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Abstract— The TDOA-based acoustic source localization ap-
proach is a powerful and widely-used method which can be
applied for one source in several dimensions or several sources
in one dimension. However the localization turns out to be more
challenging when multiple sound sources should be localized in
multiple dimensions, due to a spatial ambiguity phenomenon
which requires to perform an intermediate step after the TDOA
estimation and before the calculation of the geometrical source
positions. In order to obtain the required set of TDOA estimates
for the multidimensional localization of multiple sound sources,
we apply a recently presented TDOA estimation method based
on blind adaptive multiple-input-multiple-output (MIMO) sys-
tem identification. We demonstrate that this localization method
also provides valuable side information which allows us to
resolve the spatial ambiguity without any prior knowledge
about the source positions. Furthermore we show that the
blind adaptive MIMO system identification allows a high spatial
resolution. Experimental results for the localization of two
sources in a two-dimensional plane show the effectiveness of
the proposed scheme.

I. INTRODUCTION

A popular approach in acoustic source localization is based
on the estimation of time differences of arrival (TDOA) and
consists of two separate steps. For each source, a relative
temporal signal delay (i.e., the TDOA) is first estimated
between each pair of microphones. In a second step the
set of estimated TDOAs is used to calculate the position
of each source in the three-dimensional space or in a two-
dimensional plane. If the microphone array geometry is
known, the second step becomes a purely geometrical prob-
lem. This two-step procedure makes it possible to localize
each source in the near-field (where we are interested in
the exact position of the source) as well as in the far-field
(where we can only estimate directions of arrival (DOA),
disregarding the range).

We first consider exemplarily the localization of two
sources in the far-field, thereby estimating for each source a
horizontal angle (i.e., the azimuth) and a vertical angle (i.e.,
the elevation) using two pairs of microphones (a horizontal
and a vertical one). As a consequence a total of four angles
should be calculated, each requiring one TDOA estimate (see
Sect. IV). Two TDOA estimators should be used. With a
first estimator measuring two TDOAs from the horizontal
microphone pair, we can calculate the azimuths θ1 and θ2
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Fig. 1. Architecture of a TDOA-based localization scheme for P sources
in T dimensions.

of the first and the second source, respectively. Similarly
we can obtain two elevations ϕ1 and ϕ2 from a second
TDOA estimator measuring two TDOAs from the vertical
microphone pair. However without additional information
on the relative source positions, we cannot determine if
the source one with azimuth θ1 has the elevation ϕ1 or
the elevation ϕ2. The same problem occurs of course for
the second source, hence giving rise to a spatial ambiguity
phenomenon, regardless of the TDOA estimation method
used. Not limited to the case of two sources localized using
two TDOA estimators, the spatial ambiguity problem will
always occur when aiming at simultaneously localizing more
than one source in a multidimensional space. In order to
resolve the spatial ambiguity, an intermediate step should be
performed after the TDOA estimation and before calculating
the source positions using the microphone geometry.

In the general case of P sources and T dimensions
illustrated by Fig. 1, T TDOA estimators are combined,
each providing a set of P TDOAs to localize P sources.
This results in a set of T ×P estimates τ̂ I

i , i=1, . . . , P, I =
1, . . . , T . The upper index denotes the TDOA estimator index
and the lower one denotes the source index. We understand
now the necessity to reorder the TDOA estimates so that
the position of each source i = 1, . . . , P can be calculated
using its corresponding set of TDOAs τ̂ I

ΠI(i), I = 1, . . . , T
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where ΠI(·) is a permutation operator applied on the set of
P TDOAs provided by the Ith TDOA estimator.

Note that the number T of TDOA estimators in Fig. 1 may
be larger than the number of dimensions to be identified. It
is actually possible to use more than three TDOA estimators
to introduce some redundancy and improve the precision of
the calculated source positions (see, e.g., [1] for the simpler
case of only one source). In this paper we focus on the
signal processing issues of source localization. For clarity
we will therefore assume that no redundancy is exploited
such that T corresponds to the number of dimensions to be
identified but note that the framework illustrated in Fig. 1
and described throughout this paper can be applied to any
number of TDOAs.

