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Abstract-We present a method by which every multidimen- 
sional (MD) filter with an  arbitrary parallelepiped-shaped 
passband support can be designed and implemented efficiently. 
We show that all such filters can be designed starting from an  
appropriate one-dimensional prototype filter and performing a 
simple transformation. With D denoting the number of dimen- 
sions, we hence reduce the complexity of design as well as im- 
plementation of the MD filter from O ( N ” )  to O ( N ) .  Further- 
more, by using the polyphase technique, we can obtain an 
implementation with complexity of only 2N in the two-dimen- 
sional special case. With our method, the Nyquist constraint 
and zero-phase requirement can be satisfied easily. In the IIR 
case, stability of the designed filters is also easily achieved. Even 
though the designed filters are in general nonseparable, these 
filters have separable polyphase components. One special ap- 
plication of this method is in MD multirate signal processing, 
where filters with parallelepiped-shaped passbands are used in 
decimation, interpolation, and filter banks. Some generaliza- 
tions and other applications of this approach, including MD 
uniform DFT quadrature mirror filter banks which achieve 
perfect reconstruction, are studied. Several design examples are 
also given. 

No M EN c L AT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU R E  

D Number of dimensions. 
32 

[a,  b)’ 
Set of all D x 1 integer vectors. 
Set of D x 1 real vectors x with com- 

ponents x, in the range a I x, < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb. 

nals. Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn E 32. 

transform of MD discrete signals. 
Fourier transform pair. 
A D x D nonsingular integer matrix. 
Set of all integer vectors of the form 

n = InO n I  “Time” index of MD discrete sig- 
. . .  rill- , I  ‘ 

w = [w,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwI Frequency variable of the Fourier 
* . . WL)-  I1 ’ 

x(n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt-f X(W) 
M 

X ( M )  
Mx. x E [O, 1)”. 

J ( M )  = 

/det MI = The number of elements in X ( M ) .  
A = J ( M )  * 

M - ’  = [adjugate of M I .  Note that is also 
an integer matrix. 
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SPD (V) 

parallel- 
epiped of V )  

Set of all real vectors 
(symmetric V x , x E [ - l ,  1)Y 

I749 

of the form 

I. INTRODUCTION 

ECENTLY, there has been much research work on R multidimensional (MD) multirate techniques which 
have found applications in subband coding of images and 
video data. In this field, MD filters with parallelepiped- 
shaped passbands are used commonly, especially as 
decimation filters and interpolation filters. For various 
reasons [ 11, both the design and implementation of such 
filters are more complex than in the one-dimensional (1  D) 
case. In the two-dimensional (2D) case, some authors 
have proposed efficient techniques to design diamond fil- 
ters, fan filters, and directional filters, by starting from a 
1D prototype [ 2 ] - [ 6 ] .  While these methods are very 
valuable (both for design and implementation) as shown 
in these references, they do not place in evidence a tech- 
nique for generalization to arbitrary dimensions and ar- 
bitrary parallelepiped-shaped passbands. In this paper we 
will present a method which works for arbitrary dimen- 
sions and arbitrary parallelepiped-shaped passbands. For 
example, given the decimation/expansion matrix M ,  we 
first design a 1D low-pass prototype filter p ( t i )  with pass- 
band cutoff frequency at a / ) d e t  M I .  We then define the 
impulse response h(n )  of the MD filter as follows ( D  is 
the number of dimensions): 

Step 1. First define the MD separable filter h“’(n) 

Step 2. Then define h(n )  = c0h(’)(@n), where A = 

The claim is that the resulting filter h(n )  is low pass 

P ( n o ) P ( n , )  - - * P ( n D -  1 ) .  

+[adjugate of MI and co is some scale factor. 

with the passband support in 

0) = 7rMPTX, X E  [-1, 1f (1.1) 

as is the case in many of the 2D designs of [2]-[6]. Even 
though h(n )  is in general not separable, it can be consid- 
ered as a generalization of separable filters in the sense 
that we can derive it by decimating a separable filter 
h(’ ) (n).  Also, as shown later, the polyphase components 
of h(n)  are indeed separable. 

Note that the region defined in ( 1 . 1 )  is not an arbitrary 
parallelepiped, but governed by the integer matrix M .  To 
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represent an arbitrary parallelepiped, we need to use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7rHPTx,  where x E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ - 1 ,  and H is a nonsingular ma- 
trix with rational elements. (The irrational case can be 
approximated by a rational matrix H . )  In Sections I1 and 
111, we will state in details the general procedure for de- 
signing filters with such arbitrary parallelepiped-shaped 
passband supports. 

The above design rule and its proof are the same for 
any parallelepiped-shaped passbands, and for any number 
of dimensions. In this respect the method differs from, 
and generalizes, earlier ones. Note that the 1D prototype 
filter depends only on (det M I .  As done in [4] and [6], 

we also provide bounds on the passband and stopband rip- 
ples of the resulting MD filter in terms of the ripples of 
the 1D prototype. We will also exploit the above relation 
between ID and MD filters to obtain efficient polyphase 
implementations (Section IV). Preliminary (less detailed 
versions) of our results have been reported earlier in [7]. 

With our method, the Nyquist constraint and zero-phase 
requirement can be satisfied easily. Also, the designed fil- 
ters all have separable polyphase components. In the IIR 
case, the stability of the resulting filters is also guaran- 
teed. In addition to filters with parallelepiped-shaped 
passbands, many other filters can be designed by minor 
combinations of these filters (Section V). Because our 
method results in a close relation between the polyphase 
components of the ID prototype and those of the resulting 
MD filter, the design and implementation of MD uniform 
DFT quadrature mirror filter (QMF) banks can be simpli- 
fied (Section VI). Many useful MD DFT QMF banks, 
including those that achieve perfect reconstruction (PR), 
are presented, together with several design examples. We 
will also make some comments about how to deal with 
the case when the passband support is very small (Section 
VII). 

Norarions: Boldfaced letters denote matrices and vec- 
tors. The symbol Z is reserved for the identity matrix. The 
notations AT, A*, and A P T  denote the transpose, the con- 
jugate, and the inverse transpose of A ,  respectively. The 
row and column indices typically begin from zero. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD de- 
notes the number of dimensions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA32 stands for the set of 
all D X 1 integer vectors, and [a,  b)D is the set of D x 1 

real vectors x with components x, in the range a I x, < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b. Let n = [no n I  * nD - ,]'denote the "time" index 
of MD discrete signals. All 11,'s are integer, so that n E 

32. Also, o = [wo w I  - * wD - , IT  is the frequency 
variable of the Fourier transform of MD discrete signals. 
The Fourier transform pair, x ( n )  ++ X ( o ) ,  is defined as 

X(w) = c x(n)e- jwrn,  
ne3Z 

x ( n )  = - s X(o )e jWT"  do. (1.2) 
( 2 a P  w € [ - T .  T P  

Refer to [l], [8]-[ 131 for other preliminaries of MD mul- 
tirate signal processing. An excellent recent reference on 
MD multirate systems is [ 121, which also introduces and 

reviews many notations we have used. Some of the no- 
tations we use here are slightly modified versions of those 
in [ 121, and suit our discussions better. Although we will 
define each new notation as we proceed, all of these no- 
tations are summarized in the Nomenclature section for 
quick reference. 

