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Multidimensional Linear Cryptanalysis of Reduced
Round Serpent

Miia Hermelin1, Joo Yeon Cho1, and Kaisa Nyberg1�2

1 Helsinki University of Technology
2 Nokia Research Center, Finland

Abstract. Various authors have previously presented di�erent approaches how
to exploit multiple linear approximations to enhance linear cryptanalysis. In this
paper we present a new truly multidimensional approach to generalise Matsui’s
Algorithm 1. We derive the statistical framework for it and show how to cal-
culate multidimensional probability distributions based on correlations of one-
dimensional linear approximations. The main advantage is that the assumption
about statistical independence of linear approximations can be removed. Then
we apply these new techniques to four rounds of the block cipher Serpent and
show that the multidimensional approach is more e�ective in recovering key bits
correctly than the previous methods that use a multiple of one-dimensional linear
approximations.

1 Introduction

Linear cryptanalysis introduced by Matsui in [1] has become one of the most important
cryptanalysis methods for symmetric ciphers. Matsui analysed the DES block cipher
using a linear approximation of the known data bits, which holds with a large correlation
independently of the key, and presented two ways of exploiting this property: Algorithm
1 which determines one bit from the secret key and Algorithm 2 which recovers a part
of the last (or first) round key bits. Originally, only one approximative linear relation
was used. In [2], two approximations were used to reduce the amount of data needed
for the attack. This idea was developed further by Kaliski and Robshaw in [3], and
later by Biryukov, et al., in [4], where the goal was to use several linear approximations
simultaneously in order to recover more key bits with equal amount of data. In both
[3] and [4] the fundamental assumption was that the approximations are statistically
independent. This assumption is hard to verify in practice. The main contribution of
this paper is to remove this assumption.

In [5], Baignères, et al., analysed the statistical properties of multidimensional linear
approximations without the assumption of statistical independence. They proved that by
using multiple approximations, less data is needed to have the same level of test as with
only one approximation. However, their target system was a block cipher, which was
assumed to have a Markovian property [6]. Consequently, no practical way of building
the probability distributions for the purposes of Matsui’s Algorithm 1 can be found.

In [7] Englund and Maximov calculated directly the multidimensional probability
distribution needed for the distinguisher. However, their calculations become infeasible
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for systems with word-size of 64 or more. In this paper, it will be shown how one-
dimensional linear approximations can be combined to determine the multidimensional
linear approximation and the corresponding probability distribution. The method can
be applied to both stream and block ciphers of any word size.

The goal of this paper is to present a key recovery attack by generalising Algorithm 1 to
the multidimensional case. This algorithm will be compared with the method suggested
by Biryukov, et al., in [4] and the experimental results presented in [8].

The structure of this paper is as follows: In Sect. 2 the notation and the theoret-
ical basics needed in this paper are given. Section 3 starts with showing how linear
one-dimensional approximations can be used to make multidimensional linear approxi-
mations. Using the results of [5] it is then shown that it is advantageous to use multiple
approximations instead of just one. The rest of the Sect. 3 shows how to generalise Mat-
sui’s Algorithm 1. Section 4 shows how the method can be applied to the block cipher
Serpent. The results will also be compared to those presented in [8], where Biryukov’s
method was applied to Serpent. Finally, Sect. 5 draws conclusions.

2 Probability Distribution of a Boolean Function

We will denote the space of n-dimensional binary vectors by Vn. The inner product is
defined for a � (a1� � � � � an)� b � (b1� � � � � bn) � Vn as a � b � a1b1

� � � � � anbn, where �
is sum modulo 2.

A function f : Vn � V1 is called a Boolean function. A function f : Vn � Vm with
f � ( f1� � � � � fm)� where fi are Boolean functions is called a vector Boolean function
of dimension m. A linear Boolean function from Vn � Vm is represented by an m � n
binary matrix U. The m rows of U are denoted by u1� � � � � um, where each ui is a binary
vector of length n.

A random variable (r.v.) is denoted by boldface, capital letters, e.g., X�Y�Z� � � � . The
abbreviation i.i.d. will mean independent and identically distributed.