The key to obtain an accurate localizer is a robust TDOA
estimator and an effective mechanism to solve the spatial
ambiguity problem when no additional knowledge on the
relative source position is available. In the following we will
first consider a recently proposed TDOA estimation algo-
rithm based on blind adaptive MIMO system identification
(Sect. II). Since this algorithm can perform a simultaneous
TDOA estimation for several sources [2] we can combine T
such TDOA estimation algorithms to perform the T TDOA
estimations in Fig. 1, making it possible to obtain the desired
set of TDOAs τ̂ I

i , i = 1, . . . , P, I = 1, . . . , T . Moreover,
we will show in Sect. III how side information provided
by the blind adaptive MIMO system identification can be
exploited to resolve the spatial ambiguity. We will then
concentrate in Sect. IV on geometrical considerations for the
multidimensional source localization problem using TDOAs,
showing that the blind adaptive MIMO system identification
is well suited to high-resolution spatial localization of sound
sources. Finally, Sect. V gives some experimental results.

II. TDOA ESTIMATION USING BLIND ADAPTIVE
MIMO SYSTEM IDENTIFICATION

A widely used and conceptually simple method to estimate
a TDOA for one source from two sensor signals is to
use the generalized cross-correlation function (GCC) [3].
However since this method is inherently based on a free-
field propagation model its performance usually breaks down
in reverberant environments. To address this reverberation
problem, a completely different approach of TDOA esti-
mation based on blind adaptive filtering was proposed in
[4]. This so-called adaptive eigenvalue decomposition (AED)
algorithm may be seen as a major advance in single source
localization since this approach accounts for reverberation in
its propagation model.

Motivated by the robustness of the above-mentioned
approach based on adaptive single-input-multiple-output
(SIMO) filtering for single source localization, a TDOA
estimation approach for multiple sources maintaining the
realistic reverberant propagation model was proposed in
[2]. Based on blind source separation (BSS) techniques for
convolutive mixtures, this method performs a blind adaptive
MIMO system identification using the TRINICON frame-
work [5] and can be considered as an extension of the AED
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Fig. 2. Multiple-input-multiple-output (MIMO) model for BSS.

to the simultaneous localization of multiple sources.

Fig. 2 shows the general acoustic setup for BSS. Due to
the reverberation in the acoustic environment, the original
source signals sq(n), q = 1, . . . , P are filtered by a MIMO
system H before they are picked up by the sensors. The
recorded signals at the P microphones are denoted by
xq(n), q=1, . . . , P . As the figure indicates, we assume here
that the number of active sources is less or equal to the
number of microphone signals (i.e., the P source signals
in the figure might or might not all be active at the same
time). Furthermore the sources are assumed to be mutually
uncorrelated. In general this assumption holds for speech
and audio signals. To separate the source signals sq(n), q=
1, . . . , P without access to the mixing system H, the BSS
algorithm forces the output signals yq(n), q=1, . . . , P to be
statistically decoupled by suitably adapting the weights of
the demixing system W.

;

A. Matrix notation for convolutive mixtures
To express the algorithm for block processing of con-

volutive mixtures in a general way, we first formulate the
convolution of the FIR demixing system of length L in the
following convenient matrix form [6], [7]:

y(m, j) = x(m, j)W(m), (1)

where m denotes the block index over time, and j =
0, · · · , N − 1 is a time-shift index within a block of length
N , and

x(m, j) = [x1(m, j), . . . ,xP (m, j)], (2)

y(m, j) = [y1(m, j), . . . ,yP (m, j)], (3)

W(m) =

⎡
⎢⎣

W11(m) · · · W1P (m)
...

. . .
...

WP1(m) · · · WPP (m)

⎤
⎥⎦ , (4)

xp(m, j) = [xp(mL + j), . . . , xp(mL − 2L + 1 + j)],(5)

yq(m, j) = [yq(mL + j), . . . , yq(mL − D + 1 + j)] (6)

=

P∑
p=1

xp(m, j)Wpq(m). (7)

In (6), D denotes the number of time lags taken into account
to exploit the non-whiteness of the source signals as shown
below. Wpq(m) denotes a 2L × D Sylvester matrix that
contains all L coefficients of the filter from the pth sensor
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to the qth output:

Wpq(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wpq,0 0 · · · 0

wpq,1 wpq,0
. . .

...
... wpq,1

. . . 0

wpq,L−1

...
. . . wpq,0

0 wpq,L−1
. . . wpq,1

...
. . .

