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ABSTRACT This paper proposes a joint domain localized matrix constant false alarm rate detector based on

the space-time adaptive processing and information geometry method to improve the detection performance

for high-frequency surface wave radar. Unlike traditional target detectors that use one-dimensional or two-

dimensional amplitude information, the proposed detector considers multidimensional information of the

signal to easily distinguish the target from the noise or clutter. The multidimensional information is obtained

by joint domain localized processing, a reduced dimension space-time adaptive algorithm. Then using the

information geometrymethod, wemap the detection problem to the geometric manifold and detect the targets

by geometric measures. This paper proposes different detectors based on different geometric measures. The

experiments and results show that the proposed detectors can enhance the detection performance compared

with classical cell average constant false alarm rate detector.

INDEX TERMS Radar applications, radar detection, information entropy, detectors, multidimensional signal

processing, radar signal processing, adaptive signal processing, information geometry.

I. INTRODUCTION

High frequency surface wave radar (HFSWR) utilizes high-

frequency band (3-30MHz) electromagnetic waves which

propagate along the ocean surface to monitor the surface or

detect low altitude targets. This radar has the advantages of

being all-weather, over-the-horizon and has a large detec-

tion range [1], [2]. However, the increase in target distance

and the influence of clutter degrades the signal-to-clutter

ratio (SCR), thus reducing target detection performance.

Therefore, the improvement of the detection performance for

a low SCR has practical significance. Many studies have

been conducted to solve this problem. In [3], an ensemble

constant false alarm rate (CFAR) detector was proposed by

Srinivasan. Turley [4] presented a CFAR detector based on

The associate editor coordinating the review of this manuscript and
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hybrid techniques. Further, in [5]–[7], a CFAR detector with

matrix-valued observations was proposed. However, most

of these detectors are based on one-dimensional or two-

dimensional amplitude information from the radar signal.

This paper presents a detector based on the multidimensional

signal information that can effectively improve the detection

performance.

To obtain the velocity and azimuth dimension informa-

tion from the signal, joint domain localized (JDL) process-

ing, a space time processing algorithm, is applied. Refer-

ences [8] and [9] first applied JDL processing algorithm

to airborne surveillance radars, and [10] presented a JDL

generalized likelihood ratio (JDL-GLR) detector for airborne

radars. In this study, we used JDL processing to obtain covari-

ance matrices that contain the information on velocity and

azimuth of the target and clutter. Then we constructed a

detector structure in the range dimension. Therefore, after the
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targets are detected, the range, velocity, and azimuth informa-

tion of the targets can be obtained. Instead of using amplitude

information from the received signal, we used the covariance

matrix of the data, including multidimensional information

on target and clutter. Because more information is utilized,

the target can be detected from the clutter or noise more

easily. Moreover, we used the geometric distance to distin-

guish the target from clutter, which can give the detector a

geometric meaning and interpretation.

To construct the detector in the range dimension, covari-

ance matrices with multidimensional information can be

retrieved by using the Hermitian positive-definite (HPD)

matrices [16], which can be mapped to a manifold by the

information geometry method. The concept of information

geometry, based on information theory, geometry, and statis-

tics, was proposed by Rao in 1945 [11]. Many scholars

have researched the theory and applied it to statistical infer-

ence, neural network, pattern analysis, signal processing,

etc. [12]–[15]. Based on the information geometry method,

five different geometric measures were used to realize the

JDL matrix constant false alarm rate (JDL-MCFAR) detec-

tor. The detector constructed by the information geometry

method, based on the multidimensional information of the

signal, can improve detection performance.

The remainder of this paper is organized as follows.

In Section 2, HPD matrices are constructed using the JDL

processing algorithm. Section 3 proposes the matrix CFAR

detector and presents five different detectors based on dif-

ferent geometric measures. The simulations and results are

presented in Section 4. The study is concluded in Section 5.

