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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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charges and their locations or distributions, for the mathemati-

cal modeling of biomolecular systems. Indeed, there is an

increased importance in geometric modeling for biochemis-

try,[39] biophysics,[47,48] and bioengineering.[49,50] Nevertheless,

geometry-based models are typically computationally expen-

sive and become intractable for biomolecular processes such

as protein folding, signal transduction, transcription, and trans-

lation. Such a failure is often associated with massive data

acquisition, curation, storage, search, sharing, transfer, analysis,

and visualization. The challenge originated from geometric

modeling call for game-changing strategies, revolutionary the-

ories and innovative methodologies.

Topological simplification offers an entirely different strategy

for big data analysis. Topology deals with the connectivity of

different components in a space and is able to classify inde-

pendent entities, rings, and higher dimensional holes within

the space. Topology captures geometric properties that are

independent of metrics or coordinates. Indeed, for many bio-

logical problems, including the opening or closing of ion chan-

nels, the association or disassociation of ligands, and the

assembly or disassembly of proteins, it is the qualitative topol-

ogy, rather than the quantitative geometry that determines

physical and biological functions. Therefore, there is a topol-

ogy–function relationship in many biological processes[51] such

that topology is of major concern.

In contrast to geometric tools which are frequently inun-

dated with too much structural information to be computa-

tionally practical, topological approaches often incur too much

reduction of the geometric information. Indeed, a coffee mug

is topologically equivalent to a doughnut. Therefore, topology

is rarely used for quantitative modeling. Persistent homology is

a new branch of topology that is able to bridge the gap

between traditional geometry and topology and provide a

potentially revolutionary approach to complex biomolecular

systems. Unlike computational homology, which gives rise to

truly metric free or coordinate free representations, persistent

homology is able to embed additionally geometric information

into topological invariants via a filtration process so that

“birth” and “death” of isolated components, circles, rings,

loops, voids, or cavities at all geometric scales can be meas-

ured.[52–54] As such, the filtration process creates a multiscale

representation of important topological features. Mathemati-

cally these topological features are described by simplicial

complexes, that is, topological spaces constructed by points,

line segments, triangles, and their higher dimensional counter-

parts. The basic concept of persistent homology was intro-

duced by Frosini and Landi[55] and Robins,[56] independently.

The first realization was due to Edelsbrunner et al.[52] The con-

cept was generalized by Zomorodian and Carlsson.[53] Many

efficient computational algorithms have been proposed in the

past decade.[57–61] Many methods have been developed for

the geometric representation and visualization of topological

invariants computed from persistent homology. Among them,

the barcode representation[62] uses various horizontal line seg-

ments or bars to describe the “birth” and “death” of homology

generators over the filtration process. Additionally, persistent

diagram representation directly displays topological connectiv-

ity in the filtration process. The availability of efficient persis-

tent homology tools[63,64] has led to applications in a diverse

fields, including image analysis,[65–68] image retrieval,[69] cha-

otic dynamics,[70,71] complex network,[72,73] sensor network,[74]

data analysis,[75–79] computer vision,[67] shape recognition,[80]

computational biology,[51,81–83] and nanoparticles.[84,85]

The most successful applications of persistent homology

have been limited to topological characterization, identification

and analysis (CIA). Indeed, there is little persistent homology-

based physical or mathematical modeling and quantitative

prediction in the literature. Recently, we have introduced per-

sistent homology as unique means for the quantitative model-

ing and prediction of nanoparticles, proteins, and other

biomolecules.[51,84] Molecular topological fingerprint (MTF), a

recently introduced concept,[51] is used not only for the CIA,

but also for revealing topology–function relationships in pro-

tein folding and protein flexibility. Persistent homology is

found to provide excellent prediction of stability and curvature

energies for hundreds of nanoparticles.[84,85] More recently, we

have proposed a systematical variational framework to con-

struct objective-oriented persistent homology (OPH),[85] which

is able to proactively extract desirable topological traits from

complex data. An example realization of the OPH is achieved

via differential geometry and Laplace–Beltrami flow.[85] Most

recently, we have developed persistent homology based

topological denoising method for noise removal in volumetric

data from cryoelectron microscopy (cryo-EM).[86] We have

shown that persistent homology provides a powerful tool for

solving ill-posed inverse problems in cryo-EM structure

determination.[86]

However, one-dimensional (1D) persistent homology has its

inherent limitations. It is suitable for relatively simple systems

described by one or a few parameters. The emergence of com-

plexity in self-organizing biological systems frequently requires

more comprehensive topological descriptions. Therefore, multi-

dimensional persistent homology, or multidimensional persist-

ence, becomes valuable for biological systems as well as many

other complex systems. In principle, multidimensional persist-

ence should be able to seamlessly bridge geometry and topol-

ogy. Although multidimensional persistence bears great

promise, its construction is nontrivial and elusive to the scien-

tific community.[87] A major obstacle is that, theoretically, it

has been proved there is no complete discrete representation

for multidimensional persistent module analogous to 1D situa-

tion.[87] State differently, the persistent barcodes or persistent

diagram representation is only available in 1D filtration, no

counterparts can be found in higher dimensions. Therefore, in

higher dimensional filtration, incomplete discrete invariants

that are computable, compact while still maintain important

persistent information, are being considered.[87] Among them,

a well-recognized one is persistent Betti numbers (PBNs),[52]

which simply displays the histogram of Betti numbers over the

filtration parameter. The PBN is also known as rank invariant[87]

and size functions (zeroth homology).[55] A major merit of the

PBN representation is its equivalent to the persistent barcodes

in one dimension, which means that this special invariant is

complete in 1D filtration. Also, it has been proved that PBN is
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stable in the constraint of certain marching distance.[88] A few

mathematical algorithms have been proposed.[88–90] Multifiltra-

tion has been used in pattern recognition or shape compari-

son.[55,91,92] Computationally, the realization of robust

multidimensional persistent homology remains a challenge as

algorithms proposed have to be topologically feasible, compu-

tationally efficient, and practically useful.

The objective of this work is to introduce two classes of

multidimensional persistence for biomolecular data. One class

of multidimensional persistence is generated by repeated

applications of 1D persistent homology to high-dimensional

data, such as those from protein folding, molecular dynamics,

geometric partial differential equations (PDEs), varied signal to

noise ratios (SNRs), and so forth. The resulting high-

dimensional persistent homology is a pseudomultidimensional

persistence. Another class of multidimensional persistence is

created from a family of new simplicial complexes associated

an isotropic scale or anisotropic scales. In general, scales

behave in the same manner as wavelet scales do. They can

focus on the certain features of the interest and/or defocus on

undesirable characteristics. As a consequence, the proposed

scale-based isotropic and anisotropic filtrations give rise to

new multiscale multidimensional persistence. We demonstrate

the application of the proposed multidimensional persistence

to a number of biomolecular and/or molecular systems, includ-

ing protein flexibility analysis, protein folding characterization,

topological denoising, noise removal from cryo-EM data, and

analysis of fullerene molecules. Our multidimensional filtrations

are carried out on three types of data formats, namely, point

cloud data, matrix data, and volumetric data. Therefore, the

proposed methods can be easily applied to problems in other

disciplines that involve similar data formats.

