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We propose a method for extracting an errorless secret key in a continuous-variable quantum key distribu-

tion protocol, which is based on Gaussian modulation of coherent states and homodyne detection. The crucial

feature is an eight-dimensional reconciliation method based on the algebraic properties of octonions. Since the

protocol does not use any post-selection, it can be proven secure against arbitrary collective attacks by using

well-established theorems on the optimality of Gaussian attacks. By using this coding scheme with an appro-

priate signal-to-noise ratio, the distance for a secure continuous-variable quantum key distribution can be

significantly extended.

DOI: 10.1103/PhysRevA.77.042325 PACS number�s�: 03.67.Dd, 42.50.�p

I. INTRODUCTION

A major practical application of quantum-information sci-

ence is the quantum key distribution �QKD� �1�, which al-

lows two distant parties to communicate with absolute pri-

vacy, even in the presence of an eavesdropper. Most QKD

protocols encode information on discrete variables such as

the phase or the polarization of single photons and are cur-

rently facing technological challenges, especially the limited

performances of photodetectors in terms of speed and effi-

ciency in the single-photon regime. A way to relieve this

constraint is to encode information on continuous variables

such as the quadratures of coherent states �2� which are eas-

ily generated and measured with remarkable precision by

standard optical telecommunication components. In such a

protocol, Alice draws two random values XA and PA with a

Gaussian distribution N�0,VA� and sends a coherent state

centered on �XA , PA� to Bob. Bob then randomly chooses one

of the two quadratures and measures it with a homodyne

detection. After the measurement, he informs Alice of his

choice of quadrature. Alice and Bob then share correlated

continuous variables from which a secret key can in principle

be extracted, provided that the correlation between the

shared data is high enough. This condition is the equivalent

of the maximal error rate allowed for the BB84 protocol for

example �3�.
Currently, the main bottleneck of continuous-variable pro-

tocols lies in the classical post-processing of information,

more precisely in the reconciliation step which is concerned

with extracting all the available information from the corre-

lated random variables shared by the legitimate parties at the

end of the quantum part of the protocol. This classical step

must not be underestimated since an imperfect reconciliation

limits both the rate and the range of the protocol.

Two different approaches have been used so far to extract

binary information from Gaussian variables. Slice reconcili-
ation �4,5� consists in quantizing continuous variables and

then correcting errors on these discrete variables. It allows

one in principle to transmit more than 1 bit per pulse and to
extract all the information available, but only if the quanti-
zation takes place in R

d with d�1, which results in an un-
acceptable increase of complexity in practice. Therefore the
present protocols use d=1, resulting in finite efficiency,
which limits the range to about 30 km. The second approach
uses the sign of the continuous variable to encode a bit, and
it has the advantage of simplicity. It can also be efficient, at
least in the case where the signal-to-noise ratio is low
enough, so that less than 1 bit per pulse can be expected. But
since the Gaussian distribution is centered around 0 and most
of the data have a small absolute value, it becomes difficult
to discriminate the sign when the noise is important. As a
consequence, it has been proposed to use post-selection
�6–11� to get rid of the “low-amplitude” data and keep only
the more meaningful “large-amplitude” data. However, this
approach has a major drawback: since the optimal attack
against such a post-selected protocol is unknown, the secret
rate can be calculated only for certain types of “restricted”
attacks �7,11�. So the security is significantly weaker than the
initial “non-post-selected” Gaussian-modulated protocol,
where one can use the optimality of Gaussian attacks �12,13�
in order to prove that the protocol is secure against arbitrary

general collective attacks.

Here we are interested in the problem of extending

continuous-variable QKD over longer distances without

post-selection, but with proven security. The main idea is as

follows: whereas Gaussian random values are centered

around 0, this is not the case for the norm of a Gaussian

random vector. Such a vector lies indeed on a shell which

gets thinner as the dimension of the space increases �see

Fig. 1�. Thus, if one performs a clever rotation �see Fig. 2�
before encoding the key in the sign of the coordinates, one

automatically gets rid of the small absolute value coordinates

without post-selection. Whereas this effect gets stronger and

stronger for large dimensions, we will show that we are in-

trinsically limited to performing such rotations in R
8. As we

will show below, this is related to the algebraic structure of

octonions. For our purpose, working in R
8 is already a sig-
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nificant improvement since it allows one to exchange secure

secret keys over more than 50 km, without post-selection and

with a reasonable complexity for the reconciliation protocol.