Let Y be a r.v. in Vm, and denote by p� � Pr(Y � �)� Then the probability distribu-
tion (p.d.) of Y is the vector p � (p0� � � � � p2m

�1). Let f : Vn � Vm be a vector Boolean
function, and let X be a r.v. in Vn with the 2n-dimensional uniform distribution vector
�n � 2�n(1� � � � � 1)� Then we associate with f a r.v. Y � f (X) in Vm with a probabil-
ity distribution p( f ) � (p0( f )� � � � � p2m

�1( f )), where Pr( f (X) � �) � p�( f )� � � Vm�

This p.d. is called the probability distribution of f and is denoted by p( f ). We may
also abbreviate p�( f ) by p� if the function is clear from the context. Two Boolean func-
tions f and g are called statistically independent if the associated r.v.’s are statistically
independent.

The correlation between a binary r.v. X and zero is defined as Pr(X � 0)�Pr(X � 1)�
The correlation of a Boolean function g : Vn � V1 to zero shall be referred to as the
correlation (of g) and is defined as

2�n (#� � � g(�) � 0 � � #� � � g(�) � 1 �) � 2 Pr (g(X) � 0) � 1�

where X is uniformly distributed.
Capacity was defined by Biryukov in [4] where they showed that it was inversely pro-

portional to the data complexity of their distinguishing attack. We will now generalise
the definition.
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Definition 1. Let p � (p0� � � � � pM) and q � (q0� � � � � qM) be two p.d.’s. Their (mutual)
capacity is then

C(p� q) �
M�

��0

(p� � q�)2

q�

� (1)

If M � 2m � 1 and q � �m is uniform then C(p� �m) � 2m ��p � �m��22 will be called the
capacity of p and we will denote it by C(p). It can also be called the Squared Euclidean
Imbalance [5].

In the next section, we will see that the generalised capacity will be inversely propor-
tional to the data complexity of a multidimensional linear distinguisher.

3 Multidimensional Approximation of Boolean Functions

3.1 From One-Dimensional Probability Distributions to Multiple Dimensions

Let f : V� � Vn be a vector Boolean function and binary vectors wi � Vn and ui �
V�, i � 1� 2� � � � � �m be linear masks such that the paired masks (ui�wi) are linearly
independent. Let us define functions gi by

gi(�) � wi � f (�) � ui � �� (2)

and assume gi’s have correlations �i� i � 1� 2� � � � �m� We will call these correlations
the base-correlations, and the corresponding linear approximations of f the base-appro-
ximations. We want to find the p.d. of the m-dimensional linear expression

g(�) � W f (�) � U��

where W � (w1� � � � �wm)�U � (u1� � � � � um) and g � (g1� � � � � gm)� Let the p.d. of g be p.
Assume that we have the correlations �(a) of all the linear mappings a � g of g, a � Vm.
If ei � (0 � � �010 � � �0) with 1 at the ith position, then �(ei) � �i� i � 1� � � � �m� We will
call the correlations �(a)� a � ei the combined correlations of f and the corresponding
approximations the combined approximations. Recall the following lemma from [9].

Lemma 1. Let g � (g1� � � � � gm) : Vn � Vm be a vector-valued Boolean function and p
it’s p.d. Then

2n p� � 2�m
�
a�Vm

�
��Vn

(�1)a�(g(�)��)�

The correlations �(a) can be written as

�(a) � 2�n
�
��Vn

(�1)a�g(�)�

Using this and Lemma 1 we get the following corollary that connects p and the one-
dimensional correlations �(a):
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Corollary 1. Let g : Vn � Vm be a Boolean function with p.d. p and one-dimensional
correlations �(a) of a � g. Then

p� � 2�m
�
a�Vm

(�1)a���(a)�

The following corollary is obtained using Parseval’s theorem. An equivalent form of it
can be found in [5], where the proof was based on the inverse Walsh-Hadamard trans-
form of the deviations �� from the uniform distribution, �� � p� � 2m.