Our algorithm for multidimensional persistence is robust

and straightforward. In a 2D filtration, we fix one of the filtra-

tion parameters and perform the filtration on the second

parameter to obtain PBNs. Then we systematically change the

fixed parameter to sweep over its whole range, and stack all

the PBNs together. This idea can be directly applied to 3D and

higher dimensional filtrations. Essentially, we just repeat the

1D filtration over and over until the full ranges of other param-

eters are sampled. The PBNs are then glued together. This

multidimensional persistent homology method can be applied

to any other high-dimensional data. In this work, point cloud

data and matrix data are analyzed using the JavaPlex.[63] Volu-

metric data are processed with the Perseus.[64]

The rest of this article is organized as follows. In Multidimen-

sional Persistence in the Point Cloud Data of Protein Folding

section, we explore the multidimensional persistence in point

cloud data for protein folding. We model the protein unfolding

process by an all-atom steer molecular dynamics (SMD). We

consider both an all-atom representation and a CG representa-

tion to analyze the SMD data. From our multifiltration analysis,

it is found that PBNs associated with local hexagonal and pen-

tagonal ring (PR) structures in protein residues are preserved

during the unfolding process while those due to global rings

and cavities diminish. CG representation is able to directly cap-

ture the dramatic topological transition during the unfolding

process. In Multidimensional Persistence in Biological Matrices

section, we investigate the multidimensional persistence in

matrix data. The GNM Kirchhoff (or connectivity) matrix and

FRI correlation matrix are analyzed by multidimensional persis-

tent homology. The present approach is able to predict the

optimal cutoff distance of the GNM and the optimal scale of

the FRI algorithm for protein flexibility analysis. Multidimen-

sional Persistence in Volumetric Data section is devoted to the

multidimensional persistence in volumetric data. We analyze

the multidimensional topological fingerprints of Gaussian noise

and demonstrate the multidimensional topological denoising

of synthetic data and cryo-EM data in conjugation with the

Laplace–Beltrami flow method. Finally, we construct multiscale

2D and 3D persistent homology methods to analyze the intrin-

sic topological patterns of protein 2YGD and fullerene C60 mol-

ecule. This article ends with a conclusion.

Multidimensional persistence in the point

cloud data of protein folding

In this section, we reveal multidimensional persistence in point

cloud data associated with protein folding process. It is com-

monly believed that after the translation from mRNA, unfolded

polypeptide or random coil folds into a unique 3D structure

which defines the protein function.[93] However, protein fold-

ing does not always lead to a unique 3D structure. Aggregated

or misfolded proteins are often associated with sporadic neu-

rodegenerative diseases, such as mad cow disease, Alzheimer’s

disease, and Parkinson’s disease. Currently, there is no efficient

means to characterize disordered proteins or disordered aggre-

gation, which is crucial to the understanding of the MM of

degenerative disease. In this section, we show that multidi-

mensional persistence provides an efficient tool to characterize

and visualize the orderliness of protein folding.

Protein folding/unfolding processes

The SMD is commonly used to generate elongated protein

configurations from its nature state.[94–96] Our goal is to exam-

ine the associated changes in the protein topological invari-

ants induced by SMD. There are three approaches to achieve

SMD: high temperature, constant force pulling, and constant

velocity pulling.[94–96] Both implicit and explicit molecular

dynamics can be used for SMD simulations. The mechanical

properties of protein FN-III10 has been used to carefully design

and valid SMD. Appropriate treatment of solvent environment

in the implicit SMD is crucial. Typically, a large box which can

hold the stretched protein is required, although the computa-

tional cost is relatively high.[97] In our study, a popular SMD

simulation tool NAMD is used to generate the partially folded

and unfolded protein conformations. The procedure consists

of two steps: the relaxation of the given structure and unfold-

ing simulation with constant velocity pulling. In the first step,

the protein structure is downloaded from the PDB, which is

the major reservoir for protein structures with atomic details.

Then, the structure is prepared through the standard proce-

dure, including adding missed hydrogen atoms, before it is
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solvated with a water box, which has an extra 5-Å layer, com-

paring with the initial minimal box that barely hold the pro-

tein structure.[98] The standard minimization and equilibration

processes are carried out. We use a total of 5000 time steps of

equilibration iterations with the periodic boundary condition

after 10,000 time steps of initial energy minimization. In our

simulations, we use a time increment of 2 fs. We set SMDk5 7.

The results are recorded after each 50 time steps, that is, one

frame for each 0.1 ps. We accumulate a total of 1000 frames

or protein configurations, which are used for our persistent

homology filtration.

All-atom and CG representations

Persistent homology analysis of proteins can be carried out

either in an all-atom representation or in CG representa-

tions.[51] For the all-atom representation, various types of

atoms, including O, C, N, S, and P, are all included and

regarded as equally important in our computation. We deliber-

ately ignore the Hydrogen atoms in our structure during the

filtration analysis, as we found that they tend to contaminate

our local protein fingerprints. The all-atom representation

gives an atomic description of a given protein frame or config-

uration and is widely used in molecular dynamic simulation. In

contrast, CG representations describe the protein molecule

with the reduced number of degrees of freedom and are able

to highlight important protein structure features. CG represen-

tations can be constructed in many ways. A standard CG rep-

resentation of proteins used in our earlier topological analysis

is to represent each amino acid by the corresponding Ca

atom.[51] CG representations are efficient for describing large

proteins and protein complexes and significantly reduce the

cost of calculating topological invariants.[51]

Figure 1 demonstrates the persistence information for the

all-atom representation and the Ca CG representation of 1UBQ

relaxation structure (i.e., the initial structure for the unfolding

process). Figures 1a and 1b are topological invariants from the

all-atom representation without hydrogen atoms. In Figure 1a,

it can be observed that b1 and b2 barcodes are clearly divided

into two unconnected regions: local region (from 1.6 to 2.7 Å

Figure 1. Persistent barcodes and PBNs of 1UBQ structure. a) Persistent barcodes for the all-atom representation without hydrogen atoms; b) PBNs for the

all-atom representation without hydrogen atoms; c) Persistent barcodes for the CG representation; d) PBNs for the CG representation. In each subfigure,

b0, b1, and b2 are displayed in the top, middle, and bottom panels, respectively. In all subfigures, horizontal axes label the filtration radius (Å). Vertical axes

in b and d are the numbers of topological invariants. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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for b1 and from 2.4 to 2.7 Å for b2) and global region (from

2.85 to 6.7 Å for b1 and from 3.5 to 6.7 Å for b2). Local region

appears first during the filtration process, and it is directly

related to the hexagonal ring (HR) and PR structures from the

residues. As indicated in the zoomed-in regions enclosed by

dotted red rectangles, there are seven local b1 bars and three

b2 bars, which are topological fingerprints for phenylalanine

(one HR), tyrosine (one HR), tryptophan (one HR and one PR),

proline (one PR), and histidine (one PR). In Figure 2a, we have

three HRs (red color) corresponding to three local b1 bars and

three local b2 bars. It is well known that hexagonal structures

produce b2 invariants in the Vietoris-Rips complex-based filtra-

tion.[51] The other four local b1 bars are from pentagonal struc-

tures (blue color). Figures 2c and 2d are results from the CG

representation. It can be seen that there is barely any b2 infor-

mation for the initial structure. As protein unfolds, almost no

cavities or holes are detected. Therefore, we only consider b0
and b1 invariants in the CG model.

