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Abstract Complex networks have been receiving increasing attention by the scien-
tific community, thanks also to the increasing availability of real-world network data.
So far, network analysis has focused on the characterization and measurement of
local and global properties of graphs, such as diameter, degree distribution, central-
ity, and so on. In the last years, the multidimensional nature of many real world
networks has been pointed out, i.e. many networks containing multiple connections
between any pair of nodes have been analyzed. Despite the importance of analyzing
this kind of networks was recognized by previous works, a complete framework for
multidimensional network analysis is still missing. Such a framework would enable
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the analysts to study different phenomena, that can be either the generalization
to the multidimensional setting of what happens in monodimensional networks, or
a new class of phenomena induced by the additional degree of complexity that
multidimensionality provides in real networks. The aim of this paper is then to
give the basis for multidimensional network analysis: we present a solid repertoire
of basic concepts and analytical measures, which take into account the general
structure of multidimensional networks. We tested our framework on different real
world multidimensional networks, showing the validity and the meaningfulness of the
measures introduced, that are able to extract important and non-random information
about complex phenomena in such networks.

Keywords complex networks · social network analysis · World Wide Web

1 Introduction

In recent years, complex networks have been receiving increasing attention by the
scientific community, also due to the availability of massive network data from
diverse domains, and the outbreak of novel analytical paradigms, which pose at the
center of the investigation relations and links among entities. Examples are social
networks [3, 8, 14, 16], technology networks [2, 12], the World Wide Web [21, 28],
biological networks [24, 25], and so on. Multidisciplinary and extensive research
has been devoted to the extraction of non trivial knowledge from such networks.
Predicting future links among the actors of a network [13, 31], detecting and studying
the diffusion of information among them [23, 39], mining frequent patterns of users’
behaviors [7, 20, 38, 40], are only a few examples of problems studied in Complex
Network Analysis, that includes, among all, physicians, mathematicians, computer
scientists, sociologists, economists and biologists.

Most of the networks studied so far are monodimensional: there can be only
one link between two nodes. In this context, network analytics has focused on the
characterization and measurement of local and global properties of such graphs, such
as diameter, degree distribution, centrality, connectivity—up to more sophisticated
discoveries based on graph mining, aimed at finding frequent subgraph patterns and
analyzing the temporal evolution of a network.

However, in the real world, networks are often multidimesional, i.e there might be
multiple connections between any pair of nodes. Therefore, multidimensional analy-
sis is needed to distinguish among different kinds of interactions, or equivalently to
look at interactions from different perspectives. This is analog to multidimensional
analysis in OLAP systems and data warehouses, where data are aggregated along
various dimensions. In analogy, we refer to different interactions between two
entities as dimensions.

Dimensions in network data can be either explicit or implicit. In the first case
the dimensions directly reflect the various interactions in reality; in the second case,
the dimensions are defined by the analyst to reflect different interesting qualities
of the interactions, that can be inferred from the available data. This is exactly the
distinction studied in [29], where the authors deal with the problem of community
discovery. In their paper, our conception of multidimensional network is referred as
multislice, networks with explicit dimensions are named multiplex, and the temporal
information is used to derive dimensions for the network.
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Examples of networks with explicit dimensions are social networks where interac-
tions represent information diffusion: email exchange, instant messaging services and
so on. An example of network with implicit dimensions is an on-line social network
with several features: in Flickr, while the social dimension is explicit, two users may
be connected implicitly by the sets of their favorite photos.

Moreover, different dimensions may reflect different types of relationship, or
different values of the same relationship. This is exactly the distinction reported in
Figure 1, where on the left we have different types of links, while on the right we have
different values (conferences) for one relationship (for example, co-authorship).

To the best of our knowledge, however, the literature still misses a systematic
definition of a model for multidimensional networks, together with a comprehensive
set of meaningful measures, that are capable of characterizing both global and
local analytical properties and the hidden relationships among different dimensions.
This is precisely the aim of this paper: we develop a solid repertoire of basic
concepts and analytical measures, which take into account the general structure
of multidimensional networks, with the aim of answering questions like: what is
the degree of a node considering only a given set of dimensions? How are two or
more dimensions related to each other? What is the “redundancy” among all the
dimensions? To what extent one or more dimensions are more important than others
for the connectivity of a node?

Our contribution can be then summarized as follows:

– we introduce a few examples of real-world multidimensional networks;
– we formally define a set of measures aimed at extracting useful knowledge on

multidimensional networks;
– we empirically test the meainingfulness and scalability of our measures, by means

of an extensive case study on the networks presented.

Our analysis shows that the measures we define are both simple and meaningful, and
open the way for a new chapter of complex network analysis.

We extend our previous work [10] by adding more measures to the framework,
increasing our set of networks to embrace a wider range of real world scenarios,
and including a study on real world application scenarios in which we show the
meaningfulness of our measures.

The rest of the paper is organized as follows: in Section 2 we present a few ex-
amples of real-world multidimensional networks; Section 3 introduces the measures
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Figure 1 Example of multidimensional networks.
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we define in this paper; Section 4 reports the empirical resuts obtained during our
case study on real-world networks; in Section 5 we review a few related works; we
conlude the paper in Section 6.

2 Multidimensional networks in reality

In the world as we know it we can see a large number of interactions and connections
among information sources, events, people, or items, giving birth to complex net-
works. Enumerating all the possible networks detectable within our world, or their
properties, would be difficult due to their number and heterogeneity, and it is not
the scope of this paper. An excellent survey on complex network can be found in
[30], where the author gives a good classification of networks into social (where, for
example, we find on-line social network such as Facebook), information (such as for
example citation networks), technological (among which we mention the power grid,
the train routes, or the Internet), and biological (e.g., protein interaction networks)
networks.

While all the example networks presented in [30] are monodimensional, in the real
world it is possible to find many multidimensional networks. A few possible examples
are:

Transportation Network. If we think about the complete transportation network of a
country (or the world), we can easily see that we can build a multidimensional
network where nodes represent the cities, and each transportation mean is a
dimension. In this way, each city is connected to all the other cities reachable
from it by means of airplanes, or buses, or trains, or ferries, or any kind of
other available mean. As one can imagine, there will possibly be pairs of cities
connected by more than one mean (e.g. Paris is connected to Madrid by both
train and airplane), cities connected to the rest of the network by many means,
or just one of them (think about cities on islands). It is interesting to note that
we are, in turns, used to “browse” this network in its multidimensionality each
time we travel: we take a train or a bus to reach the airport, then we flight from a
city to another one, then we take another transportation mean to reach our final
destination. It is clear also how this network is an aggregation of monodimensional
networks corresponding to any single transportation mean, and that, according
to our classification given in the previous section, this is a network in which
dimensions reflect different types of explicit connections.