Corollary 2. Let g be the Boolean function defined as previously with p.d. p. Then

C(p) � 2m
�
�

�2
� �

�
a�0

�(a)2�

We will need this equality in the next section where we study how linear distinguishing
is done in multiple dimensions.

3.2 One vs. Multidimensional Linear Distinguishers

In this section we will present the general statistical framework of multidimensional
approximation.

The theory of hypothesis testing can be found for example in [10]. Here we will
restrict to the most essential parts of the theory. Assume we have two p.d’s p and q,
q � p and consider two hypotheses: H0 states that the experimental data zN of N words
is derived from p and H1 states that zN is derived from q.

In the one-dimensional case, we have a linear approximation such as (2). Let � be the
correlation of the approximation. The number of bits N1 needed to distinguish zN from
a random sequence is �	�2� where � depends on the level and the power of the test. It
was already noted in [1] that the data complexity N1 is proportional to 1	�2� For proof,
see [11]. Note that the bias used in [1] is the correlation divided by two.

The data complexity of the attack in [4] using multiple linear approximations, was
shown to be proportional to Ns.i.� where

Ns.i. �
1�m

i�1 �
2
i

�
1
c̄2
� (3)

and c̄2 is the capacity as defined in [4]. This means a significant improvement in data
complexity, but relies on the assumption that the base approximations are statistically
independent.

Let us next study the case of multiple approximations without the assumption of
statistical independence. The log-likelihood ratio (LLR) is defined as follows:

l(zN) �
M�

��0

N(�) log
p�

q�

� (4)

where p and q are defined as in Definition 1 and N(�) is the experimental frequency of
the value � in zN . The LLR was used as the distinguisher in [5] to proof the following
theorem.
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Theorem 1. Let us have a hypothesis testing problem with H0 stating that the data zN

is drawn i.i.d. from p.d. p and H1 stating that the data is drawn from q � p. Assume
that the p.d’s are close to each other:

�q� � p�� 	 q�� for all �� (5)

Then the amount of data needed for distinguishing the hypotheses is proportional to

N �
�

C(p� q)
� (6)

where � depends on the level and the power of the test.

If we want to distinguish a distribution of some data related to a cipher from that of
a truly random source we will use the previous hypothesis test with q as the ciphers
p.d. and p as the uniform distribution. Using (2) we will see that Ns.i. given by (3) is
actually greater than the true amount of data needed for m 
 n linear approximations,
since by using Corollary 2, the latter is proportional to

Nm �
�

C(q)
�

��
a�0 �(a)2

�

In an “optimal case” we can make an m-dimensional approximation where all the corre-
lations �(a) are (in absolute) value equal to the maximal one-dimensional correlations.
If N1 is the data requirement for one approximation, then Nm � N1	(2m � 1)� On the
other hand, if only a single one-dimensional approximation has a large correlation, then
Nm � N1 and it is not useful to use multiple approximations.

In [5] Markovian block ciphers were analysed using multidimensional distinguish-
ers on the probability distributions related to the Markovian transition probabilities
averaged over the keys. Hence, their main goal was to improve the eÆciency of Al-
gorithm 2. Next, we will generalise Matsui’s Algorithm 1 to the multidimensional
case. In the practical experiments we use Corollary 1 to determine the related multidi-
mensional probability distributions from the correlations of the one-dimensional linear
approximations.

3.3 Key Recovery Attack

We will show how to find m key bits of the key K using a multidimensional version
of Algorithm 1. Let X be a uniformly distributed r.v. and Y � f (X), where (X�Y) is a
plaintext-ciphertext pair. We consider the r.v.

