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INTRODUCTION

The role of intermolecular forces in modern science is becoming ever more

prominent, as increasing numbers of chemists and physicists turn to the

investigation of condensed matter phenomena and biological systems.
Although thee subject is hardly novel, the state of our knowledge of inter-

molecular forces and their associated potential energy surfaces is, never-

theless, remarkably primitive. For example, isotropic descriptions of the

pairwise interactions between most of the common small molecules have

existed for many years, but the anisotropy of these interactions still remains
largely uncharacterized--even after nearly two decades of investigation

with the most sophisticated experimental and theoretical techniques avail-

able! Furthermore, anisotropy is a dominant feature of systems that have

the most significance, viz. those exhibiting hydrogen bonding.
This state of affairs seems all the more surprising when one considers that

detailed theoretical formulations have been developed (1) for describing the

three types of weak attractive interactions that occur between a pair of

molecules, viz. electrostatic, induction, and dispersion forces, and that at
least the low-order parameters that describe these interactions (polar-

izabilities, dipole moments, quadrupole moments) are generally well-
known. However, as we elaborate upon in this review, it is our lack of
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370 COI-IEN & SAYKALLY

knowledge of the higher-order terrns in the radial and multipole expansions

of the attractive forces and of the ~.nisotropic components of the exchange

repulsion that preclude a more complete understanding of intermolecular

forces.
The use of modern high-resolution spectroscopy and molecular beam

techniques for the study of intermolecular forces has been reviewed

recently by Hutson (2). Microwave spectroscopy has now been employed
in the study of a large collection of weakly bound complexes (3). Although

this collective work has given us considerable qualitative insight into the
nature of weak intermolecular ~.nisotropy, microwave spectra do not

explore sufficiently large ranges of the large amplitude coordinates to

permit the extraction of an accurate intermolecular potential energy sur-

face (IPS). Mid- and near-infrared (IR) laser methods have similarly 
used to study many weakly bound complexes over the last decade. The

difficulty with this approach is that it usually does not probe the large
amplitude coordinate of the complexes with sufficient sensitivity, and only

in very special cases has a ground, state IPS actually been extracted from

such experiments. Dramatic progress in this area has been realized in the

last few years (4, 5), however, wherein the capability has been developed

to study low frequency vibrations in complexes through hotbands and

combination bands associated wJith the monomer fundamentals (6). 
Hutson (2) discussed, the use of molecular beam scattering methods and

other techniques for studying intermolecular forces suffer from a variety

of other limitations.

During the last several years, the rapid development for far-IR laser

spectroscopic techniques, which are capable of measuring the low-fre-

quency vibrations of the van tier Waals bonds in weakly bound complexes

(7-10), has produced an extensive new data base, from which the intimate

details of intermolecular interactions can be deduced, at least in principle.

We call this new approach vibration-rotation-tunneling (VRT) spec-

troscopy, because the transitions that are measured are either stretching
vibrations of the van der Waals bonds, or hindered rotation-tunneling

states of the constituent monomers; hence, .the terminology is generally
applicable to all weakly bound complexes.

The design and construction of tunable far-IR laser of spectrometers

used for VRT spectroscopy has been described in detail in a recent review

(11, 12). The investigations of weakly bound complexes, conducted by the

four groups currently pursuing f~tr-IR-VRT spectroscopy, is detailed in a
separate review (13). In Table 1, we list the molecules studied to date 

this method and the appropriate references.

To actually extract a detailed characterization of intermolecular forces

from VRT spectra, a general m~tthematical inversion scheme must exist
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Talfle 1
IR laser

MULTIDIMENSIONAL POTENTIAL SURFACES

Clusters that have been studied by tunable far-
spectroscopy

Cluster Reference Cluster Reference

ArHC1 7, 8, 9, 10 (NH3)2 27
ArHBr 14 H~O-CO 28
ArHzO 15-19 H20-Nz 29
ArNH3 20-22 I4:O-CH4 30
(HCI)z 23, 24 Ar:HC1 31
(H~O)~ 25, 26

371

through which the highly accurate VRT spectroscopy measurements can

be analyzed in terms of an anisotropic multidimensional potential surface

without significant loss in the quality of information. Generally, this

implies that the various dynamical simplifications that are usually invoked

to interpret the measurements of intermolecular properties (adiabatic
approximations, distortion methods, etc.) out of mathematical necessity,

must be aw~ided, or at least employed only with careful scrutiny. For-

tunately, the recent experimental advances have been paralleled by simi-

larly dramatic theoretical progress in our ability to address the dynamics

of multidimensional systems. The discrete variable representation (DVR)
(32), the pseudospectral method (33), and collocation method (34) 

among the most powerful of these new dynamics methods. When coupled

with the enhanced computational capability now available with the current

generation of supercomputers, this scenario represents a truly revolu-

tionary adw~nce in our ability to address both intermolecular forces and

the multidimensional intermolecular dynamics associated with them.

In this review, we describe an approach for directly determining multi-

dimensional intermolecular potential energy surfaces from VRT spectra

of binary van der Waals complexes measured with tunable far-IR lasers.

This is by no means the only way to approach the potential inversion
problem, an~d it may not be the best. It is, however, quite general and

possesses a compelling degree of computational simplicity. Moreover, this
same formalism is equally well adapted for analysis ofmid-IR, microwave,

or stimulated emission pumping spectra of weakly bound complexes. As

such, it should be useful to a reasonably large audience.