Social Network. Most of us nowadays use on-line services such as Facebook,1 Flickr,2

Skype,3 Google+,4 and so on. It is very common to have an account on many of
them, because they provide different features, or we find different friends on them,
or for any other reason. Each of us has a different user id in each of the networks,
but if we join all the ids for every user, we can easily build a multidimensional
social network, where any pair of people are connected by their friendship within

1http://www.facebook.com
2http://www.flickr.com
3http://www.skype.com
4http://plus.google.com

http://www.facebook.com
http://www.flickr.com
http://www.skype.com
http://plus.google.com
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the different monodimensional networks. Significantly, there exist several multi-
platforms to connect a single user to his/her multiple accounts at the same time
(Pidgin,5 Fring,6 or Nimbuzz7 are a few examples). As for above, two nodes here
are connected by different types of connections, but in this case the links are not
necessarily explicit. Two users for example may be linked in Flickr just because
they use the same set of tags, or they like the same pictures, even if they are not
explicitly friends.

Co-authorship Network. The aim of every conference is to gather together re-
searcher in one particular area or topic. If we connect two authors by the papers
they write together, it is clear to see that each conference, taken as dimension,
provides its edges among the authors. There are, however, authors that publish on
the same set of conferences for most of their collaborators, while others (mostly
senior researchers) whose interests span multiple fields or topics, leading then to
having a different set of neighboring collaborators for different dimensions. In this
case, given the type of connection be the co-authorship, different conferences are
different values of the links connecting the authors.

Utility Network. Most of our houses are connected to each other, or to main nodes,
via different utility networks: water pipes, electric cables, phone and tv cables,
build in fact a multidimensional network in which we live every day, where each
utility is a technological network connecting different houses and offices. While
at the node level this multidimensional network is highly redundant (almost every
node is served by every utility), the network structure (i.e., the distribution of
the links) might differ. In addition, this network also presents meta-nodes and
hyperedges, due to the presence of pipe or cable junctions, network routers, utility
headquarters, and so on.

The above is only a short, non-exhaustive list of possible real-world networks.
Many other examples such as biological networks, other kinds of technological
networks, social networks, peer-to-peer networks, and so on, can be found in reality.

2.1 Collected networks

While the above examples all are interesting and representative of a wide class
of real-world networks with their properties, issues, and application scenarios,
collecting data about them is not trivial and sometimes impossible. We present
here a few multidimensional networks built from different dataset collected from
various sources. The examples are real-world multidimensional networks, highly
heterogeneous and representative of the possible different kinds of networks in the
real world. We use these networks in the rest of the paper, to test our measures and
to give possible application scenarios.

DBLP-C. We created this network from the well known bibliographic database
DBLP.8 We created a co-authorship network where the publication venues are

5http://www.piding.im
6http://www.fring.com
7http://www.nimbuzz.com
8http://www.informatik.uni-trier.de/˜ley/db

http://www.piding.im
http://www.fring.com
http://www.nimbuzz.com
http://www.informatik.uni-trier.de/~ley/db
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Figure 2 Small extracts of the multidimensional networks built.

used as dimensions. In this network, we considered some of the most important
conferences in Data Mining: SIGKDD, ICDM, SDM, VLDB, SIGMOD and
CIKM. The authors were connected in a specific dimension if they wrote at
least one paper together in the corresponding conference. A small extract of this
network is represented in Figure 2a.

DBLP-Y. From the same DBLP source, we built also a co-authorship network of
authors, using years from 1955 to 2009 as dimensions, and connecting two authors
(nodes) in a specific dimension if they wrote at least one paper together in the
corresponding year. A small extract of this network is represented in Figure 2b.

QueryLog. This network was constructed from a query log9 of approximately 20
millions web-search queries submitted by 650,000 users, as described in [32]. Each
record of this dataset stores a user ID, the query terms and the rank position of
the result clicked by the user for the query. We extracted a word-word network of
query terms (nodes), connecting two words if they appeared together in a query.
The dimensions are defined as the rank positions of the clicked results, grouped
into six almost equi-populated bins: “Bin1” for rank 1, “Bin2” for ranks 2–3,
“Bin3” for ranks 4–6, “Bin4” for ranks 7–10, “Bin5” for ranks 11–58, “Bin6” for
ranks 59–500. Hence two words appeared together in a query for which the user
clicked on a resulting url ranked #4 produce a link in dimension “Bin3” between
the two words. A small extract of this network is represented in Figure 2c.

9http://www.gregsadetsky.com/aol-data

http://www.gregsadetsky.com/aol-data
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Table 1 Basic statistics of the networks used: number of nodes, edges, dimensions, average degree,
average number of neighbors.

Network Dimension |V| |E| |D| k N

DBLP-C VLDB 1,306 3,224 4.93 4.93
SIGMOD 1,545 4,191 5.42 5.42
CIKM 2,367 4,388 3.70 3.70
SIGKDD 1,529 3,158 4.13 4.13
ICDM 1,651 2,883 3.49 3.49
SDM 915 1,501 3.28 3.28
Total 6,771 19,345 6 5.71 5.04

DBLP-Y Total 582,179 2,555,850 55 8.78 6.91

QueryLog Bin1 138,991 1,104,581 15.89 15.89
Bin2 108,438 878,136 16.19 16.19
Bin3 89,417 708,897 15.85 15.85
Bin4 75,845 583,774 15.39 15.39
Bin5 42,950 253,976 11.83 11.83
Bin6 12,235 36,456 5.96 5.96
Total 184,760 3,565,820 6 38.60 19.26

Flickr Friendship 984,919 48,723,010 98.93 98.93
Comment 930,526 198,309,709 426.23 426.23
Favorite 380,992 674,488,956 3,540.69 3,540.69
Tag 91,690 715,447 15.60 15.60
Global 1,186,895 922,237,122 4 1,554.03 1,455.62

Note that k and N are equivalent when computed on one single dimension

Flickr.10 This dataset comes from the well known photo sharing service, and was
obtained by crawling the data via the available APIs. We extracted both implicit
and explicit dimensions of the social network represented in this data. For each
picture, we extracted the list of all the users related to it and from these users we
completed the social network by adding edges if two users commented, tagged or
set the same picture as favorite, or if they had each other as a contact.
The resulting network is a person-person network, where each dimension is one
of the “Friendship”, “Tag”, “Favorites”, or “Comment”, representing if the users
are friends, tagged the same picture, marked the same picture as favorite, or
commented the same picture. A small extract of this network is represented in
Figure 2d.