...
0 · · · 0 wpq,L−1

0 · · · 0 0
...

...
...

0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

B. Coefficient optimization

Based on the natural gradient [8] of the cost function
in [5], the Second-Order-Statistics (SOS) realization of the
generic TRINICON-based update rule reads:

W(m) = W(m − 1) − μΔW(m), (9)

ΔW(m) = 2
∞∑

i=0

β(i,m)W(i)

·
{
R̂yy(i) − R̂ss(i)

}
R̂−1

ss (i), (10)

where β is a window function with finite support that is
normalized according to

∑m

i=0 β(i,m) = 1 allowing for
online, offline, and block-online algorithms [7]. R̂yy is a
PD × PD correlation matrix estimated over a block of
length N and containing correlation and cross-correlation
sub-matrices between the BSS output signals for time lag
−D + 1, . . . , D − 1.

The BSS variant of this generic SOS natural gradient
update also used for multiple TDOA estimation follows
immediately by setting R̂ss(i) = bdiagD R̂yy(i). Note that
there are also efficient approximations of this algorithm
with a reduced computational complexity allowing already
real-time operation on a regular PC platform (see [9] for
implementation details and parameterization).

C. TDOA estimation

For simplicity we focus here on the case of P =2 sources.
In this case the SOS-based BSS algorithm described above
ideally converges to solutions fulfilling the following
conditions:

h11(n) ∗ w12(n) = −h12(n) ∗ w22(n), (11)

h21(n) ∗ w11(n) = −h22(n) ∗ w21(n), (12)

so that with a suitable coefficient initialization and broadband
excitations the BSS algorithm performs a MIMO system
identification of the mixing system H [10].

While performing a system identification the BSS
algorithm provides the possibility to extract the location
information of the sound sources from the unmixing system
W. The TDOA can actually be calculated after each
coefficient update by identifying the direct propagation path

between the sources and the microphones. We can use (11)
to obtain the TDOA for source 1 and (12) to obtain the
TDOA for source 2 [2]:

τ̂1 = arg max
n

|w12(n)| − arg max
n

|w22(n)|, (13)

τ̂2 = arg max
n

|w11(n)| − arg max
n

|w21(n)|. (14)

Note that an exact estimation of the mixing system H is not
necessary for all filter taps to perform a successful sound
source localization since we only need to identify the filter
tap corresponding to the direct propagation path, as can be
seen in (13) and (14).

III. SOLVING THE SPATIAL AMBIGUITY

While easily applicable to the localization of one source in
several dimensions or to the localization of multiple sources
in one dimension, the two-step TDOA-based approach is
not sufficient for the simultaneous localization of multiple
sources in several dimensions because of the necessity to
resolve the spatial ambiguity, regardless of the TDOA esti-
mation method used (see Sect.I). For the problem at hand, the
BSS algorithm described in Sect. II and used for the multiple
TDOA estimation in Fig. 1 has the interesting feature of
both simultaneously estimating TDOAs for several sound
sources and unraveling the mixing system, thereby providing
estimates of the original source signals at the BSS outputs.

Considering the notations of Fig. 1, we propose to resolve
the spatial ambiguity by observing the cross-correlation
between the P outputs of each of the T BSS algorithms used
to estimate the TDOAs. For each processing block m we
can calculate the T (T−1)×P 2 cross-correlation coefficient
estimates ξIJ

ij (m), I, J =1 . . . , T, I �=J, i, j =1, . . . , P from
short-time estimates of the cross-correlation r̂IJ

ij as follows:

r̂IJ
ij (m,κ) = λR · r̂IJ

ij (m − 1, κ)

+ (1−λR) · Ê
[
yI

i (m,n + κ) · yJ
j (m,n)

]
, (15)

P̂ I
i (m) = λP · P̂ I

i (m − 1)

+ (1−λP ) · Ê
[(

yI
i (m,n)

)2
]
, (16)