11. THE IMPULSE RESPONSE OF A N  IDEAL LOW-PASS 
FILTER 

In this section we give the key equation which can be 
considered to be the theoretical foundation for the rest of 
the paper. Let M be a D x D nonsingular integer matrix. 
The M-fold decimated version of x (n )  is defined as y ( n )  
= x (Mn) ,  with the frequency domain relation [ l l ] ,  [12] 

Y ( 0 )  = - c x ( M - T ( o  - 27rk)) (2.1) 
J ( M )  ke3Z.(Mr)  

where J ( M )  denotes ldet M 1 ,  and 32 ( M T )  denotes the set 
of all integer vectors of the form M T x  for x E [0, l)D. It 
can be shown that the number of elements in either 92 ( M )  
or 32 ( M ~ )  is J ( M ) .  

The M-fold expanded version of x ( n )  is defined as 

x ( M - ' n )  M - l n  E 32 
(2.2) 

otherwise 
y ( n )  = 

so that Y ( o )  = X ( M T w )  [ l l ] ,  [12]. To prevent aliasing 
due to the M-fold decimation (or eliminate images in the 
M-fold expansion), a decimation (or interpolation) filter 
H ( o )  is necessary. Typically, this filter has a parallel- 
epiped-shaped passband support in 

= K M - ~ x  + 2 ~ k ,  x E [-1,  l)D, k E 32. (2.3) 

For example, in the 2D case, the region T M - ~ x ,  x E [ - 1 ,  

1)*, denotes (in terms of the frequencies wo and U , )  

-7r I M,w, + M,ow, I 7r, 

-7r I M0,OO + M , , w ,  < 7r (2.4) 

and is used in [2]-[6]. Fig. 1 shows this region for 

M =  1: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-:I. 
We will now use an abbreviated notation to indicate 

(2.3). We use the notation SPD(V) (symmetric parallel- 
epiped generated by V) to denote the set of all real vectors 
of the form Vx, for x E [ - 1 ,  l)D. We can then rewrite 
(2.3) as 

SPD (7rMPT) + 2ak, k E 32. (2.5) 

The terms 27rk shows that SPD is repeated every 
27r in each dimension. We often say that the passband 
support of the filter is given by SPD ( T M - ~ ) ,  and take 
the periodicity for granted, i.e., do not show the term 2ak 

explicitly. 
Let H(w)  denote the frequency response of an ideal 

low-pass decimation/interpolation filter for the M-fold 
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--I ' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
"0 

--I 

F i f .  I .  Typical pas\band of iiiultiriite l i l t c r \ .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
decimatorlexpander. The passband support is as in (2.3) 

or (2.5), i .e., 

(2.6) i 0 otherwise. 

Let h(n)  denote the impulse response of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH ( w ) .  We now 
obtain an expression for h (n). This expression will reveal 
a fundamental relation to 1D low-pass filters, and enable 
us to design H(w)  starting from a ID prototype. Using 
the inverse Fourier transform relation in (1.2), we obtain 

1 if E SPD ( T M - ~ )  
H ( o )  = 

e Iw7, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdw 

(0 = n M - 5 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(m = M - l n )  

e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&I (2.7) 
- T''l' " - 

where m, are the components of the D x 1 vector 

Fig. 2 .  Frequency response of an ideal low-pass tilter 

This is a separable low-pass filter, with passband support 
SPD ( n Z / J ( M ) ) .  Its impulse response is 

h'"(n) = p ( n , , ) p ( n , )  . . p(nD- I) (2.12) 

i.e., 

\-- /  -- \ - ' - - I  

i = 0 rn ,  

Now consider the quantity h"'(hn),fiwhich is the &-fold 
decimated version of h") (n). Since Mn = J ( M )  M I n = 

J ( M ) m ,  we get 

sin (nm,)  
. (2.14) 

1 D - '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn- -- - 
J ( M ~  , = o  rmj  

Comparing (2.14) with (2.9), we obtain the following very 
simple relation between h ( n )  and h"'(Mn): 

h(n) = c0h'"(&n) (2.15) 

where co = [ J ( M ) I D -  I = J ( h ) .  In other words, h(n)  is 
obtained simply by h-fold decimation of the D-dimen- 
sional separable sequence h")(n), followed by scaling with 
CO! 

with M = J ( M )  * M - '  = *[adjugate of M I .  Evidently, 
&I is also an integer matrix. Note, however, that m is a 
real (not an integer) vector. From the above we obtain 

1 D - '  sin (ntn, ) 
h(n) = ~ n -. 

J(M) I = o  T/??, 
(2.9) 

B. Rational Case 

We will generalize this result to ideal filters with the 
passband support in SPD ( T H - ~ ) ,  where H is a D X D 
nonsingular matrix with rational elements. Because any 
irrational matrix can be approximated by rational ma- 
trices, this covers any parallelepiped-shaped passband 
support. 

Consider an ideal low-pass filter which has the pass- 
band region in SPD ( r K T ) ,  i .e., 

A. Relationship to I D  Filters 

Consider a one-dimensional ideal filter with frequency 
response P ( o )  as shown in Fig. 2 .  Its impulse response is 
given by 

sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) 
J ( M )  

p(n) = (2.10) 
nn 

Starting from this prototype filter P ( w ) ,  suppose we define 
the D-dimensional filter 

(2.11) H'\ '(w) = P ( O ( ) ) P ( W I )  . * * P(w,,- I ) .  

Similarly as in (2.7)-(2.9), we can obtain the inverse 
Fourier transform of G(o) 

(2.17) 
1 D - I  sin ( rq , )  

g(n) = - n- 
J ( H )  I = o  nq, 

where q = [qO . . 40- = H - '  n. Meanwhile, by us- 
ing the so-called matrix fraction description (MFD), any 
nonsingular rational matrix can be expressed in its left 
MFD as H = L - ' M ,  where L and M are some nonsin- 
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gular integer matrices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141-[ 161. Let us consider zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh ( L n ) ,  
the L-fold decimated version of h ( n )  in (2.9). We get 

where q = M - ‘ L n  = H - l n .  (2.18) 

Comparing (2.17) and (2.18), we obtain the following re- 
lation between h (n )  and g zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

s(n> = CI h (Ln) (2.19) 

where cI = J ( M ) / J ( H )  = J ( L ) .  In other words, g ( n )  is 
obtained simply by L-fold decimation of h ( n ) ,  followed 
by scaling with cI. 