Note that while for QueryLog we created our concept of dimensions, that are then
to be considered implicit, in DBLP the authors explicitly set their collaborations, then
the dimensions are explicit. In turns, Flickr has one explicit dimension (friendship)
and three implicit (tag, favorites and comments). Moreover, in QueryLog, as well as
in DBLP-Y, the dimensions reflect different quantitative values of the same type of
relationships, while for DBLP-C and for Flickr the dimensions are built on different
types of connections among users, and are not comparable.

Table 1 shows the basic properties of the networks, for each dimension, and for
the total network. Note that k and N are equivalent when computed on a single

10http://www.flickr.com

http://www.flickr.com
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dimension, and that DBLP-Y and DBLP-C have different aggregated values as they
were built as different subsets of the entire DBLP data.

3 Multidimensional network analysis

In literature, many analytical measures, both at the local and at the global levels, have
been defined in order to describe and analyze properties of standard, monodimen-
sional networks. Defining meaningful measures provides several advantages in the
analysis of complex networks. From the simplest measure, the degree of a node, to
more sophisticated ones, like the betweenness centrality, or the eigenvector centrality,
several important results have been obtained in analyzing complex networks on real-
world case studies. These interesting network analytical measures come under a
different light when seen in the multidimensional setting, since the analysis scenario
gets even richer, thanks to the availability of different dimensions to take into
account. As an example, the connectivity of the whole network changes if we see
a single dimension as a separate network, with respect to the network formed by
all the edges in the entire set of dimensions. Moreover, it would be interesting
to analyze the importance of a dimension with respect to another, the importance
of a dimension for a specific node, and so on. As a consequence, in this novel
setting it becomes indispensable: (a) studying how most of the measures defined
for classical monodimensional networks can be generalized in order to be applied
to multidimensional networks; and (b) defining new measures, meaningful only
in the multidimensional scenario, to capture hidden relationships among different
dimensions.

Thus, in the remainder of this section, we introduce the elements composing our
model as follows. First, we introduce a mathematical model for multidimensional
networks. Although not being the only possibility (other possibilities would include
tensors, among all), we found multigraphs to be a simple and versatile model, that
allow also for a simple a fast implementation of the measures (see Section 4). Then,
we discuss the extension of monodimensional measures to the multidimensional
setting. For sake of simplicity, we only present one measure, the degree, although
it is possible to extend most of the monodimensional measures following the same
strategy of adding a parameter to the domain of the functions. Lastly, we introduce
our multidimensional measures, meaningful only in the multidimensional setting. To
give an overview, we introduce both measures that are local to the nodes, and mea-
sures that are global to the dimensions. The set of measures introduced is not meant
to be complete: other measures can be defined, for example, at the intermediate
level of the ego-networks, or they can be assessing links instead of nodes. For the
sake of simplicity, however, we introduce only a few, generic, measures, together
with toy examples meant to help understand their meaning, and we will explore
in the future the possibility of introducing new ad-hoc measures that are meant to
be used in specific application-driven contexts (for example, measures for evolving
multidimensional networks, measures for semantic networks, and so on).

3.1 A model for multidimensional networks

We use a multigraph to model a multidimensional network and its properties. For the
sake of simplicity, in our model we only consider undirected multigraphs and since
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we do not consider node labels, hereafter we use edge-labeled undirected multigraphs,
denoted by a triple G = (V, E, L) where: V is a set of nodes; L is a set of labels; E
is a set of labeled edges, i.e. the set of triples (u, v, d) where u, v ∈ V are nodes and
d ∈ L is a label. Also, we use the term dimension to indicate label, and we say that a
node belongs to or appears in a given dimension d if there is at least one edge labeled
with d adjacent to it. We also say that an edge belongs to or appears in a dimension d
if its label is d. We assume that given a pair of nodes u, v ∈ V and a label d ∈ L only
one edge (u, v, d) may exist. Thus, each pair of nodes in G can be connected by at
most |L| possible edges. Hereafter P(L) denotes the power set of L.

3.2 Extending monodimensional measures

How can we extend the analytical measures defined on monodimensional networks
to deal with multiple dimensions? In general, in order to adapt the classical measures
to the multidimensional setting we need to extend the domain of each function in
order to specify the set of dimensions for which they are calculated. Intuitively,
when a measure considers a specific set of dimensions, a filter is applied on the
multigraph to produce a view of it considering only that specific set, and then the
measure is calculated over this view. In the following, due to space constraints,
we show how to redefine only the well-known degree measure by applying the
above approach. Note that most of the classical measures can be extended in a
similar way.

In order to cope with the multidimensional setting, we can define the degree of a
node w.r.t a single dimension or a set of them. To this end, we have to redefine the
domain of the classical degree function by including also the dimensions.

Definition 1 (Degree) Let v ∈ V and D ⊆ L be a node and a set of dimensions of a
network G, respectively. The function Degree : V × P(L) → N defined as

Degree(v, D) = |{(u, v, d) ∈ E s.t. u ∈ V ∧ d ∈ D}|

computes the number of edges, labeled with one of the dimensions in D, between v

and any other node u.

We can consider two particular cases: when D = L we have the degree of the
node v within the whole network, while when the set of dimensions D contains
only one dimension d we have the degree of v in the dimension d, which is the
classical degree of a node in a monodimensional network. This kind of consideration
also holds for any measure that is possible to extend to the multidimensional case
in this way.

In order to illustrate the measures we define in this paper, we use a toy example,
depicted in Figure 3, to show the application of the measures on it.

Example 1 Consider the multigraph in Figure 3 that models a multidimensional
network with 2 dimensions: dimension d1 represented by a solid line, and dimension
d2 represented by the dashed line. In this multigraph we have Degree(3, {d1}) = 2,
Degree(3, {d2}) = 0 and Degree(2, {d1, d2}) = 3.
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3.3 Multidimensional measures

In this section we define new measures on the multidimensional setting and that are
meaningful only in this scenario.

3.3.1 Neighbors

In classical graph theory the degree of a node refers to the connections of a node in a
network: it is defined, in fact, as the number of edges adjacent to a node. In a simple
graph, each edge is the sole connection to an adjacent node. In multidimensional
networks the degree of a node and the number of nodes adjacent to it are no longer
related, since there may be more than one edge between any two nodes. For instance,
in Figure 3, the node 4 has five neighbors and degree equal to 7 (taking into account
all the dimensions). In order to capture this difference, we define the following:

Definition 2 (Neighbors) Let v ∈ V and D ⊆ L be a node and a set of dimensions of
a network G = (V, E, L), respectively. The function Neighbors : V × P(L) → N is
defined as

Neighbors(v, D) = |NeighborSet(v, D)|
where

NeighborSet(v, D) = {u ∈ V | ∃(u, v, d) ∈ E ∧ d ∈ D}.
This function computes the number of all the nodes directly reachable from node v

by edges labeled with dimensions belonging to D.