Multidimensional persistence in protein folding process

In our protein folding analysis, we extract 1000 configurations

over the unfolding process. For each configuration, we carry

out the point cloud filtration, that is, systematically increasing

the radius of ball associated with each atom, and come up

with three 1D PBN graphs for b0, b1, and b2. We then stack

1000 PBN graphs of the same type, say all b0 graphs, together.

In this way, the final result can be stored in a 2D matrix with

the row number indicating the filtration radius, the column

number indicating the configuration, and the elements are

PBN values. Figures 2a–2c demonstrate the unfolding of pro-

tein 1UBQ in the all atom representation without hydrogen

atoms and the corresponding 2D persistence diagrams. In

these subfigures, we highlight residual PRs and HRs in blue

and red, respectively. These ring structures correspond to the

local topological invariants as indicated in Figure 1a. Figures

2d–2f depict 2D persistent homology analysis of the protein

unfolding process. Because all the bond lengths are around

1.5–2.0 Å and do not change during the unfolding process,

the 2D b0 persistence shown in Figure 2d is relatively simple

and consistent with the top panel in Figure 1b. The 2D b1 per-

sistence shown in Figure 2e is very interesting. The local rings

occurred from 1.6 to 2.7 Å are due to pentagonal and hexago-

nal structures in the residues and are persistent over the

unfolding process. However, the numbers of b1 invariants for

global rings in the region from 2.85 to 6.7 Å vary dramatically

during the unfolding process. Essentially, the SMD-induced

elongation of the polypeptide structure reduces the number

of rings. Finally, the behavior of the b2 invariants in Figure 2f is

quite similar to that of the b1. The local b2 invariants occurred

Figure 2. The unfolding of protein 1UBQ and the corresponding multidimensional persistence. a) All atom representation of the relaxed structure without

hydrogen atoms; b) All atom representation of the unfolded structure at the 300th frame; c) All atom representation of the unfolded structure at the

500th frame; d) 2D b0 persistence; e) 2D b1 persistence; f ) 2D b2 persistence. In subfigures d, e, and f, horizontal axes label the filtration radius (Å) and the

vertical axes are the configuration index. Color bars denote the natural logarithms of PBNs. We systematically add 1 to all PBNs to avoid the possible loga-

rithm of 0. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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from 2.4 to 2.7 Å induced by the hexagonal structures[51]

remain unchanged during the unfolding process, while the

number of global b2 invariants occurred from 3.5 to 6.7 Å rap-

idly decreases during the unfolding process. Especially, at

750th configuration and beyond, the number of b2 invariants

in global region has plummeted. The related PBNs for b2 drop

to zero abruptly, indicates that the protein has become com-

pletely unfolded. Indeed, there is an obvious topological tran-

sition in multidimensional b1 persistence around 750th

configuration as shown in Figure 2e. The global b1 PBNs are

dramatically reduced and their distribution regions are signifi-

cantly narrowed for all configurations beyond 75 ps simula-

tions, which is an evidence for solely intraresidue b1 rings.

Having analyzed the multidimensional persistence in protein

folding via the all-atom representation, it is interesting to fur-

ther explore the same process and dataset in the CG represen-

tation. Figure 3 illustrates our results. In Figure 3a, protein

1UBQ is plotted with all atoms except for hydrogen atoms. We

use different colors to label different types of residues. The

same structure is illustrated by the Ca-based CG representation

in Figure 3b. An advantage of the CG model is that it simplifies

topological relations by ignoring intraresidue topological invar-

iants, while emphasizing inter-residue topological features. Fig-

ures 3c and 3d, respectively, depict 2D b0 and b1 invariants of

the protein unfolding process. Compared with the all-atom

results in Figures 2d and 2e, there are some unique properties.

First, the CG analysis only emphasizes the global topological

relations among residues and their evolution during the pro-

tein unfolding. Additionally, the 2D b0 profile of the all-atom

representation is a strict invariant over the time evolution as

shown in Figure 2d, while that of CG model in Figure 3c varies

obviously during the SMD simulation. The standard mean dis-

tance between two adjacent Ca atoms is about 3.8 Å, which

can be enlarged under the pulling force of the SMD. The devi-

ation from the mean residue distance indicates the strength of

the pulling force. Finally, Figure 3d displays a clear topological

transition from a partially folded state to a completely

unfolded state at 75 ps or 750th configuration.

As demonstrated in our earlier work,[51] one can establish a

quantitative model based on the PBNs of b1 to predict the rel-

ative folding energy and stability. The b1 PBNs computed from

the present CG representation are particularly suitable for this

Figure 3. CG representation of the unfolding of protein 1UBQ and the corresponding multidimensional persistence. a) All atom representation of the

relaxed structure without hydrogen atoms; b) CG representation of the relaxed structure without hydrogen atoms; c) 2D b0 persistence; d) 2D b1 persist-

ence. The color in subfigure a denotes different residues. In subfigures c and d, horizontal axes label the filtration radius (Å) and the vertical axes are the

protein configuration index. Color bars denote the natural logarithms of PBNs. We systematically add 1 to all PBNs to avoid the possible logarithm of 0.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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purpose. A similar quantitative model can be established to

describe the orderliness of disordered proteins.[51] In Figure 4,

we demonstrate the prediction of bond and total energies

using b0 and b1 accumulated bar lengths, respectively. Basi-

cally, the PBNs for each individual configuration are added to

deliver the accumulated bar lengths, which are then used to

fit with the simulated results in a total of 1000 frames. It can

be seen that the accumulated bar lengths of b0 give a nice

prediction of the bond energy, and the accumulated bar

lengths of b1 capture the essential properties of the total

energy. For these two fittings, Pearson’s correlation coefficients

are 0.924 and 0.990, respectively. It can be seen these topolog-

ical measurements capture the essential properties of the

bond and total energies, and thus can be used to characterize

the unfolding process.

In summary, multidimensional persistent homology analysis

provides a wealth of information about protein folding and/or

unfolding process including the number of atoms or residues,

the numbers of HRs and PRs in the protein, bond lengths or

residue distances, the strength of applied pulling force, the

orderliness of disordered proteins, the relative folding energies,

and topological translation from partially folded states to com-

pletely unfolded states. Therefore, multidimensional topologi-

cal persistence is a powerful new tool for describing protein

dynamics, protein folding and protein–protein interaction.

Multidimensional persistence in biological

matrices

Having illustrated the construction of multidimensional topo-

logical persistence in point cloud data, we further demonstrate

the development of multidimensional topological analysis of

matrix data. To this end, we consider biomolecular matrices-

associated flexibility analysis. The proposed method can be

similarly applied to other biological matrices.

Protein flexibility prediction

Geometry, electrostatics, and flexibility are some of the most

important properties for a protein that determine its functions.