A. NOTATION

The notations adopted in this paper are as follows. Math

italic is used to represent scalars (x), uppercase boldface

denotes matrices (X), lowercase boldface denotes vectors (x),

and blackboard bold indicates a set of matrices R. (·)T , (·)∗,
(·)H ,⊗, E[·], tr(·), and det(·), denote the transpose oper-

ator, conjugate operator, conjugate transpose operator, the

Kronecker product operator, expectation operator, trace, and

determinant of the matrix, respectively. I represents the

identity matrix.

II. CONSTRUCTION OF HPD MATRICES

BY JDL ALGORITHM

Consider a receiving antenna array of a HFSWR with N

channels, as shown in Figure 1. Each channel receives M

sample data corresponding to a train of M pulses per coher-

ent processing interval (CPI) for a certain range cell. The

sample data vector of each channel is given as xtn =
[xtn1, xtn2, · · · , xtnM ]T and xsm = [xsm1, xsm2, · · · , xsmN ]

T

is the channel data vector of each pulse. Therefore, the data

matrix X with N*M dimension can be defined as:

X = [xt1 , xt2 , · · · , xtN ] =











x
T
s1

x
T
s2
...

x
T
sM











(1)

FIGURE 1. Receiving array of a HFSWR.

The row vector [xt1 , xt2 , · · · , xtN ] is the sample data vector

of N channels, and the column vector [xs1 , xs2 , · · · , xsM ]
T is

the channel data vector of M pulses.

Under hypothesisH0, without the signal, the data matrix X

contains only clutter and noise:

X = C + N, (2)

whereC denotes clutter andN represents noise. They are both

assumed to be independent, and their models are Gaussian

models. Under the signal-presence hypothesis H1, the data

matrix X is consisted of signal, clutter, and noise:

X = αS+ C + N, (3)

where S represents the signal, and α is an unknown constant

that denotes the amplitude of the signal. The data matrix

X is the primary data set from the range cell. For the JDL

processing, the data matrix X is processed to obtain the infor-

mation in the azimuth-Doppler domain, and then, to detect the

target in the same domain.

For simplicity, it is assumed that the array elements

are identical, collinear, and equidistant. Thus, the trans-

formed data at Doppler frequency fd0 and azimuth θ0 can be

obtained by:

y0(θ0, fd0) = w
H
x (4)

w = ws(θ0) ⊗ wt (fd0) (5)

ws(θ0) = ej2π (d/λ)sin(θ0)[0,1,··· ,N−1]T (6)

wt (fd0) = ej2π fd0Tp[0,1,··· ,M−1]T (7)

where x is a vectorization of X with the dimension N*M ×1,

ws(θ0) is the steering vector with azimuth θ0 in the space

domain, and wt (fd0) is the steering vector with the Doppler

frequency fd0 in the time domain. λ is the wavelength of

the electromagnetic wave, Tp is the pulse repetition period,

and y0(θ0, fd0) is the output data at the azimuth θ0 and

frequency fd0.

The output data of the transformation is presented in

Figure 2 (a). Each point in the azimuth-Doppler domain is

transformed from the primary data vector. A localized pro-

cessing region (LPR) consists of na ∗ nd points. Figure 2 (b)

depicts the clutter reference cells for a certain LPR. Uti-

lizing the JDL processing, we can calculate the covariance

matrix of the LPR for the matrix detector.
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FIGURE 2. Localized processing region. (a) A LPR in the azimuth-Doppler
dimension. (b) A LPR and its clutter reference cells in range dimension.

The LPR with na azimuth bins and nd Doppler bins can

constitute the vector data Yn with the dimension na ∗ nd × 1.

The number of cells used in the local region is 3*3 (na = 3,

nd = 3). This implies that three beams and three Doppler

shifts are chosen in one range cell, and the data constitute

the vector data with the dimension of 9 × 1(na*nd × 1).

Therefore, we can estimate the covariance matrix of the LPR

with the dimension of 9 × 9. In [34], it was verified that the

dimension 3*3 in the local region is suitable for HFSWRdata.

The covariance matrix of the LPR is Rn = E[YnY
H
n ], which

can be obtained by using a structured HPDmatrix completion

model [16]–[18], [35]. It can be calculated by

Rn =



















c0 c∗1 · · · c∗n−1

c1 c0
. . .

...

...
...

