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A novel algebraic method for the simultaneous estimation of MIMO channel parameters from channel sounder measurements
is developed. We consider a parametric multipath propagation model with P discrete paths where each path is characterized
by its complex path gain, its directions of arrival and departure, time delay, and Doppler shift. This problem is treated as a
special case of the multidimensional harmonic retrieval problem. While the well-known ESPRIT-type algorithms exploit shift-
invariance between specific partitions of the signal matrix, the rank reduction estimator (RARE) algorithm exploits their internal
Vandermonde structure. A multidimensional extension of the RARE algorithm is developed, analyzed, and applied to measurement
data recorded with the RUSK vector channel sounder in the 2 GHz band.
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1. INTRODUCTION

Multidimensional harmonic retrieval problems arise in a
large variety of important applications like synthetic aper-
ture radar, image motion estimation, chemistry, and double-
directional channel estimation for multiple-input multiple-
output (MIMO) communication systems [1]. Also certain
signal separation problems can be solved under this frame-
work.

The 4D parameter estimation problem for MIMO chan-
nel sounder measurements applies to the following double-
directional MIMO channel model in which the signal is as-
sumed to propagate from the transmitter to the receiver
over P discrete propagation paths. Each path (p = 1, . . . ,P)
is characterized by the following parameters: complex path
gain wp, direction of departure (DOD) θp, direction of ar-
rival (DOA) φp, propagation delay τp, and Doppler shift νp.

We assume an idealized data acquisition model for
MIMO channel sounders. In this model, data consists of si-
multaneous measurements of the individual complex base-
band channel impulse responses between all M transmit an-
tenna elements and all L receive antenna elements after ideal
lowpass filtering. These are assembled in a 3-way array with

dimensions K × L × M. Such a 3-way array is in the fol-
lowing referred to as a “MIMO snapshot” and consists of
K time samples at sampling period Ts. A MIMO snapshot
is acquired in a duration Ta. We repeat N MIMO snapshot
measurements consecutively in time and assemble a 4-way
array of dimensions K × L × M × N which we refer to as
a “Doppler block.” We assume that all path parameters wp,
θp, φp, τp, νp remain constant within the acquisition time
NTa of each Doppler block. Individual Doppler blocks are
indexed by i = 1, . . . , J . Between any two Doppler blocks,
the complex path gain wp may vary arbitrarily while the re-
maining path parameters are constant for p = 1, . . . ,P. In
Section 5.2, we describe the data acquisition with MEDAV’s
RUSK-ATM channel sounder [2] (http://www.medav.de),
(http://www.channelsounder.de) which was used for the ex-
periment.

The ith Doppler block is modelled as

xk,ℓ,m,n(i) =
P∑

p=1

wp(i) sinc

(

k −
τp

Ts

)

bℓpc
m
p d

n
p

+ noise,

(1)
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where

bp = e− j(2πdR/λ) cosφp , cp = e− j(2πdT /λ) cos θp ,

dp = e− j(2π/N)νp .
(2)

The first index k represents the time sample, the second in-
dex ℓ represents the Rx element number, the third index m
represents the Tx element number, and the fourth index n
represents the Doppler block number. We have assumed uni-
form linear receive and transmit arrays, λ is the wavelength,
dR and dT denote the elemental spacings of the receive and
transmit side, respectively.

After a discrete Fourier transform over the time sample
index k, we obtain

yk,ℓ,m,n(i) =
P∑

p=1

wp(i)ap
kbp

ℓcp
mdp

n + noise,

i = 1, . . . , J , k = 1, . . . ,K ,

ℓ = 1, . . . ,L, m = 1, . . . ,M,

n = 1, . . . ,N ,

(3)

where

ap = e− j(2π/K)τp , bp = e− j(2πdR/λ) cosφp ,

cp = e− j(2πdT /λ) cos θp , dp = e− j(2π/N)νp .
(4)

We study a joint parameter estimator for the parameters of
interest {ap, bp, cp,dp}

P
p=1, where |ap| = |bp| = |cp| =

|dp| = 1, and wp(i) is considered as an unknown nuisance
parameter.

Numerous parametric and nonparametric estimation
methods have been proposed for the one-dimensional expo-
nential retrieval problem. Only few of these techniques allow
a simple extension of the multidimensional case at a reason-
able computational load [3]. Simple application of 1D results
separately in each dimension is only suboptimal in the sense
that it does not exploit the benefits inherent in the multidi-
mensional structure, leading to difficulties in mutually asso-
ciating the parameter estimates obtained in the various di-
mensions and over-strict uniqueness conditions [4]. Con-
trariwise, many parametric high-resolution methods specif-
ically designed for multidimensional frequency estimation
require nonlinear and nonconvex optimization so that the
computational cost associated with the optimization proce-
dure becomes prohibitively high.