The role of protein geometry and electrostatics has been

extensively studied in the literature. However, the importance

of protein flexibility is often overlooked. An interesting argu-

ment is that it is the protein flexibility, not disorder, that is,

intrinsic to molecular recognition.[99] Protein flexibility can be

defined as its ability to deform from the equilibrium state

under external force. The external stimuli are omnipresent

either in the cellular environment or in the lattice condition. In

response, protein spontaneous fluctuations orchestrate with

the Brownian dynamics in living cells or lattice dynamics in

solid with its degree of fluctuations determined by both the

strength of external stimuli and protein flexibility. It has been

shown that the GNM and the FRI are some of most successful

methods for protein flexibility analysis.[8,9] However, the per-

formance of these methods depends on their parameters,

namely, the cutoff distance of the GNM and the characteristic

distance or the scale of the FRI. In this work, we develop

matrix-based multidimensional persistent homology methods

to examine the optimal scale of FRI and optimal cutoff dis-

tance of the GNM. Brief descriptions are given to both meth-

ods to facilitate our persistent homology analysis.

Flexibility–rigidity index. The FRI has been proposed as a

matrix diagonalization free method for the flexibility analysis

of biomolecules.[8,9] The computational complexity of the fast

FRI constructed using the cell lists algorithm is of O(N), with N

being the number of particles.[9] In FRI, protein topological

connectivity is measured by a correlation matrix. Consider a

Figure 4. The prediction of bond and total energy with b0 and b1 accumulated bar lengths, respectively. a) The quantitative comparison of bond energies

of b0 predictions and steered molecular dynamic results. The horizontal axis labels the configuration number and the vertical axis is the bond energy

(kcal/mol). The Pearson’s correlation coefficient is 0.924. b) The comparison of total energies of b1 predictions and steered molecular dynamic results. The

horizontal axis labels the configuration number and the vertical axis is the total energy (kcal/mol). The Pearson’s correlation coefficient is 0.990. The accu-

mulated bar length for each configuration is calculated by the summation of all the corresponding PBNs for the configuration. It can be seen these topo-

logical measurements capture the essential properties of the bond and total energies, and thus can be used to characterize the unfolding process. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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protein with N particles with coordinates given by

frjjrj 2 R3; j51; 2; . . . ;Ng. We denote jjri2rjjj the Euclidean

distance between ith particle and the jth particle. For the ith

particle, its correlation matrix element with the jth particle is

given by Uðjjri2rjjj; rjÞ, where rj is the scale depending on

the particle type. The correlation matrix element is a real-

valued monotonically decreasing function satisfying

Uðjjri2rjjj;rjÞ51 as jjri2rjjj ! 0 (1)

Uðjjri2rjjj; rjÞ50 as jjri2rjjj ! 1: (2)

The Delta sequences of the positive type discussed in an

earlier work[100] are suitable choices. For example, one can

select generalized exponential functions

Uðjjri2rjjj; rjÞ5e2 jjri2rj jj=rjð Þj ; j > 0 (3)

and generalized Lorentz functions

Uðjjri2rjjj;rjÞ5
1

11 jjri2rjjj=rj
� �t ; t > 0: (4)

We have defined the atomic rigidity index li for the ith par-

ticle as[8]

li5
X

N

j

wjUðjjri2rjjj;rjÞ; 8i51; 2; . . . ;N: (5)

where wj is a particle type-dependent weight function. The

atomic rigidity index has a straightforward physical interpreta-

tion, that is, a strong connectivity leads to a high rigidity.

We also defined the atomic flexibility index as the inverse of

the atomic rigidity index,

fi5
1

li
; 8i51; 2; . . . ;N: (6)

The atomic flexibility indices ffig are used to predict experi-

mental B-factors or Debye–Waller factors via a linear regres-

sion.[8] The FRI theory has been intensively validated by a set

of 365 proteins.[8,9] It outperforms the GNM in terms of accu-

racy and efficiency.[8]

When we only consider one type of particle, say Ca atoms

in a protein, we can set wj5 1. Additionally, it is convenient to

set rj5r for Ca-based CG model. We use r as a scale parame-

ter in our multidimensional persistent homology analysis,

which leads to a 2D persistent homology.

Elastic network model. The NMA[4–7] is a well-developed tech-

nique and is constructed based on the matrix diagonalization

of MD force field. It can be used to study, understand, and

characterize the mechanical aspects of the long-time scale

dynamics. The computational complexity for the matrix diago-

nalization is typically of OðN3Þ, where N is the number of

matrix rows or particles. ENM[10] simplifies the MD force field

by considering only the elastic interactions between nearby

pairs of atoms. The GNM[11–13] makes a further simplification

using the CG representation of a macromolecule. This CG rep-

resentation ensures the computational efficiency. Yang and

Chng[101] have demonstrated that the GNM is about one order

more efficient than most other matrix diagonalization-based

approaches. In fact, GNM is more accurate than the NMA.[9] It

should be noticed that the GNM models can be further

improved by the incorporation of information from crystalline

structure, residual types, and cofactors.

The performance of GNM depends on its cutoff distance

parameter, which allows only the nearby neighbor atoms

within the cutoff distance to be considered in the elastic Ham-

iltonian. In this work, we construct multidimensional persistent

homology based on the cutoff distance in the GNM. We fur-

ther analyze the parameter dependence of the GNM by our

2D persistence.

Persistent homology analysis of optimal cutoff distance

Protein ENMs, including the GNM, usually use the CG represen-

tation and do not distinguish between different residues. Let

us denote N, the total number of Ca atoms in a protein, and

jjri2rjjj, the distance between ith and jth Ca atoms. To analyze

the topological properties of protein elastic networks, we have

introduced a new distance matrix D5fDijji51; 2; . . . ;N;

j51; 2; . . . ;Ng[51]

Dij5

jjri2rjjj; jjri2rjjj � rc;

d1; jjri2rjjj > rc;

(

(7)

where d1 is a sufficiently large value which is much larger

than the final filtration size and rc is a given cutoff distance.

Here d1 is designed to ensure that atoms beyond the cutoff

distance rc do not form any high-order simplicial complex dur-

ing the filtration process. Therefore, the resulting persistent

homology shares the same topological connectivity with

ENMs. By systematically increasing the cutoff distance rc, one

can analyze the topological connectivity and performance of

the GNM. Additionally, the cutoff distance (rc) in eq. (7) is also

used as the filtration parameter in our 2D persistent homology

analysis of the GNM.

The performance of the GNM for the B-factor prediction and

the multidimensional persistent homology analysis of protein

1PZ4 are plotted in Figure 5. In Figure 5a, we compare the

experimental B-factors and those predicted by the GNM with a

cutoff distance 6.6 Å. The Pearson correlation coefficient for

the prediction is 0.89. The GNM provides very good predic-

tions except for the first three residues and the high flexibility

around the 42nd residue. Figure 5b shows the relation

between correlation coefficient and cutoff distance. It can be

seen that the largest correlation coefficients are obtained in

the region when cutoff distance is in the range of 6–9 Å. Fig-

ures 5c and 5d illustrate 2D b0 and b1 persistence, respectively.