. . . c∗1
cn−1 · · · c1 c0



















with ck = E[yny
∗
n+k ]

(8)

where yn denotes the element of LPR, y∗n+k represents the

conjugate of yn+k and ck is the correlation coefficient. The

coefficient can be calculated by averaging in the time domain,

instead of statistical expectation as

ck =
1

n

n−1−k
∑

n=0

y(n)y∗(n+ k), k ≤ n− 1 (9)

Similarly, the HPD covariance matrices of the reference units

can be obtained.

Let P(n) denote the set of the all n× n HPD matrices, and

it can be described by

P(n) = {R ∈ H(n),R > 0}, (10)

where H(n) denotes the space of all n × n Hermitian

matrices, and P(n) can form a differentiable Riemannian

manifold [19], [20], which is a symmetric space with a non-

positive curvature [21]. Thus, the covariance matrices of the

detection unit and reference units can be projected onto the

geometricmanifold through the information geometry theory.

Whether the target is in the detection unit can be predicted by

their distance.

III. MATRIX CFAR DETECTOR

In this section, the structure of JDL-MCFAR detector is

described, and then, some distance measures and the mean

matrix are presented.

As the HPD matrices obtained by the JDL processing can

construct a differentiable Riemannian manifold, the detec-

tor can be built based on the manifold. We can obtain the

mean matrix R̄ of the reference units, and then, calculate

the geometric distance between the covariance matrix of the

detection unitR0 and themeanmatrix R̄. ByComparisonwith

a threshold, the target’s existence can be judged:
{

H1 : d(RD, R̄) > T

H0 : d(RD, R̄) < T
(11)

where d(RD, R̄) is the geometric distance between the detec-

tion matrix and the mean matrix, T is the detection threshold,

H1 denotes the presence of the target, and H0 denotes the

absence.

The structure of the JDL-MCFAR detector is represented

in Figure 3. Compared with the classical CFAR detector,

the JDL-MCFAR detector can obtain multidimensional infor-

mation of the target and clutter by JDL processing. Thus,

the detector can discriminate the target from the clutter

more easily. The geometric illustration is shown in Figure 4,

where RD0 is the detection matrix without target, RD1 is

the detection matrix with the target, R1,R2, · · · ,RN are the

covariance matrices of the reference units, and R̄ is the mean

matrix of R1,R2, · · · ,RN . We can observe that the distance

between the detection matrix and the mean matrix of the ref-

erence units will be longer if there exists target. Consequently,

whether there is target in the detection unit or not can be

verified by comparing the distance with a certain threshold.

Two important concepts should be considered: the distance

between twomatrices, and the meanmatrix. In this study, five

different distance measures, Riemannian distance, Kullback

Leibler divergence [22], log determinant divergence [23],
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FIGURE 3. The structure of the JDL-MCFAR detector.

FIGURE 4. Geometric illustration of JDL-MCFAR detector on a manifold.

FIGURE 5. Geodesic distance and linear distance on a manifold.

Bhattacharyya distance [24], and Hellinger distance [25]

are used, and corresponding mean matrices based on these

distance measures are deduced.

A. DISTANCE BETWEEN MATRICES

The method used to measure the distance between two matri-

ces is an important criterion for the JDL-MCFAR detector.

As shown in Figure 5, A and B denote two points on the man-

ifold P(n) constructed using the HPDmatrix, and the distance

between them needs to be measured. In the Euclidean space,

the shortest distance between two points is the linear distance

between the points. Similarly, the shortest distance between

two points in the geometric manifold space is the geodesic

distance.