COORDIINATE SYSTEMS AND HAMILTONIANS:

THE PSEUDODIATOMIC APPROACH

As the starting point of a general formalism for treating VRT spectra of

a pair of interacting molecules, we make the central assumption that the
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372 COHEN & SAYKALLY

interacting monomers are not significantly affected by the weak van der

Waals forces. The properties of the binary complex (e.g. dipole moment,

electric field gradient, magnetic diipole moment) are then given simply by

the projections of the relevant monomer properties onto the principal

inertial axes of the complex. These are then easily corrected for the small

(ca. 1%) polarization effects that accompany weak bond formation (35).
The canonical view of molecular structure in terms of a single deep

minimum in the electronic poten.tial energy surface, and the associated

embedding of space- and body-fixed coordinate systems through the Eck-

hart conditions (36), is entirely abandoned in this description. Instead, 

describe the complex in the language of scattering theory, viz. in terms of

large amplitude dynamics of a set of Jacobi coordinates over a multi-

dimensional IPS, which has a complicated topology (multiple minima and

barriers): The set of generalized Jacobi coordinates appropriate for 
complete description of the dynamics of a general complex, composed of

two interacting polyatomic fragments, consists of five angles and a single

distance (Figure 1). The R vector joins the centers of mass of the two

interacting monomers, pointing from molecule A toward molecule B, and
defines the weak bond axis; 0A and 0B are the angles between R and an

appropriate symmetry axis in each monomer, qSA and ~bB describe rotation

Co~,rdinate System

V(R, OA, ~A’ OB’ (~B’ ~)

Fiyure 1 The Jacobi coordinate system for the interrnolecular degrees of freedom of a

polyatom-polyatom complex.
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MULTIDIMENSIONAL POTENTIAL SURFACES 373

of each monomer about these symmetry axes, and ~ = XA--XB is the

dihedral angle between them. Thus, to describe the large amplitude dynam-

ics of an arbitrary binary complex, one must solve a coupled six-dimen-
sional problem in this set of internal coordinates, which is a formidable

task by any standard.

The end-over-end rotation of the entire complex would normally (36)

be described by a set of three Euler angles (~, fl, ~), defined with respect 

a space-fixed axis system (X, Y, Z). In the pseudodiatomic approach, the

complex is instead viewed as a diatomic molecule, with the respective

monomer masses e1 and M2 concentrated at the center-of-mass positions
along the R vector. The end-over-end rotation can then be described by

only two Euler angles, with the third set equal to zero.

Brocks et al (37) have used this pseudodiatomic embedding approach
to derive t]ae Hamiltonian for a general binary complex in body-fixed

coordinates, thereby circumventing the complications in this procedure
that are w,zll known to scattering theorists and spectroscopists. They

choose the R vector as the body-fixed z axis, and define a set of angular

momentum operators:

J =j+l

J = JA +JI,. 1.

Here, l is the end-over-end rotation of the pseudodiatom, jA andjB are the

angular momenta of the individual polyatomic fragments A and B, and J

is the total angular momentum. With the two-angle embedding approach,

the commutation properties of J in body-fixed coordinates are not the

usual,ones (space-fixed or body-fixed); hence, J is termed a pseudoangular

momentum operator. As a result of this complication, standard angular
momentum results cannot be used without special considerations when a

pseudodiatomic embedding procedure is used. This presents no additional

complications, however, when a suitably chosen basis is used.
The Harniltonian for a general binary complex can be expressed as (37)

H = Ha + HB + Kt~w + VI~T, 2.

where the Fiamiltonians for the individual nontunneling polyatomic frag-

ments (Ha and H~) are assumed to be separable from the kinetic and

potential energy operators for the complex (K~T and V~T), Because the

vibrational frequencies of the chemical bonds in the monomers are gen-

erally one to two orders of magnitude higher than is typical for van der
Waals bonds, averaging the total Hamiltonian (2) over the high frequency

motions is a good approximation. One thus obtains an effective Hamil-

tonian for each individual monomer vibrational state. The effective mono-
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374 COHEN & SAYKALLY

mer Hamiltonians, HA and Ha, then assume the usual Watson form (36),

by employing vibrationally averaged rotational constants and using com-

ponents of angular momentum operators defined in their respective prin-

cipal axis systems. The orientatio:as of the monomers with respect to the

body-fixed pseudodiatomic frame are given by two sets of Euler angles COA
and con, which include the angles 0A,B, qSA,B, and ZA,B described above. The

interaction potential depends on only five of these six angles, as only the

relative orientation of the fragments must be specified.

The internal kinetic energy operator is

h2 8 2 8 1 ~2 ~ 2~ ~
LNT -- 2~R2 ~R ~ + ~[J +j - V’J]. 3.

Brocks et al (37) define the operators Y and~ The first term in Equation

3 describes the vibrational motion along the van der Waals bond;

the second characterizes the pseudodiatomic rotation and the Coriolis

interactions.