The x-axes are the cutoff distance rc in filtration matrix (7),

which is the major filtration parameter. The y-axes are the cut-

off distance rc in the GNM Kirchhoff matrix. The resulting b0

and b1 PBNs in the matrix representation have unique patterns

which are highly symmetric along the diagonal lines. This
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symmetry, to a large extent, is duo to the way of forming the

GNM Kirchhoff matrix. The 2D b0 persistence has an obvious

interpretation in terms of 113 residues. Interestingly, patterns

in Figure 5d can be used to explain the behavior of the correla-

tion coefficients under different cutoff distances. To this end,

we roughly divide Figure 5d into four regions according to the

cutoff distance, that is, (0 Å, 4.5 Å), (4.5 Å, 5.8 Å), (5.8 Å, 9 Å),

and (9 Å, 12 Å). In the first region, the network is not well con-

structed. As the distance between two Ca atoms is around 3.8

Å, there is only a cluster of isolated atoms when cutoff distance

is smaller than 4.5 Å. Therefore, the corresponding GNMs do

not give any reasonable prediction. In the second region, net-

work structures begin to form. The number of 1D ring struc-

tures within these networks increases dramatically. It reaches

its maximum when cutoff is about 5 Å, and then drops quickly.

This behavior means that many local small-sized loops are

developed. The corresponding GNMs can capture certain local

properties, however, they neglect the global networks and are

unable to grab the essential characteristics of the protein. As a

consequence, the correlation coefficients are quite poor. In the

third region, constructed networks incorporate more and more

large-sized loops or rings and the corresponding GNMs

improve predictions. In the last region, local rings disappear

while global rings are included in the network models. It is nat-

ural to assume that only when the constructed network

includes all essential topological invariants that the correspond-

ing GNM delivers the best prediction. However, this assumption

turns out to be incorrect. As indicated in Figure 5b, the largest

correlation coefficient is actually in the third region. The best

cutoff distances are around 7–9 Å. This happens because in the

GNM, equal weights are assigned to all elastic springs once

spring lengths are within the cutoff distance. Thus, there is no

discrimination between local and global ring structures.

Persistent homology analysis of the FRI scale

Unlike GNM which uses a cutoff distance, the FRI theory uses

a scale or characteristic distance r in its correlation kernel. The

Figure 5. Performance of GNM and multidimensional persistence of protein 1PZ4. a) Comparison of the GNM prediction at rc56:6 Å and experimental B-

factors; b) Correlation coefficient versus cutoff distance ðrcÞ for the GNM; c) 2D b0 persistence; d) 2D b1 persistence. In c and d, the horizontal axis is the

cutoff distance rc in filtration matrix (7) and the vertical axis is the cutoff distance rc in the GNM. The color bars represent PBNs. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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scale has a similar function as the scale in wavelet theory, and

thus, it emphasizes the contribution from the given scale. The

FRI scale has a direct impact in the accuracy of protein B-

factor prediction. Similar to the optimal cutoff distance in the

GNM, the best FRI scale varies from protein to protein,

although an optimal value can be found based on a statistical

average over hundreds of proteins.[8,9] In this work, we use the

scale as an additional variable to construct multidimensional

persistent homology.

In our recent work, we have introduced a FRI-based filtration

method to convert the point cloud data into matrix data.[51] In

this approach, we construct a new filtration matrix M5fMijji5
1; 2; . . . ;N; j51; 2; . . . ;Ng

Mij5

12Uðjjri2rjjj;rÞ; i 6¼ j;

0; i5j;

(

(8)

where 0 � Uðjjri2rjjj;rÞ � 1 is defined in eqs. (1) and (2). To

avoid any confusion, we simply use the exponential kernel

with parameter j5 2 in this work.

The performance of the FRI B-factor prediction and the mul-

tidimensional persistence of protein 2MCM are illustrated in

Figure 6. The filtration matrices are constructed as Mij51:02

e2
jjri2rj jj

r

� �2

. The comparison of experimental B-factors and pre-

dicted B-factors with the scale r59:2 Å is given in Figure 6a.

The Pearson correlation coefficient is 0.81 for the prediction.

Figure 6b shows the relation between the correlation coeffi-

cient and the scale. It is seen that the largest correlation coeffi-

cients are obtained when the scale is in the range of 5–15 Å.

Figures 6c and 6d demonstrate, respectively, b0 and b1 2D per-

sistence. Unlike the GNM results shown in Figure 5 where dif-

ferent cutoff distances lead to dramatic changes in network

structures, the FRI connectivity shown in Figure 6c increases

gradually as r increases. For all r > 3Å, the maximal b1 values

can reach 40 as shown in Figure 6d. However, in the region of

5 Å<r <15 Å, 1D rings are established over a wide range of

the matrix values, which implies a wide range of distances.

The balance of the global and local rings gives rise to excellent

FRI B-factor predictions.

Figure 6. Performance of the FRI and multidimensional persistence of protein 2MCM. a) Comparison of the FRI prediction at r59:2Å and experimental B-

factors; b) Correlation coefficient versus scale (r) for the FRI; c) 2D b0 persistence; d) 2D b1 persistence. In c and d, the horizontal axis is in the FRI filtration

matrix value Mij (8) and the vertical axis is the scale (r) in terms of Å in the FRI. The color bars represent PBNs. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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In fact, a persistent homology-based quantitative model can

be established in terms of accumulated bar length.[51] Essen-

tially, if all the PBNs are added up at each scale, the accumulated

PBNs give rise to a good prediction of the optimal scale range.

State differently, the plot of the accumulated PBNs versus the

scale will have a similar shape as the curve in Figure 6b.

Multidimensional persistence in volumetric

data

Volumetric data are widely available in science and engineer-

ing. In biology, density information, such as the experimental

data from cryo-EM,[86,102] geometric flow-based molecular

hypersurface[31,33,42,85] and electrostatic potential,[44,103] are

typically described in volumetric form. These volumetric data

can be filtrated directly in terms of isovalues in persistent

homology analysis. Basically, the locations of the same density

value form an isosurface. The discrete Morse theory can then

be used to generate cell complexes. Additionally, we have

developed techniques[51] to convert point cloud data from X-

ray crystallography into the volumetric form using the rigidity

function or density in our FRI algorithm.[86] Specifically, the

atomic rigidity index li in eq. (5) can be generalized to a posi-

tion (r)-dependent rigidity function or density[8,9]

lðrÞ5
X

N

j51

wjðrÞUðjjr2rjjj;rjÞ: (9)

Volumetric multidimensional persistence can be constructed

in many different ways. Because wj and rj are 2N independent

variables, it is feasible to construct 2N11-dimensional persist-

ence for an N-atom biomolecule. Here the additional dimension

is due to the filtration over the density lðrÞ. If we set wj5 1

and rj5r, we can construct genuine 2D persistence by filtra-

tion over two independent variables, that is, r and density.

In this work, we also demonstrate the construction of pseu-

domultidimensional persistence. Since noise and denoising are

two important issues in volumetric data, we develop methods

for pseudomultidimensional topological representation of

noise and pseudomultidimensional topological denoising.