UX � WY � VK� (7)

with a fixed unknown key K, and use p to denote the r.v.’s p.d. Here U � (u1� � � � � um)�
W � (w1� � � � �wm) and V � (v1� � � � � vm) are some maskmatrices. This approxima-
tion can be generated from linearly independent one-dimensional approximations with
correlations �1� � � � � �m using Corollary 1 (assuming that we are also given the com-
bined correlations). The linear mapping V divides the key space to equivalence classes
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k � VK � 
. The bits ki � vi � K are called the parity bits. For each k the expected p.d.
pk of Zk

� UX � WY for the distribution originating from the empirical data will be
some permutation of p determined by the key (class) k. For the purposes of this study,
we assume that all the keys give distinct permutations such that pk

� p j, if k � j.
Biryukov’s attack introduced in [4] uses m� � m linear approximations to select the

correct key class from 
. It has three phases: distillation, analysis and search phases.
They can be described as follows:

1. Distillation phase. Obtain N plaintext-ciphertext pairs (xt� yt) and calculate the em-
pirical correlation vector ĉ � (�̂1� � � � � ˆ�m� )�

2. Analysis phase. For each key class k, give the key a rank dk and make a sorted list
of the keys with smallest dk at the top of the list.

3. Search phase. Run through the list and try all keys contained in the equivalence
classes until the correct key is found.

The statistic used is dk � ��ĉ � ck ��2 � where ck � ((�1)k1�1� � � � � (�1)km��m� )� a vector
consisting of the theoretical correlations and the parity bits of k. In addition a measure
“gain” was defined to analyze the success of the method taking into account the time
complexity of the search phase.

The purpose of our multidimensional approach is to improve the distillation phase
in theory and in practice. In order to compare the distillation phase of Biryukov’s and
our multidimensional method, we discuss a plain multiple linear cryptanalysis method
(the plain method), which is similar to the Biryukov’s method but without the grading
of the key candidates. We measure the success of the plain method and our method
using the probability POK, which is the probability that the right key is at the top of the
list. We assume that the plain method uses m linearly and statistical independent linear
approximations and recovers m bits of the key based on the deviations dk. Let q be the
experimental p.d. constructed from the data. Our method uses the m base approxima-
tions, 2m �m� 1 combined approximations and the Kullback-Leibler distance between
q and pk� The Kullback-Leibler distance is used in measuring the di�erence between
p.d.’s. It can be seen to be related to the LLR:

Definition 2. The relative entropy or the Kullback-Leibler distance between two distri-
butions p � (p0� � � � � pM) and q � (q0� � � � � qM) is defined as

D(q��p) �
M�

��0

q� log
q�

p�

� (8)

Then, in the analysis phase, instead of a grading problem we face the following multiple
hypothesis testing problem.

Theorem 2. Let us have an �
�-ary hypothesis problem, with �
� hypotheses Hk stating
that the data originates from pk, where k � 
 corresponds to the key. The hypothesis
for which the Kullback-Leibler distance D(q��pk) is smallest is selected. Given some
success probability POK� the lower bound Nkey for the amount of data needed to give the
smallest value of the statistic when the correct key is used, is given by

Nkey �
4 log2 �
�

min j�0 C(p0� p j)
� (9)
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Proof. For each key k we must distinguish pk from p j, for all j � k. Using
Proposition 3 in [5], the probability that we choose j when k is true is

Pr(H j�Hk) � 


�
�
�

Nk jC(pk� p j)	2
�
�

where 
 is the distribution function of the normed normal distribution. Let the prob-
ability of successfully distinguishing Hk from all the other hypotheses be POK� Then
POK �

�
j�i(1 � Pr(H j�Hk))� Assume Nk jC(pk� p j) � 1 for all j � k. Then

POK � exp

�������	�
1�
2�

�
j�k

e�Nk jC(pk �pj)�4


������� � (10)

Let Nk � max j Nk j. Since we have to collect the amount of Nk for at least one test
with k we can use the same amount for all the tests. On the other hand, let us define
ck � min j C(pk� p j). Replacing the capacities with ck� Nk must be increased to get the
required success probability. We get a lower bound for Nk by solving Nk from (10)

Nk �
4 log2 �
� � 4 ln(

�
2� ln POK)

ck
�

Since we do not know which k is the right key, we have to choose N � maxk Nk to be
able to find the right key. Since p j’s are each others’ permutations, we have C(pk� p j) �
C(p0� pk� j). But then ck � mins�0 C(p0� ps) � c0 which is independent of k and (9)
follows. ��

Note that we need the assumption that pi
� p j to ensure that min j C(p0� p j) � 0.

