of this approximation is not unusual), a
family of bending levels associated with the same stretching state (usually
the ground state) may be associated with the same effective angular poten-
tial surface.

To calculate the VRT spectrum of a polyatom-polyatom cluster within
the reversed adiabatic approximation, one begins with expansion of the
wavefunction, as in Equation 12. This form of the wavefunction is most
appropriate if the internal rotation in both monomers is strongly coupled
to the molecular frame. If one or both angular momenta are more nearly
coupled to the space fixed frame, or if they are coupled to each other,
alternative basis sets may give a better first-order description of the inter-
molecular dynamics, in analogy to the different coupling cases described
by Hutson (60-62) for atom-diatom complexes. The effects of the kinetic
energy operators in the Hamiltonian (Equation 3) on this basis are given
in Table 3. The matrix elements of the potential are (37)
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Table 3 Effect of the Hamiltonian operators on the components of the primitive basis set

J2DYa(a, B,0) = JU+1)Dia(e, ,0) J2'Dhi(3,0, ) = FiiDis 1202, 0, )

szDE,k(V, 0’ ¢) =.](.I+ I)ng(% 0’ ¢) ]f\szf;,k(’yr 01 ¢) =J(.]+ I)Dg,kiZ(% 9’ ¢)

J:Dua(®, B,0) = CfoDyasni @, 8,0) Cih=LG+1)—-Q+1)]"

DR (7,6, $) = k2Dis (7,8, ) Fio= U0+ D—k(ex DG+ D— (k£ D (k£2)]?
]fiD{;,k(‘Ya 0,9) = Canjf;il.k(Y, 0,¢)

(- kadsl Y | Vinelja kas, ksJQ) = baq Z Vi ko Lakn (R
LaKa
Lg.KpL

X gLA,KA,LB,KB,L(j,A5j;3j,;jAerj; ka, kgka, kg; )
g=(=1Dj+jatis+LatLp—ki—kz—Q
X [(Ta+D@a+DCLA+D 2+ 1D (e +1)(2Lg+1)

x(2j’+1)(2j+1)(2L+1)]”2<j:‘ Ly jA)

ki Kp kyu
. . ) (/A Ja La
GROGa e 2
B B B - j/ ] L

The role of the radial strength functions V(R) in the expansion of the IPS
is greatly simplified in the RAA, because the exact functional form is no
longer necessary, and numerical values for the expectation values of the
radial coefficients over the wavefunction of interest may be substituted.
For instance, in his RA A analysis of the spectrum of Ar-H,0 (62), Hutson
showed that the vibrational energies of the first two X bending levels of
ortho symmetry are given by the approximate expressions:

Annu. Rev. Phys. Chem. 1991.42:369-392. Downloaded from arjournals.annualreviews.org
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1 6
EZ)=Voo— V2t i Vart+Ey,

5 5
1 6

EZ )= Voo~ Vo~ —f Vot E, 17.
5 5

if anisotropies involving terms of higher order than V,, are neglected. In
the above expression, we omit the subscripts Ly = Kz = 0, because the
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argon atorn is spherical and the subscript L = L,. E;, and E,  refer to
the free rotor energies of water.

Often in the absence of experimental data, it is useful to consider either
the effects on a spectrum when the anisotropies are varied over a range of
reasonable values, or trends in the spectrum as the anisotropies are
increased by taking the molecule from a near free internal rotor to a near
rigid system. Correlation diagrams for various combinations of aniso-
tropies have been presented for atom-diatom systems (41, 60, 61).

These matrix expressions may also be used to evaluate the pseudo-
diatomic rotational term values. This can serve two purposes: The values
can be used to establish energy differences when direct spectroscopic
measurements are not available and the RAA is believed to be appropriate.
And, when the energy differences are well established, the rotational term
values give some indication of the validity of the RAA. If we express the
angular momentum operators of the Hamiltonian in the basis of Equation
16, then the rotational kinetic energy is given by a diagonal contribution

2

h
2RI+ DHIG+1) =206 S, 18.

and an off-diagonal Coriolis term

2
W [CiaCia+ CiaCrld. by a+1- 19.
Here, u is the pseudodiatomic reduced mass, R is the coordinate operator,
and t refers to all quantum numbers other than the projection Q and the
radial quantum numbers n. Within the RAA, we assume that the 1/R?
operator does not cause appreciable mixing of different radial functions,
and equate #%/uR* with the rotational constant, B, in the two states that
are mixed by the Coriolis interaction. B is then considered identical in all
states that share the same effective radial IPS. In the symmetrized basis,
the effect of the off-diagonal Coriolis operator is to mix states of the same
total J and parity, which differ in the Q quantum number by 1.