In this paper a novel eigenspace-based estimation
method for multidimensional harmonic retrieval problems
is proposed. The method can be viewed as an extension to
the rank reduction estimator (RARE) [5], originally devel-
oped for DOA estimation in partly calibrated arrays. The
method is computationally efficient due to its rooting-based
implementation, makes explicit use of the rich Vandermonde
structure in the measurement data, and therefore shows im-
proved estimation performance compared to conventional
search-free methods for multidimensional frequency estima-
tion.

The multidimensional RARE (MD RARE) algorithm es-
timates the frequencies in the various dimensions sequen-
tially. The dimensionality of the estimation problem and
the computational complexity of the estimator is signifi-
cantly reduced exploiting the Vandermonde structure of the
data model. This approach yields high estimation accuracy,
moderate identifiability conditions, and automatically asso-
ciated parameter estimates along the various dimensions.
The performance of the algorithm is illustrated at the ex-
ample of MIMO communication channel estimation based
on the double-directional channel model. Numerical exam-
ples based on simulated and measured data recorded from
the RUSK vector channel sounder at 2 GHz are presented.

2. SIGNAL MODEL

For simplicity of notation, we formulate the signal model
for the 2D case in detail. Here, the original MIMO chan-
nel estimation problem reduces to a single-input multiple-
output (SIMO) channel problem, where the parameters of
interest are the propagation delays τp and the DOAs φp for
p = 1, . . . ,P. Extensions of the proposed algorithm to higher
numbers of dimensions are straightforward. Consider a su-
perposition of P discrete-time 2D exponentials corrupted by
noise and let (ap, bp) ∈ C1×2, |ap| = |bp| = 1, denote
the generator pair corresponding to the pth discrete 2D har-
monic,

yk,ℓ(i) =
P∑

p=1

wp(i)ap
kbp

ℓ + nk,ℓ(i),

i = 1, . . . , J , k = 1, . . . ,K , ℓ = 1, . . . ,L.

(5)

Here, ap = e− j(2π/K)τp , bp = e− j(2πdR/λ) cosφp , K and L mark the
sample support along the a- and the b-axis, respectively, and
J is the number of SIMO snapshots available. The Khatri-Rao
product (columnwise Kronecker product) of matrix U and
matrix V is defined as, U ◦ V = [u1 ⊗ v1, u2 ⊗ v2, . . .], where
uk ⊗ vk is the Kronecker matrix product of the kth column
uk of U and the kth column vk of V. Introducing the vector
Ω = [(a1, b1), . . . , (aP , bP)] containing the parameters of in-
terest, and defining the Vandermonde matrices [A]i, j = (a j)i,
A ∈ CK×P , and [B]i, j = (b j)i, B ∈ CL×P , the 2D harmonic re-
trieval problem can be stated as follows. Given the measure-
ment data y(i) = [y1,1(i), y2,1(i), . . . , yK−1,L(i), yK ,L(i)]T ∈

CKL×1,

y(i) = H(Ω)w(i) + n(i), i = 1, . . . ,N , (6)

determine the parameter vector Ω associated with all 2D har-
monics. Here, the 2D signal matrix H(Ω) is formed as the
Khatri-Rao product of the Vandermonde matrices B and A,
that is,

H(Ω) = B ◦ A ∈ CKL×P , (7)

y(i) denotes the measurement vector, w(i)= [w1, . . . ,wP]T ∈
CP×1 stands for the complex envelope of the P harmonics,
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n(i) is the vector of additive zero-mean complex (circu-
lar) Gaussian noise with covariance matrix E{n(i)nH(i)} =
σ2IKL. In this paper the linear parameters w(i) and the noise
variance σ2 are treated as nuisance parameters. Once the pa-
rameter vector Ω is determined the estimation of these pa-
rameters is straightforward [6]. Equation (6) describes the
2D harmonic retrieval problem which can be solved by the
conventional ESPRIT algorithm [7] and the multidimen-
sional ESPRIT (MD ESPRIT) algorithm [3]. In the follow-
ing we derive a new search-free eigenspace-based estimation
method for the general case in (6) which yields highly accu-
rate estimates of the parameters of interest.

Let the data covariance matrix be given by

R = E
{

y(i)yH(i)
}

= ESΛSEH
S + ENΛNEH

N , (8)

where (·)H denotes the Hermitian transpose, and E{·}
stands for statistical expectation. The diagonal matrices ΛS ∈

R(P×P) and ΛN ∈ R
(KL−P)×(KL−P) contain the signal-subspace

and the noise-subspace eigenvalues of R, respectively. In
turn, the columns of the matrices ES ∈ C(KL×P) and EN ∈

CKL×(KL−P) denote the corresponding signal-subspace and
noise-subspace eigenvectors. The finite sample estimates are
given by

R̂ =
1

J

J
∑

i=1

y(i)yH(i) = ÊSΛ̂SÊH
S + ÊN Λ̂N ÊH

N . (9)

Definition 1. We define the two Vandermonde vectors a =
(1, a, a2, . . . , aK−1)T and b = (1, b, b2, . . . , bL−1)T . Let In be
the n × n identity matrix. We define two “tall” matrices Ta

and Tb via

Ta = IL ⊗ a ∈ CKL×L,

Tb = b⊗ IK ∈ C
KL×K .