ξIJ
ij (m) =

√√√√
∑κmax

κ=−κmax
(r̂IJ

ij (m,κ))2

P̂ I
i (m) · P̂ J

j (m)
, (17)

where κ = −κmax, . . . , κmax in (15) is the time-lag in
the estimated correlation function r̂IJ

ij (m,κ) between the
ith output from the Ith BSS algorithm yI

i and the jth

output from the J th BSS algorithm yJ
j . P̂ I

i (m) in (16) is
the estimated signal power of yI

i . The forgetting factors
λR in (15) and λP in (16) are positive constants which
should be chosen close to but smaller than one to allow
a recursive smoothing in a block-by-block fashion of the
correlation function estimates and of the signal power es-
timates respectively. In (15) and (16) n is the discrete-
time index within one processing block and Ê(·) is the
expectation estimate operator over one processing block.
Observing that r̂JI

ji (m,κ) = r̂IJ
ij (m,−κ) in (15) and (17),

we can easily establish the relation ξJI
ji (m) = ξIJ

ij (m).
As a consequence, only T (T −1)/2 × P 2 cross-correlation
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TABLE I

SPATIAL AMBIGUITY RESOLVER FOR P = 2 SOURCES IN T = 2

DIMENSIONS.

if
(
ξ12
11(m) > α · ξ12

12(m)
)

and
(
ξ12
22(m) > α · ξ12

21(m)
)

y1
1 is correlated with y2

1 and y1
2 is correlated with y2

2 .
⇒ The TDOAs are already in the right order.{

position1 = loc(τ̂1
1 , τ̂2

1 )

position2 = loc(τ̂1
2 , τ̂2

2 )

else if
(
ξ12
12(m) > α · ξ12

11(m)
)

and
(
ξ12
21(m) > α · ξ12

22(m)
)

y1
1 is correlated with y2

2 and y1
2 is correlated with y2

1 .
⇒ The TDOAs are permuted.{

position1 = loc(τ̂1
1 , τ̂2

2 )

position2 = loc(τ̂1
2 , τ̂2

1 )

else

⇒ Undecided, keep the last decision.
end

coefficients ξIJ
ij (m), I = 1 . . . , T, J = I + 1, . . . , T, i, j =

1, . . . , P need to be calculated.
For illustration we consider the example of P = 2

sources and T = 2 dimensions. In this case (15), (16)
and (17) result in a set of four cross-correlation coefficients(
ξ12
11(m), ξ12

12(m), ξ12
21(m), ξ12

22(m)
)

at each block instant.
These coefficients can serve directly to resolve the spatial
ambiguity according to Table I.

In the procedure described in Table I, the constant α ≥ 1
is set to provide a security margin. A decision is made only
if we have enough confidence, i.e., when both outputs of
the first BSS algorithm are not correlated with the same
output from the second BSS algorithm. We notice that the
normalization of the cross-correlation coefficients using the
BSS output power estimates in (17) makes the procedure
robust against variations of the sound source power. A
reasonable choice for the parameter α is to set it greater than
but close to one, independently of the acoustical scenario
under consideration.

IV. SPATIAL RESOLUTION

In this section we focus on geometrical considerations,
concentrating on the actual calculation of each source po-
sition independently and using a set of TDOAs estimated
for each microphone pair, e.g., by the method described in
Sect. II.

Independently of the TDOA estimation method used, the
TDOAs are usually represented by integer numbers with
maximum absolute value τ̂max = �d fs/c� where d is the
microphone spacing, fs is the sampling rate and c is the
sound velocity. Consequently the estimates of the potential
source positions are restricted to a grid of discrete positions.
Since with increasing τ̂max the number of potential TDOA
values for each microphone pair is also increased, we readily
see that the density of this grid depends on the sampling rate
and on the positions of the microphones.

Given a TDOA estimate τ̂ expressed in samples between
two microphones, a source can be localized in the far-field
by calculating a DOA θ of the plane wave originating from
the sound source, measured with respect to the normal of
the microphone array axis:

θ = arcsin

(
c τ̂

d fs

)
. (18)

x

z

(a)

x

z

(b)
Fig. 3. Potential DOAs obtained from a four-sensor microphone array
centered at the origin in the x-z-plane with spacing d = 16cm (left) and
d = 80cm (right) at the sampling rate fs = 16kHz.
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Fig. 4. Grid of potential positions obtained from a linear three-sensor
microphone array centered at the origin point along the x-axis with different
microphone spacings and sampling frequencies: (a) d = 16cm fs = 16kHz,
(b) d = 80cm fs = 16kHz, (c) d = 80cm fs = 48kHz.