The potential energy operator (VINT) for the interacting fragments is
actually the IPS that we seek to extract from the VRT data. The IPS is

averaged over the monomer vibrational states and can be expressed in
various forms. For molecules containing at least several heavy atoms, it is

quite common to expand the potential as a sum of attractive and repulsive

contributions between individual atoms within the complex. Such site-site

potentials have been used in comparison of equilibrium structures of
strongly anisotropic systems with the geometry of the potential minimum

(38), but have not actually been used to fit spectroscopic data. A more

useful approach for our purposes is to expand the IPS in a series of Wigner

rotation matrices, expressed in the body-fixed Euler angles ma and ~u. For

a general binary cluster this becomes (37)

V~x(R, ~A, ~u) = ~ Vg~,r~,,,~,r~,~(R)Ae~,~,~u,r~,Z(~A, roB).
LA,K
A

LB,KB,L

A~,~,~.,r~(~A, ~B) = 8~2(2L + l) 

M~ ~MA --MA O]D~K~(ZA’OA’¢A)D~K~(Zs’OB’¢s)’I
~ 4.

L*where the functions DMK((D) are no~alized Wigner D-matrices and (...)

is a 3-j symbol. This form of the potential operator reflects the special

nature of the weak bond and allows for several approximations that take
advantage of the well-known properties of integrals over products of
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MULTIDIMENSIONAL POTENTIAL SURFACES 375

Wigner D-matrices. The indices KA and KB range from LA to LA and

- LB to LB, respectively. The index L is the vector sum of LA and LB.

The values of the indices L and K and the relative contributions of

different terms in the expansion are subject to symmetry constraints: For all

molecules, LA + LB + L = even number (39); for electrostatic interactions
expressed as a multipole expansion, L = LA + LB; and for molecules with a

Cn axis, only values for which K rood(n) = 0 are nonzero. This expansion
reduces to atom-polyatom and atom-diatom expressions when LB = 0,

and has been used in slightly modified forms in direct fits ofa parameterized

IPS to spectroscopic data for Rg-H2 (40), -HX (41-45), -H20 (46),
and -NH3 (21) complexes, as well as for 4 -- H zO(30) and(HF)2 (47)

Several different formulations of these potential functions are commonly

used, including expansions in spherical harmonics and Legendre poly-

nomials for atom-molecule interactions. Functions are often used with

normalization appropriate to the function with one more or one less degree

of freedom to facilitate comparison between different complexes. Care
must be taken that proper scaling for normalization has been considered

when comparing the coefficients V(R) from different treatments.
To deriw~ physical insight into the forces that give rise to the IPS, it is

useful to express the interaction potential as the sum of four anisotropic

terms

V(R, 0A, ’~A, 0B, q~B, Z) = Veleetrostatie( R, 0A, q~A, 0B, q~B, Z)

-~- Vinduction(R, 0A, q~A, 0B, q~B, ~) + Vdispcrsion(R, 0A, ~A, 0B, ~B, 

+ 0.,

and to expand each of these te~s in a series of orthogonal polynomials,
as in Equation 4. Functional forms for the expansion coefficients V(R)

(radial strength functions) are available for the electrostatic interaction

and the induction forces, which involve dipole-dipole polarizabilities (~ij)

and dipole-quadrupole polarizabilities (A~jk) (48). We reproduce the 

order equations here, arranged in the form of Equation 4.

LA,L~,L ~,~

x 2L+ 1
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376 COHEN & SAYKALLY

x r- (dk + d~, + 4)al ,(LBKB)

X E C(~i~dA; K’AK’~KA)Qdik’AQd’~k’~AL#GLaX.L(foA,

In Equation 6, C(... ;...) is a Clebsch-Gordon coe~cient, and the quantity

in brackets { } is a 9 -j symbol. For the induction energy associated with

the charge distribution of molecule B and polarizability of molecule A, the

subscripts A, B are interchanged:

(- [(2L~+ 1)[(2L.+

Vdisp ersion ~ E

LA,La,L

KA,KB

× QL,,~:AQI~.~:.R-(L+ 0AL#~,~.~:./~(foA, coB) 

CLAKALBKBL
n

Rn ALAK^LaKaL((DA, fOB), 8.

LMThe molecular multipole momenl:s, QLM, and static polarizabilities, e~u,
used in these equations are expressed in irreducible spherical tensor form.

Table 2 provides the low-order constants, defined in terms of Cartesian

components with a normalization consistent with Equation 4. Exact cal-

culation of the dispersion coefficients requires knowledge of the frequency-
dependent polarizabilities. C6 constants are available from dipole oscillator

strength distributions for some systems, or they may be estimated, as

Buckingham et al (1) discuss. Higher-order isotropic dispersion constants

have been estimated by using static polarizabilities (42-44, 46) and cal-

culated by ab initio theory (49).

By using these expressions and the molecular constants (dipole and

Table 2 Transformation from Cartesian to spherical multipole

moments and polarizabilities

Ql0 = #z

Q~o = 0=

Q~, = -~/~(0~+i0rz)

Q2~ ~ ~/~ (0xx -- Oyy "}- 2iOxy)

QL-U = (-- 1)UQ~u

1/3"~ 2 /" 1

www.annualreviews.org/aronline
Annual Reviews

A
n
n
u
. 
R

ev
. 
P

h
y
s.