111. DESIGN PROCEDURE 

Motivated by the conclusion in Section 11, we can de- 
sign an MD filter with the passband support SPD (aH-‘) 
as follows: 

Step 1 .  Find a left MFD of H ,  say H = L-I M .  
Step 2. Design a 1D low-pass prototype filter ~ ( n ) ,  

which can have either finite impulse response (FIR) or 
infinite impulse response (IIR), with passband region 

Step 3. Construct the separable MD filter h‘ ” (n)  from 
[ - P / J ( M ) ,  a / J ( M ) ) .  

p ( n )  as 

h“’(n) = P(no)P(n,)  * * P@D-  I). (3.1) 

Step 4. Define h ( n )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 c O h ( ” ( f i n ) ,  where cO = J(&.  
Step 5 .  Define g ( n )  e cI h ( L n ) ,  where cI = J ( L ) .  

Note that stFps 4 and 5 can be combined as one step: 
g ( n )  A ch“’(MLn), where c = cocl = J ( M L ) .  Also, when 
H is itself an integer matrix (so L can be chosen as an 
identity matrix), we can omit step 5 and simply use the 
resulting filter H(w) of step 4. 

Remarks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the Choice of M and L: 
I )  Since we decimate h ( n )  by a factor to obtain g ( n ) ,  

there is a “design overhead factor” of J(L) .  To reduce 
such overhead, we need to find a left MFD of H where L 
has the smallest absolute determinant. For this purpose, 
it turns out that we should choose the so-called irreducible 
left MFD of H ,  which is a left MFD where M and L are 
left coprime [ 141-[ 161. 

2) Instead of choosing an irreducible MFD, we can 
choose an MFD where M is diagonal. This is always pos- 
sible because H - ’  = M P 1 L  and we can simply let m,, 
(the diagonal elements of M )  be the least common mul- 
tiple of denominators in the ith row of H - ’ .  The advan- 
tage of diagonal M is that the design of h ( n )  becomes 
trivial since it can be done separately in each dimension. 
However, we pay the expense that the overhead factor 
J(L)  may be higher than the one in an irreducible MFD. 
Therefore, whether diagonal M o r  irreducible MFD should 
be used depends on the matrix H .  

Because H(”(w) is not ideal, decimation operations in 

steps 4 and 5 cause some aliasing, both in the passband 
and the stopband. We now proceed to analyze these ripple 
sizes, and obtain bounds in the same way as done in [4] 
and [6]. Suppose the prototype filter P ( u )  has passband 
ripple 6, and stopband ripple ?i2. Then, it is clear that the 
frequency response of H(”(w) will satisfy 

( 1  - s f  I pf(\’(w)l I ( 1  + 6JD 

in the passband 

0 I \ fP)(w) l  I ( 1  + 61)D-’62 

in the stopband. (3.2) 

When 6 , ,  62 << 1 ,  we have 

( 1  f = 1 + D6, 

and ( I  + 61)D-162 = &. (3.3) 

Therefore, the passband and stopband ripples of H‘”(w) 
are approximately D6, and 62, respectively. Since h ( n )  = 
J ( f i ) h “ ) ( f i n ) ,  from (2.1) we obtain 

H(w) = z. fP’(A-‘(o - 2ak)). (3.4) 
k E 3Z(M7) 

We can sec that H(w)  is the sum of the “stretched” ver- 
sion H(”(M-‘w) and J ( M )  - 1 “shifted” versions of it. 
Therefore, the passband ripple pf H ( o )  is at most the sum 
of one passband ripple and J ( M )  - 1 stopband ripples of 
H(”(w), and the stopband ripple of H(w)  is at most the 
sum of J ( f i )  stopband ripples of H(”(w). Hence, the peak 
passband and stopband ripples of the resulting filter H ( o )  
should be upper bounded by 

= (.I(&) - 1 ) &  + D61, 

and = J ( f i ) & .  (3.5) 

Similarly, we can obtain that the resulting passband and 
stopband ripple sizes of g (n) are upper bounded by 

and $2 = J(L)62.h. (3.6) 

Note that the resulting ripples generally will be less than 
these upper bounds. To design G ( o ) ,  we simply choose 
6, and small enough so that the resulting G(w) satisfies 
the specifications. 

Remarks: 
I )  Similar bounds of ripple sizes for the case of 2D 

diamond filters and directional filters can be found in [4] 
and [6]. 

2) The technique of transforming a 2D filter with sep- 
arable rectangular passband into some particular shapes 
by a change of variables has been mentioned in (21-[6]. 
However, our method presents the required prototype fil- 
ter and the required transform (namely, decimation by 
ML) for any number of dimensions and any parallel- 
epiped-shaped passband supports. 
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Design Exuinple I 

We choose 

I 1  - 1 1  

The desired passband support is same as in Fig. 1.  Be- 
cause zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH is itself an integer matrix, step 5 can be omitted 
and H ( u )  will be the desired filter. We use linear pro- 
gramming [ 17, sect. 3.191 to design the prototype filter 
P ( w ) ,  a zero-phase Nyquist FIR filter with length N = 

59, passband ripple 6 ,  = 0.01994, and stopband ripple 6? 
= 0.00888 (i.e., stopband attenuation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,, = -41.03 dB), 
shown in Fig. 3(a). Following the steps described previ- 
ously, we obtain p,')(u) and H ( u ) ,  as shown in Figs. 
3(b) and (c). The resulting H ( o )  has passband ripple 6; 
= 0.03931 and stopband ripple 6: = 0.01778 (-35.00 
dB), which are indeed smaller than the estimated values 
(6 / , / ,  = 0.05765, = 0.02664) given in (3 .5 ) .  

Design Example 2 

Suppose we want to design a filter g(n )  which has pass- 
band in the shaded region of Fig. 4(a). This region can 
be expressed as SPD ( T H - ~ ) ,  where 

(The computation of irreducible MFD's can be found in 
[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA131-[ 1.51.) For this case, the matrix M turns out to be 
diagonal and we can utilize the filter h'."(n) in design ex- 
ample 1 .  This filter is decimated by L and scaled by J(L)  
to obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(n). The resulting frequency response G(u), 
which has passband ripple size 6; = 0.02719 and stop- 
band ripple size 65 = 0.03038 (-30.35 dB), is shown in 
Fig. 4(b). 

Preservation ($the Zero-Phase Property: A filter hav- 
ing purely real frequency response is called a zero-phase 
filter. The time domain requirement for zero-phase filters 
is f ( n )  = f * ( - n )  [ I ,  p. 1131. Zero-phase filters intro- 
duce no phase distortion, and this is important in many 
image processing applications. Our filter design method 
preserves the zero-phase property, i.e., if the ID filter has 
zero phase, the resulting MD filter G ( u )  also has zero 
phase. To show this, suppose the 1 D prototype p ( n )  has 
zero phase, i.e., p ( n )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp * ( - n ) .  From ( 3 . l ) ,  we know 
h'"'(n) = h'"" (-n). Then, g ( n )  = c h ' " ' ( h L n )  = 

ch ' " " ( - f iLn)  = g*( -n ) ,  so that g ( n )  also has zero 
phase. 