Note that, in the monodimensional case, the value of this measure corresponds to
the degree. It is easy to see that Neighbors(v, D) ≤ Degree(v), but we can also easily
say something about the ratio Neighbors(v,D)

Degree(v)
. When the number of neighbors is small,

but each one is connected by many edges to v, we have low values of this ratio, which
means that the set of dimensions is somehow redundant w.r.t. the connectivity of
that node. This is the case of node 5 in the toy example illustrated. On the opposite
extreme, the two measures coincide, and this ratio is equal to 1, which means that
each dimension is necessary (and not redundant) for the connectivity of that node:
removing any dimension would disconnect (directly) that node from some of its
neighbors. This is the case of node 2 in Figure 3.

We also define a variant of the Neighbors function, which takes into account only
the adjacent nodes that are connected by edges belonging exclusively to a given set
of dimensions.

Definition 3 (NeighborsXOR) Let v ∈ V and D ⊆ L be a node and a set of di-
mensions of a network G = (V, E, L), respectively. The function NeighborsXOR :

Figure 3 Toy example. Solid
line is dimension 1, the dashed
is dimension 2.

1 2

3 4
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6 7

8

9



World Wide Web

V × P(L) → N is defined as

NeighborsXOR(v, D) = |{u ∈ V| ∃d ∈ D : (u, v, d) ∈ E ∧ �d′ /∈ D : (u, v, d′) ∈ E}|
It computes the number of neighboring nodes connected by edges belonging only to
dimensions in D.

3.3.2 Dimension relevance

One key aspect of multidimensional network analysis is to understand how important
a particular dimension is over the others for the connectivity of a node, i.e. what
happens to the connectivity of the node if we remove that dimension. We then define
the new concept of Dimension Relevance.

Definition 4 (Dimension relevance) Let v ∈ V and D ⊆ L be a node and a set
of dimensions of a network G = (V, E, L), respectively. The function DR : V ×
P(L) → [0, 1] is defined as

DR(v, D) = Neighbors(v, D)

Neighbors(v, L)

and computes the ratio between the neighbors of a node v connected by edges
belonging to a specific set of dimensions in D and the total number of its neighbors.

Clearly, the set D might also contain only a single dimension d, for which the
analyst might want to study the specific role within the network, to assess, for
example, the importance of the single conference in DBLP-C over the others.

However, in a multidimensional setting, this measure may still not cover important
information about the connectivity of a node. Figure 3 shows two nodes (4 and
5) with a high dimension relevance for the dimension represented by a solid line.
Specifically, in both cases the dimension relevance is equal to one, but the complete
set of connections they present is different: if we remove the dimension represented
with a solid line, the node 4 will be completely disconnected from some its neighbors,
for example it cannot reach the nodes 2, 3 and 7 anymore; while the node 5 can
still reach all its neighbors. To capture these possible different cases we introduce a
variant of this measure.

Definition 5 (Dimension relevance XOR) Let v ∈ V and D ⊆ L be a node and a
set of dimensions of a network G = (V, E, L), respectively. DRXOR : V × P(L) →
[0, 1] is defined as

DRXOR(v, D) = NeighborsXOR(v, D)

Neighbors(v, L)

and computes the fraction of neighbors directly reachable from node v following
edges belonging only to dimensions D.

Example 2 We can easily calculate the above measure for the nodes in Figure 3. As
an example, for the node 8 there is no difference with the DR (Definition 4): all its
neighbors are only reachable by solid edges. The opposite situation holds for node
5: all its neighbors are reachable by solid edges, but we always have an alternative
edge. So the DRXOR of the solid line dimension is equal to zero.
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In the following, we want to capture the intuitive intermediate value, i.e. the
number of neighbors reachable through a dimension, weighted by the number of
alternative connections.

Definition 6 (Weighted dimension relevance) Let v ∈ V and d ∈ L be a node and
a dimension of a network G = (V, E, L), respectively. The function DRW : V ×
P(L) → [0, 1], called Weighted Dimension Relevance, is defined as

DRW(v, D) =
∑

u∈NeighborSet(v,D)
nuvd
nuv

Neighbors(v, L)

where: nuvd is the number of dimensions which label the edges between two nodes u
and v and that belong to D; nuv is the number of dimensions which label the edges
between two nodes u and v.

Hereafter we occasionally use DRs to indicate all the three variants of this
measure. Note that DRXOR = 0 does not necessary imply that the node is not
connected to a particular dimension. It represents a situation where the node has
no neighbors that can be reached exclusively through that particular dimension. So
it is possible to reach it by alternative ways. In Figure 3, node 5 is an example of this,
when considering the dashed (or solid) line dimension.

The Weighted Dimension Relevance takes into account both the situations mod-
eled by the previous two definitions. Low values of DRW for a set of dimensions
D are typical of nodes that have a large number of alternative dimensions through
which they can reach their neighbors. High values, on the other hand, mean that
there are fewer alternatives. Our example shows the case of node 5 when considering
the solid line dimension: its DRW is clearly the highest, although the dashed line
dimension has a high value of DR.

3.3.3 Highest and lowest redundancy connections nodes

We introduce two new concepts regarding the nodes of multidimensional net-
works: Highest Redundancy Connections (HRC) and Lowest Redundancy Connec-
tion (LRC) nodes. They are derived from the combination of the functions Degree
and Neighbors. Intuitively, these measures describe the structure around a given
node in terms of edge density: if the node is a LRC this structure is sparse, while
if the node is HRC it is dense and redundant.

Definition 7 (LRC) A node v ∈ V is said to be at Lowest Redundancy Connection
(LRC) if each of its neighbors is reachable via only one dimension, i.e.,

∀u ∈ NeighborSet(v, L) : ∃! d ∈ L (u, v, d) ∈ E.

Note that if a node v is LRC we have

Degree(v, L) = Neighbors(v, L).

Definition 8 (HRC) A node v ∈ V is called Highest Redundancy Connections (HRC)
if each of its neighbors is reachable via all the dimensions in the network, i.e.,

∀u ∈ NeighborSet(v, L) : ∀d ∈ L (u, v, d) ∈ E.
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Note that if a node v is HRC we have

Degree(v, L) = Neighbors(v, L) × |L|.