 C
h
em

. 
1
9
9
1
.4

2
:3

6
9
-3

9
2
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

n
iv

er
si

ty
 o

f 
C

al
if

o
rn

ia
 -

 B
er

k
el

ey
 o

n
 0

9
/1

3
/0

6
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.

http://www.annualreviews.org/aronline


MULTIDIMENSIONAL POTENTIAL SURFACES 377

quadrupole moments, polarizabilities, etc.) obtained from either experi-
ment or ab initio theory, it is possible to fix some of the leading con-
tributions to the attractive portion of the IPS and then explore the con-
tribution of the repulsive forces and higher-order attractive interactions.
Intermolec~ular repulsion resulting from the overlap of electronic

wavefunctions on different species rises exponentially at short range. As
discussed by Buckingham et al (1), single-center expansions converge very
slowly to true molecular shapes. It is better to expand the repulsive inter-
action as

Arepulsion((DA, (DB) e -’(~A’~")tR- Rm( B)] 9.

where the functions Arepulsion(t~A, (~OB), fl(O)A, (DB), and Rm((DA, (DB) are sep-
arately expanded in a series of orthogonal polynomials. Anisotropy in

Arepulsio n and gm are important at the low energies sampled by the bound
states; anisotropy in fl is well known from molecular beam scattering
results, but has not yet been shown to be important in the bound region
of a van der Waals potential.

MULTIDIMENSIONAL DYNAMICS:

COMPUTATIONAL STRATEGIES

Exact Methods

Having expressed the Hamiltonian that describes the vibrations, hindered
rotations, and overall rotation of the complex in an appropriate form, we
then compute the bound states for the problem by solving the Schrodinger
equation. The problem of solving a set of coupled, multidimensional
differential equations has recently received considerable attention. We
note, in particular, the recent review by Ba6i6 & Light (50). The most
successful new methods employ a mixed basis set/pointwise approach.
The power of these methods derives from their capabilities to obtain
the eigenva[ues and eigenvectors of the Hamiltonian accurately, without
requiring that multidimensional integrals be computed to determine the
matrix elements. Only the value of the IPS and the basis set on a grid of
points is required. This effects a considerable savings in the time required
to generate the eigenvalues of the Hamiltonian and in the complexity of
the computational procedure.

Several pointwise methods have been implemented in the solution of the
Schrodinger equation for molecular systems. Friesner and coworkers (33)
have developed the pseudospectral method, principally in connection with
the electronic structure problem. This approach is related to, but varies
slightly frora, the two methods that have been more extensively applied to

the problem of heavy particle dynamics on an IPS with many strongly
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378 COHEN & SAYKALLY

coupled degrees of freedom. These two methods are the DVR, which has

been developed by Light and coworkers (32), and the collocation method,

which has generated a renewed interest for chemical applications since the

recent work of Peet & Yang (34, 51-54). In the DVR, one solves the

Schrodinger equation by expanding thc wavefunction as a direct product

of an orthonormal basis set in ea~;h coordinate. The basis is then related
by a unitary transformation to one in which the coordinate operators are
diagonal. For example, the effect of the operator/~ on the DVR function

I (I)i(R)~ is to generate the eigenvalue R~, which is a point in the configuration

space of the problem:

]~qbi (R)) i ] ( I)i (R) 10.

One then makes the approximation that the integrals over the IPS can be

evaluated by quadrature on the DVR points, which results in a diagonal

form for the matrix representation of the IPS. The Hamiltonian matrix in
this formulation is sparse, because the only off-diagonal coupling terms

result from the kinetic energy operators. The DVR has been applied to

the study of highly excited vibrational levels of covalently bound species
(H20, HCN) (55, 56) and to the calculation of energies for two-dimensional

van der Waals systems, e.g. Ar-HC1 (57) and Ar-HCN (58). The DVR 

advantageous because the Hamiltonian matrix is symmetric, and small

subspaces of the matrix may be evaluated in a recursive procedure of

diagonalization and truncation. Tlais allows for accurate evaluation of the

eigenvalues of a large matrix by diagonalization of a series of smaller

matrices, which translates into considerable computational savings, as the
computer time is roughly proportional to the cube of the matrix dimension.

The DVR method suffers from one major drawback, however, especially

for application to weakly bound complexes that contain polyatomic mol-

ecules: A strict requirement for the implementation of a DVR is that the
basis set be expressed as a direct product of functions in each coordinate.

Basis functions that are the most natural choice for nonlinear systems,

which exhibit large amplitude hindered rotation, viz. spherical harmonics

or Wigner D-matrices, are compound functions spanning two or three
coordinates, respectively, for which a direct product is not defined. For

such problems, the collocation method is more efficient.

The collocation method has been applied to solution of one-, two-, and

three-dimensional problems. Yang & Peer (34) studied the convergence 

the method when it is applied to so]Ive for the energies of a Morse oscillator.

They then showed that the method could be applied to the solution of the

Hamiltonian for the rotating Ar-HC1 problem (51, 52), and they used 
nondirect product basis to evaluate the eigenvalues of Ar-CO: (54). While

addressing these two-dimensional systems, they also described an iterative
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method for solving the large matrix eigenvalue problem represented by

the multidimensional collocation equations. The collocation method is

considerably simpler and more transparent than the DVR, but it also has

some defic:[encies. The collocation matrix equation appears in the form of

a generalized unsymmetric eigenvalue problem. Formally, complex and

spurious eigenvalues and nonorthogonal eigenvectors may arise from such

a matrix, although in our experience, such results actually represent inade-

quate convergence of the basis set or the points and are easily recognized

and circumvented by simply increasing the number of basis functions and
points.

In essence, the collocation method amounts to an n-point quadrature

approximation to the Rayleigh-Ritz variational method for solving the

Schrodinger equation. The procedure for applying the collocation method
is to expand a trial wavefunction as a linear combination "of n basis

functions. These functions are then considered an exact solution of the

Schrodinger equation at n collocation points. The points are chosen to be
an appropriate set of quadrature points in the configuration space of the

problem. The resulting n coupled equations then appear in the form of a

generalized[ eigenvalue problem:

= o. 11.