Fig. 3(a) shows the potential directions of arrival in a quarter
of the space for a four-sensor array using two pairs placed
orthogonal to each other, each with a microphone spacing
d = 16cm and sampling rate fs = 16kHz. Since we are
operating in the far-field the distance (range) from the source
to the microphones is disregarded and two TDOA estimates
using the two sensor pairs can directly be plugged into (18)
to obtain the azimuth and the elevation of the source. Each
curve intersection in Fig. 3(a) representing a possible DOA
we see that the number of possible DOAs is limited. The
spatial resolution can however be drastically improved by
increasing the microphone spacing to, e.g., d=80cm as can
be seen in Fig. 3(b).

In the near-field the information on the estimated source
position r̂s for a TDOA estimate τ̂ij between sensors i and
j can be expressed as

cτ̂ij = ‖r̂s − ri‖ − ‖r̂s − rj‖. (19)

In a three-dimensional space such an equation describes a
hyperboloïd. Given at least three TDOAs measured from
correctly chosen microphone pairs we can obtain the three-
dimensional source location estimate r̂s at the intersection of
three hyperboloïds. Note however that solving such a set of
non-linear equations is not trivial. The existence of a closed-
form solution is not guaranteed in any case. To illustrate
the spatial resolution in the near-field we consider the two-
dimensional grids of potential positions in Fig. 4. The grids
were obtained from a linear array of three microphones,
the center microphone being used twice, once to build a
first microphone pair with the left microphone and once
to build a second pair with the right microphone. Such
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Fig. 5. Results of the TDOA estimation with large microphone spacings
(given in cm) in a room with T60 ≈ 200ms.

an array has the advantage of having an exact closed-form
solution. Like in the far-field case we see how increasing
the microphone spacing and/or the sampling frequency can
improve drastically the spatial resolution of a TDOA-based
localizer.

When operating on broadband signals such as speech, the
full potential of large microphone arrays can be exploited
with the TDOA estimator based on system identification
described in Sect. II because of its broadband formulation.
Actually with other localizers the precision of TDOA esti-
mation itself may be affected due to spatial aliasing if the
microphone spacing is too large (i.e., d > λ/2). This am-
biguity typically occurs with narrowband implementations,
i.e., where the signal processing is carried out independently
for each frequency bin. Moreover, to further improve the
spatial resolution of the localizer at a low computational
cost, fractional delays (as opposed to integer delays) can
be obtained by performing a sinc interpolation [11] on the
filters of the unmixing system W before performing the
effective TDOA estimations (13) and (14), without increasing
the sampling rate for the BSS operations.

V. EXPERIMENTAL RESULTS

In the following experiments the TDOA estimation was
based on a block-online update procedure of the blind
adaptive MIMO system identification [9] presented in Sect. II
and conducted at the sampling rate fs = 16kHz. Moreover
fractional time delay estimates were obtained (Sect. IV)
using an interpolation factor of three to improve the spatial
resolution.

A. Robustness with large microphone spacings

We first performed experiments to verify the ability of
the TDOA estimation algorithm described in Sect. II to
operate on large microphone spacings. Two speech sources
were positioned in front of a two-sensor array at +60o and
−80o relative to the microphone array axis. The experiments
were conducted in an environment with reverberation time
T60 ≈ 200ms.

Fig. 5 shows the TDOA estimation results for microphone
spacings ranging from d = 48cm to d = 112cm. Note that
all these microphone spacings are too large to avoid spatial
aliasing for audio signals at high frequencies so that nar-
rowband algorithms cannot be used here. For a microphone
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Fig. 6. Experimental setup with the position of the two sources and the
two microphone pairs.

TABLE II

EXPERIMENTAL SETUP SPECIFICATIONS.

T60 α1 α2 β1 β2 A B

≈ 250ms +25o
−50o

−20o +45o 490cm 450cm

spacing of, e.g., d = 48cm the necessary condition to avoid
spatial aliasing is to operate on signals with energy only in
frequency regions below 350Hz. This condition is obviously
not fulfilled for speech.

As expected, the TDOA estimates increase — in absolute
value — with the size of the microphone array. Because of
its broadband formulation the TDOA estimation based on
MIMO system identification shows a robust behavior for a
wide range of spacings d.