The paper is organized as follows: Section II presents the

link between the reconciliation and the security of the proto-

col, Sec. III describes the reconciliation in the case of

discrete-variable QKD protocols, Sec. IV shows how to gen-

eralize this approach to Gaussian-variable protocols, and

Sec. V presents a realistic reconciliation protocol for the

continuous-variable QKD, whose performance is analyzed in

Sec. VI.

II. RECONCILIATION AND SECURITY

Let x and y be the classical random variables associated

with the measured quantities of the legitimate parties Alice

and Bob, and let E be the quantum state in possession of the

eavesdropper. It has been shown �12,13� that the theoretical

secret key rate K obtained using one-way reconciliation is

bounded from below by

K � I�x:y� − S�x:E� � Kth.

Here I�x :y� and S�x :E� refer, respectively, to the Shannon

mutual information �14� between classical random values x

and y and to the quantum mutual information �15� between x
and the quantum state E. Recall that S�x :E� can also be seen

as the Holevo quantity associated with the quantum measure-

ments performed by Eve. The above bound corresponds to

the case where Alice and Bob are “classical” whereas Eve is

“quantum,” which means that Eve is allowed to use a quan-

tum memory and a quantum computer to perform her attack.

This secret key rate is valid for one-way reconciliation: the

classical communication between Alice and Bob is therefore

restricted to be unidirectional, and not interactive. For the

protocol described above, the quantum mutual information

between Bob and Eve is smaller than between Alice and Eve.

As a consequence, one will use reverse reconciliation �2�: the

final key is extracted from Bob’s data, and Bob sends extra

information to Alice on the authenticated classical channel to

help her correct her “errors.” The secret key rate Kth is secure

against collective attacks. Note that it is conjectured that, as

is the case for discrete-variable protocols �16�, coherent at-

tacks are not more powerful than collective attacks

�12,13,17�, which would imply that Kth is the secure key rate

against the most general attacks allowed by quantum me-

chanics.

An important property of the continuous-variable QKD is

that for a reasonably low excess noise �which is the noise not

directly caused by the losses�, Kth remains strictly positive

for any value of the transmission, meaning that there is no

theoretical limitation to the range of this protocol. However,

Kth is relevant only in the case where one has access to a

perfect reconciliation scheme, allowing Alice and Bob to ex-

tract all the information available in their correlated data.

How should Kth be modified in the case of a real-world im-

perfect reconciliation scheme? In order to extract a secret

from their data, Alice and Bob have access to a classical

authenticated channel and have agreed on a particular code

CN whose size N is such that log2�N�� I�x ;y�. The principle

of the reconciliation protocol is the following: Alice chooses

randomly an element U�CN and sends some information �
to Bob who should be able to efficiently recover U from the

knowledge of y and �—i.e., H��U�y ,��=0, the conditional

entropy of U given y and � is null, or equivalently

I�U :y ,��=H�U�. In this case, Alice and Bob have extracted

a common string U from their data, which they will be able

to turn into a secret key thanks to privacy amplification, but

they have also given the extra information � to the eaves-

dropper. As a consequence, the effective key rate after the

reconciliation becomes

K � H�U� − S�U:E,�� � Kreal.

Unfortunately, one always has Kreal�Kth and Kreal reaches 0

for a finite channel transmission. In other words, the range of

the protocol is limited because of the imperfect reconcilia-

tion. It should be noted that this is one of the main differ-

ences with discrete-variable protocols which are limited by

technology and more particularly by the dark counts of the

photodetectors. A real difficulty lies in the estimation of

S�U :E ,��. One specificity of QKD is that it allows Alice and

Bob to estimate an upper bound of S�x :E� by comparing a

subset of their data. However, it is generally impossible to

deduce S�U :E ,�� from it. One exception is when U and �
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FIG. 1. �Color online� Probability distributions ��1�, ��2�, ��4�,
and ��8� of the radius of a Gaussian vector of dimensions 1, 2, 4,

and 8. When the dimension goes to infinity, the distribution gets

closer to a Dirac distribution.