Multidimensional topological fingerprints and topological

denoising

To analyze the topological signature of noise, we make a case

study on Gaussian noise, which is perhaps the most commonly

occurred noise. The Gaussian white noise is a set of random

events satisfying the normal distribution

nðtÞ5 An
ffiffiffiffiffiffi

2p
p

rn
e
2

ðt2lnÞ2
2r2n ; (10)

where An, ln, and rn are the amplitude, mean value, and

standard deviation of the noise, respectively. The strength of

Gaussian white noise can be characterized by the SNR defined

as SNR5ls=rn, where ls is the mean value of signal. We gen-

erate noise-polluted volumetric data by adding different levels

of Gaussian white noise to the original data.

We use fullerene C20 as an example to illustrate the multidi-

mensional topological fingerprints of noise. The rigidity density

of C20 is given by

lðrÞ5
X

20

j51

e22jjr2rj jj: (11)

The noisy data and multifiltration results are demonstrated

in Figure 7. We plot the noisy data of C20 with three SNRs, 1,

10, and 100 in Figures 7a1–7a3. The persistent barcodes of C20
have 20 b0 bars, 11 b1 bars, and one b2 bar. Figures 7b1–7b3
are, respectively, 2D b0, b1, and b2 persistent homology. In

these figures, the vertical axes are the SNR values, which are

varied over the range of 1.0–100.0. The horizontal axes repre-

sent the density isovalues (i.e., the main filtration parameter).

In these cases, the designed filtration goes from the highest

density value around 2.0 to the lowest density about 21.0.

The negative values are introduced by the Gaussian noise. The

resulting PBNs are plotted in the natural logarithm scale as

indicated by the color bars.

First of all, the topological fingerprints of C20 stand out in

Figures 7b1–7b3 and demonstrate some invariant features as

the SNR increases. In Figure 7b1, the rectangle-like region is

due to the 20 isolated parts in C20. Similarly, the rectangle-like

region in Figures 7b2 and 7b3 represent the 12 rings and the

central void of the C20 structure. These rectangle patterns are

the intrinsic topological fingerprints of C20. In Figures 7b1–7b3,

noise topological signatures dominate the counts of Betti

numbers, particularly when the SNR is smaller than 30. For

example, b2 spectrum near the density value of 0.4 is essen-

tially indistinguishable from noise-induced cavities.

We have recently proposed topological denoising as a new

strategy for topology-controlled noise reduction of synthetic,

natural, and experimental data.[86] Our essential idea is to cou-

ple noise reduction with persistent homology analysis. Since

persistent topology is extremely sensitive to the noise, the

strength of noise signature can be monitored by persistent

homology in a denoising process. As a result, one can make

optimal decisions on number of denoising iterations. It was

found that contrary to popular belief, noise can have very

long lifetimes in the barcode representation,[86] while short-

lived features are part of MTFs.[51] In this work, we introduce

2D topological denoising methods. To this end, we present a

brief review of the Laplace–Beltrami flow-based denoising

approach.

Laplace–Beltrami flow. One of efficient approaches for noise

reduction in signals, images and data is geometric analysis,

which combines differential geometry and differential equa-

tions. The resulting geometric PDEs have become very popular

in applied mathematics and computer science in the past two

decades.[104–106] Wei introduced some of the first families of

high-order geometric PDEs for image analysis[107]

@uðr; tÞ
@t

52

X

q

r � jq1eðuðr; tÞ; jruðr; tÞj; tÞ; q50; 1; 2; . . .

(12)
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where the nonlinear hyperflux term jq is given by

jq52dqðuðr; tÞ; jruðr; tÞj; tÞrr2quðr; tÞ; q50; 1; 2; . . . (13)

where r 2 Rn; r5
@
@r ; uðr; tÞ is the processed signal, image, or

data, dqðuðr; tÞ; jruðr; tÞj; tÞ are edge or gradient-sensitive dif-

fusion coefficients and eðuðr; tÞ; jruðr; tÞj; tÞ is a nonlinear

operator. Denote XðrÞ the original noise data and set the initial

input uðr; 0Þ5XðrÞ. There are many ways to choose hyperdiffu-

sion coefficients dqðu; jruj; tÞ in eq. (13). For example, one can

use the exponential form

dqðuðr; tÞ; jruðr; tÞj; tÞ5dq0 exp 2
jrujj
rjq

" #

; j > 0; (14)

where dq0 is chosen as a constant with value depended on

the noise level, and r0 and r1 are local statistical variance of u

and ru

r2qðrÞ5jrqu2rquj2 ðq50; 1Þ: (15)

Figure 7. Illustration of the Gaussian noise contaminated fullerene C20 data, their multidimensional persistence and multidimensional topological denoising.

a1–a3) The noisy C20 at the SNRs of 1, 10, and 100, respectively; b1–b3) The 2D persistence representations of b0, b1, and b2, respectively, for Gaussian noise

contaminated fullerene C20 data. The horizontal axes represent the density values (i.e., the main filtration parameter). The vertical axes are the SNR. Color

bars denote the natural logarithm of PBNs. We systematically add 1 to all PBNs to avoid the possible logarithm of 0; c1–c3) The 2D persistence representa-

tions of b0, b1, and b2 respectively, for denoising contaminated fullerene C20 data with SNR 1.0. The horizontal axes represent the density values. The verti-

cal axes represent the number of iterations. A total of 200 iterations is used. Color bars denote the natural logarithm of PBNs added by 1. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Here the notation YðrÞ represents the local average of YðrÞ
centered at position r. The existence and uniqueness of high-

order geometric PDEs were investigated in the litera-

ture.[108–111] Recently, we have proposed differential geometry-

based objective oriented persistent homology to enhance or

preserve desirable traits in the original data during the filtra-

tion process and then automatically detect or extract the cor-

responding topological features from the data.[85] From the

point of view of signal processing, the above high-order geo-

metric PDEs are designed as low-pass filters. Geometric PDE-

based high-pass filters was pioneered by Wei and Jia by cou-

pling two nonlinear geometric PDEs.[112] Recently, this

approach has been generalized to a new formalism, the PDE

transform, for signal, image, and data analysis.[40,113–115]

Apart from their application to images,[107,116,117] high-order

geometric PDEs have also been modified for macromolecular

surface formation and evolution,[43]

@S

@t
5ð21Þq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðjrr2qSjÞ
p

r � rðr2qSÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðjrr2qSjÞ
p

 !

1PðS; jrSjÞ; (16)

where S is the hypersurface function, gðjrr2qSjÞ511jrr2qSj2
is the generalized Gram determinant and P is a generalized

potential term. When q5 0 and P5 0, a Laplace–Beltrami

equation is obtained,[42]

@S

@t
5jrSjr � rS

jrSj

� �

: (17)

We use this Laplace–Beltrami equation for the noise removal

in this work.

Computationally, the finite different method is used to dis-

cretize the Laplace–Beltrami equation in 3D. Suitable time

interval dt and grid spacing h are required to ensure the stabil-

ity and accuracy. To avoid confusion and control the noise

reduction process systematically, we simply ignore the voxel

spacing in different datasets and use a set of unified parame-

ters of dt55:0 E26 and h5 0.01 in our computation. The

intensity of noise reduction is then described by the duration

of time integration or the number of iterations of eq. (17).