In [5] a similar formula was derived for the purposes of Algorithm 2 to distinguish
the distribution related to the correct key from the, presumably uniform, distribution
related to a wrong key. Formula (9) gives an estimate how much data is needed to
reliably determine which of the �
� distributions gives the best fit with the empirical
data. Exactly the same calculations can be done to the Biryukov’s statistic with the help
of proof of Theorem 1 in [4]. Then the data complexity of the plain attack is proportional
to Nplain which is given by the formula

Nplain �
8 log2 �
�

min j�k j�k







ck � c j








2

�
2 log2 �
�
min j �

2
j

�

Since the denominator in Nkey is usually much larger than in Nplain� we have Nplain �

Nkey. Especially, if the combined correlations are large, the advantage is significant.
The data, time and memory complexities of distillation and analysis phases have

been given in Table 1. The main di�erence in the complexities between our method
and the plain method is due to the fact that our method uses the full m-dimensional
distributions and needs to compute 2m empirical values from the data, while the plain
method determines only the m entries of the empirical correlation vector ĉ.

The main improvements introduced by Biryukov, et al., in [4] is the implementation
of the key ranking procedure and its statistical treatment using the concepts of capacity



210 M. Hermelin, J.Y. Cho, and K. Nyberg

Table 1. Complexities of Algorithm 1 for plain, Biryukov’s and our multidimensional method

Distillation Analysis
Plain Biryukov Our method Plain Biryukov Our method

Data �(Nplain) �(Ns.i.) �(Nkey) - - -
Time �(mNplain) �(m�Ns.i.) �(2mNkey) �(m���) �(m����) �(2m���)

Memory �(m) �(m�) �(2m) �(���) �(���) �(���)

and gain which helps to reduce the lower bound of the data complexity to Ns�i�. For
additional improvement of the practical performance of their method, Biryukov, et al.,
extend the base set of the m linearly (and presumably also statistically) independent
approximations with combined approximations. This extension was justified in [4] by
informal arguments and assuming that the linear approximations also in the extended
set are statistically independent. Statistical independence of linear approximations is
diÆcult to verify in practice. One method would be to evaluate experimentally the cor-
relations of all linear combinations of the approximations and use Piling-Up Lemma
[1] to check for statistical independence. In practical applications of the method of
Biryukov, et al., in [4] and [8], statistical independence was not verified. Let us denote
by m� the number of approximations used, where m 
 m� 
 2m. The resulting com-
plexities are given in Table 1. Selection of m is always a trade-o� between complexity
and maximising the capacity. Typical values for m and m� are, for example, m � 10 and
m�
� 86 in [4] and m � 10 and m�

� 64 in [8]. Also often �
� � 2m�

In the next section we will compare Biryukov’s method and our method in practice
using small experiments on the four-round Serpent. The same “test-bed” was previously
used by Collard, et al., in [8] to carry out experiments of Biryukov’s method. When
comparing our results with their results we can see that similar advantage in practi-
cal performance can be achieved using our method and the Biryukov’s with m� � m,
compared to the plain method with just m approximations. In addition, our method has
a few important advantages over the Biryukov’s. We provide sound theoretical justi-
fication for using combined approximations. More importantly, no assumption about
statistical independence of the approximations is needed.

4 Multidimensional Linear Attack on 4-Round Serpent

Serpent [12] is one of the block ciphers proposed to the Advanced Encryption Stan-
dard (AES) competition. It was selected to be among the five finalists [13]. The best
known linear approximation of 9-round Serpent was reported by Biham et al. in FSE
2001 [14]. Recently, experimental results on multiple linear cryptanalysis of 4-round
Serpent were presented by Collard, et al., in [8]. In this section, we will apply the mul-
tidimensional linear attack to the reduced round Serpent and compare our results to the
previous attacks presented in [8].