b)

x2 x2x2

x1 x1 x1

a) c)

FIG. 2. �Color online� Consider two successive states X1 and X2

sent by Alice: the states really sent correspond to X1�0,X2�0. �a�,
�b�, and �c� show the four possible states Bob needs to discriminate

after Alice has sent him some side information over the classical

authenticated channel. �a� corresponds to slice reconciliation �3,5�:
the four states are well separated, but the Gaussian symmetry is

broken. �b� corresponds to the case where the information is en-

coded on the sign of the Gaussian value �7�: the symmetry of the

problem is preserved but some states are very close and thus diffi-

cult to discriminate. �c� corresponds to the approach presented in

this paper where the states are well separated and the symmetry is

preserved.
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are independent, in which case the following lemma applies.

Lemma 1. Let A and B be two classical random values,

and let E be a random quantum state. If A and B are inde-

pendent, then S�A :E ,B��S�A ,B :E�.
Proof. The chain rule for mutual quantum information

reads

S�A,B:E� = S�B:E� + S�A:�E�B� � S�A:�E�B� ,

where the inequality results from the non-negativity of mu-

tual quantum information. Then, by definition of conditional

mutual information,

S�A:�E�B� = S��A�B� − S��A�E,B� = S�A� − S��A�E,B�

= S�A:E,B� ,

where the second equality follows from independence of A
and B. �

In the reconciliation protocol, U is chosen randomly by

Alice, independently of x, meaning that S�x ,U :E�=S�x :E�.
Then, since � is a function of x and U, the data-processing

inequality gives S�U ,� :E��S�x :E�. In addition, in the case

where � is independent of U, Lemma 1 gives S�U :E ,��
�S�x :E�.

If one defines the efficiency of reconciliation 	=
H�U�
I�x:y� , one

obtains finally

Kreal � 	I�x:y� − S�x:E� ,

which is the usual expression of the secret key rate taking

into account the imperfect reconciliation protocol.

III. RECONCILIATION OF BINARY VARIABLES

Reconciliation is a means for Alice and Bob to extract

available common information from their correlated data. In

the case when the data consist of binary strings, it is very

similar to the problem of channel coding where the goal is

for Alice to send information to Bob through a noisy chan-

nel. Channel coding is solved by appropriately choosing sub-

sets of binary strings: codes. When Alice restricts her mes-

sages to code words, Bob can recover them with high

probability if the code size is not too large, given the channel

noise. More precisely, Shannon’s theorem �18� states that the

size of the code �C� is bounded by the mutual information

between Alice and Bob: log2��C��� I�x :y�. The problem of

channel coding has been extensively studied during the past

60 years, but only recently were codes almost achieving Sh-

annon’s limit discovered while being efficiently decoded

thanks to iterative algorithms: turbocodes �19� and low-

density parity-check �LDPC� codes �20,21�.
The main difference between reconciliation and channel

coding is that in the case of reconciliation, Alice does not

choose what she sends and thus cannot restrict her messages

to code words of a given code. However, if one wants to take

advantage of the code formalism, knowing what she sent,

Alice can describe to Bob a code for which her word is a

code word. Thus if Bob can guess what code word Alice

sent, they will effectively share a common sequence of bits.

This is the method used for discrete QKD protocols. Indeed,

given a linear code C and its parity check matrix H, the group

F2
n= �0,1�n of possible states sent by Alice can be seen as the

product of code words and syndromes: if Alice sends x to

Bob, she can tell him the syndrome of x, which is H ·x, thus

defining a coset code containing x. This coset code is the

ensemble �y� �F2
n�H ·y=x�. An equivalent solution is for Al-

ice to randomly choose a code word U from a given code

and to send U � x=� to Bob where � represents the addition

in the group F2
n. Bob then computes y � � which allows him

to retrieve U if the code is well adapted to the channel be-

tween Alice and Bob. This coset coding scheme was initially

suggested by Wyner �22�.
In a way, the side information �information sent by Alice

over the classical authenticated channel� corresponds to a

change of coordinates allowing one to transform the initial

reconciliation problem into the well-known problem of chan-

nel coding.

