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Multidimensional inverse lattice problem and a uniformly sampled arithmetic Fourier transform
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The present work develops a unified and concise solution for inverse lattice problems. Also, a uniformly
sampled arithmetic Fourier transform is presented in this work which uses Ramanujan’s sum rule.
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In the present time of facing the rapid spread of lar
scale digital computation and parallel information proce
ing, it is expected that numerous facilities in number the
could be of increasing importance in science and technolo
This paper develops two useful formulas. The first is a u
versalmultidimensionalMöbius inversion formula for wide
applications to inverse lattice problems in condensed ma
physics. The second is an application of theRamanujan’s
sumto parallel signal processing.

I. MÖ BIUS INVERSION
FOR MULTIDIMENSIONAL LATTICES

The classical Mo¨bius inversion formula@1,2# has been
given wide attention in the last decade for its successful
plications to inverse problems in the physical sciences@3–6#.
However, a more demanding question is whether it will
feasible to extend the trick to problems that are not sim
one dimensional. On the face of things that might seem
mere formality, but it takes only a little effort to find prob
lems essentially tied up with the multiple connectedness
all but one-dimensional spaces@7#.

This section provides a unified solution to multidime
sional inverse lattice problems with all different kinds
lattice structures based on a generalized Dirichlet inve
For convenience and clarity, the concise and unified solu
is developed and illustrated through the inversive cohes
problem. In general, the cohesive energyE(x) for each atom
in a multidimensional crystal lattice can be expressed a
sum of interatomic pair potentialsF(x) such that

E~x!5
1

2(
RÞ0

F~R!, ~1!

where x is the nearest neighbor distance,R is the lattice
vector. For convenience, the absolute value ofR can be ex-
pressed asb0(n)x such that

E~x!5
1

2(n51

`

r 0~n!F„b0~n!x…, ~2!

whereb0(n) in a monotonically increasing series represe
the distance between the origin on which the reference a
is located and thenth set of lattice points,r 0(n) is the num-
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ber of thenth set of lattice points. For example,b0(1)51
corresponds to the nearest neighbor distance. The inv
lattice problem is to determineF(x) from the fitting curve
E(x), which can be obtained from theab initio calculation.
The trick here is to extend the series {b0(n)} to { b(n)} to
achieve multiplicative closeness. Thus, for anym and n,
there existk such that

b~k!5b~m!b~n!. ~3!

In other words, {b0(n)} can always be replaced by a mult
plicative semigroup {b(n)}. Therefore, Eq.~2! is equivalent
to the following:

E~x!5
1

2(n51

`

r ~n!F„b~n!x…, ~4!

in which

r ~n!5H r 0„b021@b~n!#…, if b~n!P$b0~n!%,

0, if b~n!¹$b0~n!%.
~5!

The lattice point shell is called vertural whenr (n)50.
Then the solution to Eq.~4! is given by

F~x!2(
n51

`

I ~n!E~b~n!x!, ~6!

in which the inversion coefficient or the generalized Mo¨bius
function I (n) is given by

(
b~n!ub~k!

I ~n!r Fb21S b~k!

b~n! D G5dk1. ~7!

This indicates thatI ~n! and r (n) are the modified Dirichlet
inverse of each other, which is a generalization of comm
Dirichlet inverse in number theory. The following prove
that Eq.~6! is the solution to Eq.~4!, as well as to Eq.~2!.

2(
n51

`

I ~n!E„b~n!x…

5 (
k51

` H (
b~n!ub~k!

I ~n!r Fb21S b~k!

b~n! D G J F„b~k!x…

5 (
k51

`

dk1F„b~k!x…5F„b~1!x…5F~x!.
R5 © 1997 The American Physical Society
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TABLE I. The generalized Mo¨bius functionI (n) for a fcc structure.

n 1 2 3 4 5 6 7 8 9 10

@b(n)#2 1 2 3 4 5 6 7 8 9 10

r (n) 12 6 24 12 24 8 48 6 36 24

I (n) 1/12 21/24 21/6 21/6 21/6 1/9 21/3 1/32 1/12 0

n 11 12 13 14 15 16 17 18 19

@b~n!#2 11 12 13 14 15 16 17 18 19

r (n) 24 24 72 0 48 12 48 30 72

I (n) 21/6 7/72 21/2 1/3 21/64 21/3 217/72 21/2
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In the case where@b(n)#2 are not integers, the least commo
multiple of all the denominators can be used in the recurs
procedure. The solution in Eqs.~6! and~7! can be applied to
any lattice structure of interest in condensed matter phy
or statistical physics including fcc,L12 , L10 , Diamond, bcc,
hcp, DO3, and Fibonacci structure. Several examples
provided as follows.