4.1 Multidimensional Linear Attack on 4-Round Serpent

In [8], authors used maximum m�
� 64 linear approximations to perform Matsui’s Al-

gorithm 1 type -attack on 4-round Serpent. The detailed description of approximations
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Table 2. Input and output masks used for the multidimensional linear attack

index mask � (MSB, . . . , LSB)

input mask

u0 (0x70000000, 0x00000000, 0x00000000, 0x07000900)
u1 (0x70000000, 0x00000000, 0x00000000, 0x07000B00)
u2 (0x70000000, 0x00000000, 0x00000000, 0x0B000900)
u3 (0xB0000000, 0x00000000, 0x00000000, 0x07000900)
u4 (0x70000000, 0x00000000, 0x00000000, 0x07000500)
u5 (0x70000000, 0x00000000, 0x00000000, 0x07000600)
u6 (0x70000000, 0x00000000, 0x00000000, 0x07000C00)
u7 (0x70000000, 0x00000000, 0x00000000, 0x01000900)
u8 (0x70000000, 0x00000000, 0x00000000, 0x0A000900)
u9 (0xB0000000, 0x00000000, 0x00000000, 0x03000B00)

output mask w (0x00007000, 0x03000000, 0x00000000, 0x00000000)

can be found in [15]. Those 64 linear approximations used in the attack are not linearly
independent. Hence, strictly speaking, the attack in [8] is not consistent with the tech-
nique in [4] which assumes that multiple approximations are statistically independent.
On the other hand, our attack does not require such a statistical assumption. One can
exploit as many approximations with non-negligible correlations as possible for recov-
ering the targeted key bits without such restriction.

In experiments, we chose a 4-round linear trail (from S 4 to S 7) that was used in
[8]. We picked up m � 10 linearly independent approximations L0� ���� L9 which can
be used to recover 10 bits of the first round key. 1 The input and output masks of the
approximations used in our attack are listed in Table 2.

Let us denote Li as follows:

ui � P � w �C � vi � K i � 0� � � � � 9 (11)

where ui�w and vi stand for the input mask, output mask and the key mask, respectively
and P�C and K represent the plaintext, ciphertext and the key, respectively. Note that
the output mask w is identical for all the approximations since this experiment targets
the first round key, not the last one.

Let Q � span�L0� ���� L9� such that Q is a set of approximations generated by the 10
base approximations Li. Then, �Q� � 210 � 1. Note that the 64 linear approximations
used in [8] form a subset of Q.

Our experiments were performed in two ways: In the first experiment, we used all
the linear approximations of the set Q. Among 210 � 1 linear approximations of the Q,
we found that 200 of them held with non-negligible correlations, as listed in Table 3.
The correlations of the approximations were calculated by the Piling-up lemma [1]. We
note that their real correlations can be di�erent from calculated ones due to the e�ect of
correlations of other linear trails using the same input and output masks. However, we
assume that the theoretical correlations of the approximations are close to the calculated
correlations.

1 We can find maximum 12 linear appr. to recover 12 bits of the first round key from this linear
trail. However, we targeted only 10 bits of the key for direct comparison of the performance
between the Biryukov’s attack and multidimensional attack.
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Table 3. Correlations of approximations

correlation # of approximations
64 appr. 10 base appr., 200 non-negligible

2�11 8 8
2�12 56 64
2�13 0 128

In the second experiment, we generated from L0� ���� L9 the 64 linear approximations
which were the same as those used in [8] and used them in our method while approxi-
mating the rest of the combined correlations to be zero. In this manner we get a rougher
approximation of the full 10-dimensional p.d. than with using 200 approximations. The
purpose of this experiment was to compare the performance of the Biryukov’s attack to
that of our attack when the same approximations are exploited in both attacks.