(10)

3. THE 2D RARE ALGORITHM

In the derivation of the 2D RARE algorithm, we use the fol-
lowing assumptions.

Assumption 1. The number of harmonics does not exceed the
smaller of the two numbers (K − 1)L andK(L− 1), that is,

P ≤ KL−max{K ,L}. (11)

Assumption 2. The signal matrix H(Ω) ∈ CKL×P (7) has full
column rank P.

Assumption 3. The column-reduced signal matrices

Ha(Ω) =
[

ha,1, . . . , ha,P

]

=
(

B ◦ Ar

)

∈ C(K−1)L×P ,

Hb(Ω) =
[

hb,1, . . . , hb,P

]

=
(

Br ◦ A
)

∈ CK(L−1)×P
(12)

with Vandermonde matrices

[

Ar

]

i, j =
(

a j

)i
∈ C(K−1)×P ,

[

Br

]

i, j =
(

b j

)i
∈ C(L−1)×P

(13)

have full column rank. Note that the matrices Ar , Br can be
obtained from A, B by deleting the last row.

Remark 1. In most realistic applications, Assumptions 2 and
3 hold true almost surely, that is, with probability 1. Specif-
ically, it can be shown that if the generators {(ap, bp)}Pp=1

are drawn from a distribution PL(C2P) that is assumed to
be continuous with respect to the Lebesgue measure in C2P ,
then the violation of Assumptions 2 and 3 is a probability-
zero event [4].

Remark 2. Note that Assumption 3 implies that each gener-
ator ai and b j occurs with multiplicity Ma < L and Mb < K

in the generator sets {ai}
P
i=1 and {b j}

P
j=1, respectively.

See Appendix A for the proof.

Proposition 1. Provided that Assumptions 1, 2, and 3 are sat-
isfied, the augmented matrix

Ga =
[

Ta

∣
∣H(Ω)

]

∈ CKL×(L+P) (14)

has full column rank if and only if a �= ap, for p = 1, . . . ,P,
P ≤ L(K − 1). Similarly, provided that Assumptions 1, 2 and 3
are satisfied, the augmented matrix

Gb =
[

Tb

∣
∣H(Ω)

]

∈ CKL×(K+P) (15)

has full column rank if and only if b �= bp for p = 1, . . . ,P,
P ≤ (L− 1)K .

See Appendix B for the proof.
With Proposition 1 and provided that {a1, . . . , aP} are the

true signal generators along the a-axis, the quadratic form

FR,a(a) = γHH(Ω)H
(

IKL − Ta

(

TH
a Ta

)−1
TH
a

)

H(Ω)γ

= 0, for a ∈
{

a1, . . . , aP
}

,

> 0, otherwise,

(16)

for arbitrary vector γ ∈ CP\{0}, |a| = 1, and P ≤ L(K − 1).
It can readily be verified that the signal matrix H(Ω) and the
signal-subspace matrix ES span the same subspace [6], that
is, there exist a full-rank matrix K such that H(Ω) = ESK.
From identity (16), we can formulate one of the main results
of the paper.

Proposition 2. Provided that {a1, . . . , aP} are the true signal
generators along the a-axis, then

FR,a(a) = γ̃HEH
S

(

IKL − Ta

(

TH
a Ta

)−1
TH
a

)

ESγ̃

= 0, for a ∈
{

a1, . . . , aP

}

,

> 0, otherwise,

(17)

where γ ∈ CP\{0}, γ̃ = Kγ, |a| = 1, P ≤ L(K − 1), and K is
defined as above.
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Since γ̃ is an arbitrary nonzero vector, identity (17) easily
translates into an equivalent condition on the harmonic a
given by

FR,a(a) = det
{

EH
S

(

IKL − Ta

(

TH
a Ta

)−1
TH
a

)

ES

}

= 0, for a ∈
{

a1, . . . , aP
}

,

> 0, otherwise.

(18)

In other words, the 1D matrix polynomial

Ma(a) � EH
S

(

IKL − Ta

(

TH
a Ta

)−1
TH
a

)

ES ∈ C
P×P (19)

becomes singular (i.e., rank deficient) at exactly P locations
a with |a| = 1. These locations a are the true generators
{ap}

P
p=1. In accordance with (18), the fundamental idea of

the 2D RARE algorithm consists in determining the P true
harmonics from the roots of the RARE matrix polynomial
Ma(a) located on the unit circle, that is, the true generators
{ap}

P
p=1 are given by the solutions of the polynomial equa-

tion

FR,a(a)||a|=1 = det
{

EH
S

(

IKL − Ta

(

TH
a Ta

)−1
TH
a

)

ES

}

= 0.
(20)