A. Example: fcc structure

The binding energy can be expressed as

E~x!5
1

2 (
$ i , j ,k%Þ0

F@A2~ i 21 j 21k2!x#

1
3

2(i , j ,k F$A2@~ i2 1
2 !21~ j2 1

2 !21k2#x%

5 (
n51

`

r 0~n!F„b0~n!x…, ~8!

in which the distribution {b0(n)} adding a small fraction of
terms is simply equal to {An}. The latter is closed unde
multiplication. Thus, letb(n)5{ An}, Eqs. ~6! and ~7! can
be applied directly to obtain the solution. Note that in th
case we have

b~mn!5b~m!b~n!, b21S b~k!

b~n! D 5
k

n
.

Here, the condition of sum overb(n)ub(k) in Eq. ~7! can be
simplified tonuk, or

(
nuk

I ~n!r S knD5dk1. ~9!

The left-hand side of Eq.~10! is just the common Dirichlet
product ofI (n) and r (n). Therefore,

I ~1!5
1

r ~1!
5

1

12
,

I ~2!52
I ~1!r ~2!

r ~1!
52

1
1236

12
52

1

24
,•••.

The inversion coefficient or the Mo¨bius functionI (n) for a
fcc structure are listed in Table I. It is noted that the values
inversion coefficientsI (n) are no longer 1,21, and 0 as for
the usual Mo¨bius function.
e

cs

e

f

B. Example: bcc structure

The binding energy per atom in a bcc lattice can be
pressed as

E~x!5
1

2 (
~ l ,m,n!Þ~0,0,0!

@F~A 4
3 $ i 21 j 21k2%x!

1F~A 4
3 $~ i2 1

2 !21~ j2 1
2 !21~k2 1

2 !2%x!#

5
1

2(n51

`

F~b~n!x!, ~10!

with the distributionb0(n) and r 0(n) as seen in Table II.
We use {b0(n)} as a generatorto produce a series

{ b(n)} with weights {r (n)} •{ b(n)} as a multiplicative
semigroup, which is closed under multiplication. Now t
solution is given in Table III.

F~x!52F18E~x!2
3

32
E~A 4

3x!1
9

128
E~ 4

3x!

2
27

512
ESA64

27
xD 1 . . . G .

Thus the effective pair potentials can be easily evalua
based on the cohesive energy curveE(x), which can be cal-
culated using theab initio data for real or virtual structure
@8–11#. This method is also available for improving the em
bedded atom method~EAM! potentials@12#. Obviously, the
solutions to inverse lattice problems are useful for all typ
of multidimensional problems in physical science. Note th
the technique can be replaced by the method based on
braic rings of integers for two-dimensional inverse latti
problems @13#, then the inversion coefficient takes valu
only of 1,21, 0.

In conclusion, Eqs.~6! and~7! have provided a resolution
to Maddox’s challenge@7#.

II. RAMANUJAN’S SUM AND UNIFORM SAMPLING
FOURIER EXPANSION

Ramanujan’s sumC(m,n) is defined as

C~m,n!5 (
hP@0,n21#

~h,n!51

e2p ihm/n, ~11!
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whereh runs only over values less thann and prime ton.
Also, there is an interesting theorem on Ramanujan’s s
@1,2# . The theorem states that

(
hP@0,n21#

~h,n!51

e2p ihm/n5 (
du~m,n!

dm~n/d!, ~12!

whered runs over the common divisors ofm andn. Equa-
tion ~13! implies that the Ramanujun’s sumC(m,n) is al-
ways an integer. Maddox was interested in the application
this strange formula.

Now let us introduce a uniform sampling arithmetic Fo
rier transform~USAFT!. The simplest theorem of USAFT
states that if

f ~x!5(
nuN

ancosnx, ~13!

then

an5
1

N(
s51

N

CS s,Nn D f S 2ps

N D . ~14!

This theorem indicates that the coefficients of USAFT
simply equal to Ramanujan’s sum, which sum can be ev
ated by addition and subtraction of some integers, whic
suitable for parallel processing.

Proof. Let

f̃ ~x!5(
nuN

ane
inx,

then

1

N(
s51

N

CS s,Nn D f̃ S 2ps

N D
5
1

N(
s51

N

(
hP@1,N/n!
~h,N/n!51

ei2ph~s/N/n! f̃ S 2ps

N D
5
1

N(
s51

N

(
hP@1,N/n!
~h,N/n!51

e22ph~s/N/n!(
muN

ame
2p ims/N

5(
muN

am
1

N (
hP@1,N/n!
~h,N/n!51

(
s51

N

e~2p is/N!~m1nh!