Here, H is a matrix with elements //~ given by HIW~} evaluated at the
collocation point j, and W is a matrix with column vectors ]Wi} evaluated

at the collocation point j, and W is a matrix with column vectors

evaluated at the same set of points. The label i ranges from 1 to n, the

number of basis functions in the trial wavefunction. The labelj spans the

same range, but identifies the point in configuration space at which the

matrix element has been evaluated. Standard eigenvalue routines which

return eigenvalues (E) and the matrix of eigenvectors (c), are available 

the common mathematical libraries for solving the unsymmetrical matrix
equation.

We begin implementation of the numerical procedures by expanding the
wavefunction as a product of angular and radial functions:

a=-J j=l~l ja=0

~ J~ J~ ~
l (--1)jA-j"-n

kA =JA J~= 0 k~ ~--j~ i= 1 ~A~

X
jA J~

D£X~,~ (~, OA, J[ J*0,,
~A
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The angular functions are chosen to be products of Wigner D-matrices

for the monomers A and B and for the overall pseudodiatomic rotation,

to utilize the general results of Broeks et al (37). The radial functions i~n(R)

can be considered a set of distributed gaussians, or a set of orthonormal

functions that represent the bound and unbound solutions to a suitable

model one-dimensional problem. These primitive functions are then sym-

metrized to transform according to. the irreducible representations (F) 

the molecular symmetry group for the complex. The Hamiltonian does

not mix functions of different symmetry or total angular momentum.

We then operate on the symmetr:ized wavefunction with the Hamiltonian,

multiply on the left by the complex conjugate of the spatial wavefunction,

and integrate over e,/~, 7 to reduce the problem to one that involves
only the internal coordinates. This gives the set of coupled differential

equations, which we solve by collocation. Cohen & Saykally (46) describe

this procedure in detail for the specific case of an atom-polyatom

complex.

The next step in application of the collocation method is to choose a set

ofn quadrature points, one corresponding to each basis function. Because

symmetry operations have been applied to reduce the size of the Hamil-
tonian matrices, the range at whi.ch the points are chosen must also be

appropriately reduced. The poin~:s should be chosen from the smallest

interval of configuration space, which is mapped onto the rest of the

configuration space by successive symmetry operations. In Ar-H20, for

example, this symmetry occurs in the q5 coordinate, which represents
the angle of internal rotation about the C2v axis, for which the interval

0 _< q5 _< re/2 is mapped onto the range 0-2~t, by symmetry operations of
the molecular symmetry group. The choice of collocation points is dis-

cussed in more detail in references’. 46, 52, and 59.

Once the collocation points are chosen, the coupled equations are evalu-

ated on the grid of collocation points, and the resulting matrix is diagonal-
ized by standard numerical methods. The results obtained by using col-

location are not variational, in the sense of a strict upper bound to the

eigenvalues that would be obtained with an infinite basis set. They are,

however, an approximation for the results that would be obtained in a

variational calculation with accuracy of a numerical quadrature on the

collocation points. Peer & Yang (34, 51-54) showed the rate of convergence
to be roughly exponential for some one- and two-dimensional problems.

The absolute level of convergence depends on the details of the particular

system in question, including the reduced mass, the monomer rotational

constants, and the magnitude of the anisotropy. The most strongly bound

states, which are usually the ones accessed spectroscopically, are more

easily converged than highly excited levels. In fits to experimental data,
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one attempts to reproduce vibrational frequencies and rotational spacings
to about 1 part in 103-104. Thus, the calculated eigenvalues must be
converged to at least this level of accuracy.

The first step in a fit of experimental data to the IPS is to choose an
appropriate set of unknowns to vary in the potential expansion of Equation
5. A typicrLl (40, 42, 46) procedure is to fix all the molecular constants
required to calculate the attractive forces through the nth power of R at
known values and then to lump all of the attractive terms of higher order
into a single expansion that varies as the n + 1 power of R:

VATTRACTIVE = VFIX~_ Cn+ i(O.)A ’ coB)R-,+ 1.

13.

This reduces the number of unknown parameters substantially. To reduce
the parameter space further, the well depth e(Rm;COA, COB) is typically
expanded at the position of the radial minimum Rm(COA, COB) for each
angular configuration in a series of orthogonal polynomials. The
coefficients Arepuls~on(coA, coB) and C~+ I(COA, COB)are then determined 
requiring that

V(Rm, co/~, coB) = --~(Rm, coA, COB), 14.

and

V’(Rm, COA, COB) = 15.

where the prime indicates the first derivative with respect to R. This
procedure, first employed by Hutson and LeRoy in fits to Rg-H~ spectra,
reduces the number of parameters, as both Arepulsion(coA, coB) and.

C,+ I(~OA, COB) are determined by fitting e(C0A, COB). It also focuses attention
on the region of the IPS that is sampled most extensively by the spec-
troscopic data, viz. the region surrounding the potential minimum.

The numerical procedures outlined in this section have been
implemented in determination of the IPS of ArH~O (46). The well depth
e(0, 4~), the position of the radial minimum Rm(O, c~), and the repulsive
exponent/~(0, ~b) were expanded in a series of symmetry adapted renor-
malized spherical harmonics, rather than the Wigner D matrices of Equa-
tion 5. In our initial study, nine potential parameters, including ~00, e 10,

e~0, e~, Rg~0, RT0, R~0, R~, and/3o0, were allowed to vary in a fit to an
experimental data set, which consisted of four VRT band origins and seven
rotational term values. Higher order anisotropies in ~, Rm, and/~ were
fixed at zero. Contours of the resulting IPS, denoted AWl, are shown in
Figures 2 and 3.