Up to now we have considered estimating the generator a
along a single data dimension, that is, the a-axis. The solu-
tion of (20) corresponds to the 1D RARE algorithm for har-
monic retrieval originally proposed in [5]. Following similar
consideration as above, Proposition 1 reveals that the true
generators {bp}

P
p=1 are given by the roots of the 1D matrix

polynomial in b,

Mb(b) � EH
S

(

IKL − Tb

(

TH
b Tb

)−1
TH
b

)

ES ∈ C
P×P , (21)

evaluated on the unit circle. The associated RARE polyno-
mial equation reads

FR,b(b)||b|=1 = det
{

EH
S

(

IKL − Tb

(

TH
b Tb

)−1
TH
b

)

ES

}

= 0.
(22)

In the finite sample case, the true signal-subspace eigenvec-
tors ES in (20) and (22) are replaced by their finite sample
estimates defined in (9). Due to finite sample and noise ef-
fects, the signal roots of the RARE polynomial equations are
displaced from their ideal positions on the unit circle. In this
case the signal roots are determined as the P roots of (20)
and (22) inside the unit circle that are located closest to the
unit circle [8].

In the preceding considerations, the estimation criteria
provided by (20) and (22) were derived from Proposition 1
to separately determine the generator sets {ap}

P
p=1 and

{bp}
P
p=1. Interestingly, Proposition 1 can further be exploited

to develop a parameter association procedure from which the
true parameter pairs {(ap, bp)}Pp=1 are efficiently obtained.

Corollary 1. Given the true generator sets {ap}
P
p=1 and

{bp}
P
p=1, we construct the 2D matrix polynomial via the convex

linear combination of (19) and (21),

M̄(a, b) = αMa(a) + (1− α)Mb(b). (23)

This 2D matrix polynomial becomes singular for real 0 < α <
1 if and only if (a, b) is a true generator pair. Specifically, if
(ap, bp) denotes the generator pair of the pth harmonic, then
M̄(ap, bp) contains exactly one zero eigenvalue (ρp,0 = 0) with
the associated eigenvector γ̃p,0 = kp denoting the pth column of

the full-rank matrix K defined through relation H(Ω) = ESK,
here equivalence holds up to complex scaling of the columns of
K.

See Appendix C for the proof.
Corollary 1 provides a powerful tool for associating the

two sets of parameter estimates {âi}
P
i=1 and {b̂ j}

P
j=1 that were

separately obtained from the RARE criteria (20) and (22)
along the a- and the b-axis, respectively. For a specific har-

monic âi of the first set, the corresponding harmonic b̂ j of

the second set is given by the element of {b̂ j}
P
j=1 that mini-

mizes the cost function

Fpair,i( j) = λmin

{

M̄
(

âi, b̂ j

)}

= λmin

{

αM
(

âi
)

+ (1− α)M
(

b̂ j

)} (24)

for an appropriately chosen α between 0 and 1. Here,

λmin{M̄(âi, b̂ j)} denotes the smallest eigenvalue of M̄(âi, b̂ j)
(23).

4. IMPLEMENTATION

In this section we provide a short description of the 4D-
RARE algorithm for estimating the 4D harmonics associated
with the general channel estimation problem in (3) for the fi-
nite sample case. Define the generator sets Φ1 = {a1, . . . , aP},
Φ2 = {b1, . . . , bP}, Φ3 = {c1, . . . , cP}, and Φ4 = {d1, . . . ,dP}
and initialize source index S = 0.

Step 1. Estimate the sample covariance matrix R̂ and the
signal-subspace eigenvectors ÊS, for example, from (9).

Step 2. Find the roots of the RARE polynomials along the
four dimensions

FR,a(a) = det
{

ÊH
S

(

I− Ta

(

TH
a Ta

)−1
TH
a

)

ÊS

}

= 0,

FR,b(b) = det
{

ÊH
S

(

I− Tb

(

TH
b Tb

)−1
TH
b

)

ÊS

}

= 0,

FR,c(c) = det
{

ÊH
S

(

I− Tc

(

TH
c Tc

)−1
TH
c

)

ÊS

}

= 0,

FR,d(d) = det
{

ÊH
S

(

I− Td

(

TH
d Td

)−1
TH
d

)

ÊS

}

= 0

(25)
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for

Ta = ILMN ⊗ a ∈ CKLMN×LMN ,

Tb = IMN ⊗ b⊗ IK ∈ C
KLMN×MNK ,

Tc = IN ⊗ c⊗ IKL ∈ C
KLMN×NKL,

Td = d⊗ IKLM ∈ C
KLMN×KLM ,

(26)

and we substitute TH
a � TT

1/a, TH
b � TT

1/b, TH
c � TT

1/c, and

TH
d � TT

1/d.

Step 3. Determine estimates of the generator sets Φ1, Φ2, Φ3,
and Φ4 as the roots located closest to the unit circle of the
polynomials in (25) and denoted byΦ

(P)
1 ,Φ

(P)
2 ,Φ

(P)
3 andΦ

(P)
4 ,

respectively. Here, the superscript “(P)” indicates the num-
ber of elements in the set. Let ûi,k denote the kth element of
the ith set.