Two properties are essential for this approach to work:

first, the probability distribution of the states sent by Alice is

uniform over F2
n; second, the total space is a partition of the

cosets of a linear code. Thus, any word can be seen as a

unique code word for a unique coset code and telling which

coset code contains the word gives zero information about

the code word. The question is then whether or not it is

possible to generalize this approach to continuous variables.

IV. RECONCILIATION OF GAUSSIAN VARIABLES

A. Gaussian modulation

One of the main differences between discrete and continu-

ous QKD protocols is the probability distribution of Alice’s

variables: the uniform distribution on F2
n is changed into a

nonuniform Gaussian distribution on R
n. This is rather un-

fortunate since the uniformity of the distribution on F2
n is an

essential assumption in order to prove that the side informa-

tion �e.g., the syndrome� Alice sends to Bob on the public

channel does not give any relevant information to Eve about

the code word chosen by Alice. An interesting property of

the Gaussian distribution N�0,1n� on R
n whose covariance

matrix is the identity is that it has a spherical symmetry in

R
n. In other words, if the vector x follows such a distribution,

then the normalized random vector
x

�x� has a uniform distri-

bution on the unit sphere Sn−1 of Rn. Thus, spherical codes,

codes for which all code words lie on a sphere centered on 0,

can play the same role for continuous-variable protocols as

binary codes for discrete protocols. Some very good codes

are known for binary channels: LDPC codes and turbocodes

both almost achieve the Shannon limit and can be efficiently

decoded thanks to iterative decoding algorithms. Are there

codes with similar qualities among the spherical codes? The

answer is almost. There is indeed a canonical way to convert

binary codes into binary spherical codes, and this can be

achieved thanks to the following mapping of F2
n onto an iso-

morphic image in the n-dimensional sphere:

F2
n
→ Sn−1

� R
n, �b1, . . . ,bn� � 	 �− 1�b1


n
, . . . ,

�− 1�bn


n
� .

Then, as LDPC codes and turbocodes can both be optimized

for binary symmetric channels, they can also be optimized

MULTIDIMENSIONAL RECONCILIATION FOR A … PHYSICAL REVIEW A 77, 042325 �2008�

042325-3



for a binary phase shift keying �BPSK� modulation, where
the bit 0 �1� is encoded into the amplitude +A �−A� and
where the channel noise is considered to be additive white
Gaussian noise �AWGN�. Thus, one has access to a family of
very good codes �in the sense that they are very close to the
Shannon limit� for which very efficient iterative decoding
algorithms are available. It is important to note that there are
actually two different Shannon limits considered here de-
pending on the modulation—BPSK or Gaussian
modulation—but these limits become asymptotically close
when the signal-to-noise ratio �SNR� is small. Thus, at low
SNR, a binary code optimized for a BPSK modulation can
almost achieve the Shannon limit for a Gaussian modulation.

A remark is in order: the use of binary codes as described
above limits the rate of the code to less than 1 bit per channel
use, whereas one of the interests of a Gaussian modulation is
precisely to get rid of this limit. Actually, one could use
nonbinary spherical codes, but their decoding is more com-

plicated and thus slows down the reconciliation protocol. In

addition, this is not really needed, since in the high-loss sce-

nario which interests us most here, the secret key rate is

always much less than 1 bit per channel use. Consequently

the use of binary codes turns into an advantage, since they

can be decoded very efficiently. In the low-loss case,

however—that is, for short distances—one can hope to distill

more than 1 bit per channel use, and the “usual” approach

�23� will be more suitable than the one described in the

present article �see also discussion in Sec. VI�.
Now that we have a probabilistic space with a uniform

probability distribution and a family of codes for this space,

we need to see if the total space is a partition of a code and

of its “generalized coset codes.” First, the canonical hyper-

cube of R
n �which is the image of F2

n by the isomorphism

defined above� is described as a partition of a linear code and

its cosets. The question that remains to be solved is whether

or not the unit sphere is a partition of such hypercubes. An-

other way to see this problem is the following: given a ran-

dom point in Sn−1, is there a hypercube inscribed in the

sphere for which this point is a vertex. Surely there are such

hypercubes, many in fact. Actually, the manifold of these

hypercubes is a ��n−1��n−2� /2�-dimensional manifold �this

is the dimension of the subgroup of orthogonal group On that

transports the canonical hypercube onto the ensemble of hy-

percubes containing the point in question�.
Yet another way to express the problem is the following:

given two points x ,y�Sn−1, is it possible to find an orthogo-

nal transformation mapping x to y? One can immediately

think of transformations such as the reflection across the me-

diator hyperplane of x and y. Unfortunately, such an orthogo-

nal transformation gives some information about x and y as

soon as n�2 �this is linked to the phenomenon of the con-

centration of the measure for spheres in dimensions n�2�
and therefore cannot be used by Alice as legitimate side in-

formation, which should be independent from the key in or-

der to fulfill the hypothesis of Lemma 1.

A correct solution would then be to randomly choose an

orthogonal transformation with uniform probability in the

ensemble of orthogonal transformations mapping x to y. This

can be done in the following way: one first draws a random

orthogonal transformation mapping x to some random x�.

Then one composes this transformation with the reflection

across the mediator hyperplane of x� and y. Although theo-

retically correct, this procedure is not doable in practice for

n�1 since generating a random orthogonal transformation

on R
n is a computational demanding task requiring one to

draw an n
n Gaussian random matrix and to calculate its

QR decomposition �i.e., its decomposition into an orthogonal

and a triangular matrix� which is an operation of complexity

O�n3�.
A practical solution involves the following: for each word

x�Sn−1 sent by Alice, for each code word U�Sn−1 chosen

by Alice �not necessarily a binary code word�, there should

exist an continuous application M of the variables x and U
such that M�x ,U��On and M�x ,U�x=U. Then, if Alice

gives M�x ,U� to Bob, one has the continuous equivalent of

U � x in the discrete protocol. The following theorem shows

that the existence of such an application M restricts the pos-

sible values of n to be 1, 2, 4, or 8.

Theorem 2. If there exists a continuous application

M:Sn−1 
 Sn−1 → On, �x,y� � M�x,y�

such that M�x ,y� ·x=y for all x ,y�Sn−1, then n=1, 2, 4, or

8.

The proof of this theorem uses a result from Adams �24�,
which quantifies the number of independent vector fields on

the unit sphere of Rn.

Theorem 3. Independent vector fields on Sn−1 �24�. For

n=a ·2b with a odd and b=c+4d, one defines �n=2c+8d.

Then the maximal number of linearly independent vector

fields on Sn−1 is �n−1.

In particular, the only spheres for which there exist �n
−1� independent vector fields are the unit spheres of R, R2,

R
4, and R

8, which can, respectively, be seen as units of the

real numbers, the complex numbers, the quaternions, and the

octonions.

Proof of Theorem 2. The idea of the proof is to use the

existence of such a continuous function M to exhibit a family

of �n−1� independent vector fields on Sn−1.

Let �e1 ,e2 , . . . ,en� be the canonical orthonormal basis of

R
n. For 1� i�n, let ui�x�=M�en ,x� ·ei. One has un�x�=x and

„ui��x��u j�x�… = ei
TM�en,x�TM�en,x�e j

= �i,j since M�en,x� � On.

Then, for x�Sn−1, u1�x� ,u2�x� , . . . ,un−1�x� are �n−1� inde-

pendent vector fields on Sn−1 and finally n=1, 2, 4, or 8. �

V. ROTATIONS ON S1, S3, AND S7

Now that we have proved that such an application M can

only exist in R, R2, R4, and R
8, we need to answer three

more questions: does it exist? Can Alice compute it effi-

ciently? Does it leak any information about the code word to

Eve? Note that the trivial case of R for which the unit sphere

is �−1,1� corresponds to the method where one encodes a bit

in the sign of the Gaussian variable �7�.

A. Existence

Let us start with the easiest case: R
2. The existence of

such an application M verifying M�x ,y� ·x=y for the unit
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circle is obvious: it is simply the rotation centered in O of

angle Arg�y�−Arg�x� where Arg�x� denotes the angle be-

tween x and the x axis. An alternative way to see M is

M�x ,y�=yx−1 where x and y are identified with complex

numbers of modulus 1. The same is true for dimensions 4

and 8 where S3 and S7 can, respectively, be identified with

the quaternion units and the octonion units, and for which a

valid division exists.