Example 3 In Figure 3 we have several LRC nodes: 1, 2, 3, 7, 8 and 9. Some of them
appear in both dimensions (2 and 7), while other nodes appear in only one dimension
(1, 3, 8 and 9). On the other hand we have only one HRC node: node number 5 is
connected via both the dimensions with each of its neighbors.

In the “utility network” introduced in Section 2, we have that most of the nodes
are HRC, as most of the houses have electricity, water pipes, gas, and so on. On the
other hand, in the “transportation network”, little islands are most likely to be LRC,
as most of them are connected to their neighboring cities only by ferry (excluding the
ones with little airports).

3.3.4 Dimension connectivity

Another interesting quantitative property of multidimensional networks to study is
the percentage of nodes or edges contained in a specific dimension or that belong
only to that dimension. To this end we also introduce: the Dimension Connectivity
and the Exclusive Dimension Connectivity on both the sets of nodes and edges.

Definition 9 (Node dimension connectivity) Let d ∈ L be a dimension of a network
G = (V, E, L). The function NDC : L → [0, 1] defined as

NDC(d) = | {u ∈ V | ∃v ∈ V : (u, v, d) ∈ E} |
|V|

computes the ratio of nodes of the network that belong to the dimension d.

Definition 10 (Edge dimension connectivity) Let d ∈ L be a dimension of a network
G = (V, E, L). The function EDC : L → [0, 1] defined as

EDC(d) = |{(u, v, d) ∈ E|u, v ∈ V}|
|E|

computes the ratio of edges of the network labeled with the dimension d.

Definition 11 (Node exclusive dimension connectivity) Let d ∈ L be a dimension of
a network G = (V, E, L). The function NEDC : L → [0, 1] defined as

NEDC(d) = | {u ∈ V | ∃v ∈ V : (u, v, d) ∈ E ∧ ∀ j ∈ L, j 
= d : (u, v, j) /∈ E} |
| {u ∈ V | ∃v ∈ V : (u, v, d) ∈ E} |

computes the ratio of nodes belonging only to the dimension d.
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Definition 12 (Edge exclusive dimension connectivity) Let d ∈ L be a dimension of
a network G = (V, E, L). The function EEDC : L → [0, 1] defined as

EEDC(d) = | {(u, v, d) ∈ E | u, v ∈ V ∧ ∀ j ∈ L, j 
= d : (u, v, j) /∈ E} |
| {(u, v, d) ∈ E | u, v ∈ V} |

computes the ratio of edges between any pair of nodes u and v labeled with the
dimension d such that there are no other edges between the same two nodes
belonging to other dimensions j 
= d.

Example 4 In Figure 3 the EDC of dimension d1 is 0.61 since it has eight edges out
of the 13 total edges of the network. Its EEDC is equal to 5/8 = 0.625. The NDC
for the same dimension d1 is 0.88 (8 nodes out of 9) and its NEDC is 0.375 (3 unique
nodes out of 8).

Table 3 presents the values of these measures computed on our real-world
networks.

3.3.5 D-Correlation

The last aspect of multidimensional networks that we study in this paper is the in-
terplay among dimensions. In the following we define two measures that, intuitively,
give an idea of how redundant are two dimensions for the existence of a node or an
edge. These two measures are based on the classical Jaccard correlation coefficient,
but they extend it in order to cope with more than two sets.

Definition 13 (Node D-Correlation) Let D ⊆ L be a set dimensions of a net-
work G = (V, E, L). The Node D-Correlation is the function ρnodes : P(L) → [0, 1]
defined as

ρnodes(D) = |⋂d∈D Vd|
|⋃d∈D Vd|

where Vd denotes the set of nodes belonging to dimension d. It computes the ratio of
nodes appearing in all the dimensions in D and the total number of nodes appearing
in at least one dimension in D.

Definition 14 (Pair D-Correlation) Let D ⊆ L be a set dimensions of a network G =
(V, E, L). The Pair D-Correlation is the function ρpairs : P(L) → [0, 1] defined as

ρpairs(D) = | ⋂d∈D Pd|
| ⋃d∈D Pd|

where Pd denotes the set of pairs of nodes (u, v) connected in dimension d. It
computes the ratio of pairs of nodes connected in all the dimensions in D and the
total number of pairs of nodes connected in at least one dimension in D.

Figures 4, 5 and 6 show the behavior of these measures on our real-life networks.
When D = L, we can compute the percentage of nodes that exist in all the

dimensions of the network, that we call Omni-Connected Nodes (OCN), and, in
analogy, the percentage of pairs of nodes connected in all the dimensions, that we call
Omni-Connected Pairs (OCP). Table 3 reports these percentages on our networks.
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Figure 4 The cumulative distributions of the three DRs (f irst three rows), Node D-Correlation
(fourth row) and Pair D-Correlation (last row) in DBLP-C and DBLP-Y.
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Figure 5 The cumulative distributions of the three DRs (f irst three rows), Node D-Correlation
(fourth row) and Pair D-Correlation (last row) in QueryLog and Random.
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Figure 6 First five figures: the cumulative distributions of the three DRs, Node D-Correlation and
Pair D-Correlation in Flickr. Table in the bottom right: running times for computing the measures.

4 Experiments

In this section, we present the results obtained by computing all the defined measures
on our real world networks presented in Section 2. In Table 2 we provide a summary
of our measures and their abbreviations to make the reading of this section easier.

In order to better understand the meaning of our measures, we also created a
random network to be used as null model for our experiments. The network was
created at random, while preserving the basic characteristics (number of nodes and
number of edges) of each single dimension of the QueryLog network. Thus, we call
each of its dimensions with the name of the corresponding dimension in QueryLog,
while we refer to the network as Random, or “null model”.

All the experiments were conducted on a server equipped with a dual Xeon
processor at 3.06 Ghz, 8 GB of RAM, and running Ubuntu 8.04 server 64 bit. We
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Table 2 Summary of notation. Notation

DR Dimension relevance
DRXOR Dimension relevance XOR
DRW Weighted dimension relevance
NDC Node dimension connectivity
NEDC Node exclusive dimension connectivity
EDC Edge dimension connectivity
EEDC Edge exclusive dimension connectivity
HRC Highest redundancy connections
LRC Lowest redundancy connections
OCP Omni-connected pairs
OCN Omni-connected nodes

discuss scalability in Section 4.1. An implementation in Java of all the measures
presented is available for download.11

Figures 4–6 report, the cumulative distribution of the three variants of the DRs
and the matrices of the Node D-Correlation and Pair D-Correlation for every pair
of dimensions in the network (higher values mapped to darker color), respectively
(since DBLP-Y has 55 dimensions, for clarity or space issue we report the values
only for the last 5 dimensions). In Figures 4 and 5 each column contains plots about a
specific network: the first three plots describe the different variants of the DR while
the last two plots show the Node D-Correlation and Pair D-Correlation. Figure 6
contains all the plots about the Flickr network and a table about the information on
the runtime for each network.