Step 4. Set S := S + 1. Pick a well-separated1 generator ûi,k
from any of the sets {Φ

(P−S+1)
i } for i = 1, . . . , 4.

Step 5. For j = 1, . . . , 4 with j �= i, find the corresponding

root û j,m from the set Φ
(P−S+1)
j such that the cost function

F
(i, j)
pair,k(m) = λmin

{

M̄
(

ûi,k, û j,m

)}

= λmin

{

αM
(

ûi,k
)

+ (1− α)M
(

û j,m

)} (27)

is minimized for fixed α between 0 and 1. Store the solution
û j,m in the ( j, S)th entry of the (4 × P) association matrix Ẑ

and remove it from the set Φ
(P−S+1)
j .

Step 6. Repeat Steps 4 and 5 until S = P and all entries of the
(4 × P) association matrix Ẑ are filled. Matrix Ẑ represents
the RARE estimate of the true generator matrix Z,

Z =








a1 a2 · · · aP
b1 b2 · · · bP
c1 c2 · · · cP
d1 d2 · · · dP








(28)

with mutually associated harmonic estimates along its
columns.

Step 7. For each 4D harmonic (âi, b̂i, ĉi, d̂i), i = 1, . . . ,P, ob-
tained in the previous step, determine the corresponding de-

lay τ̂i, the direction of arrival φ̂i, the DOD θ̂i, and the Doppler
shift ν̂i according to the arguments of the estimates in (4).

The source parameter association procedure in Steps 5, 6,
and 7 is based on the pairwise association of all 4D harmon-
ics and stems from the observation that all 4D harmonics are

1In order to guarantee uniqueness and best performance in the pa-
rameter association, it is recommended to pick a root ûi,k (and an asso-

ciated set Φ
(P−S+1)
i ) which is well separated in terms of angular distance

di(k, l) = | arg{ûi,k} − arg{ûi,l}| from the remaining roots {ûi,l}
(P−S+1)
l �=k, l=1 in

the set.

Table 1: Generators of the 3D harmonics used for simulation with
synthetic data in Section 5.1.

P = 3 ap bp cp

p = 1 e j0.550π e j0.719π e j0.906π

p = 2 e j0.410π e j0.777π e j0.276π

p = 3 e j0.340π e j0.906π e j0.358π

separated in at least one dimension. With Corollary 1, this
observation facilitates the parameter association in the sense
that the general 4D parameter association problem can be re-
duced to the much simpler pairing problem of multiple 2D
harmonics.

5. NUMERICAL RESULTS

5.1. Simulation with synthetic data

In this section simulation results using synthetic data are
presented. Computer simulations are carried out for the 3D
case. The signal model is defined in (3), but without the har-
monics dp and the last dimension n collapses to a singleton
n = 1. The sample sizes along the a-, b-, and c-axes are
chosen as K = L = M = 5 and the y(i) vectors have di-
mension 53. The (53 × 53) data covariance matrix is com-
puted from J = 10 independent snapshots and a number of
P = 3 equi-powered exponentials is assumed with the gen-
erators Ω = vec{Z} = [(a1, b1, c1), (a2, b2, c2), (a3, b3, c3)]T

given in Table 1. Forward-backward averaging is used to in-
crease the effective snapshot number in order to obtain from
(9) a covariance matrix estimate of sufficiently high rank.
The simulations are carried out according to the signal model
(6) with complex Gaussian c(i), zero mean, with covariance
E{c(i)cH(i)} = I3 and E{c(i)cT(i)} = 0. Complex zero-mean
Gaussian noise n(i) is added according to (6) with covari-
ance matrix E{n(i)nH(i)} = σ2I125 and E{n(i)nT(i)} = 0.
The root mean squared error (RMSE) of the parameter es-
timates obtained by the multidimensional RARE algorithm
averaged over R = 100 simulation runs are plotted versus the
signal to noise ratio (SNR) in Figure 1. We used the following
definitions:

SNR =
1

σ2
,

RMSE(a) =

(

1

RP

R∑

r=1

P∑

p=1

∣
∣ arg

((

âp
)

r

)

− arg
(

ap
)∣
∣2

)1/2

,

(29)

where (âp)r denotes the estimate for ap obtained in the rth
simulation run (and similarly for the b- and c-generators). A
comparison to the corresponding Cramer-Rao bound (CRB)
[9] and to results obtained from the unitary ESPRIT algo-
rithm [3] reveals that the new method yields estimation per-
formance close to the CRB and clearly outperforms the pop-
ular unitary ESPRIT estimator which is based on the joint
Schur decomposition.