Preservation of the Stability: If we begin with a stable 
IIR prototype filter p ( n ) ,  the resulting g (n) is also guar- 
anteed to be stable. This is justified as follows: By the 
definition of bounded-input-bounded-output (BIBO) sta- 
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Fig. 3 .  Frequency response o l  filters in design example I :  (a )  / ' (U) .  (b)  
H'<l (m).  ( C )  H ( W ) .  

bility, p ( n )  is stable if and only if E,, I p (n ) l  is finite. Since 

c Ig(n)l = c c Ih'"'(&,n)I I c c Ih'"'(n)l 
n n n 

= c c 110 IP(%)l c I1 I IP(fl,)l * * 110- c I IP(nD-1)I 

= c (? IP (n ) l y?  (3.8) 

E, I g(n)( is also finite. Therefore, g(n )  is also stable. 
Preservation of the Nyquist (Mth Band) Property: A 

Nyquist filter has impulse responsef(n) satisfyingf(Mn) 
= 0, for all n # 0, where M is some integer matrix. Such 
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(a)  

respect to integer matrices, we only have to discuss the 
filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh ( n )  obtained by using steps 2-4 with respect to the 
integer matrix M .  The polyphase components of h ( n )  with 
respect to M are defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 1 I], [ 121 

ek,(n)  = h(Mn + k / ) ,  (Type 1) 

or rk,(n) = h(Mn - k / ) ,  (Type 2) (3.9) 

where k/ E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ( M )  and kJ can take on J ( M )  different val- 
ues. Usually, ko is taken to be the zero vector 0. In the 
frequency domain, the polyphase decomposition of H ( o )  
can be expressed as 

H(w) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc e - / W r k ’ E k , ( M T o ) ,  (Type 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k,€I1Z(WA 

or H ( o )  = c R k , ( M T o )  (Type 2). 
k,€:x(W 

(3. IO) 

Note that the term eplwrr  is a delay operator. 
We now prove that all these polyphase components are 

separable. In fact, we can show these polyphase compo- 
nents can be separated into polyphase components of the 
1D filter P ( w ) .  Consider ek, (n ) ,  the j t h  polyphase com- 
ponent of h ( n ) .  We have 

Fig. 4. The tiltcr G(w)  in design example 2: (a) desired passhand. (h)  ek,(n)  = h(Mn + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk i )  
frequency response. 

= coh‘”’(&Mn + &k;) 

filters are also called Mth band filters. When used as in- 
terpolation filters, these filters have the advantage that the 
values of existing samples can be preserved, i.e., there is 
no intersymbol interference. With our method, the Ny- 
quist property is also preserved. More precisely, let p ( n )  
be Nyquist, i.e., p(J (M)n )  = 0, for n # 0. From (3.1), 
we therefore have h ‘ ” ( J ( M ) n )  = 0, for n # 0. Then, 
h ( ~ n )  = c,h‘”(&Mn) = c ,h ‘ ” ( J (M)n )  = 0, for 12 

0, so h (n) is also Nyquist (Mth band). Furthermore, if we 
generalize the Nyquist property for the rational case to be: 
f (Hn)  = 0 whenever Hn is a nonzero integer vector (Hth 
band property), it can be verified that the resulting g ( n )  
has Nyquist property as well. 

Separability of the Polyphase Components: When used 
in multirate applications, e.g., decimation filters, inter- 
polation filters, and maximally decimated filter banks, fil- 
ters are usually implemented in polyphase components 
[ 1 I ] ,  [ 121. In these applications, the implementation of a 
filter is efficient (with complexity O ( N ) )  as long as its 
polyphase components are separable, even though the fil- 
ter itself may be nonseparable. As shown below, the de- 
sign procedure mentioned previously results in filters with 
separable polyphase components. This fact also helps us 
in designing uniform DFT filter banks, as explained in 
Section VI later. 

Remark: A method of designing 2D diamond-shaped 
filters having two separable polyphase components was 
proposed in [3]. From this point of view, our method is 
indeed a generalization of the results in [3]. 

Since the polyphase decomposition is defined only with 

= coh‘ ” (J(M)n + &k/) .  (3.11) 

Let 1 = [lo II . I D  - I ] T  = &kJ , then 

%,(a) = cop(J(M)no + lo )P(J(M)nl  + 11) 

. . . P ( J ( M ) n D _  I + ID- I). (3.12) 

Therefore, ek,(n) ’s  are separable. Since k, E X ( M ) ,  it can 
be verified that 1 E X ( J ( M ) Z ) ,  so 0 I I, I J ( M )  - 1. 
We thus conclude that ek, (n ) ’s  can be separated into Type 
1 polyphase components of p ( n ) .  

Causality of Designed Filters: Suppose we start from 
a ID causal filter p ( n ) .  The separable MD filter h ‘ ” (n )  
obtained in (3.1) is obviously causal (i.e., h‘ ” (n)  is non- 
zero only whenlall n,’s are nonnegative). When h‘ ” (n)  is 
decimated by ML, the resulting g ( n )  may or may not be 
causal, depending on &L. It can be shown that g ( n )  is 
still causal if and only if all the elements in (ML) - ’  are 
nonnegative, which is equivalent to the condition that all 
the elements in H be nonnegative. 

Even though g ( n )  may not remain causal for some 
choices of H ,  this is not a significant problem because we 
do not implement g (n) directly. As shown later in the fol- 
lowing section, h “ ) ( n ) ,  which is causal and stable as long 
as p ( n )  is causal stable, is the filter to be implemented. 

IV. EFFICIENT IMPLEMENTATION 

Because of the separability of H ‘ ’ ) ( o ) ,  the proposed 
method is efficient not only in the design, but also in the 
implementation. We shall present a polyphase implemen- 
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tation in which the complexity (number of arithmetic op- 
erations per filter output sample) grows linearly with the 
filter length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ,  i.e.. O(N),  instead of O ( N ” ) .  A similar 
advantage has been demonstrated for the 2D case in [2]. 

We shall take the 2D case for our example. Suppose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p ( n )  in step 2 has N coefficients. Therefore, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/7( ’ ) (n)  has 
N’ coefficients and g ( n )  has approximately N ’ / J ( M L )  
coefficients. Hence, to jmplement g ( n )  directly requires 
approximately N‘/J(ML) “arithmetic operations per 
computed output pixel” (OPP’s). Instead of direct imple- 
mentation, we shall derive an efficient implementation as 
follows. 

We can easily verify the decimation equivalence shown 
in Fig. 5 ,  where &(U)  is the Fourier transform of the M -  
fold decimated version of I? ( 1 2 ) .  Using this equivalence, 
we can schematically represent G ( u )  in terms of H”’(u) 
as in Fig. 7(a). since g ( n )  is the kL-fold decimated ver- 
sion of ch‘”(n). Because H‘” ’ (u)  is separable, i.e., 

(4.1) H(’l(U) = P ( w , , )  . P ( w , )  

c;, ,I 11) I c 1 t 11) 1 

we obtain the implementation in-Fig. 7(b). We see this 
implementation requires only J ( M L )  . 2N OPP’s, where 
the factor J ( M L )  is due to the kL-fold expander. Hence 
we have reduced the complexity from O ( N ’ )  to O ( N ) .  
Note that this holds for the FIR case as well as the I IR 
case. 