Topological fingerprint identification. From Figures 7b1–b3, it

can been seen that, with the increase of SNR, the intrinsic top-

ological properties emerge and persist. Persistent patterns can

be seen in the PBN representation. It is interesting to know

whether the topological persistence of the signal is a feature

in the denoising process.

Figures 7c1–7c3 depict the topological invariants of contami-

nated fullerene C20 over the Laplace–Beltrami flow-based

denoising process. The fullerene C20 rigidity density is gener-

ated using eq. (11). The noise is added according to eq. (10)

with the SNR of 1.0. The Laplace–Beltrami equation (17) is

solved with time stepping dt55:0 E26 and spatial spacing

h5 0.01. Figures 7c1–7c3 illustrate, respectively, the b0, b1, and

b2 persistent homology analysis of the denoising process. The

filtration goes from density 2.0 to 21.0 (the negative values

are due to the added noise). A total of 200 denoising itera-

tions are applied to the noisy data. The PBNs are plotted in

the natural logarithm scale. It can be seen that after about 40

denoising iterations, the noise intensity has been reduced dra-

matically. Indeed, the intrinsic topological features of C20
emerge and persist. It appears that the bandwidths of C20
PBNs reduce during the denoising process. However, such a

bandwidth reduction is due to the fact that there is a dramatic

density reduction during the denoising precesses, particularly

at the early stage of the denoising. In fact, the accumulated

Betti numbers of C20 do not change and stay stable. It should

be noted that the color bar denotes the natural logarithm of

PBNs values added by 1. The comparison between Figures

7b1–7b3 and 7c1–7c3 demonstrates clearly the noise reduction

effect in various iteration steps. It provides a criterion to distin-

guish between the intrinsic topological properties and noise in

denoising process.

Having demonstrated the construction of 2D persistence for

topological denoising, we further apply this new technique for

the analysis of noisy cryo-EM data of a microtubule (EMD

1129).[102] Figures 8a, 8b, 8c are surfaces extracted from

denoising data with the numbers of iterations of 1, 100, and

200, respectively. A common isovalues of 15.0 used to extract

surfaces in these plots. It is seen that the denoising process

reduces not only the noise, but also the density, which leads

to the shift in the topological distribution. Figures 8d, 8e, and

8f are, respectively, the 2D b0, b1, and b2 persistence. The fil-

trations in horizontal axes go from density 45 to 0. In Figures

8d, 8e, and 8f, vertical axes are the numbers of iterations. A

total of 300 iterations is used for integrating eq. (10) with time

stepping dt52:0 E26 and spatial spacing h5 0.01. Color bar

values represent the natural logarithm of PBNs. It can be seen

that after about 100 denoising iterations, the noise intensity

has been dramatically reduced. Persistent behavior can be

observed in b0, b1, and b2. This persistent behavior is a mani-

fest of the intrinsic topological features of the microtubule

structure.

Multiscale multidimensional persistence

In this section, we demonstrate the construction of multiscale

multidimensional persistent homology. To this end, we con-

sider protein 2YGD in our multiscale 2D persistence analysis.

The fullerene C60, whose topological properties have been

analyzed in our earlier work,[51] is used as an example to illus-

trate our multiscale high-dimensional persistence.

Multiscale 2D persistence. We generate volumetric density

data of protein 2YGD using the exponential kernel function

lðrÞ5
X

N

j51

wje
2

jjr2rj jj
r ; (18)

where the resolution r is used as a multiscale parameter and

will be varied from 0.7 to 14.7 Å. Weight wj is chosen as the

atomic number of the jth atom. We linearly rescale the density

value to region[1] using expression lðrÞs5 lðrÞ
lmax

. Here lðrÞs is the
rescaled density value. Here lmax is the largest density value in
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the original data. For each given scale, we carry out the den-

sity value based filtration of protein 2YGD. Our results are

depicted in Figure 9. The structure of protein 2YGD is plotted

in Figure 9a.

The structure of protein 2YGD exhibits dramatically different

scales ranging from atom, residue, secondary-structure, domain

to entire protein. Figure 9 illustrates the topological representa-

tion of this multiscale structure. Generally speaking, we can

roughly divide results of b0, b1, and b2 into three parts according

to the resolution parameter r. The first part is when r is smaller

than 3 Å. In this region, the topological properties related to the

local structures, that is, atoms or intraresidues, are well captured.

The second part is the region when r is larger than 3 Å and

smaller than 7 Å. With the increase of the resolution value, local

structures gradually disappear, more global type of structures,

that is, inter-residual and domain, begins to emerge. The rest

region belongs to the third part, in which, only the global back-

bone structure of the protein 2YGD is captured. We can see that

the PBNs in this region are comparably consistent. In b0, we

have four individual components corresponding to the four

major domains in the protein. In b1, the PBNs are majorly nine

and four, representing the six large ring and four small ring pat-

tern in the structure. Finally the PBN is 1 for b2, this captures the

central void in the protein.

Multiscale high-dimensional persistence. Having demonstrated

the construction of 2D topological persistence in a number of

ways, we pursue to the development of 3D persistence. Obvi-

ously, there are a variety of ways that one can construct 3D or

multidimensional persistent homology. For example, 3D persis-

tent homology can be generated by the combination of scale,

time, and the matrix filtration, the combination of scale, time,

and density filtration, and the combination of scale, SNR, and

density filtration. In this work, we illustrate 3D persistent

homology using anisotropic scales or anisotropic filtrations,

which give rise to truly multidimensional simplicial complexes

and truly multidimensional persistent homology. For simplicity,

we take fullerene C60 as an example to illustrate our approach.

We define the density of the fullerene C60 by a multiscale

function,

lðrÞ5
X

60

j51

1:0

1:01
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2xj
rx
j

Þ21ðy2yj
r
y

j

Þ21ðz2zj
rz
j

Þ2
q ; (19)

where ðxj; yj; zjÞ are the atomic coordinates of C60 molecule

and rxj ;r
y
j , and rzj are 180 independent scales. Obviously, each

of these scales can vary independently. Therefore, together

with the density, these scales are able to deliver 181-

dimensional filtrations. However, the visualization of such a

high-dimensional persistent homology will be a problem, not

to mention its physical meaning. To reduce the dimensionality,

we set rxj 5rx ; ryj 5ry , and rzj5rz, which leads to 4D persistent

homology. To further reduce the dimensionality, we set rx5ry

to end up with 3D persistence.

Figure 8. Multidimensional topological denoising for EMD 1129 data of a microtubule structure. a) Denoising data after one iteration; b) Denoising data

after 100 iteration; c) Denoising data after 200 iteration; d) 2D b0 persistence; e) 2D b1 persistence; f ) 2D b2 persistence. Isosurfaces in a, b, and c are

extracted at isovalue 15.0. In d, e, and f, the horizontal axes are density isovalues (i.e., the main filtration parameter). The vertical axes represent the num-

ber of iterations. Color bars denote the natural logarithm of PBNs values added by 1.
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Unlike the isotropic filtration created by an isotropic scale,

the anisotropic filtration creates a family of distorted

“molecules” for topological analysis. For the highly symmetry

C60 molecule, these distorted versions are not very physical by

themselves. However, C60 is a good choice for illustrating and

analyzing our methodology, because any distortion is due to

the method. Conversely, the method itself is meaningful due

to the fact that most molecules are not symmetric and have

anisotropic shapes or anisotropic thermal fluctuations. Figure

10 depicts anisotropic C60 molecules generated by different

combinations of rx5ry and rz according to eq. (19). Figures

10a and 10b are obtained with rx5ry50:2 Å and rz50:5 Å at

the isovalue of 0.4. There is an elongation along the z axis. Fig-

ures 10c and 10d are generated with rx5ry50:5 Å and rz5

0:2 Å at the isovalue of 1.0. In this case, there is an obvious

compression in the z-direction.