In Figure 2 we investigate the effect of the weighting
parameter α used in Step 5 on the parameter association
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Figure 1: Root mean squared error of 3D RARE versus SNR.

performance. For this purpose we sorted the estimates

{(arg âi, arg b̂i, arg ĉi)}
3
i=1 obtained by the 3D RARE algo-

rithm according to {arg âi}
3
i=1 and plotted the RMSE of the

estimates {arg b̂i}
3
i=1 and {arg ĉi}

3
i=1 against the choice of α

for the SNR values−5, 0, 5, and 10 dB. From the simulations,
we observe that the proposed parameter association proce-
dure is robust against the choice of α and performs well for
a wide range of α taken around the intuitively expected uni-
form weighting factor α = 0.5. We observe that a particular
choice of α may only affect the performance of the param-
eter association procedure close to threshold domain while
asymptotically the choice of the weighting factor becomes
less crucial.

5.2. Measurement data

Measurement data were recorded with the RUSK-ATM vec-
tor channel sounder, manufactured and marketed by ME-
DAV [2]. The measurement data used for the numerical ex-
periments in this paper were recorded during a measure-
ment run in Weikendorf, a suburban area in a small town ap-

proximately 50 km north of Vienna, Austria, in autumn 2001
[10, 11]. The measurement area covers one-family houses
with private gardens around them. The houses are typically
one floor high. A rail-road track is present in the environ-
ment which breaks the structure of single placed houses. A
small pedestrian tunnel passes below the railway. A map of
the environment with the position of the receiver and trans-
mitter is shown in Figure 3.

The sounder operated at a center frequency of 2000 MHz
with an output power of 2 Watt and a transmitted signal
bandwidth of 120 MHz. The transmitter emitted a period-
ically repeated signal composed of 384 subcarriers in the
band 1940–2060 MHz. The repetition period was 3.2 mi-
croseconds. The transmitter was the mobile station and the
receiver was at a fixed location. The transmit array had a
uniform circular geometry composed of 15 monopoles ar-
ranged on a ground plane at an interelement spacing of
0.43λ ≈ 6.45 cm. The mobile transmitter was mounted on
top of a small trolley together with the uniform circular ar-
ray at a height of approximately 1.5 m above ground level. At
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Figure 2: Root mean squared error of 3D RARE versus α.
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Figure 3: Map of the measurement scenario in Weikendorf.

the receiver site, a uniform linear array2 composed of 8 ele-
ments with half wavelength distance (7.5 cm) between adja-
cent patch-elements was mounted on a lift in approximately
20 m height.

With this experimental arrangement, consecutive sets of
the (15× 8) individual transfer functions, cross-multiplexed
in time, were acquired. The receiver calculates the discrete
Fourier transform over data blocks of duration 3.2 microsec-
onds and deconvolves the data in the frequency domain with
the known transmit signal. The effects from mutual coupling
between Rx antenna elements are reduced by multiplying the
measurement snapshots y(i) with a complex-symmetric cor-

2A uniform linear array was provided by T-Systems NOVA, Darmstadt,
Germany.

rection matrix [12]. The acquisition period of 3.2 microsec-
onds corresponds to a maximum path length of approxi-
mately 1 km. During the measurements the receiver moved at
speeds of approx. 5 km/h on the sidewalk. Rx position and Tx
position as well as the motion of the transmitter are marked
in the site map in Figure 3. The transmitter passed through
a pedestrian tunnel approximately between times t = 25 sec-
onds and t = 30 seconds of the measurement run.

We estimated the data covariance matrix from J = 10
consecutive snapshots in time. The measurement system in
this experiment differs from the data acquisition model de-
scribed in the Introduction (1), (2), (3), and (4) in that a uni-
form circular array instead of a uniform linear array was used
at the transmitter side. Therefore we can not simply apply the
estimation procedure for the 4D parameter estimation prob-
lem described in Section 4 to estimate the directions of de-
parture. In this experiment we only consider the 2D model
(5) instead of the general 4D model (1), (2), (3), and (4). In
specific we are interested in estimating only the directions of
arrival and the time delays. In order to still exploit the com-
plete 4D measurement block that was recorded as described
above, we use smoothing over frequency bins and averaging
over Tx samples in order to increase the number of snap-
shots and to obtain a full-rank covariance matrix estimate
of reduced variance. Due to the smoothing over frequency
bins, the original sample support of K = 384 frequency bins,
along the a-axis is reduced to a sample support of K ′ = 12.
For further variance reduction we apply forward-backward
(FB) averaging [3]. Making use of the notation of the general
4D model in (3) the smoothed FB sample covariance matrix
corresponding to (8) reads

R̂ =
1

D

J
∑

i=1

K−K ′∑

k=1

M∑

m=1

(

ỹk,m(i)ỹH
k,m(i) + Jỹ∗k,m(i)ỹT

k,m(i)J
)

, (30)
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Figure 4: Estimates of propagation delay versus snapshots in time.

where D = J(K − K ′)M,

ỹk,m(i)

= vec
















yk,1,m,1(i) yk,2,m,1(i) · · · yk,L,m,1(i)

yk+1,1,m,1(i) yk+1,2,m,1(i) · · · yk+1,L,m,1(i)
...