Due to the kL-fold expander, the input to G,,(u) has 
several zero-valued samples. Due to the kL-fold deci- 
mator. a large portion of the output of GI  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( C O )  is dropped. 
For the FIR case. we can avoid this inefficiency by using 
polyphase decompositions. We decompose Go (U! and 
GI  (U) into polyphase components with respect to ML.so 

and 

(4.2) 

Then, we can use Noble identities (rules which permit us 
to move decimators and expanders across transfer func- 
tions, as shown in Fig. 6) to move the decimators and 
expanders, and obtain the more efficient implementation 
in Fig. 7(c), where s = J ( M L ) .  Now, consider the trans- 
fer function, D,.,(u), from the output ofAR,.,(U) to the 
input of EI,k,(m), where k , ,  k, E X ( M L ) .  Using the 
decimation equivalence in Fig. 5 ,  we know 

D,, ;(U) = kL-fold decimated version of e - ki). 

(4.3) 

Then, it can be easily shown that 

Therefore, Fig. 7(c) is equivalent to Fig. 7(d), where the 
number of required OPP’s is reduced to only 2 N .  

Rerniirks: 

1)  These discussions hold for FIR as well as IIR cases. 
For the IIR case. although polyphase technique still 
works, the implementation we obtain in Fig. 7(d) may 
require more OPP’s than Fig. 7(b). 

2) Recall that in design example 1 ,  the number of OPP’s 
required for the efficient implementation of Fig. 7(d) is 
only 2N = 118, while direct implementation would re- 
quire approximately N 2 / J ( k )  = 59’/3 = I160 OPP’s. 

3 )  It is easy to extend the above discussion to the MD 
case. For the MD case, direct implementation of G(u)  
requires N D / J ( M L )  OPP’s. Instead, we can implement i t  
as in Fig. 7(a). Now. 

+ 

D -  I 

H”)(u) = G,(u) 

where G,(u) = P ( w l ) .  We can apply polyphase technique 
on G,(u) and G D - l ( ~ ) ,  which then requires only 2N 
OPP’s. Since implementing all the other GI  (U), * . . , 
GD- , (u )  still requires (D - 2)J (&L)N  OPP’s, the total 
number of OPP’s required is 2N + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(D - 2)5(&L)N. The 
complexity is still in 0 ( N ) .  

I = 0 

V. APPLICATIONS 

Given M ,  we have shown how to design the decimation 
filter and interpolation filter with respect to M .  On the 
other hand, in practical filter design (other than decima- 
tion filters and interpolation filters), we are sometimes 
given the specifications of the passband (the shape of the 
parallelepiped) instead of M .  Therefore, we need a sys- 
tematic way to find the corresponding H ,  so that we can 
design the filter. To do this, we notice that every paral- 
lelepiped-shaped passband can be expressed as 

SPD ( P )  + 2rm,  m E 32 (5.1) 

where the columns of P can be called the generating vec- 
tors. Fig. 8 shows the generating vectors, po and p I ,  for 
a 2D parallelepiped. Comparing (5.1) with SPD ( T H - ~ ) ,  
we know that if we let 

H = a P p T  (5.2) 

and follow the design procedure in Section 111, the result- 
ing filter will have the desired passband as in ( 5 .  I ) .  



I756 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, MAY 1993 

(d )  

Fig. 7 .  Efficient implcmentation of an MD filter. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

WO 
-A A 

Fig. 8 .  The senerating vectors of  B 2 D  parallelepiped 

Once we design a filter with some parallelepiped-shaped 
passband. many other filters can be designed in a straight- 
forward way. Fig. 9 shows some 2D examples of these 
filters. First, if we choose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ti) in step 2 to be a bandpass 
filter, we can get zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH(w)  as in Fig. 9(a). Second, we know 
that the modulation in the time domain leads to a shift in 
the frequency domain, as in the following relation: 

h(n)elh'" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtf H(w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- b) .  (5.3) 

Therefore, every filter with a parallelepiped-shaped pass- 
band which is not centered at the origin can be obtained 
simply by modulating a filter with the passband centered 
at the origin. For example, filters in Fig. 9(b), including 
the fan filter, can be designed using the proposed ap- 
proach followed by a proper modulation. Finally, since 
the sum (or difference) of zero-phase. filters is still a zero- 
phase filter with the passband being the sum (or differ- 

ence) of the passbands of these filters, all the filters in 
Fig. 9(c), including hexagonal filters, can be obtained 
easily. 

VI. MD UNIFORM DFT QMF BANKS 

The proposed design procedure also applies to the de- 
sign of MD uniform DFT QMF banks. We shall show that 
all the properties which can be achieved in ID uniform 
DFT QMF banks [ 181. [ 191, can be extended into MD 
using this approach. 

Let J denote J ( M )  for simplicity. A J-channel maxi- 
mally-decimated QMF bank is shown in Fig. 10(a), where 
m, E 3 2 ( M T ) .  Notice that m, can take J different values, 
which is consistent with the number of channels. In gen- 
eral, this system is a linear time-varying (LTV) system. 
We want to choose analysis filters H,,,,(w)'s and synthesis 
filters F,,,, ( 0 ) ' s  properly such that this system has the fol- 
lowing properties: 

1 )  Passband supports of analysis filters partition the 
whole frequency range [ -T,  T ) ~  and each analysis filter 
has good frequency response (small ripple sizes). 

2) There is no alias distortion (ALD). That is, the sys- 
tem is linear time invariant (LTI), so X(w) = T ( ~ ) x ( u ) .  
We call T(w)  the overall transfer function of this system. 

3 )  There is no amplitude distortion (AMD). That is, 
given the system is indeed LTI, we want the overall trans- 
fer function T ( w )  to be all pass, i.e., IT(w)l = 1 for all 
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Fig. 9 .  Filtcrb which can be obtaincd h! tihinf the proposed inelhod. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a. When this cannot be satisfied, we want at least the 
system to have small AMD ( ( T ( w ) l  = I ) .  

4) There is no phase distortion (PHD). That is, given 
the system is indeed LTI, we want the overall transfer 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ( w )  to have zero phase. 

When a system satisfies conditions 2-4, the transfer 
function T ( w )  must be unity so .\?(n) = . r (n)  and we say 
this system achieves perfect reconstruction (PR).  