First thing to note about the DRs is that different networks present different
distributions of these measures. In addition, it is easy to see that each network
behaves differently from the null model. In particular, the distinction between the
QueryLog and the Random network (Figure 5) is very clear, despite having used the
statistics of QueryLog to build the null model. Different distributions are showing
that the knowledge extracted on real networks is much different from the one
extracted on a random one, i.e. we are not assessing a random phenomenon.

Now, we analyze the correlation between the DR distribution and the Dimension
Connectivity values (especially the EEDC and NEDC). What can be seen by looking
at the DR distributions, the EEDC and NEDC values, reported in Table 3, is
that the DR distributions seem to be correlated to the EEDC measure while the
DRXOR distributions seem to be correlated to the NEDC. This correlation is not
surprising since by definition, the two measures are two different perspectives, one
local (Dimension Relevance) and one global (Dimension Connectivity), of the same
aspect: how much a dimension is important for the connectivity of a network. We
note, in fact, that the DR tends to be higher in conjunction with higher Edge
Exclusive Dimension Connectivity values (e.g. in the DBLP-C network). This can be
read as: distributions similar to those of the DBLP-C network (first column of Figure
4) occur when the dimensions are quite independent from each other. The QueryLog
network (first column of Figure 5) presents much more separated distributions
among the dimensions where the EEDC values present an high variance. Moreover,

11http://kdd.isti.cnr.it/MHA

http://kdd.isti.cnr.it/MHA
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Table 3 Dimension Connectivity, HRC, LRC, OCN and OCP computed on the used networks.

Network Dim NDC NEDC EDC EEDC HRC LRC OCN OCP
(%) (%) (%) (%) (%) (%) (%) (%)

DBLP-C VLDB 19.28 0.75 16.67 74.75 0 79.58 0.18 0.01
SIGMOD 22.81 0.97 21.66 80.02
CIKM 34.95 3.86 22.68 84.59
SIGKDD 22.58 1.38 16.33 78.68
ICDM 24.38 2.45 14.90 76.24
SDM 13.51 1.44 7.76 68.28

DBLP-Y 2005 65.35 0.50 16.24 36.87 0.35 9.78 19.42 2.83
2006 74.69 0.47 19.36 30.90
2007 78.81 0.47 21.34 29.78
2008 78.62 0.48 22.10 33.51
2009 75.01 0.58 20.96 42.33

QueryLog Bin1 75.22 12.58 30.98 38.47 0.04 42.47 3.14 0.78
Bin2 58.69 4.39 24.63 22.39
Bin3 48.39 2.19 19.88 16.30
Bin4 41.05 1.41 16.37 14.05
Bin5 23.24 0.42 7.12 10.72
Bin6 6.62 0.02 1.02 4.45

Random Bin1 75.22 0 30.98 99.97 0 99.26 0.43 0
Bin2 58.69 0 24.63 99.97
Bin3 48.39 0 19.88 99.96
Bin4 41.05 0 16.37 99.96
Bin5 23.24 0 7.12 99.96
Bin6 6.62 0 1.02 99.97

Flickr Friendship 82.98 71.07 5.28 2.07 2.94e−3 29.54 5.75 8e−5

Comment 78.39 77.14 21.50 21.36
Favorite 32.09 32.08 73.13 63.89
Tag 7.72 7.51 0.08 0.07

the descending order (by dimension) of EEDC follows the decreasing trend (by
dimension) in the cumulative distribution plots.

However, the correlation between the EEDC and the DR is not evident in Flickr.
This is manly due to the high unbalance among the dimensions: the “Favorite”
dimension is clearly dominant in number of edges w.r.t the other ones. Instead, the
numbers reveal that there is a correlation between the DRXOR and the NEDC values:
the trend of the NEDC values per dimension is followed by the DRXOR distributions
(see the third plot in Figure 6).

In Figures 4–6 we also report the values of the two correlations we defined. We
recall that, due to the underlying Jaccard correlation, the matrices shown in these
figures are symmetric. In these matrices, we reported the correlations computed
on each possible pair of dimensions. The values computed on the complete set of
dimensions, corresponding to the OCN e OCP percentages, are reported in Table 3.

In the last two rows of Figures 4 and 5 we see that the presence of a natural
ordering among the dimensions lets a clear phenomenon emerge: closer dimensions
are more similar than distant ones, according to the natural order. The phenomenon
is highlighted by the fact that the cells close to the diagonal are darker than those
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distant from it, in Querylog and DBLP-Y networks. In these two networks, in fact,
there is a natural order of the years and the bins, used as dimensions. This is not true
for DBLP-C: it is not possible to establish a natural ordering among conferences,
thus the corresponding matrices in the first column of Figure 4 appear to be more
“random”.

Consider now the matrices related to the Random network. Due to the random
generation, the natural ordering of the dimensions disappears, while, in this case, the
size of the dimensions does the difference, and the trend of the correlation follows
the basic statistics of the network. Hence, more nodes and edges in a dimension
imply more correlation with the other ones. This phenomenon is particularly easy
to observe for the nodes: the number of possible edges is very large, thus it is difficult
to create, using a random generator, the same edges in two different dimensions,
dramatically lowering then the Pair D-Correlation values (which appears almost
white in the second column of Figure 5) and bringing close to 100 % the EEDC
values (NEDC values are all equal to zero due to the artifact of choosing the random
node ids from the same set).

This is true also considering HRC and OCP values of our networks, reported
in Table 3. The null model does not present any node with these properties, while
instead it has the highest number of LRC nodes. This is again an effect of the above
mentioned properties: too many edge combinations lead the edges of a random
network to appear only in one dimension. On the other hand, in DBLP-Y we have
some authors publishing each year with all their collaborators (HRC column) or
at least one time each year (OCN column). These two events are quite rare in the
random null model. Some networks may present also situations even more extreme
than the random null model: it is the case of DBLP-C in which only 12 authors have
published in all the six considered conferences (OCN column), and only two pairs
have collaborated at least once in all the conferences (OCP column). But this is
natural, since publishing in all of these top conferences is very difficult.