1) RIEMANNIAN DISTANCE (RD)

The geodesic distance is a basic distance metric with respect

to the geometric construction of a manifold. As the geodesic

distance can be calculated by the Riemannianmetric, it is also

called as Riemannian distance (RD). As P(n) is a differential

manifold with tangent space TA at point A, the differential

arclength at point A is given as

ds :=
(

tr(A−1dA)
2
)1/2

=
∥

∥

∥
A

−1/2dAA−1/2
∥

∥

∥

F
(12)

Here, the prefix d denotes the differential operator. Equa-

tion (12) defines a metric on the differential manifold P(n),

and the inner product of the tangent space TA can be defined

as follows [26]–[28]:

〈R1, R2〉A = tr(A−1
R1A

−1
R2) (13)

To measure the Riemannian distance between R1 and R2

on the manifold, an effective method is given by [29] and can

be written as:

DR
2(R1,R2) = ‖ log(R1

−1
R2) ‖2F

= ‖ log(R1
−1/2

R2R1
−1/2) ‖2F

= tr[log2(R1
−1/2

R2R1
−1/2)]

=
n
∑

k=1

log2(λk ) (14)

where λk is the eigenvalue of the matrix R1
−1/2

R2R1
−1/2,

and ‖ R ‖2F= 〈R,R〉 = tr(RRT ).

In addition to the Riemannian metric, many other dis-

tance or divergence measures can be used on the manifold

P(n). Here, four other measures are utilized for distance

calculation.

2) KULLBACK-LEIBLER DIVERGENCE (KLD)

In information geometry theory, the KLD is typically used

to measure the difference between two probability distribu-

tions. The divergence can act as a measure of the distance

between two points. The effective method to calculate the

KLD between two matrices is given as

DKL(R1,R2) = tr(R−1
2 R1 − I ) − log det(R−1

2 R1)

=
n
∑

i=1

(λi − logλi − 1) (15)

Here, λi is the eigenvalue of the matrix R−1
2 R1.
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3) LOG DETERMINANT DIVERGENCE (LDD)

The Log determinant divergence is also known as Stein’s

loss [30], which is widely used in machine learning and

information theory. The LDD of two matrices on a manifold

is defined as follows:

DLD(R1,R2) = tr(R−1
2 (R1−R2)) − log det(R−1

2 R1) (16)

It is should be noted here that the KLD and LDD are

not strictly definitions of distance, as they neither satisfy the

symmetry property nor the triangle inequality. Nevertheless,

they can be used in our detector to compare the divergence

between two matrices on the manifold.

4) BHATTACHARYYA DISTANCE (BD)

The Bhattacharyya distance was originally defined by

Bhattacharyya [24] and can be used in statistics to measure

the similarity between two probability distributions. The BD

of two covariance matrices can be written as

DB(R1,R2) = 2

√

log
det((R1 + R2)/2)√
det(R1) det(R2)

(17)

5) HELLINGER DISTANCE (HD)

The Hellinger distance is another effective measure to obtain

the distance between two points on a differential manifold,

and it is defined as [25]

DH (R1,R2) =

√

2 − 2
det (R1)

1/4 det (R2)
1/4

det ((R1 + R2)/2)
1/2

(18)

B. MEAN MATRIX

The mean matrix is the average of the covariance matri-

ces of the reference units. It reflects the mean information

of the reference units compared to the detection unit. The

geometric mean of the covariance matrices was originally

defined by Pennec, and Karcher subsequently proved that the

geometric mean exist and is unique for a manifold with non-

positive curvature [31]. The geometric mean is an average

method to obtain the local minimum value of the objec-

tive function represented by empirical variance, and can be

defined as

R̄ = arg min
R∈P(n)

F(R1,R2, · · · ,RN )

= arg min
R∈P(n)

1

N

N
∑

k=1

d2(Rk ,R) (19)

whereF(R1,R2, · · · ,RN ) denotes the objective function rep-

resented by empirical variance, and d(Rk ,R) indicates the

distance between two matrices Rk and R. For the different

distance measures presented in Section 3.1, the correspond-

ing geometric means are obtained as follows:

1) RIEMANNIAN MEAN

Based on the Jacobi field, [32] provides an iterative gra-

dient descent algorithm that can be used to calculate the

Riemannian mean effectively as follows:

R̄t+1 = R̄

1
2
t exp[−dsR̄− 1

2
t ∇F(R1,R2, · · · ,RN )R̄

− 1
2

t ]R̄
1
2
t

= R̄

1
2
t exp[−ds

R̄

1
2
t

N

N
∑

k=1

log(R−1
k R̄t )R̄

− 1
2

t ]R̄
1
2
t

= R̄

1
2
t exp[ds

1

N

N
∑

k=1

log(R̄
− 1

2
t Rk R̄

− 1
2

t )]R̄
1
2
t (20)

where N is the dimension of each covariance matrix, ds is the

step size, R̄t is the estimation of the mean for iteration t , and

R̄t+1 is the estimation at iteration t + 1. Then, the Rieman-

nian mean can be obtained using an appropriate number of

iterations.