A special QMF bank is the so-called uniform DFT 
QMF bank, where the analysis filters and the synthesis 
filters are Felated as 

Hm, (0) = Hrn, (0 - ~ T M  -'mi ) 

F,,,(w) = F,ri,l(a - 27rM- 'm, )  (6.1) 

with m, E % ( M ' ) .  Because filters in all other channels 
are completely determined by the filters in the 0 th  chan- 
nel, H,,,, (w) and F,,,,, (w)  are called the prototype analysis 
filter and synthesis filter, respectively. If we let H,,,,(w) 
have passband support in SPD ( T M - ~ ) ,  then i t  can be 
shown that the passband supports of analysis filters cover 
the whole frequency range [ - T ,  T)" .  It can be verified 
that this system can be redrawn as Fig. 10(b), where the 
Ek,(w)'s are the Type 1 polyphase components of the pro- 
totype analysis filter H,,,,,(w) with respect to M ,  and the 
Rk, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( C I ) ) ' S  are the Type 2 polyphase components of the pro- 
totype synthesis filter F,,,,,(w). Also, the J x J matrix, 
W'". is called the generalized DFT matrix 111, [ 1 I ] .  with 

its ( i ,  ,j)th element defined as 

m, E x ( M ~ ) .  k, E % ( M I .  [W"'] = e - / h l r / . \ l  ' k ,  
I . /  

(6.2) 

Using Noble identities to move the decimators and expan- 
ders. we get the equivalent system in Fig. lO(c). I t  can 
be shown that W'")  is unitary, with [ W'"]7- [  W'q)]*: = J l .  
Therefore, Fig. 1O(c) can be redrawn as Fig. 10(d) (with 
the scale J omitted). 

There are many ways of choosing EkI(Lr))'S and 
Rk, (w)'s, depending on properties we want the system to 
have. For example, 

1)  We can choose Ek,(w) 's  and Rk,(w)'s such that 

Rk, (w) Ek, (U) = Rk,,(w) Ek,, (0) 

for j = O .  * . .  , J -  I .  (6.3) 

In  other words, Rk, (w)Ek, (a )  is independent with;. Then. 
we get a system that is free from aliasing. For this case, 
the overall transfer function is 

T ( w )  = R,,,(M'w) Ekl,(M7w). (6.4) 

This can be seen by using Noble identities to move all 
Ek,(w)'s and Rk,(w)'s to the right across M-fold expanders 
and realizing that the rest part is an identity system. In 
fact, (6.3) is necessary and sutficient for the system to be 
alias-free (see 1201 for details). 
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2) If we choose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARk,(w) = l /Ek, (w) ,  we get a PR sys- 
tem. However, this choice may result in unstable synthe- 
sis filters, just as in the 1D case [ 191. 

3) If we choose 

Rk,(w) = Ek,(w) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6.5) 
k ,c3 l (M)  

I f /  

we obtain a system which is free from aliasing and has 
overall transfer function 

3a) If analysis filters are all FIR, then synthesis filters 
will also be FIR, hence there is no stability problem. 
However, for the FIR case, if we want a PR system 

where T(w) equals unity, then all Ek,(w)'s must be pure 
delays and hence each analysis filter has only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ nonzero 
coefficients. For nontrivial filters with more than J non- 
zero coefficients, we can only make T ( w )  zero-phase 
(no PHD) and optimize coefficients of Ek,(w)'s (coeffi- 
cients of H m , ] ( u ) )  such that ( T ( w ) (  = 1 (small AMD). 
The counterpart of this in the ID case was presented in 
[181. 

3b) We can choose Ek,(w)'s to be stable IIR all-pass 
functions ((Ek,(w)I = 1 for all w).  Then, all the anal- 
ysis filters and synthesis filters as well are stable. From 
(6.6), we know (T(w) l  = 1 hence AMD is completely 
eliminated. In this case, T ( o )  is a stable IIR transfer 
function so PHD cannot be avoided. In applications 
where phase information is important (e.g., in 2D im- 
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age processing), an all-pass filter can be cascaded with 
this system to equalize its phase response. The ID 
counterpart of this can be found in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 191, 12 I ] .  
4) We can choose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEk,(Cr))’S to be stable IIR all-pass 

Rk, (a)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE $ ( W ) .  (6.7) 

functions (as in Case 3b above) and let 

Now, in each channel of Fig. 10(d), we have 

Rk, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(m) Ek, (0) = Ek*, (U) Ek, (U) = IEk, (0) I ’ = 1 .  

So, T ( m )  = I and we get a PR system. Note that (6.7) 
implies rk,(n) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe$ ( - n )  so rk l (n )  is also stable. However. 
if ek,(n) are chosen to be causal, rk , (n)  becomes anticau- 
sal. This problem of anticausal synthesis filters can be 
solved by running the filters backwards [ 3 ] ,  [22], [ 2 3 ] .  

Although the above theoretical derivation may seem to 
be easy, direct optimization of filter coefficients is often 
unreasonably difficult due to the large number of param- 
eters to be optimized, especially when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD is large. Fur- 
thermore, the large number of OPP’s required in direct 
implementation is also a problem. Our approach over- 
comes these two difficulties. We now show that starting 
from an appropriate ID uniform DFT QMF bank, we can 
derive an MD uniform DFT QMF bank with Hm,,(m) hav- 
ing support SPD (TM-‘). 

Design Procedure 
Step 1 .  Design the prototype analysisisynthesis filters, 

P,,(w) and Q o ( w ) ,  of a ID J-channel uniform DFT QMF 
bank. Let P,, (w)  have passband support in [T/J. T/J) .  

Step 2. Construct the separable MD filters H t I ( m )  and 
F t ( ( m )  as 

HLYW = po(w,,)p, l (wI)  . . . Po(w1,- I )  

Fk:(m) = Qo(wo)Qo(wI) . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ o ( w n -  1 ) .  (6.8) 

Step 3 .  Define h,,lll(n) = / ~ ; : ( h z )  and &,,[,(n) = 

fb::(&n). That is, decimate h;:(n) andf::l(n) by &. As 
explained previously, the resulting H,,,,,(w) has support in 
SPD ( T M - ~ ) .  

After H , , , ( o )  and F,,,,(m) are obtained, we may imple- 
ment the MD QMF bank as in Fig. IO(c). I t  has been 
shown in Section 111 that all the Ek,(m)’s and Rk,(m)’S are 
separable, even though H,, l l ) (m) and F,,,(m) are not sepa- 
rable. Therefore, this indeed gives a very efficient imple- 
mentation. 

Since filters in an MD DFT filter bank are all deter- 
mined by one prototype filter, i t  is not counter-intuitive 
that we can apply our method in Section I11 to the proto- 
type filter of a ID DFT filter bank and obtain the MD 
prototype filter. However, the following claim is non- 
trivial: 

Clairn: The H,f l , , (m) and F,,,[,(m) obtained are the de- 
sired prototype filters for a J-channel MD uniform DFT 
QMF bank. This filter bank will have all the properties 
that the original ID J-channel uniform DFT QMF bank 
has. For example, if the ID DFT filter bank system is PR, 

the resulting MD DFT filter bank system is also PR. Sim- 
ilarly, the design method preserves other properties like: 
no ALD, no or small AMD, and no PHD. 