The matrices of Node D-Correlation and Pair D-Correlation of Flickr in Figure 6
are coherent with the number of nodes and edges in the different dimensions. Indeed,
we can observe that the Pair D-Correlation values between the dimensions is very
low as the number of edges per dimension in this network is very different (see Table
1). In contrast, for the Node D-Correlation values we have a different correlation
matrix due to the fact that the number of nodes per dimension is very similar but for
the dimension “Tag” (see Table 1). Indeed, we can see that for the dimension “Tag”
we have the lowest correlation values. The particular interplay among the dimensions
of this network and so the high difference in terms of number of edges in the different
dimensions also affects the values of HRC and OCN that are very low. Indeed, it is
hard to find an edge appearing in all the dimensions in Flickr.

Again, these considerations support the thesis that our multidimensional measures
are capturing real, and not random, phenomena, that constitute meaningful knowl-
edge mined in the multidimensional networks analyzed.

4.1 Scalability

Since all the measures introduced may be trivially computed by scanning only
once the list of nodes and edges (theoretical discussion and implementation details
omitted), the entire framework scales on both time and memory. For the latter, we
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report that the largest memory occupation was less than 600 MB. For the running
times, the table in Figure 6 reports, for each network, the average running time
(computed over ten executions) and the ratio between time and number of edges
of the networks. While the time varies considerably among the networks, we see
that the ratio with the number of edges is almost constant. One exception is the
DBLP-C network, for which, however, the overhead payed by the initialization of
the data structures is significant w.r.t the total running time (reported in seconds).
This empirical evaluation shows that the measures can be efficiently computed, in
line with the theoretical complexity which is linear in the number of edges.

4.2 Application scenarios

As we said above, we deal everyday with multidimensional networks, and thus
we could enumerate an extensive list of application scenarios of multidimensional
network analysis. For example, considering the transportation network described in
Section 2, we note that when planning our movements, we implicitly solve an instance
of the shortest path problem in the multidimensional transportation network, trying
to minimize the cost paid in each dimension (both in terms of time and money), and
the cost for changing transportation mean (i.e., the overhead given by the interplay
of the dimensions).

Instead of reporting such a list, which would be impossible to fit in this work, and
which is not its main purpose, we now give three examples of application scenarios on
the networks used for our experiments, assessing the meaningfulness of our measures
in the context of the World Wide Web and scientific publishing. The first deals
with search engines and query terms, the second regards on-line social networks and
finally we analyze publishing behavior of computer scientists.

Other more complex applications scenarios for the introduced model, namely
multidimensional community discovery and characterization [9] and multidimen-
sional link prediction [34], have been already investigated, and, in the future, we
plan to address problems such as frequent subgraph mining, clustering, classification,
similarity, and so on, driven by our introduced model.

4.2.1 Detection of ambiguous query terms

In the QueryLog network we apply our measures to find ambiguous query terms.
In order to do so, we select the query terms that are: 1) used in conjunction with
many other terms (high number of neighbors) and 2) generally connected with their
neighbors in queries that led to low rank results (low Weighted Dimension Relevance
for the first rank bin, i.e. the neighboring terms are often found in queries that do not
provide good results for the user).

Then, we are saying that being an ambiguous query term translates into being
a hub with a low value for DRW , calculated on dimension “Bin1”. Note this
choice: minimizing the DRXOR of dimension “Bin1” would have selected terms that
generally do not produce good results at all, while the pure DR would not have
specified the interplay with the other dimensions.

First, we extract some nodes that are hubs (i.e., nodes with a high number of
adjacent edges; please refer to [11] for a formal definition) in the network and then
we consider the small communities of words surrounding these nodes extract where
we look for the reasons for a very good or very bad query result. We select the
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neighbors with the highest Dimension Relevance for dimension 1, to see why, with a
generally bad query term, sometimes we find good results.

A possible example found to satisfy these criteria is the word “Wearing” (a
simplified view of its neighborhood is depicted in Figure 7a). This term shows here
poor semantics, which needs a disambiguation. Moreover, the clusters surrounding
this word are very clear: words in either cluster are not really expected to be in the
other one. The first group of queries was apparently generated by users looking for
information about AIDS and how to prevent it. In the second cluster we see people
interested in Elle MacPherson’s dressing habits. We found a total of 1150 nodes with
a structure of neighbors similar to the one of “Wearing”.

4.2.2 Outlier detection

Here we analyze a totally different context, i.e. a network of social connections. The
aim of this analysis is to find users that are connected to the network mainly via the
Friendship dimension, thus disregarding the Comment, Favorite and Tag features of
the social network.

Thus, in this analysis we focused on the Dimension Relevance XOR and con-
sidered the head of its distribution for the Friendship dimension: higher values of
this measure mean that the node is connected with its neighborhood exclusively via
Friendship links.

Table 4 shows the values of the Dimension Relevance XOR of the Friendship
for the 12 nodes obtained by maximizing both the DRXOR for Friendship, and the
number of Neighbors. The last two columns indicate the direction of the connection
between each node and its neighbors (extracted a posteriori since our network was
undirected).

We can identify two categories of users among the interesting extracted nodes:
professionals and spammers, for which Figure 7(b) gives a possible representation.
The first can be identified in the table due to their high number of ingoing edges
and the low number of outgoing ones. This behavior is classic in social networks: if
a person has an interesting profile, many people will ask for friendship (instances

(c)(b)(a)

Figure 7 Some of the multidimensional hubs extracted.
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Table 4 DRXOR for 12 nodes
extracted from Flickr
maximizing neighbors.

Node DRXOR Out In

0 0.78 152 5080
1 0.79 3836 0
2 0.79 3766 0
3 0.79 8 8091
4 0.81 4203 0
5 0.82 3704 0
6 0.83 7226 0
7 0.83 655 4066
8 0.85 4205 0
9 0.86 750 6983
10 0.88 138 3671
11 0.95 4301 0

of this behavior are available in Flickr12,13). On the other hand, the owner of an
interesting profile could not be interested in having so many friends (instances of
this behavior are available in Flickr14,15). The opposite observation can be made for
spammers: they can be detected by a high number of outgoing edges but no one is
interested in returning the friendship link to a spammer. Note that looking only at
the difference (or ratio) between outgoing and incoming links is not enough: we need
the DRXOR to filter the users for which the friendship has a relatively high relevance.
This is clearly due to our definition of “spam”, other definitions are also possible (for
example, one can look at the number of personal messages sent, but this is out of
scope for our purposes).

4.2.3 Analyzing temporal behaviors

In this section, we go beyond the theory presented so far. We want to compute the
DRs considering not only one dimension at a time, but a set of many dimensions.