The eigenvalues of the Hamiltonian were obtained by using a basis set
of 11 radial functions and 10-15 angular functions, depending on the sym-
metry of the subblock, for J = 0. The J = 1 eigenvalues required (2J+ 1)
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150 - I

o 12090

6O

0 ’ ’ ’ I

5 5.5 4 4.5
0

R (A)

Figure 2 A cut through the AWl intermolecular potential surface ofAr H~O with ~b = 0.

All four atoms are coplanar, R is the center of mass separation, and 0 is the angle between

the H20 Czv axis and the R vector. The hydrogen atoms point toward the argon at 0 - 0°

and away at 0 - 180°.

more angular functions. This basis gave convergence of 0.02 cm- I for the

intermolecular vibrational frequencies used in the fit and 0.0001 cm-l

for rotational term values. Three of the four possible symmetries were

required to calculate all of the observed frequencies. Each call to the

eigenvalue subroutine required two minutes of central processing unit

(CPU) time on a CRAY-XMP/14. For nine parameters, each least squares

iteration required about 20 minutes. Approximately ten hours of CPU
time were used to obtain a converged fit.

Approximate Methods

The details given above for the exact atom-polyatom calculation illustrate

the level of computational effort required to properly analyze VRT spectra

of a three-dimensional system. Extension to systems with more degrees of
freedom clearly requires much more effort (computation time increases

~ 1000-fold with each added degree of freedom). Therefore, approximate

methods must be employed, at least with present technology. Moreover,

www.annualreviews.org/aronline
Annual Reviews

A
n
n
u
. 
R

ev
. 
P

h
y
s.

 C
h
em

. 
1
9
9
1
.4

2
:3

6
9
-3

9
2
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

n
iv

er
si

ty
 o

f 
C

al
if

o
rn

ia
 -

 B
er

k
el

ey
 o

n
 0

9
/1

3
/0

6
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.

http://www.annualreviews.org/aronline


MULTIDIMENSIONAL POTENTIAL SURFACES 383

i153

~’-
- 15"" ~

15 "

0 50 60 90 120 150 180

Fiyure 3 A ,cut through the AWl surface at Ar-H20 at R = 3.65 ~. The ~ coordinate

specifies rotation of the H20 about its C~v axis. The other coordinates are discussed in Figure

2 and the text.

although the use of the collocation method, or another suitable com-

putational approach for obtaining the exact eigenvalues and eigenvectors

for the full multidimensional problem, is essential for extracting a quan-

titatively accurate IPS, approximate treatments of the dynamics can actu-

ally offer deeper insight into the relationship between anisotropy in the

IPS and the experimental observables. The most revealing approximations

are those t]hat are based on approximate separability of the internal coor-

dinates, particularly the reversed adiabatic approximation (RAA), which

Hutson (60-62) discusses extensively. In this treatment, the angular and

radial motions are presumably separable. To the extent that this assump-

tion holds (severe breakdown of this approximation is not unusual), 

family of bending levels associated with the same stretching state (usually

the ground state) may be associated with the same effective angular poten-

tial surface.,.

To calculate the VRT spectrum of a polyatom-polyatom cluster within

the reversed adiabatic approximation, one begins with expansion of the

wavefunction, as in Equation 12. This form of the wavefunction is most
appropriate if the internal rotation in both monomers is strongly coupled

to the molecular frame. If one or both angular momenta are more nearly

coupled to the space fixed frame, or if they are coupled to each other,

alternative basis sets may give a better first-order description of the inter-

molecular dynamics, in analogy to the different coupling cases described

by Hutson (60-62) for atom-diatom complexes. The effects of the kinetic

energy operators in the Hamiltonian (Equation 3) on this basis are given
in Table 3. The matrix elements of the potential are (37)
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Table 3 Effect of the Hamiltonian operators on the components of the primitive basis set

.,(2j,+I)(2j+I)(2L+I)]I/~(JA_. 
\k~ K~ ka

×\k~ KB knJ\-f~ 0 [.j, 
16.

The role of the radial strength functions V(R) in the expansion of the IPS

is greatly simplified in the RAA, because the exact functional form is no
longer necessary, and numerical values for the expectation values of the
radial coefficients over the wavefunction of interest may be substituted.
For instance, in his RAA analysis of the spectrum of Ar~H~O (62), Hutson
showed that the vibrational energies of the first two Y~ bending levels of
ortho symmetry are given by the approximate expressions:

E(~-~l°l) = 1/’00-- ~ V2°-~ T V22"~EI°"

1
E(Z~0) = Voo- -~ V2o- ~- V22+ E~o, 17.

if anisotropies involving terms of ihigher order than Vz2 are neglected. In

the above expression, we omit the subscripts LB = K~ = 0, because the
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argon atom is spherical and the subscript L = LA. Elo, and El,o refer to
the free rotor energies of water.

Often in the absence of experimental data, it is useful to consider either

the effects on a spectrum when the anisotropies are varied over a range of

reasonable values, or trends in the spectrum as the anisotropies are

increased by taking the molecule from a near free internal rotor to a near

rigid system. Correlation diagrams for various combinations of aniso-

tropics have been presented for atom-diatom systems (41, 60, 61).