...
. . .

...

yk+K ′,1,m,1(i) yk+K ′,2,m,1(i) · · · yk+K ′,L,m,1(i)
















,

(31)

M = 15, L = 8, J denotes the 96 × 96 exchange matrix,
and x = vec{X} denotes the vectorization operator, stack-
ing the columns of a matrix X on top of each other to form
a long vector x. Propagation delay and DOA estimates ob-
tained with 2D RARE are displayed in Figures 4 and 5 rela-
tive to the orientation of the array.3 We have assumed P = 10
paths and applied 2D RARE for the joint estimation of prop-
agation delay and DOA. In these two figures, the estimates
are plotted as colored marks (“·” and “∗”) versus measure-
ment time in seconds. The pairing of the estimates is indi-
cated by the chosen mark and its color. In these figures, the
circles (“◦”) mark the line of sight path, dots (“·”) mark the
consecutive early arrivals whereas the asterisks (“∗”) mark
the late ones.

We see that the propagation scenario is dominated by a
strong line-of-sight (LOS) component surrounded by local
scattering paths from trees and buildings during the first 25
seconds of the experiment (shown with the “◦” mark in the
figures). The trace of the DOA estimates in Figure 5 and the
corresponding propagation delay estimates in Figure 4 match
exactly the motion of the transmitter depicted in Figure 3 for
the direct path. At time 25 seconds, the trolley reaches the
pedestrian tunnel and a second path resulting from scattering

3An animated movie generated from these results can be downloaded
from FTW’s MIMO measurements, http://www.ftw.at/measurements.
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Figure 5: Estimates of directions of arrival versus snapshots in time.

at the building (see Figure 5) appears at a DOA of approxi-
mately −3◦. This path corresponds to a significantly larger
access delay of approx. 0.55–0.58 microseconds. By the time
the Tx moves out of the tunnel, the dominant LOS compo-
nent with local scattering is newly tracked by the 3D RARE
algorithm. In Figure 5 we observe a path emerging at a con-
stant DOA of approx. 22◦ between snapshot time 0 second
and 25 seconds. Similarly, a path emerging at a constant
DOA of approx. 17◦ between time 28 seconds and 52 sec-
onds. These paths are interpreted as contributions from the
two ends of the pedestrian tunnel. Furthermore, it is interest-
ing to observe that those propagation paths that show large
delay estimates generally yield corresponding DOA estimates
with large angular deviations from the line of sight.

6. SUMMARY AND CONCLUSIONS

A novel method for K-dimensional harmonic exponential
estimation has been derived as a multidimensional extension
of the conventional RARE algorithm. High-resolution fre-
quency parameter estimates are obtained from the proposed
method in a search-free procedure at relatively low computa-
tional complexity. The parameters in the various dimensions
are independently estimated exploiting the rich structure of
the multidimensional measurement model and the estimates
of the parameters of interest are automatically associated.
Simulation results based on synthetic and measured data of
a MIMO communication channel underline the strong per-
formance of the new approach. Finally, we conclude that the
double-directional parametric MIMO model (3) is very suit-
able for describing wireless MIMO channels.

APPENDICES

A. PROOF OF REMARK 2

We prove by contradiction that Ma < L is necessary for
Hb(Ω) to be full rank. Without loss of generality, we assume

http://www.ftw.at/measurements
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that P = Ma = L with a1 = a2 = · · · = aL = a. In this
case we have Hb(Ω) = (Br ◦A) = (TaBr) where Ta is defined
according to Definition 1. Due to the orthogonality of the
columns of Ta, we have rank{Ta} = L. Applying Sylvester’s
inequality yields

rank
{

Ta

}

+ rank
{

Br

}

− P

≤ rank
{

TaBr

}

≤ min
(

rank
{

Ta

}

, rank
{

Br

})

.
(A.1)

With P = L, it is easy to see that in the most general case (i.e.,
for distinct generators {b j}

P
j=1), the Vandermonde matrix Br

is of rank L− 1. Equation (A.1) can then be rewritten as

(L− 1) ≤ rank
{

TaB
}

≤ (L− 1). (A.2)

In other words, the matrix Hb(Ω) ∈ CK(L−1)×L does not have
full rank{Hb(Ω)} = rank{TaB} = L − 1 < L which contra-
dicts Assumption 3. Similarly we can prove that Mb < K is
necessary for Ha(Ω) to be nonsingular. Further it is simple
to show that the validity of Assumption 3 implies that also
Assumption 2 is satisfied.