Justijicatiori 

Consider the J-channel ID uniform DFT QMF bank 
which we start from. Let B,(w)’s denote Type 1 poly- 
phase components of the prototype analysis filter p ( ) ( ~ ) ,  
and S,(w)’s denote Type 2 polyphase components of the 
prototype synthesis filter Q o ( w ) .  Suppose this is a system 
without aliasing, i.e., 

s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w) B, (a) = so (a) Bo (U) 

fork = 0, . . , J - 1 .  (6.9) 

It has been proved in Section 111 that polyphase compo- 
nents of the resulting MD filters are related with those of 
ID filters as 

Ek,(m) = B/,~(%) ’ . . B/,j I (wD - I) (6.10) 

and 

Rk,(m) = s/ii(wO) * * . slo ~ ( w D - l )  (6.11) 

where [I, I ,  * . . I D _  
Rk,(m) Ekl(o) ,  we obtain 

= I = M k , .  Considering 

n - I 

R ~ , ( w  Ek, = rI s/, B ,  
1 = 0  

Since Rk,((L))Ek,(m) is independent with j ,  the resulting 
MD QMF bank is also free from aliasing with overall 
transfer function 

Given that both the ID and MD DFT QMF banks are 
alias free, let U \  take a closer look at these transfer func- 
tions. Define e, to be a vector with zero elements except 
that the ith element is uni ty .  Then, (6.12) can be written 
as 

11 - I 

Rk,(a)Ek, (m) = 11 & ) ( e ~ U ) B ( ) ( e ~ W )  (6.14) 
I = 0 

and (6.13) become4 

Let V(w) denote the overall transfer function of the ID 
QMF bank. Under the alias-free condition, we know V(w) 
= Bo (Jw) So (Jw). Define T”’ (m) as 

D -  I 

P ( m )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn V ( w l ) .  (6.16) 
I = 0 
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Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJwi = JeTw = erM'&'o, (6.16) can be written 
as 

T'" '(w) = So(Jwj)Bo(Jwj) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD -  I 

i = o  

D -  I 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn So(e 'M '~ 'o )Bo(e rMT~ ' 'To ) .  (6.17) 
i = O  

Comparing (6.15) and (6.17), we see that 

T'" ' (W) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT(&'o) (6.18) 

i.e., T'" ' (w) is exactly the &-fold expanded version of 
T ( o ) .  Note that (6.18) can be written as 

T ( W )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT'" ' (&- 'W).  (6.19) 

Also note that T ( o )  is the &-fold decimated version of 

T(. ' ' (w)  so that the transfer function of the designed MD 
QMF bank can be obtained by &-fold decimating the 
product of the 1D overall transfer function V ( w )  in each 
dimension. 

Now, it is easy to show that other properties about 
AMD, PHD, PR are preserved. 

1)  Given there is no ALD. we need to discuss the AMD 
properties. 

la) For the FIR case, we can optimize filter coefii- 
cients in the ID filter bank such that IV(w)I = I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV u .  
From (6.16) and (6.19), we see that I T ( w ) ~  = I VU, 
too. That is, AMD remains small. More specifically, if 
V ( w )  has ripple size 6, the resulting ripple sizes of both 
T'" ' (w) and T(w)  are at most D6. 

lb) For the IIR case, we can start from 1D prototype 
filters with all-pass polyphase components and make 
V ( w )  to be all pass (no AMD). From (6.16) and (6.19), 
we can see that T ( o )  is still an all-pass function. There- 
fore, there is no AMD in the resulting MD filter bank. 
2) Given there is no ALD, suppose the 1D overall 

transfer function V ( w )  has zero phase, i.e., V ( w )  is real 
for all w .  From (6.16) and (6.19), we can conclude that 
T ( o )  is real for all w (zero phase) so there is no PHD. 

3) Finally, suppose the original system satisfies PR so 
that V ( w )  = 1. From (6.16) and (6.19), we can easily 
conclude that T ( m )  = 1 so PR is preserved. 

There are many useful 1D DFT filter banks in literature 
[18], [19], [21]. [22]. We can apply our method to each 
of these and derive many useful MD filter banks. In the 
following, we present several examples. 

I I 

6J 

A .  MD Filter Bank Derived from Johnston's Filters 
(Two-Channel Case) 

Design Exumple 3: The most commonly used 1 D DFT 
QMF bank is the two-channel FIR case. Johnston de- 
signed such filter banks for various specifications and the 
optimized filter coefficients were tabulated [24], [25]. 
These systems have no ALD, no PHD, and small AMD. 
Fig. 1 I(a) shows the frequency response of the prototype 
analysis filter Po(w)  (which is named 32D in Johnston's 
table). We can apply our method to derive a two-channel 

h . h .  / I  

(X,  -K) 

( C )  

Fig. I I .  Frequency response of  tilters in design example 3:  (a) P , , ( w ) .  ( b )  
ff ,,,,, (W) .  ( C )  T ( W ) .  

MD DFT QMF bank for any decimation matrix M with 
J ( M )  = 2. As an example, we choose 

1 1  
- 1  1 

which defines the so-called quincunx lattice. Applying the 
design procedure, we obtain the 2D prototype analysis fil- 
ter l& , , ) (~ ) ,  as shown in Fig. l l (b) .  According to rela- 
tions in (6. l ) ,  the other analysis filter H,, (0)  is obtained 
by shifting &,,(a), i.e.. H,,(wo, 0,) = H,n,,(wo - P, wI 
- T ) .  The overall transfer function T ( w ) ,  which is zero- 
phase and has magnitude close to unity, is shown in Fig. 
I l(c). 
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Fig. 12. Passband supports ol analysis filters in design example 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Rctnurk: The idea of using Johnston's results to derive 

2D quincunx QMF bank has been proposed in [26j. Our 
method generalizes this result and is able to derive any 
two-channel DFT QMF bank for arbitrary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM (with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ ( M )  
= 2) and any number of dimensions. 

B. M D  FIR Filter Bunk (with More than Two C/~unnels) 

Design Exurnple 4: This is also an FIR example. Let 
M be the same as in design example I ,  so there are three 
channels and the passband supports of these three analysis 
filters can be chosen as in Fig. 12. We use the coefficients 
obtained in example 2 of 1181 to form P o ( w ) ,  the optimal 
zero-phase prototype analysis filter of a 3-channel 1 D uni- I 

fonn DFT QMF bank. P,,(w) has length N = 49, pass- 
band ripple 6 ,  = 0.001406, and stopband ripple & = 

0.003245 (-49.78 dB), as shown in Fig. 13(a). For this 
ID filter bank, the overall transfer function is close to 
uni ty with the ripple size 6 = 0.004226. Following the 
steps described earlier, we obtain H,,,,,(o), which is shown 
in Fig. 13(b), with passband ripple 6; = 0.003398, and 
stopband ripple 6; = 0.00570 (-44.88 dB). The resulting 
overall transfer function T ( o )  is also shown in Fig. 13(c), 
which has ripple size 6' = 0.00847. 