Similarly, the geometric means of the other measures can

be obtained according to the definition [33]. Let the objective

function F(R1,R2, · · · ,RN ) = 1
N

N
∑

i=1

d2(R,Ri), and let the

gradient function ∇F(R1,R2, · · · ,RN ) be set as zero. Then,

we separate R to the left of the function; in this manner,

the solution of the geometric means can be calculated.

2) KULLBACK-LEIBLER MEAN

According to the KLD, the objective function is

F(R1,R2, · · · ,RN )

= 1N

N
∑

i=1

(

tr(R−1
i R− I ) − log det(R−1

i R)
)

(21)

Thus, the gradient function of KLD ∇F(R1,R2, · · · ,RN )

is given by

∇F(R1,R2, · · · ,RN )

= ∇

(

1

N

N
∑

i=1

[

tr(R−1
i R− I ) − log det(R−1

i R)
]

)

=
1

N

N
∑

i=1

(

R
−1
i − R

−1
)

(22)

Then, we set the gradient function to zero, so we can obtain

the mean matrix of KLD:

R̄ =

(

1

N

N
∑

i=1

R
−1
i

)−1

(23)

3) LOG DETERMINANT MEAN

Similar to the KLD, the gradient function of the LDD is

∇F(R1,R2, · · · ,RN )

= ∇

(

1

N

N
∑

i=1

[

tr(R−1
i (R− Ri)) − log det(R−1

i R)
]

)

=
1

N

N
∑

i=1

(

R
−1
i − R

−1
)

(24)
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TABLE 1. Geometric distance or divergence and mean formulation of different measures.

Thus, the mean matrix of the LDD is

R̄ =

(

1

N

N
∑

i=1

R
−1
i

)−1

(25)

4) BHATTACHARYYA MEAN

According to the BD, the objective function is

F(R1,R2, · · · ,RN )=
1

N

N
∑

i=1

4 log
det ((R+ Ri)/2)√
det(R) det(Ri)

(26)

Consequently, the gradient function is given by

∇F(R1,R2, · · · ,RN ) = ∇
1

N

N
∑

i=1

4

(

log
det ((R+ Ri)/2)√
det(R) det(Ri)

)

=
4

N

N
∑

i=1

(

(

R+ Ri

2

)−1

− R
−1

)

(27)

Similar to the KLD, we set the gradient function to zero

and separate the matrix R. Thus, the mean matrix of BD can

be obtained as follows:

R̄t+1 =





1

N

N
∑

i=1

(

R̄t + Ri

2

)−1




−1

(28)

5) HELLINGER MEAN

Similar to the Bhattacharyya mean, we can obtain the

Hellinger mean by

R̄t+1 =













N
∑

i=1

∣

∣R̄t

∣

∣

1
4 |Ri|

1
4

∣

∣

∣

∣

(

R̄t+Ri
)

2

∣

∣

∣

∣

− 1
2
(

(

R̄t+Ri
)

2

)−1

N
∑

i=1

∣

∣R̄t

∣

∣

1
4 |Ri|

1
4

∣

∣

∣

∣

(

R̄t+Ri
)

2

∣

∣

∣

∣

− 1
2













−1

(29)

Figure 6 shows the changes in the objective functions of

the Riemannian, Bhattacharyya and Hellinger means with

FIGURE 6. The changes in the objective functions of the Riemannian,
Bhattacharyya and Hellinger means with iteration number.

iteration number, where the identity matrix I is used as the

initialization matrix. When the iteration number increases to

a certain value, the objective function tends to be stable.

The distance and geometric mean matrix formulations of

these five measures are summarized in Table 1. Thus, differ-

ent JDL-MCFAR detectors can be constructed based on the

different geometric distances and their mean matrices.