B. PROOF OF PROPOSITION 1

In order to prove that Ga has full column rank, it is sufficient
to consider the limiting case P = L(K−1) where Ga becomes
a square matrix. The proof is based on the application of ap-
propriate elementary matrix operations applied on the rows
of Ga. More precisely, we exploit that adding a multiple of
the row of a matrix to any other row does not change the
determinant of the matrix. Similar to the procedure used in
Gaussian elimination, we wish to bring the first L columns
of Ga into “triangular” form. Towards this aim, we subtract
a times the (k − 1)th row of Ga from the kth row of Ga, for
k = 2, . . . ,K ,K + 2, . . . , 2K , 2K + 2, . . . , 3K , . . . , (L−1)K , (L−
1)K + 2, . . . ,LK , that is, for all k ∈ {1, . . . ,KL} such that
(k)K �= 1, where (k)K denotes k modulo K . The kth row of
the resulting matrix denoted by Ḡa is given by

[

0, . . . , 0
︸ ︷︷ ︸

L

| b⌊k/K⌋1 a
((k)K−2)
1

(

a1−a
)

, . . . , b⌊k/K⌋P a
((k)K−2)
P

(

aP−a
)

︸ ︷︷ ︸

P

]

(B.1)

for (k)K �= 1. For (k)K = 1, the rows of Ḡa remain un-
changed and identical to the corresponding rows of Ga. Note
that det{Ḡa} = det{Ga}. It can readily be verified that each
of the L first columns of Ḡa contain only a single nonzero
element. These columns form a matrix T0 = Ta|a=0 =

[e1, eK+1, e2K+1, . . . , e(L−1)K+1] where ek denotes the kth col-
umn of a KL×KL identity matrix IKL. Making use of a well-
known expansion rule for determinants, it is immediate to
show that

det
{

Ga

}

= det
{

Ḡa

}

= det
{[

T0

∣
∣Ha(Ω)∆a

]}

= ±det
{

Ha(Ω)
}

det
{

∆a

}

= ±det
{

Ha(Ω)
}

P∏

p=1

(

ap − a
)

,

(B.2)

where ∆a = diag{[(a1 − a), . . . , (aP − a)]} and “±” in-
dicates that equality holds up to “+” or “−” sign. Pro-
vided that Ha(Ω) has full rank, we observe from (B.2)
that for a �= ap, (p = 1, . . . ,P, P ≤ L(K − 1)) the
determinant det{Ga} �= 0 and det{Ga} = 0, other-
wise. For Gb the proof follows in a similar manner from
(B.2).

C. PROOF OF COROLLARY 1

Without loss of generality, we assume that a = a1, . . . , aMa is
a true generator of multiplicity Ma ≤ K that is associated
with the first Ma harmonics, that is, the first Ma columns
of H(Ω) (See Remark 2). From (B.2) we conclude that ma-
trix H(Ω)H(IKL − Ta(TH

a Ta)−1TH
a )H(Ω) in (16) has exactly

Ma zero eigenvalues µ1,0 = · · · , µMa,0 = 0. Furthermore,
the eigenvectors corresponding to the zero eigenvalues are
equivalent to the first Ma columns of a P × P identity ma-
trix. The last property follows from the fact that (B.2) and
consequently (16) hold true for any choice of harmonics with
P ≤ L(K−1) including the single harmonic case, where P = 1
and H(Ω) = h(a1, b1) = b1◦a1. This observation implies that
in the multiharmonic case, and with h(ap, bp) denoting the
pth column of the signal matrix H(Ω) identity,

FR,a(a) = hH
(

ap, bp
)(

IKL − Tap

(

TH
apTap

)−1
TH
ap

)

h
(

ap, bp
)

= eHp H(Ω)H
(

IKL − Tap

(

TH
apTap

)−1
TH
ap

)

H(Ω)ep

= 0

(C.1)

holds true for p = 1, . . . ,Ma. That is for a = a1, . . . , aMa and

Ma ≤ K , the unit vectors {ep}
Ma
p=1 form an orthogonal ba-

sis for the nullspace of H(Ω)H(IKL − Ta(TH
a Ta)−1TH

a )H(Ω).
With H(Ω) = ESK, it is immediate that the vectors {γ̃p,0 =

Kep = kp}
Ma
p=1 span the nullspace of M(a) (19) denoted by

N {M(a)}.

Similarly, assuming b = b1, . . . , bMb to denote a true gen-
erator of multiplicity Mb ≤ L, we obtain that the vectors

{γ̃p,0 = Kep = kp}
Mb
p=1 span the nullspace N {M(b)} (21).

Since by Assumption 2 all 2D harmonics can uniquely be re-
covered from (8), at least one of the generators ap and bp
of a specific generator pair (ap, bp) is of multiplicity one.
Hence, we conclude that for a true generator pair (ap, bp),
the associated nullspaces N {M(ap)} and N {M(bp)} share
exactly one common nullspace vector given, for example, by
kp. Moreover, the two nullspaces do not intersect if ap and
bp solve the individual RARE polynomial equations (20) and
(22) but (ap, bp) does not correspond to a true generator
pair. That is, for a true generator pair (ap, bp), the vector
kp marks the intersection of the nullspaces N {M(ap)} and
N {M(bp)} while the nullspaces do not intersect otherwise.
It immediately follows that Corollary 1 holds true for arbi-
trary 0 < α < 1.
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