For comparison, we applied both the Biryukov’s and our method to the 4-Round Ser-
pent and measured their gains by experiment so that we could compare our method with
the results in [8]. It was already noted in [8] that the plain method (using m approxima-
tions) gives poorer results than the Biryukov’s method (using m� � m approximations).
No explanation was given to this heuristics in [4] or [8]. Following the theory of the
previous sections this heuristic can be justified: Increasing m� makes the Biryukov’s
method approximate the real multidimensional method. However, since the LLR is the
optimal statistic, the Biryukov’s method cannot perform better than our method even
when m�

� 2m � 1.
According to Lemma 1 in [4], the key class k is determined by searching for the

minimum Euclidean distance ��ĉ � ck��2 � where ĉ � (�̂1� � � � � ˆ�10) is the estimated corre-
lation of ten approximations. On the other hand, in our attack, we measure the empir-
ical probability distributions q of multiple approximations and determine the key class
k by searching for the minimum Kullback-Leibler distance D(q��pk)� where pk is some
permutation of the theoretical probability distribution p. The p.d. p is computed by
Corollary 1 using theoretical correlations of one-dimensional approximations. The p.d.
q could be calculated in the same way by using the experimental correlations but in this
work it was constructed directly using 2m counters.

We performed the experiments repeatedly 100 times and obtained the average gain of
each method. We used a di�erent 128-bit key that was randomly selected each time. The
results are displayed in Fig. 1. For comparison, the gain � of the attack was measured
using the formula which was introduced in [4] as follows

� � � log2
2 � M � 1
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In Fig. 1, the multidimensional attack using 10 linearly independent approximations
with full span (200 non-negligible approximations) reaches the full gain at around 222

texts. Compared to this result, Biryukov’s attack shows that the gain of the attack is
saturated with around 223 texts. Hence, this experiment shows that our method requires
less data to get the same accuracy as Biryukov’s method. The plain method with m � 10
approximations would give even weaker results not reaching the maximum gain until
with about 226 texts, see Fig. 5 of [8].
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Fig. 1. Comparison of the gain of the di�erent attacks using multiple linear approximations

5 Conclusions

In this paper we investigated a few di�erent approaches presented in recent years on
linear cryptanalysis using multiple approximations. We used the statistical theory pre-
sented in [5] and developed a new multidimensional cryptanalysis attack. For this pur-
pose, we also showed how to construct multidimensional linear approximations from
one-dimensional approximations. The main advantage of the new method is that the
assumption on statistical independence of the linear approximations can be removed.

We also applied our method to the 4-round version of block cipher Serpent that
was studied in [8] using Biryukov’s method [4]. We studied the cases of 10 linear ap-
proximations, showed how to make multidimensional approximations from them and
measured the success of recovering 10 key parity bits.

We also saw in Table 3 examples where the combined approximations had corre-
lations of the same magnitude as the base approximations. This demonstrates that the
assumption about statistical independence between the base approximations needed in
Biryukov’s method used in [8] does not hold. The theoretical framework presented in
this paper removes the need of this assumption.
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A Brief Description of Serpent Algorithm

We use the notation of [12]. Each intermediate value of round i is denoted by B̂i (a
128-bit value). Each B̂i is treated as four 32-bit words X0� X1� X2� X3 where bit j of Xi is
bit 4 � i � j of the B̂i. Serpent has a set of eight 4-bit to 4-bit S Boxes S 0� � � � � S 7 and a
128-bit to 128-bit linear transformation LT . Each round function Ri uses a single S-box
32 times in parallel.

Serpent ciphering algorithm is formally described as follows.

B̂0 � P ˆBi�1 � Ri(B̂i) C � B32�

where

Ri(X) � LT (Ŝ i(X � K̂i))� i � 0� � � � � 30

Ri(X) � Ŝ i(X � K̂i) � K̂32� i � 31�

http://csrc.nist.gov/archive/aes/index2.html
http://www.dice.ucl.ac.be/fstandae/PUBLIS/50b.zip
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The linear transformation LT is described as follows.

X0� X1� X2� X3 � S i(Bi � Ki)

X0 � X0� 12

X2 � X2� 3

X1 � X1 � X0 � X2

X3 � X3 � X2 � (X0� 3)

X1 � X1� 1

X3 � X3� 7

X0 � X0 � X1 � X3

X2 � X2 � X3 � (X1� 7)

X0 � X0� 5

X2 � X2� 22

Bi�1 � X0� X1� X2� X3

The detailed description of Serpent can be found in [12].
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