Consider states with total J = 1; only Q = 0 () and Q = 1 (II) states
are involved, and the existence of Q = 2, (A) states cannot yet complicate
the picture. For a state having a wavefunction dominated by j = 1, the
Coriolis matrix element reduces to Hegriois = 2B[J(J+1)]"? and forj = 2,
Heoriolis = 2\/3 B[J(J+1)]"2. A 2 x 2 Hamiltonian matrix for the mixed
>* and IT™ states results,

HZ HCoriolis 20.
HCoriolis H1r
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and the unperturbed component cof the IT state, which is of the opposite
parity, has an energy given by

E; =[H,]. 21,

The 2 x 2 matrix may be diagonalized perturbatively, assuming that
(Hcoriolis)> << Hy — Hy, with the results:

Ef = H): - H(zjmiolis/ (Hn - Hz)
Eff = Hp+Hi0i/(Hp—Hy). 22.

The simplest manifestation of this operator to consider is the Z-splitting of
the two J = 1levelsin I1 states. This splitting, which we denote q£(J = 1), is
approximately

Ef — Ef = 8B%(Hp —Hy) 23.

in states with j = 1. The +/— signs are used here solely to differentiate
between the two components of the IT state and do not reflect any molec-
ular symmetry. It is important to note that the Coriolis-induced shift in
the rotational term value of J = 1 in the X level is equal and opposite to
that in the IT state. Large fractional errors in the effective internuclear
distance may be obtained if this effect is not explicitly accounted for in the
analysis of states with substantial internal angular momentum.

This expression is remarkably accurate for the ortho j = 1 VRT states
of Ar-H,O (15, 16). The splitting in I1(14,) is 0.205 GHz. Substituting into
Equation 23, and using an average rotational constant of 3 GHz, which
is within 2% of the experimental values (3.015, 2.951 GHz), yiclds an
estimate of the energy difference between J =1 in the £(1,,) level and
J = 1in the II(1,,) state of 351 GHz. This compares with the experimental
value of 340 GHz (15, 16, 63). In the II(1,,) state, the observed splitting
is 0.147 GHz, which yields an estimate of the spacing betweenJ = 1, Z(1,,)
and J = 1, TI(1,,) of 489 GHz, compared with the experimental value of
452 GHz. The accuracy of these estimates is strong evidence that these
VRT states of Ar-H,0O very nearly correspond to the pure basis functions
used (17), and supports the idea that all of the states involved sample the
same effective radial potential.

The results for the first para bending levels of Ar-H,O are dramatically
different (17). In the 1,, states, we measure gZ(J = 1) to be 0.251 GHz.
By using this measured splitting, we estimate the energy spacing of IT(1,,)-
¥(1,,) to be 286 GHz, more than twice the experimental spacing of 115
GHz. The failure of this simple model to account for the positions of
the observed bands simultaneously with the observed spacings indicates
strongly that there is significant mixing of the £ and/or IT levels with other
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nearby states. The exact three-dimensional calculations suggest that the
predominant source of mixing occurs between n=1,2(0y) and
n=0,%(1,,), which implies that the RAA is not appropriate for analysis
of these states. Similar effects of bend-stretch coupling are manifested
in other excited states of Ar-H,0O, Ar-NH;, and probably most other
complexes. Hence, the RAA is not a generally applicable description for
the VRT dynamics of complexes.

Other experimentally accessible properties, such as the dipole moment
or nuclear quadrupole coupling constant, may also be evaluated within
the RAA. The dipole moment of the complex may be approximated to be
the projection of the dipole moments of the monomers, with corrections
for induction effects. The expectation value of this property over the
wavefunctions extracted from diagonalization of the above matrices can
be obtained by analytic or numerical integration. The accuracy of the
results depends on approximations used to estimate the expectation of
value of R in the induction contributions, and again on the validity of the
RAA approximation.

EXAMPLES

ArNH,

The ArNH; complex was first studied in detail by Nelson et al (64), who
suggested that this complex was unique among NH ;-containing complexes
because the umbrella inversion motion was not quenched. Rigorous proof
of this conjecture was obtained with the spectroscopic assignment of the
inversion transitions in ArNH; by Zwart et al (22). Thus, the IPS of the
complex is a four-dimensional function of R, 0, ¢, and p—the inversion
coordinate.

Schmuttenmaer et al (21) have developed an approximate angular IPS
V.a(0, ¢) based on tunable far-IR laser VRT measurements of three bands
of para Ar—-NH,. Two bands are reported by Schmuttenmaer et al (21),
and one by Gwo et al (20). The electric dipole and nuclear quadrupole
measurements of Nelson et al (64) were also included in the fit. The leading
three anisotropic terms in the potential expansion were considered, and
a range of reasonable potentials was developed. The data set was in-
sufficient to establish the anisotropy in ¢, and the potential was, therefore,
constrained to be isotropic in this coordinate. Figure 4 illustrates three
limiting potential surfaces, the bending energy levels, and the
wavefunctions. The IPS for ArNH; is dominated by anisotropic repulsion,
which favors a minimum with the C;, axis nearly perpendicular to the van
der Waals bond axis.