IV. EXPERIMENTS AND RESULTS

In order to evaluate the performance of the detectors intro-

duced in this work, simulations were conducted as follows.

A. COMPUTATIONAL COMPLEXITY OF THE MEASURES

Computational complexity is an important characteristic of

signal processing that affects the efficiency of the algorithm

and the process itself. Here, we will discuss the complexity of

the geometricmeasures. HFSWRdata is of complex-floating-

point type, so we evaluate the computational complexity by

the number of floating point operations required. Consider

HPD matrices R1 and R2 with dimension n × n each; the

computational complexity of these matrices can be calculated

as follows.

For instance, R1R2 is the multiplication of the matrices

R1 and R2. For each row of R1, the complex floating point

multiplication is performed n2 times, and complex floating

VOLUME 7, 2019 28085
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point addition is required n(n−1) times. Four and two floating

point multiplication and addition operations are respectively

required for each complex floating point multiplication, and

a complex floating point addition requires two floating point

addition operations. Therefore, the number of floating point

operations for a matrix multiplication is 6n3 + 2n2(n − 1),

which is equal to 8n3 − 2n2 operations.The number of float-

ing point operations for HPD matrix operations are given

in Table 2.

TABLE 2. Number of floating point operations.

TABLE 3. Number of floating point operations for measures.

Based on the HPD matrix operations, the number of

floating point operations required for different geometric

measures can be obtained. These calculations are shown in

Table 3. Here, N is the number of matrices that are used to

compute the geometric mean. From the table, we see that the

RD measure requires the maximum amount of computation.

Therefore, the RD measure has the highest computational

complexity. For the computation of the geometric distance,

the BD has the lowest computational complexity. The KLD

and LDD have the lowest complexities for computation of

geometric mean.

B. DETECTION PERFORMANCE

A target is added in the received data of the HFSWR to verify

the performance of the detectors for different measures. The

parameters of this experiment are as follows. The distance

between two sensors (dA) is 14.5 m, the number of the sen-

sors (N ) is 8, the number of coherent pulses (M ) is 512, and

the frequency is 5.6 MHz. The target is added in the 30th

range cell with a Doppler velocity of −4.81m/s and azimuth

of 0o. Figure 7 shows the normalized statistics of different

measures from the 0th range cell to 70th range cell for different

situations of the SCR. It can be seen that the JDL-MCFAR

FIGURE 7. Normalized statistics in each range cell of different measures
for different situations of SCR. (a) SCR = 4dB. (b) SCR = 6dB.
(c) SCR = 10dB.

detectors using different measures can detect the target reli-

ably. The KLD and LDD have the best detection performance

and the HD has the worst detection performance.

As the general analytical expressions of detection prob-

ability Pd and false-alarm probability Pfa are unavailable,

the Monte Carlo method is used to obtain the threshold

to maintain the false alarm rate constant. The test statis-

tics without the target are calculated for 105 Monte Carlo

simulations; thus, according to the Pfa, the detection thresh-

old is determined. Figure 8 gives the probability of detec-

tion versus SCR for different Pfa. The Pfa values for

the Figure 8 (a), (b), and (c) are 10−5, 10−4, and 10−3,

respectively.

The SCR is applied from −2dB to 16dB in intervals

of 0.5dB. From the figures, it can be seen that the detectors
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FIGURE 8. Detection probability versus SCR of different measures for
different Pfa. (a) Pfa = 10−5. (b) Pfa = 10−4. (c) Pfa = 10−3.

based on the JDL-MCFAR have better detection performance

than the classical cell average CFAR (CA-CFAR) detector,

and the KLD and LDD detectors have the best performance.

V. CONCLUSION

By obtaining multidimensional information from a sig-

nal through JDL processing, a novel detector named

JDL-MCFAR detector is proposed here, which utilizes the

geometry information of the signal. Five geometric measures

have been used for the detectors, and the experiments show

that the detectors based on these different measures can ade-

quately detect the target for HFSWR.Moreover, the detectors

based on KLD and LDD provide the best performance. Com-

paredwith the classical CA-CFARdetector, the JDL-MCFAR

detector has better detection performance.
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