
PSYCHOMETRIKA--VOL. 48, NO. 3.

SEPTEMBER, 1983
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FOR REACTION TIMES AND SAME-DIFFERENT JUDGMENTS
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A method for joint analysis of reaction times and same-different judgments is discussed. A set

of stimuli is assumed to have some parametric representation which uniquely defines dissimi-
larities between the stimuli. Those dissimilarities are then related to the observed reaction times
and same-different judgments through a model of psychological processes. Three representation
models of dissimilarities are considered, the Minkowski power distance model, the linear model,
and Tversky’s feature matching model. Maximum likelihood estimation procedures are developed
and implemented in the form of a FORTRAN program. An example is given to illustrate the kind
of analyses that can be performed by the proposed method.
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Introduction

Statistical analysis often proceeds with data as they are given, and no serious concern

is taken for possible data transformations in finding data representations. Psychological

scaling, on the other hand, explicitly aims at both data transformations (response scaling)

and data representations (stimulus scaling). These two scaling problems were traditionally

viewed as one, and only fairly recently the importance of the distinction came to be fully
realized. Since Shepard’s [1962] and Kruskal’s [1964a, b] landmark papers on nonmetric

multidimensional scaling, it has quickly become a new tradition in psychological scaling

to seek both the optimal data transformation and the optimal data representation based

on a single optimality criterion [Young, de Leeuw & Takane, 1980].

Too often, however, the scale level of measurement (i.e., whether the given numerals

constitute a ratio scale, an interval scale, an ordinal scale, etc.) is the only major data

characteristic that is respected in response scaling. Classifying the data in terms of just the

scale level of measurement seems to be too crude. For example, similarity ratings and

similarity rankings both yield ordinal measures of similarity which are different in other
important respects (e.g., distributional properties of the data). There are many different

ways to collect similarity data, and they differ not only in the form of the data they

provide, but also in the process by which the data are generated. Unfortunately it is

rather rare to find scaling procedures which explicitly take into account the specific data
generation process presumed to underlie each data collection method. (But see Takane,

1978, 1981; Takane & Carroll, 1981). In this paper we discuss a scaling method for two-

choice reaction time data which incorporates a model of psychological processes linking a

stimulus representation to the particular form of the observed data.

Because mental processes are embedded in real time, measuring the interval between
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stimulus presentation and response production in a given task has proven an objective

tool for the systematic observation of mental events [Posner, 1978]. Thus, variations in

reaction times consequent to manipulations of task requirements or stimulus parameters

provide data that can be used to study the time course of information processing in the

human nervous system.

In the two-choice reaction time experiments to be considered in this paper, two stim-

uli are presented, either simultaneously or successively. The subject is instructed to re-

spond, as quickly as possible, whether the two stimuli are "same" or "different." The time

to respond and the type of judgment are recorded as data. The two-choice reaction time

data are, unlike direct judgments of similarity, performance measures. That is, as in the

mental testing situation, it is clear to the subject what constitutes a better performance

(i.e., shorter reaction times and fewer errors). This is one advantage of the reaction time

data, since it is relatively difficult to systematically fake the responses.

Curiously, however, scaling of the choice-reaction time data has not been too suc-

cessful [Young, 1970] and there are at least two reasons conceivable for this. First, reac-

tion time data are usually very noisy. For example, in the data sets we will discuss in the

result sections, approximately 50 to 75% of the variability in reaction times are due to

error. Consequently, one needs to get a lot of data in order to secure reliable estimation.

Second, the two-choice reaction time data are intrinsically bivariate (one for same-

different judgment and the other for reaction time), only meaningful in the context of the

other. For example, the reaction time of, say, 800 ms may mean something entirely differ-

ent depending on whether it is associated with a "same" or "different" judgment

[Podgorny & Garner, 1979]. Similarly, a high confusion rate of one stimulus with another

may be produced by two entirely different processes depending on whether it occurs with

relatively short reaction times or long reaction times. It is far from trivial what constitutes

a better performance for the two variables taken together. However, this simple fact is

often ignored in order to apply conventional scaling procedures. The stimulus confusion

data (arising from same-different judgments) and the reaction time data are often analyzed
separately, each disregarding the existence of the other. By contrast the method we discuss

in this paper takes full cognizance of the bivariate nature of the two-choice reaction time

data. It finds a single common stimulus representation by joint analysis of reaction times

and same-different judgments.