In this context, an interesting application of our approach is to analyze the
temporal behavior of multidimensional hubs on evolving networks. In this section
we show the results obtained on DBLP-Y, whose dimensions are the years of
publications. Note that, although multi-dimensionality and temporal information can
be both present in a network, in the case of monodimensional networks we can still
use the temporal information to apply multidimensional techniques and highlight
interesting phenomena.

The specific object of our analysis is to find authors of scientific papers who tend
to change the authors with whom they collaborate possibly every year. Note that we
are not focusing on just new collaborations, but we want also to see the old ones to
disappear. In order to do so, we found hubs v maximizing the number of dimensions
d for which DRXOR(v, d) > 0 (maximizing this value means maximizing the number
of years in which the author had collaborations that took place only in a specific year
and not in others).

12http://www.flickr.com/photos/10539246@N05
13http://www.flickr.com/photos/23941584@N08
14http://www.flickr.com/photos/38687875@N00
15http://www.flickr.com/photos/20532904@N00

http://www.f/lickr.com/photos/10539246@N05
http://www.f/lickr.com/photos/23941584@N08
http://www.f/lickr.com/photos/38687875@N00
http://www.f/lickr.com/photos/20532904@N00
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Figure 7c reports two representations of hubs extracted in this way: the hubs
behaving as H1 and the ones behaving as H2. To be more precise, a deeper
classification among them might be performed by looking also at the standard
deviation of the DRXOR computed in all the dimensions. The example H2 in the
right of that Figure, in fact, represents a hub minimizing the standard deviation. H1
hubs are collaborators in high effort publications such as books (such as Maxine D.
Brown or Steffen Schulze-Kremer); while H2 hubs are authors who tend work with
many different people, rarely keeping these collaborations alive, such as Ming Xu or
Jakob Nielsen.

5 Related work

In this section we briefly review some studies that are related to this paper under
two different perspectives: first we review a few classical achievements of complex
network analysis and then we go through possible models and measures for multidi-
mensional networks.

An exhaustive survey of network analytics is provided by Newman [30], where
it is shown how many properties apply to various kinds of networks that we find in
the real world, spanning from social to biological networks; then the basic properties
of networks are discussed: small world effect, clustering coefficient, degree distribu-
tions, network resilience, together with various network generation models. Network
science is today a highly visible field of research, with relevant books also tailored for
broad dissemination [5, 15, 37]. A large body of work was dedicated to the analysis
of the degree distribution in networks, often with reference to specific networks such
as phone calls [1], Internet [22], the Web [6, 27], citation networks [33], online social
networks [18] and many others. One popular result is the power law distribution
of the degree in many real-world networks. Another interesting survey paper by
Chakrabarti and Faloutsos is [17], where, besides network properties, several graph
generators are presented. The authors also give a review of basic concepts of
graph mining (i.e., the problem of finding frequent subgraphs), navigation in graphs
(crawling, search, and so on), generic flows in graphs (information, viruses, etc.),
and possible applicative contexts of social networks in various fields, such as Viral
Marketing (i.e. trying to individuate the smallest set of users that maximize the
spread of advertisement) or Recommendation Systems.

Concerning multidimensional networks, there is little work so far on a general
methodology for multidimensional network analysis, and a few works that address
specific problems in a multidimensional setting.

The authors of [19] introduce the graph OLAP, a multidimensional view of graph
data introduced with the purpose of defining the aggregation of different dimensions.
However, a systematic definition of analytical measures is missing and the interplay
among different dimensions is not investigated in any way. In other words, the graph
OLAP is a method for supporting the navigation along the dimensions of a network,
not a general framework for multidimensional network analysis.

Some recent works put emphasis on specific multidimensional social networks,
such as, as an example, communication networks among people [36]. Given a
network and a set of latent social dimensions the authors were able to determine
how new entities will behave in these dimensions. In this paper, the authors focus on
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relational learning, extracting latent social dimensions via modularity maximization.
Based on the extracted social features, a discriminative classifier like SVM is con-
structed to determine which dimensions are informative for classification. Although
the underlying setting is similar to the one studied in our paper, the authors only focus
on a particular problem, and develop specific analytical means for their objectives.
Our attempt, in this paper, is precisely to find a suitable level of generalization that al-
lows us to put into focus the truly important primitives for multidimensional network
analysis, in order to devise a framework that can be systematically used in practice
for addressing a wide variety of problems. Two more papers deal with the analysis
of multidimensional network [28, 35]. In both cases, the authors analyze networks
with “positive” and “negative” links among on-line communities. In [35], the authors
analyze the degree distributions of the various dimensions, which are scale-free
structures, highlighting the need for analytical tools for the multidimensional study of
hubs. In [28], the authors presented the problem of predicting the positive (trust) or
negative (distrust) label of the edges. While this might look like a multidimensional
formulation of the LP problem, its formulation is, in turns, a classification problem,
as only the label of the edge, rather than its future arrive, is predicted. In [26] the
authors introduced a semi-supervised learning model for the link prediction problem
in multi-relational networks. Like multidimensional networks, multi-relational ones
allow different types of interactions between each pair of nodes. However, this model
does not allow for multiple simultaneous interactions between two nodes.

Finally, in [29] the authors deal with the problem of community discovery, and
extend the definition of modularity to fit to the multidimensional case, which they
call “multislice”.

A last set of related works deal with the problem of analyzing heterogeneous
networks. In this class of networks, nodes can have different types, and multiple
labels can be also associated with them. One work of this kind is [4], where
the authors deal with the problem of graph-based classification in heterogeneous
networks.

6 Conclusions and future work

In this paper, we studied the problem of analyzing multidimensional networks. We
have introduced a large, solid, repertoire of meaningful measures, able to capture
different interesting structural properties of multidimensional networks, such as
the interplay residing among the dimensions, both at the global and at the local
level. Aware that such an ambitious definitional apparatus needs to be empirically
assessed, we devoted a large effort to gather multidimensional network data, and
performed an extensive set of empirical experiments. We believe that the many
experiments over massive, real-world network data from heterogeneous domains
validated the sense and the analytical power of our repertoire of measures. Accord-
ing to our findings, our measures also appear to be able to capture real, non random,
phenomena, and allow for interesting interpretation of the results.

On the other hand, we are aware that the research described in this paper leaves
many problems open for further research, both on the theoretical and the application
side. Is the repertoire of measures sufficiently wide to express the desired class of
analytical questions? Are there interesting properties of the measures that may help
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the analysis, or be exploited for optimizing the computation of the measures them-
selves? What should be the characteristic of a query system capable of supporting the
proposed analytical framework for multidimensional networks? These are the main
challenges that we plan to pursue in the next future, along with continuing our field
experiments over ever richer, larger and more complex network data.
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