5(
muN

amdmn5an , ~15!

or

TABLE II. The coefficientsb0(n) and r 0(n) of a bcc structure.

b0(n)
2 1 4/3 8/3 11/3 4 16/3 19/3 20/3 8 9

r 0(n) 8 6 12 24 8 6 24 24 32 12

b0(n)
2 32/3 35/3 12 40/3 43/3 44/3 16

r 0(n) 12 48 30 24 24 24 8
m

of

e
u-
is

an5
1

N(
s51

N

CS s,Nn D f̃ S 2ps

N D . ~16!

Taking the real part of Eq.~16!, we get Eq.~14! immedi-
ately. The last step of Eq.~15! is equivalent to

1

N (
hP@1,N/n!
~n,N/n!51

(
s51

N

e~2p is/N!~m1nh!5dmn5H 1, m5n

0, mÞn.

~17!

In fact, in the case ofm5n, there exists only oneh such that
(h11)n5N, thus 1

NSs51
N exp{2ps

N (h11)n} 51. In all other
cases, the contribution fromh’s andn’s to the sum vanishes
because

1

N(
s51

N

e2psi~M /N!H 1, NuM

0, Nu”M .
~18!

The corresponding coefficient for odd component is

bn~N!5
~21!k

N (
s51

N

CS s2
N

2q12 ,
N

n D f S 2ps

N D for nu
N

4
,

~19!

wherek andq satisfy

n52q~2k11!, q,k50,1,2,3, . . . . ~20!

The proof is similar as before. In conclusion, a practical e
planation of Ramanujan’s sum is discovered.

A. Example for N54

S a1

a2

a4

b1
D 5

1

4 S C~1,4! C~2,4! C~3,4! C~4,4!

C~1,2! C~2,2! C~3,2! C~4,2!

C~1,1! C~2,1! C~3,1! C~4,1!

C~0,4! C~1,4! C~2,4! C~3,4!
D S f ~ 142p!

f ~ 242p!

f ~ 342p!

f ~ 442p!

D
5
1

4 S 0 22 0 2

21 1 21 1

1 1 1 1

2 0 22 0
D S f ~ 142p!

f ~ 242p!

f ~ 342p!

f ~ 442p!

D . ~21!

TABLE III. Inversion function of a bcc structure.

n 1 2 3 4 5 6 7 8 9 10

@b(n)#2 1
4
3

16
9

64
27

8
3

256
81

32
9

11
3 4

1024
243

r (n) 8 6 0 0 12 0 0 24 8 0

I (n)
1
8 2

3
32

9
128 2

27
512 2

3
16

81
2048

9
32 2

3
8 2

1
8 2

243
8192
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B. Example for N58

S a1

a2

a4

a8

b1

b2

D 5
1

8 S C~1,8!C~2,8!C~3,8!C~4,8!C~5,8!C~6,8!C~7,8!C~8,8!

C~1,4!C~2,4!C~3,4!C~4,4!C~5,4!C~6,4!C~7,4!C~8,4!

C~1,2!C~2,2!C~3,2!C~4,2!C~5,2!C~6,2!C~7,2!C~8,2!

C~1,1!C~2,1!C~3,1!C~4,1!C~5,1!C~6,1!C~7,1!C~8,1!

C~7,8!C~0,8!C~1,8!C~2,8!C~3,8!C~4,8!C~5,8!C~6,8!

C~0,4!C~1,4!C~2,4!C~3,4!C~4,4!C~5,4!C~6,4!C~7,4!

D 1
f ~

1
82p!

f ~
2
82p!

f ~
3
82p!

f ~
4
82p!

f ~
5
82p!

f ~
6
82p!

f ~
7
82p!

f ~
8
82p!

2
5
1

8 S 0 0 0 24 0 0 0 4

0 22 0 2 0 22 0 2

21 1 21 1 21 1 21 1

1 1 1 1 1 1 1 1

0 4 0 0 0 4 0 0

2 0 22 0 2 0 22 0

D 1
f ~

1
82p!

f ~
2
82p!

f ~
3
82p!

f ~
4
82p!

f ~
5
82p!

f ~
6
82p!

f ~
7
82p!

f ~
8
82p!

2 ~22!
se
s
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Note that in the above equation a nonsquare 638 matrix is
used.

III. CONCLUSION

This work is intended for solving some important inver
problems in physics. But it could be also considered a
response to Maddox’s two challenge problems@7#.

For the universal solution to multidimensional inverse l
tice problems we introduce a concept of virtual lattice poi
and a modified form of a Dirichlet product. Also the prese
work presents a method for discrete Fourier expansion
which the coefficients are simply Ramanujan’s su
C(m,n). C(m,n) can be evaluated using the Mo¨bius func-
tion. Thus it is suitable for parallel processing. Now that t
extensive use of large scale digital computation in solv
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inverse problems has become popular, the discovery of n
ber theory’s applications such as USAFT might be of
creasing importance.
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