The method we discuss in this paper assumes that a set of stimuli have some para-

metric representation. Based on this representation a dissimilarity between each pair of

stimuli is derived. The dissimilarity between the stimuli is then assumed to be error-

perturbed in a specific way, and the error model specifies the nature of this perturbation

process. The error-perturbed dissimilarity is then related to both the observed reaction

time and the same-different judgment through models of psychological processes. These

models, called the response models, specify the nature of the relationship between the

observed data and the underlying processes. Thus, once all the relevant component

models are specified in sufficient detail, the likelihood of the observed data can be stated

in term of parameters in these models. Maximum likelihood (ML) estimation (or some

other estimation procedures) can then be used to determine the estimates of the parame-

ters.
Maximum likelihood estimation procedures are developed for three representation

models of dissimilarities, the Minkowski power distance model, the linear model and

Tversky’s [1977] feature matching models. These are the models which came naturally to

our mind in a search for the best representation model for our "face" data. Theoretical
and empirical motivations behind fitting these models will be discussed in the result sec-

tions. The maximum likelihood estimation offers a number of advantages regarding statis-
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tical model evaluations [Ramsay, 1977, 1978; Takane, 1978, 1981; Takane & Carroll,

1981]. The kinds of statistical model evaluations that are feasible, and that are particu-

larly interesting in the context of the present paper will be demonstrated through a con-

crete analysis example.

The Method

The Model

As mentioned earlier we assume that a set of n stimuli has some parametric repre-

sentation, from which a dissimilarity between two stimuli is uniquely defined. For stimuli i

and j we may write this dissimilarity as

dij = d(Oi, Oj), (1)

where 0i and 0i are vectors of parameters characterizing stimuli i and j, respectively, and d

is a function expressing their combination rule. The parameter vectors (0~ and O j) them-
selves may be functions of some other parameters. We consider in this paper three distinct

models of dissimilarities, the Minkowski power distance model, the linear model, and

Tversky’s feature matching model [Tversky, 1977]. However, for the sake of generality we

defer the explicit statement of these models until the result sections and proceed with the

general form of the representation model.

We further assume that dij is error-perturbed by

2~jk, = d~j e~k,, (2)

where e~kr is the error random variable operating at replication r, and that

In eijkr ~ N(O, a2k). (3)

The subscript k may represent a subject, an experimental session, or their combination.

(In this paper the data from different subjects are analyzed separately, so that k will
always refer to an experimental session.) Note that the subscript k in tr~ allows for possi-

ble differences in dispersion over experimental sessions, although it may alternatively be
assumed constant for all k (i.e., ak2 = tr2). The trk2 in (3), however, implies that the variance

of ~ijkr is equal for equal d~j. (The variance of 2ijkr generally increases as dij increases.)
Alternatively, we may allow trk 2 to vary across stimuli i and j as well as k (i.e., 

[In ei~kr ] = a~’k), and then assume more elaborate variance component models for a~k

(e.g., a~k = trk2(~ + ~]), etc.) [Ramsay, 1982]. The estimation procedure in this case, 
ever, would be much more complicated, and this possibility will not be pursued in this

paper. The log normal distributional assumption made in (3) is essentially the same 

that made by Ramsay [1977] in his maximum likelihood multidimensional scaling (MDS)

procedure. (A further justification of the log normal assumption will be given later.)

Let T~k, denote the random variable for reaction time, and Y~jk, the random variable
for same-different judgment. (We use the corresponding lower case letter, t~k, and Y~jk,, to

denote the observed values.) We define Y~jk,aS

1, f if the judgment is "same" for the pair

of stimuli i and j at replication r in

Y~, = session k. (4)

0, if the judgment is "different".

The error-perturbed dissimilarity 2~jk, defined in (2) is related to the observable quantities,

T~kr and Y~jkr, by specific response models. Let bk represent a threshold value (assumed
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constant throughout session k) such that

1, when ~Lijkr < bk
Yijkl" "~" O, when ~ijk~" ~" bk" (5)

That is, when the error perturbed dissimilarity exceeds the threshold value, a "different"

judgment is generated; otherwise, a "same" judgment is generated. We use this as the

response model for the same-different judgment. Note that model (5) is essentially Thur-

stonian [Torgerson, 1958]. It also plays a central role in the signal detection theory

[Green & Swets, 1966; Sorkin, 1962; see also Zinnes & Wolff, 1977; Takane, 1981]. Note
that it is not really necessary to assume that the threshold is constant. If a variable thresh-

old, b~’, follows the log normal distribution with E [ln b~’] -- In bk, then by redefining

ak2 = V [ln b~’ - In "~ijkr], everything else remains intact. Since the basic line of the argu-

ment stays the same, we may proceed as if the threshold were constant.