Additional measurements of the VRT spectrum of Ar-NH, have since
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Figure 4 Potential energy surfaces (heavy solid curves), vibrational energy levels (solid
horizontal lines), and the square amplitude of the wavefunctions (dotted curves) for Ar—NH;.
The best fit (V, fixed at 3 cm™") is shown in (@), and fits with V3, = +15 are shown in (b)
and (c), respectively. All three are consistent with the experimental data. In (d), the results
for an 1sotropic potential are shown for comparison.

been reported by Zwart et al (22). Schmuttenmaer et al (65) are currently
developing a full four-dimensional surface, which will explicitly include
the effects of anisotropy in the ¢ coordinate and angular radial coupling.

ArH,0

The AW1 surface developed by Cohen & Saykally (46) has been tested by
measurements of six new VRT bands (17, 63) and by the measurement of
the dipole moment and quadrupole coupling constants of the ground
vibrational levels by Fraser et al (66). These new measurements draw
attention to the weaknesses of the AW1 parameterization. The dipole
moment measurement requires a larger | V| anisotropy in the region of
the potential minimum than is present in the AW1 surface. This, in turn,
requires other anisotropic terms, which were constrained to be equal to
zero on the AW1 surface, to be included. The sign of V, is not easily
determined: It is not determined by vibrational splittings in Ar—H,O, but
only by isotope shifts and rotational term values.
The VRT measurements are more difficult to interpret than the dipole
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moment. They demand a surface with significantly more angular-radial
coupling than is present in the AW1 surface, but do not affect a single
specific potential parameter. They also require inclusion of &3¢, €32, R5,
and R7Y, anisotropies. Initial fits to this new data set indicate that the
isotropic well depth V,, is close to 125 cm ™!, 30 cm ™' below the AW1
value [153.3 (4)]. This is more than 30 standard deviations from the pre-
viously determined value, but the well depth parameter, (V,), was highly
correlated (—0.98) with the repulsive wall parameter §, in the AW1 fit.
The current fits indicate that these two parameters are much less correlated
(—0.94) and, thus, are expected to be more reliable. Cohen & Saykally
(67) present a full analysis of the Ar-H,O potential, and of data for Ar—
D,0.

CH,-H,0

The high symmetry of the CH,-H,O cluster makes it a relatively simple
starting point for the investigation of weak interactions between two poly-
atomic molecules. Cohen et al (30) have measured and assigned six different
VRT bands of this complex (30). These spectra were then compared with
the bending values of two different effective angular IPSs calculated by
using the RAA.

The potential energy surface was taken to be of the form of Equation
5,evaluated in a Jacobi coordinate system with the origin at the H,O center
of mass. The van der Waals bond length was fixed at the experimentally
determined value of 3.720 A. In both IPSs the electrostatic attraction
through R~ terms was fixed by using experimentally determined multi-
poles of H,O and CH,. In addition, anisotropic terms that involve only
one subunit (¥, , 00z, ¥o0r,x,) Were fixed at the corresponding values for
Ar-H,0 (46, 67) and Ar—CH, (68). These terms represent the sum of
induction, dispersion, and repulsive forces. Eigenvalues were calculated
on this IPS and on another that had a large anisotropic repulsive terms of
the form V ;x5 La, Lp # 0. These terms were considered opposite in
sign and one half the magnitude of the attractive anisotropies. (Neither
surface has impressive agreement with the experimental data.) Measure-
ment of many more VRT levels are necessary before the exact shape of the
intermolecular potential for this interesting complex can be experimentally
determined.

CONCLUSION

Advances in both experimental and computational methods offer the possi-
bility for determining exact IPSs for binary van der Waals and hydrogen

_ bonded clusters. These methods permit IPSs for any atom-molecule cluster
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to be studied in extraordinary detail. Intermolecular dynamics and IPSs
for clusters of higher dimensionality are currently a subject of active
experimental interest, with sufficient data available to warrant develop-
ment of experimental potentials for (HF), (69a, 70), (HCL), (23, 24, 71),
(H,), (72), Ar,HC1 (31), HF-HCN (73), H,—HF (74), and possibly (H,0),
(25, 26) and (NH3), (27). Intermolecular potentials for all of these systems
have been discussed in the literature (75-81), but only in the case of (HF),
(47) has an IPS actually been refined by fitting to VRT data. Detailed
experimental characterization of the anisotropy of intermolecular forces
in these and other systems can be expected in the near future.
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