These rnatrix expressions may also be used to evaluate the pseudo-
diatomic rotational term values. This can serve two purposes: The values

can be used to establish energy differences when direct spectroscopic

measurements are not available and the RAA is believed to be appropriate.
And, when the energy differences are well established, the rotational term

values give., some indication of the validity of the RAA. If we express the

angular momentum operators of the Hamiltonian in the basis of Equation

16, then the rotational kinetic energy is given by a diagonal contribution

2ktR~ [J(J+ 1) +j(j + 1) -- 2kq 2] 3,,~rn,tq,
18.

and an off-diagonal Coriolis term

h2

Here, ~ is the pseudodiatomic reduced mass, R is the coordinate operator,

and z refers to all quantum numbers other than the projection O and the
radial quantum numbers n. Within the RAA, we assume that the 1/R~

operator does not cause appreciable mixing of different radial functions,

and equate: h~/pR~ with the rotational constant, B, in the two states that

are mixed lay the Coriolis interaction. B is then considered identical in all

states that share the same effective radial IPS. In the symmetfized basis,

the effect of the off-diagonal Coriolis operator is to mix states of the same

total J and parity, which differ in the ~ quantum n~ber by 1.

Consider states with total J = 1; only ~ = 0 (E) and fl = 1 (H) states
are involved, and the existence of ~ = 2, (A) states cannot yet complicate

the picture. For a state having a wavefunction dominated by j = 1, the "

Coriolis matrix element reduces to Hco~o~i~ = 2B[J(J+ 1)] ~/2 and forj = 2,

Hcoriolis = 2~B[J(J+ 1)] 1/2. A 2 x 2 Hamiltonian matrix for the mixed
E+ and H+ states results,

Hcodolis H~ J
20.
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and the unperturbed component of the 17 state, which is of the opposite

parity, has an energy given by

E~ = [H~]. 21.

The 2 × 2 matrix may be diagonalized perturbatively, assuming that

(Hcoriolis) 2 << Hn- Hx, with the results:

2
= Hz -- Hcoriolis/(Hn -- Hx)

= Hn + Hcoriotis/(Hn-- Hz). 22.

The simplest manifestation of this operator to consider is the ~-splitting of

the two J = 1 levels in 17 states. This splitting, which we denote q~(J = 1), 

approximately

E~ - E~ = 8B2/(Hn- Hz) 23.

in states with j = 1. The +/- signs are used here solely to differentiate

between the two components of the 17 state and do not reflect any molec-

ular symmetry. It is important to note that the Coriolis-induced shift in
the rotational term value of J = 1 in the E level is equal and opposite to

that in the 17 state. Large fractional errors in the effective internuclear

distance may be obtained if this effect is not explicitly accounted for in the

analysis of states with substantial internal angular momentum.

This expression is remarkably accurate for the ortho j = 1 VRT states
of Ar-H 20 (15, 16). The splitting ir.t II (10 ~) is 0.205 GHz. Substituting 

Equation 23, and using an average rotational constant of 3 GHz, which

is within 2% of the experimental values (3.015, 2.951 GHz), yields 
estimate of the energy difference between J = 1 in the 2(100 level and

J = 1 in the H(10 l) state of 351 GHz. This compares with the experimental

value of 340 GHz (15, 16, 63). In the H(110) state, the observed splitting

is 0.147 GHz, which yields an estimate of the spacing between J = 1,2; (1 ~ 0)

and J = 1, 17(110) of 489 GHz, compared with the experimental value 

452 GHz. The accuracy of these estimates is strong evidence that these

VRT states of Ar-H20 very nearly correspond to the pure basis functions

used (I 7), and supports the idea tln~at all of the states involved sample the

same effective radial potential.
The results for the first para bending levels of Ar-H20 are dramatically

different (17). In the 1 ~1 states, we measure q~(J = 1) to be 0.251 GHz.

By using this measured splitting, we estimate the energy spacing of II(l ~)-

E(ll~) to be 286 GHz, more than twice the experimental spacing of 115

GHz. The failure of this simple model to account for the positions of

the observed bands simultaneously with the observed spacings indicates

strongly that there is significant mixing of the Y. and/or 17 levels with other
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nearby states. The exact three-dimensional calculations suggest that the

predominant source of mixing occurs between n = 1,Z(000) and
n = 0, E(l ~l), which implies that the RAA is not appropriate for analysis

of these states. Similar effects of bend-stretch coupling are manifested
in other excited states of Ar-H20, Ar-NH3, and probably most other

complexes. Hence, the RAA is not a generally applicable description for
the VRT dynamics of complexes.

Other experimentally accessible properties, such as the dipole moment

or nuclear quadrupole coupling constant, may also be evaluated within
the RAA. The dipole moment of the complex may be approximated to be

the projection of the dipole moments of the monomers, with corrections

for induction effects. The expectation value of this property over the

wavefunctions extracted from diagonalization of the above matrices can

be obtained by analytic or numerical integration. The accuracy of the

results depends on approximations used to estimate the expectation of
value of R in the induction contributions, and again on the validity of the

RAA approximation.

EXAMPLES

ArNH3

The ArNH3 complex was first studied in detail by Nelson et al (64), who

suggested that this complex was unique among NH 3-containing complexes

because the umbrella inversion motion was not quenched. Rigorous proof

of this conjecture was obtained with the spectroscopic assignment of the

inversion transitions in ArNH3 by Zwart et al (22). Thus, the IPS of the

complex is a four-dimensional function of R, 0, q~, and p--the inversion

coordinate.