B. Computation of M(x ,y)

For n=2, 4, and 8, there exists a �nonunique� family of n
orthogonal matrices An= �A1 , . . . ,An� of R

n
n such that A1

=1n and, for i , j�1, �Ai ,A j�=−2�i,j1n where �A ,B� is the

anticommutator of A and B. An example of these families is

explicitly given in the Appendix. The following lemma

shows how to use such a family to construct a continuous

function M with the properties described above.

Lemma 4. M�x ,y�= �
i=1. . .n

�i�x ,y�Ai with �i�x ,y�= �Ai�x�y�

is a continuous map from Sn−1
Sn−1 to O�n� such that

M�x ,y� ·x=y.

Proof. First, because of the anticommutation property, one

can easily check that the family �A1x ,A2x , . . . ,Anx� is an or-

thonormal basis of R
n for any x�Sn−1. Then, for any

x ,y�Sn−1, (�1�x ,y� , . . . ,�n�x ,y�) are the coordinates of y in

the basis �A1x ,A2x , . . . ,Anx�. This proves that M�x ,y�x=y.

Finally, the orthogonality of M�x ,y� follows from some

simple linear algebra. �

Then �= ��1 , . . . ,�n� is sufficient to describe M�x ,y� and

the computation of �i can be done efficiently since the ma-

trices Ai are just permutation matrices with a change of sign

for some coordinates. In the QKD protocol, Alice chooses

randomly u in a finite code and gives the value of ��x ,u� to

Bob, who is then able to compute M�x ,u�y which is a noisy

version of u. One should note that the final noise is just a

“rotated” version of the noise Bob has on x: in particular,

both noises are Gaussian with the same variance.

C. No leakage of information

In order to prove that �=M�x ,u� does not give any infor-

mation about u, one needs to show that u and � are

independent—in other words, that Pr(�u=ui�M�x ,u�=�)

=Pr�u=ui�=
1

N if one considers the spherical code CN
= �u1 , . . . ,uN�. This is true because x and u have uniform

distributions �on Sn−1 and CN, respectively� and because the

function

fu:Rn → R
n, x � fu�x� = �, with �i = ��u�Aix� ,

has a constant Jacobian equal to 1 for each u�CN. To see

this, one should note that the lines of the Jacobian matrix of

fu are the Ai
Tu which form an orthonormal basis of Rn.

VI. APPLICATION TO THE CONTINUOUS-VARIABLE

QKD

Now that we have explained how efficient reconciliation

of correlated Gaussian variables can be achieved with rota-

tions in R
8, let us look at the implications for the continuous-

variable QKD.

At the end of the quantum part of the continuous-variable

QKD protocol, Alice and Bob share correlated random val-

ues and their correlation depends on the variance of the

modulation of the coherent states and on the properties of the

quantum channel. The channel can safely be assumed to be

Gaussian since it corresponds to the case of the optimal at-

tack for Eve. This means that it can be entirely characterized

by its transmission and excess noise. Both these parameters

are accessible to Alice and Bob through an estimation step

prior to the reconciliation �16�. Once these parameters are

known, one can calculate the signal-to-noise ratio �R � of the

transmission, which is the ratio between the variance of the

signal �the variance of the Gaussian modulation of coherent

states in our case� and the variance of the noise �noise in-

duced by losses as well as excess noise�. R quantifies the

mutual information between Alice and Bob when a Gaussian

modulation is sent over a Gaussian channel:

I�A:B� =
1

2
log2�1 + R� .

Note also that the efficiency of the reconciliation only de-

pends on the correlation between Alice’s and Bob’s data—

that is, on R. Thus, for a given transmission and excess

noise, the secret key rate is a function of R, which can be

optimized by changing the variance of the modulation of the

coherent states.

It is not easy to know exactly how the efficiency of rec-

onciliation depends on R. However, each reconciliation

technique performs better for a certain range of R: slice

reconciliation is usually used for a R around 3 �23� while

rotations in R
8 are optimal for a low R, typically around 0.5.