C. MD IIR All-Puss-Bused Filter Bank 
Desigil Exurnple 5: We now present an example with 

IIR filters. We start from a ID DFT QMF bank in which 
the prototype analysis filter PO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( U )  has all-pass polyphase 
components. For the ID two channel case, is has been 
described how the design of common digital IIR filters 
can be modified to design IIR filters with two all-pass 
polyphase components and how this can be used in two- 
channel QMF banks (211. Such a system gives very eff- 
cient implementation of alias-free filter banks with no 
AMD. For example, by using only one multiplication per 
input sample in the analysis filter bank, we can obtained 
analysis filters with more than 37-dB stopband attenua- 
tion. as illustrated later. For the case of more channels, 
the design of ID IIR filters with all-pass polyphase com- 
ponents has also been addressed in [27]. Our method can 
be applied to derive MD DFT QMF banks from results in 
both [21] and 1271. Again, let us consider the quincunx 
case for simplicity. We start from a ID fifth-order pro- 
totype filter p,, ( z )  with two all-pass polyphase compo- 
nents. More specifically, let PO ( z )  = Eo (: ') + : - ' E l  (: ') 

(&--IT) 

( C )  

Fig. 13. Frequency response oltiitet-s in design exainpic 4: ( a )  P , , ( w ) .  (h)  
H ,,,,, (U). ( C )  T ( U ) .  
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Fig.  14. One-dimensional IIR QMF bank with no A M D .  

I I 

where 

(Yo + 2 - 1  

1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa"2-l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ~ ( z )  = 0.5 and 

(6.20) 

If we choose the synthesis filters as in Fig. 14, the overall 
transfer function of this 1D QMF bank is 2Eo(z2) E, (2'). 
Using the method described in [21], we obtain a. = 

0.226634 and aI = 0.703653. The frequency response of 
Po(w) is shown in Fig. 15(a). Applying our method, we 
can obtain the MD prototype analysis filter H,,, with all- 
pass and separable polyphase components (as proved in 
Section 111) 

Ek,l(@J) = Eo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(WO) Eo I) and 

E k ,  (0) = El (WO)  El 1). (6.21) 

The frequency response of Hm0(o) is shown in Fig. 15(b). 
Then, we can choose the polyphase component of synthe- 
sis filters as in (6.5) and obtain the system in Fig. 16 which 
is free from ALD and AMD. This system has the overall 
transfer function T ( o )  = 2Ek,,(MTw)Ek, ( M T o )  which is 
indeed all pass. The phase response of T(w)  is shown in 
Fig. 15(c), which is not zero phase and hence PHD exists. 
When PHD is not desired, we can cascade the system with 
an all-pass function to equalize the phase response. The 
overall group delays ~ ~ ( 0 )  and T~ (o), which are defined 
as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a 
a00 

T O ( O )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA - - [phase of T ( o ) ]  and 

a 
aw I 

~ ~ ( 0 )  L2 - - [phase of T(w)]  (6.22) 

are shown in Figs. 17(a) and (b). Note that all 2D filters 
in this case are separable and only four multipliers are 
required in analysis filters. Furthermore, since these mul- 
tipliers operate at half of the input rate, we need only two 
multiplications per input pixel to obtain analysis filters 
with more than 35-dB stopband attenuation. 

Remark: Although we use the 2D quincunx case as the 

Phase of T(o) 

in radian -10  

or, -IT) 

( C )  

Fig. IS .  Frequency response of filters in design example 5 :  (a)  P,,(w).  ( h )  
H o,,, (W) .  (c)  T ( w ) .  

example, the proposed method applies to arbitrary M and 
arbitrary number of dimensions. 

in Fig. 18 which achieves PR. For the quincunx case, this 
idea has been presented in [3].  Our method generalizes 
this to arbitrary M and arbitrary number of dimensions. 
Note that synthesis filters in this case are stable but anti- 
causal. This can be solved by running the filters back- 
wards [22] with properly chosen initial conditions [23]. 

D. MD IIR Perfect Reconstruction Filter Bank 

Design Example 6: We can choose analysis filters same 
as in design example 5, but we choose synthesis filters 
according to (6.7) instead. Hence, we obtain the system 
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Fig. 16. Polypha\e implementallon of an MD IIR QMF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhanh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) 

in samples 

Fig. 18. MD IIR QMF hanh with PR property (design examplc 6 )  

In summary, since our method results in MD filters with 
separable polyphase components, all the results in  [22] 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 2 3 ]  can be extended to the MD case automatically. 

VII. MODIFICATION OF THE DESIGN P K O C E D U R ~  

The value o f J ( M )  may be very large in some appli- 
cations, so the passband of the 1D prototype zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ( w )  be- 
comes very narrow. In this case, the required filter order 
is very large. To deal with this problem, one can use in- 
terpolated FIR (IFIR) approach [28] to design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(w). The 
other way is to exploit the common factors (if not uni ty)  
in each row of M ,  as follows: 

Step 1. Decompose M into M = M p A ,  where A is a 
diagonal matrix with diagonal elements A, > 0, and A, is 
the greatest common divisor of the elements in the ith col- 
umn of M .  

. . , 
P O -  I ( n ) .  Each filter p j ( n )  should have the passband re- 
gion 

Step 2. Design the 1D low-pass filters p o ( n ) ,  

T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn- i -ziqx.q). 
It is easy to see that all these filters have passband wider 
than [ - n - / J ( M ) ,  r / J ( M ) ) ,  thus requiring less filter or- 
der than in Section 111. 
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Step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  Construct h'" '(n) as with J ( M )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 99, does not have nonunit common factors 
among each column. Whenever this happens, we can use 

h"" = Po(no)PI (HI)  * * . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPo- I (no- I ) ,  (7 .1 )  IFIR technique instead. 
so 

H"'(w) = P"(wo)P l  (aI) * 

fii' and eo = J ( f i p ) .  

. Po- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(wu-  I ) .  (7 .2 )  

Step 4 .  Define h ( n )  coh(" ( f ipn) ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfip = 

We have to show that H ( o )  has the desired passband. 
J ( f i p )  

From ( 7 . 2 ) ,  H ' " ( o )  has passband zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x E [ - I ,  I f ,  k' E 32. ( 7 . 3 )  

From ( 2 .  I ) ,  with M replaced by fip, we know that H ( o )  
then has passband 

x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [- I ,  I f ,  k' E 32, k E X(A?tl) 

= a M i T K 1 x  + 2a( f iTk '  + k )  

= R M - ~ X  + 2am X E  1-1, I ) ~ ,  m E X .  

VIII. CONCLUSIONS 

In MD multirate signal processing, filters with paral- 
lelepiped-shaped passbands governed by the decimation/ 
expansion matrix (an integer matrix) play an important 
role. In this paper, we have presented a method of de- 
signing such filters by starting with a proper l D prototype 
filter and then using a simple transformation. These fil- 
ters, although nonseparable. have separable polyphase 
components. Efficient polyphase implementations of these 
MD filters with complexity only proportional to a 1D fi l-  
ter are also presented. Important properties such as the 
Nyquist constraint, zero-phase constraint and BIB0 sta- 
bility can be easily achieved by using this method. We 
have shown several applications of the presented method, 
including many useful MD uniform DFT QMF bands and 
corresponding design examples. We have also general- 
ized our method so that filters with an arbitrary parallel- 
epiped-shaped passband (not necessary governed by an 
integer matrix) can be designed. 
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