Topologically, the anisotropic filtration systematically creates

a family of truly multidimensional simplicial complexes, which

would be difficult to imagine otherwise in the 3D space. Fig-

ure 11 illustrates the multiscale 3D persistent homology of C60
molecule. The molecular structure is presented in Figure 11a

with rx5ry5rz50:5 Å at the isovalue of 1.5. For the 2D per-

sistent homology, the variation of PBNs over two axes can be

represented by different color schemes. However, the visualiza-

tion of PBNs in 3D is not trivial. Figures 11b, 11c, and 11d are,

respectively, multiscale 3D b0, b1, and b2 persistence. Here the

x-axes represent the density value (i.e., the main filtration

parameter). The y-axes denote rz and the z-axes are for rx5ry.

The distributions of two PBNs, b054 and b0550 are plotted

with blue dots and red dots, respectively, in Figure 11b. It is

seen that PBNs of b0 are mainly distributed at small rx and rz

scales. In Figure 11c, we depict the distributions of b153 and

Figure 9. The multiscale multidimensional persistence of the protein 2YGD. a) The structure of protein 2YGD; b) 2D b0 persistence; c) 2D b1 persistence; d)

2D b2 persistence. In b, c, and d, the horizontal axes are the density isovalues (i.e., the main filtration parameter). The vertical axes represent the scale (Å).

natural logarithm of PBNs values added by 1.
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b1520 with blue dots and red dots, respectively. As the scales

increase, the PBNs of b1 first increase then decay. Finally, the

distributions of b251 and b252 are illustrated with blue dots

and red dots, respectively, in Figure 11d. As the cavity of C60 is

relatively global, the values of b251 is seen to locate at rela-

tively large scales.

Conclusion

Recently, persistent homology, a new branch of topology, has

gained considerable popularity for computational application

in big data simplification. It generates a one-parameter family

of topological spaces via filtration such that topological invari-

ants can be measured at a variety of geometric scales. As a

result, persistent homology is able to bridge the gap between

geometry and topology. However, 1D persistent homology has

its limitation to represent high-dimensional complex data. Mul-

tidimensional persistence, a generalization of 1D persistent

homology to a multidimensional one, provides a new promise

for big data analysis. Nevertheless, the realization and con-

struction of robust multidimensional persistence have been a

challenge.

In this work, we introduce two types of multidimensional

persistence. The first type is called pseudomultidimensional

persistence, which is generated by the repeated applications

of 1D persistent homology to high-dimensional data, such as

results from molecular dynamics simulation, PDEs, molecular

surface evolution, video data sets, and so forth. The other type

of multidimensional persistence is constructed by appropriate

multifiltration processes. Specifically, cutoff distance and scale

are introduced as new filtration variables to create multifiltra-

tion and multidimensional persistence. The scale of FRI[8,9]

behaves in the same manner as the wavelet scale. It serves as

an independent filtration variable and controls the formation

Figure 10. Multidimensional anisotropic filtration of C60. a) The z-direction view of C60 with rx5ry50:2 Å and rz50:5 Å at the isovalue of 0.4; b) The x-

direction view of C60 with rx5ry50:2 Å and rz50:5 Å at the isovalue of 0.4; c) The z-direction view of C60 with rx5ry50:5 Å and rz50:2 Å at the iso-

value of 1.0; d) The x-direction view of C60 with rx5ry50:5 Å and rz50:2 Å at the isovalue of 1.0. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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of simplicial complexes and the corresponding topological

spaces. As a result, the FRI scale creates truly multiscale multi-

dimensional persistent homology, in conjugation with the

matrix value variable or the density variable. We have devel-

oped genuine 2D persistent homology. Using anisotropic

scales, in which the scale in each spatial direction can vary

independently, we can construct 4D persistent homology. A

protocol is prescribed for the construction of arbitrarily high

dimensional persistence. Concrete numerical example is given

to 3D persistence.

We have demonstrated the utility, established the robust-

ness and explored the efficiency of the proposed multidimen-

sional persistence by its applications to a wide range of

biomolecular systems. First, we have constructed pseudomulti-

dimensional persistence for the protein unfolding process. It is

shown that local topological features such as pentagonal and

HRs in the amino acid residues are preserved during the

unfolding process, whereas global topological invariants dimin-

ish over the unfolding process. Topological transition from

folded or partially folded proteins to unfolded proteins can be

clearly identified in the 2D persistence. We show that the b0

persistence also provides an indication of the strength of

applied pulling forces in the SMD. Additionally, we have ana-

lyzed the optimal cutoff distance of the GNM and the optimal

scale of the FRI theory using 2D persistence. We have revealed

the relationship between the topological connectivity in terms

of Betti numbers and the performance of the GNM and the

FRI for the prediction of protein Debye–Waller factors. More-

over, we have used 2D persistence to illustrate the topological

signature of Gaussian noise. The efficiency of Laplace–Beltrami

flow-based topological denoising is studied by the present 2D

persistence. We show that the topological invariants of C20,

especially b2, persist during the denoising process, whereas

the topological invariants of noising diminish during the

denoising process. Similar results are also observed for the

topological denoising of cryo-EM data. Finally, we have used

multiscale multidimensional persistence to investigate the top-

ological behavior of protein 2YGD. We reveal its multiscale

Figure 11. The C60 molecule and its multiscale 3D persistence. a) C60 molecule obtained with rx5ry5rz50:5 Å at the isovalue of 1.5; b) 3D b0 persistence;

c) 3D b1 persistence; d) 3D b2 persistence. In b, c, and d, the x-axes label the density value (i.e., the main filtration parameter), the y-axes denote rz and

the z-axes represent rx5ry . The blue and red dots denote b054 and 50, respectively, in b, b153 and 20, respectively, in c, and b251 and 2, respectively,

in d. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FULL PAPER WWW.C-CHEM.ORG

1518 Journal of Computational Chemistry 2015, 36, 1502–1520 WWW.CHEMISTRYVIEWS.COM

http://www.wileyonlinelibrary.com


structure properties in the 2D persistence. We also consider

the C60 over anisotropic scale variations. This study unveils

that b0 invariants are intrinsically local, while b1 and b2 invari-

ants are relatively global.

Multidimensional persistence techniques have been devel-

oped for three types of data formats, that is, point cloud data,

matrix data and volumetric data. We have also illustrated con-

version of point cloud data to matrix and volumetric data via

the FRI theory. Therefore, the proposed methodology can be

directly applied to other biomolecular systems, biological net-

works, and diverse other disciplines.
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