Schmuttenmaer et al (21) have developed an approximate angular IPS

Veer(0, qS) based on tunable far-IR laser VRT measurements of three bands
of para Ar-NH~. Two bands are reported by Schmuttenmaer et al (21),

and one by Gwo et al (20). The electric dipole and nuclear quadrupole

measurements of Nelson et al (64) were also included in the fit. The leading

three anisotropic terms in the potential expansion were considered, and

a range of reasonable potentials was developed. The data set was in-

sufficient to establish the anisotropy in ~b, and the potential was, therefore,

constrained to be isotropic in this coordinate. Figure 4 illustrates three
limiting potential surfaces, the bending energy levels, and the

wavefunctions. The IPS for ArNH 3 is dominated by anisotropic repulsion,
which favors a minimum with the C3v axis nearly perpendicular to the van

der Waals bond axis.

Additional measurements of the VRT spectrum of Ar-NH 3 have since
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Figure 4 Potential energy surfaces (heavy solid curves), vibrational energy levels (solid

horizontal lines), and the square amplitude of the wavefunctions (dotted curves) for Ar-NH 3.

The best fit (1/’3o fixed at 3 cm- ~) is shown in (a), and fits with I,’30 = ___ 15 are shown in 

and (c), respectively. All three are consistent with the experimental data. In (d), the results

for an isotropic potential are shown for comparison.

been reported by Zwart et al (22). Schmuttenmaer et al (65) are currently

developing a full four-dimensional surface, which will explicitly include

the effects of anisotropy in the ~b coordinate and angular radial coupling.

ArH20

The AWl surface developed by Cohen & Saykally (46) has been tested 
measurements of six new VRT bands (17, 63) and by the measurement 

the dipole moment and quadrupole coupling constants of the ground
vibrational levels by Fraser et al (66). These new measurements draw

attention to the weaknesses of the AWl parameterization. The dipole

moment measurement requires a larger 1 V~0l anisotropy in the region of

the potential minimum than is present in the AWl surface. This, in turn,

requires other anisotropic terms, which were constrained to be equal to

zero on the AWl surface, to be included. The sign of Vl0 is not easily
determined: It is not determined by vibrational splittings in Ar-H20, but

only by isotope shifts and rotational term values.
The VRT measurements are more difficult to interpret than the dipole
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moment. They demand a surface with significantly more angular-radial

coupling than is present in the AWl surface, but do not affect a single

specific potential parameter. They also require inclusion of e30, e32, R~0,

and R~2 anisotropies. Initial fits to this new data set indicate that the

isotropic well depth V00, is close to 125 cm-~, 30 cm-~ below the AWl

value [153.3 (4)]. This is more than 30 standard deviations from the pre-

viously determined value, but the well depth parameter, (V00), was highly

correlated (-0.98) with the repulsive wall parameter fl00 in the AWl fit.

The current fits indicate that these two parameters are much less correlated

(-0.94) and, thus, are expected to be more reliable. Cohen & Saykally

(67) prese.nt a full analysis of the Ar-H20 potential, and of data for Ar-

D20.

CH4-H:O

The high symmetry of the CH4-H20 cluster makes it a relatively simple
starting point for the investigation of weak interactions between two poly-

atomic molecules. Cohen et al (30) have measured and assigned six different

VRT bands of this complex (30). These spectra were then compared with

the bending values of two different effective angular IPSs calculated by

using the RAA.

The potential energy surface was taken to be of the form of Equation

5, evaluated in a Jacobi coordinate system with the origin at the H 20 center

of mass. The van der Waals bond length was fixed at the experimentally

determined value of 3.720 /~. In both IPSs the electrostatic attraction

through R-7 terms was fixed by using experimentally determined multi-

poles of H20 and CH4. In addition, anisotropic terms that involve only

one subunit (Vz^x~00c, V00~ar~t) were fixed at the corresponding values for
Ar-H20 (46, 67) and Ar-CH4 (68). These terms represent the sum 

induction, dispersion, and repulsive forces. Eigenvalues were calculated

on this IPS and on another that had a large anisotropic repulsive terms of

the form V~ar~srsz; LA, La ~ 0. These terms were considered opposite in

sign and one half the magnitude of the attractive anisotropies. (Neither

surface has impressive agreement with the experimental data.) Measure-
ment of rnany more VRT levels are necessary before the exact shape of the

intermolecular potential for this interesting complex can be experimentally

determined.

CONCLUSION

Advances. in both experimental and computational methods offer the possi-

bility for determining exact IPSs for binary van der Waals and hydrogen

bonded clusters. These methods permit IPSs for any atom-molecule cluster
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to be studied in extraordinary detail. Intermolecular dynamics and IPSs

for clusters of higher dimensionality are currently a subject of active

experimental interest, with sufficient data available to warrant develop-

ment of experimental potentials for (HF)2 (69a, 70), (HC1)2 (23, 24, 

(H2)2 (72), Ar2HC1 (31), HF-HCN (73), H2-I-IF (74), and possibly 

(25, 26) and (NH3)2 (27). Intermolecular potentials for all of these systems
have been discussed in the literature (75-81), but only in the case of (HF)2

(47) has an IPS actually been refined by fitting to VRT data. Detailed

experimental characterization of the anisotropy of intermolecular forces

in these and other systems can be expected in the near future.
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