B. Two-dimensional localization of two speakers

To evaluate the ability of the BSS-based TDOA estimator
not only to estimate a set of TDOAs but also to help solving
the spatial ambiguity, experiments were conducted in a living
room environment with reverberation time T60 ≈ 250ms.
T = 2 TDOA estimators, each providing P = 2 TDOAs,
were used with the experimental setup described in Fig. 6
and Table II. The two sound sources were to be localized
in the plane spanned by the two sensor pairs. Since the
localization of sources situated outside this plane would
merely be reduced to finding their position projected on this
plane, we assume in the following that both sensors and
sources are in the same plane. The microphone spacing for
both pairs of microphones was set to 80cm. Combined with
an interpolation factor 3 increasing the effective sampling
frequency of the TDOA estimation to 3× 16 = 48kHz, such
a TDOA-based localizer offers a reasonably good spatial
resolution for a simultaneous source localization of two
sound sources in a two-dimensional plane.

Fig. 7 shows the TDOA estimation results for the two
microphone pairs. The two source signals were speech
signals. At the beginning of the experiments only source 1
(see Fig. 6) was active and after 20 seconds source 2 started
speaking while source 1 remained active. Fig. 7 confirms the
robust TDOA estimation results already reported in [2].

Fig. 8 gives the results of the spatial ambiguity resolver
implementing the procedure described in Table I using the
output signals delivered by the MIMO system identification
algorithm at a sampling rate of 16kHz. The upper graphs
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show the cross-correlation coefficients (17) used in the
“if” and “else if” statements of Table I. The lower graph
represents the decision made. When this decision variable is
set to one the “else if” condition in Table I is true and the
TDOA estimates should be permuted. The decision variable
was initially set to zero. The cross-correlation coefficients
were calculated according to (17) on a block-by-block basis
with block shift 4096 samples (the block processing delay
of the TDOA estimation algorithm was 1024 samples) and
block length 8192 samples. The forgetting factors used to
estimate the correlation functions (15) and the signal powers
(16) were set to λR = 0.9 and λP = 0.9 respectively. The
maximum time-lag to compute the correlation function was
κmax = 1024 samples. Finally the parameter α in Table I
was set to α = 1.1.

By observing the evolution of the cross-correlation coeffi-
cients in Fig. 8, we can see that the correct decision could be
taken unambiguously when the two sources were active (i.e.,
after 20s). When only one source was active the procedure
in Table I could not always lead to an unambiguous decision
(see the widened portions of line in Fig. 8) but the resolution
of the spatial ambiguity was not critical in this case since
the active source was correctly localized in both channels of
the TDOA estimators, as can be seen in Fig. 7. However
since the TDOA estimators try to localize two sources,
the two channels of each estimator might give different
estimates when only one source is active. This happened
e.g., after 19s in the first TDOA estimator (see Fig. 7).
But note that the signal powers (16) shown in Fig. 9 can
easily help in this case. When only one source is active
we see actually that for each BSS algorithm (i.e., for each
microphone pair) the active source is isolated in one output
and tends to be suppressed in the other output, thus leading
to a large difference in signal powers between the outputs
of the BSS algorithms. We thus see clearly that during the

0 20 40 60
0

0.005

0.01

0.015

0.02

0.025

Time (in seconds)

S
ig

na
l P

ow
er

Microphone pair 1

0 20 40 60
0

0.005

0.01

0.015

0.02

0.025

Time (in seconds)

S
ig

na
l P

ow
er

Microphone pair 2

P̂1
1

P̂1
2 P̂2

1

P̂2
2

Fig. 9. Estimated signal powers of the BSS outputs.

first 20s of the experiments, only one source was active
and was isolated in the second and first channel of the first
and second BSS algorithms, respectively. The active source
(which corresponds to source 1 in Fig. 6) can therefore be
localized using the TDOA pair (τ̂1

2 , τ̂2
1 ).

VI. CONCLUSIONS

We presented a general TDOA-based framework for the si-
multaneous multidimensional localization of multiple sound
sources. For the scheme to be successful we needed not
only a good TDOA estimator but also a mechanism to solve
the spatial ambiguity problem occurring when operating on
several sources and also in several dimensions. We showed
that the TDOA estimation based on blind adaptive MIMO
filtering offered a well-suited solution to both issues and
furthermore allowed us to obtain a satisfactory spatial reso-
lution.
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