Figure 3 shows the performance of rotations in R
8 com-

pared to slice reconciliation for the experimental parameters

of the QKD system developed at Institut d’Optique. Both

approaches achieve comparable reconciliation efficiencies

�around 90%�, but for different R. One can observe two
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FIG. 3. �Color online� Performance of slice reconciliation vs

rotation in R
8. Experimental parameters: excess noise referred to

the channel input, =0.005; efficiency of Bob’s detector, �=0.606;

and electronic noise at Bob’s side, Velec=0.041 �23�. The reconcili-

ation based on rotations in R
8 uses a LDPC code of rate 0.26 �25�.
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distinct regimes: for low loss—i.e., short distance—slice rec-

onciliation is better, but only rotations in R
8 allow QKD over

longer distances �over 50 km with the current experimental

parameters�.
Concerning the complexity of the reconciliation, one

should be aware that almost all the computing time is de-

voted to decoding the efficient binary codes, either LDPC

codes or turbocodes. Compared to this decoding, the rotation

in R
8 takes a negligible amount of time. Thus, the complex-

ity of the reconciliation presented here is smaller than the

one of slice reconciliation since the latter uses several codes

�one code per slice�.

VII. CONCLUSION

We presented a protocol for the reconciliation of corre-

lated Gaussian variables. Currently, the main bottleneck of

the continuous-variable QKD lies in the impossibility for

Alice and Bob to extract efficiently all the information avail-

able, this difficulty resulting in both a limited range and a

limited rate for the key distribution. The method described in

this article is particularly well adapted for low signal-to-

noise ratios, which is the situation encountered when one

wants to perform a QKD over long distances. By taking into

account the current experimental parameters of the QKD link

developed at the Institut d’Optique �23�, one shows that this

reconciliation allows a QKD over more than 50 km. More-

over, contrary to other protocols that have been proposed to

increase the range of the continuous-variable QKD, this pro-

tocol does not require any post-selection. Hence, the security

proofs based on the optimality of Gaussian attacks �12,13�
remain valid, meaning that the protocol is secure against

general collective attacks.
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APPENDIX: EXAMPLES OF FAMILIES A2, A4, AND A8

1. Notation

Let us introduce the 4 2
2 matrices

K0 = 	1 0

0 1
�, K1 = 	0 1

1 0
� ,

K2 = 	0 − 1

1 0
�, K3 = 	1 0

0 − 1
� ,

and the tensor product

Ki1,. . .,il
= Ki1

� ¯ � Kil
.

2. Examples

Family A2: �K0 ,K2�,

A1 = 	1 0

0 1
�, A2 = 	0 − 1

1 0
� .

Family A4: �K00 ,K32 ,K20 ,K12�,

A1 =
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
�, A2 =

0 − 1 0 0

1 0 0 0

0 0 0 1

0 0 − 1 0
� ,

A3 =
0 0 − 1 0

0 0 0 − 1

1 0 0 0

0 1 0 0
�, A4 =

0 0 0 − 1

0 0 1 0

0 − 1 0 0

1 0 0 0
� .
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Family A8: �K000 ,K332 ,K320 ,K312 ,K200 ,K102 ,K123 ,K121�,

A1 =
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

� , A2 =
0 − 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 − 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 − 1 0 0 0

0 0 0 0 0 0 0 − 1

0 0 0 0 0 0 1 0

� ,

A3 =
0 0 − 1 0 0 0 0 0

0 0 0 − 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 − 1 0 0 0

0 0 0 0 0 − 1 0 0

� , A4 =
0 0 0 − 1 0 0 0 0

0 0 1 0 0 0 0 0

0 − 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 − 1 0

0 0 0 0 0 1 0 0

0 0 0 0 − 1 0 0 0

� ,

A5 =
0 0 0 0 − 1 0 0 0

0 0 0 0 0 − 1 0 0

0 0 0 0 0 0 − 1 0

0 0 0 0 0 0 0 − 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

� , A6 =
0 0 0 0 0 − 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 − 1

0 0 0 0 0 0 1 0

0 − 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 − 1 0 0 0 0

0 0 1 0 0 0 0 0

� ,

A7 =
0 0 0 0 0 0 − 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 − 1 0 0

0 0 − 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 − 1 0 0 0 0 0 0

� , A8 =
0 0 0 0 0 0 0 − 1

0 0 0 0 0 0 − 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 − 1 0 0 0 0

0 0 − 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

� .
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