From the distributional assumptions on 2ijk, [(2) and (3)] we obtain

Qijk = Pr (Yijkr = 1) = ~b(z) dz = O(Vijk), (6)

where

(ln bk - In dq)
Vok = , (7)

and ~b(.) and ~(. ) are, respectively, the density function and the (cumulative) distribution

function of the standard normal distribution. It follows that Pr (Yokr = 0) = 1 -- Q~k"
The response model for reaction time should be specified separately for a "same"

judgment and a "different" judgment. This is because there is some empirical evidence

suggesting that the relation between reaction time and dissimilarity is opposite for the two
types of judgments. That the (correct) reaction time is inversely related to stimulus dis-

similarity for different pairs has long been a common sense knowledge among experi-

mental psychologists. It is the basis for applying nonmetric MDS to reaction time data
[Young, 1970; Shepard, Kilpatric & Cunningham, 1975"] assuming an inverse monotonic

function between the reaction time data and underlying distances (i.e., reaction time is

considered a measure of similarity between two stimuli). Recently, however, just the op-

posite relation for "same" judgments was experimentally demonstrated. Podgorny and

Garner [1979; Podgorny, 1978] in their ingenious experiments have shown that it takes

less time to judge more similar stimuli "same". Thus, we may suppose that for the "same"

judgments, reaction time works as a measure of dissimilarity.

For a "different" judgment, we assume

In Tijkr "~" Nipk (In di~ - In bk) + ak, q2k]. (8)

That is, the distribution of T~jR, is log normal with E[ln T~R,] = Pk (ln dij - In bl~ ) + ak and

V[ln T~jkr] = q~2. Here Pk (assumed to be negative) and ak are, respectively, slope and

intercept parameters relating the difference between the log dissimilarity (ln do) and the
log threshold (ln bk) to the expected value of the log reaction time. The log normality of

Tijkr is assumed to follow from the log normality of 21jkr. Since E[ln 2~k,] = In d~ and

V[ln 2~k,] = tr~2 from (2) and (3), it may well be assumed further 

q~ = pk2 trk2 (or qk = -- Pk lYk)" (9)

Let Ti~kr denote the median of T/~kr. With the log normal distribution we have

T~jkr = exp {E[ln Tijk,]},

(or In Ti~k~ = E[ln
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and hence

T,’}k, = a~ exp {PR (ln o -- I n b,)}

a,( dij’~Pk
= ,\-~-~,} (10)

where a~* = exp (a~). For fixed b~ the above equation states that the median reaction time

is a negative power function (p~ < 0) of d~, which includes, as its special case, the recipro-

cal function ~ = -1) advocated by several authors [Curtis, Paulos, & Rule, 1973; She-

pard, et al., 1975; Shepard, 1978] for correct "different" reaction times. Shepard’s observa-

tions are particularly compelling, since they are based on the empirical relationship be-

tween "different" reaction times and underlying distances. He applied nonmetric MDS to

several sets of reaction time data assuming that they were merely inversely related to

underlying distances between stimuli, and found that the observed reaction times were

nearly reciprocal to the derived distances.

Unfortunately no such evidence exists for "same" reaction times. In this case we may

merely extrapolate the same relationship as above to the "same" reaction times. The

relationship between reaction time and dissimilatiry, however, should be reversed in ac-

cordance with Podgorny and Garner’s [,1979] empirical findings. More specifically we

may write the distributional assumption for a "same" judgment as

In T~ik, ..~ N[pk (In bk -- In dO + ak, q2k], (11)

which implies

~.{" bk’~"k
T~ = ,,klk~-~;, j . (12)

Notice that positions of dlj and bk are reversed in (11) and (12) in reference to (8) and 
For fixed bk the median reaction time is now a positive power transformation of the

stimulus dissimilarity.

The threshold parameter bk plays an important role in (10) and (12). This parameter
was originally introduced in (5) in order to capture the mechanism generating both

"same" and "different" judgments. Equations (10) and (12), on the other hand, state 

reaction times are functions of magnitude of stimulus dissimilarity relative to the thresh-

old value. However, since bk is assumed constant throughout an experimental session,

T3kr is a monotonically decreasing function of d~, for "different" judgments, while it is a
monotonically increasing function for "same" judgments. Consequently these two op-

posing functions have to cross each other somewhere, and bk is precisely the point where

they intersect. When dij -- bk, we obtain T~kr = a’~ in both (10) and (12). (See Figure 

where estimated threshold values are indicated by symbol b). This makes intuitive sense,

since by definition the threshold represents a point where the two types of judgments are
indifferent in every respect. In both (8) and (11), bk, Pk, ak and qk2 may be assumed equal

across different experimental sessions.

The log normal distributional assumption [(8) and (11)] is particularly appealing 
the present context, since it has distinct positive skewness, which is typical of most reac-

tion time data. There are, of course, a number of other positively skewed distributions

which might be used. These include the noncentral chi-square distribution [Hefner, 1958;
Zinnes & Wolff, 1977], the gamma distribution [Restle, 1961; Marley, 1981], the general

gamma distribution [McGill & Gibbon, 1965], the inverse Gaussian (or Wald) distri-

bution [Ramsay, Note 1; see Johnson & Kotz, 1970, for general reference], the (com-

posite) Weibull distribution [,Ida, 1980], the log logistic distribution, as well as others

based on the sequential sampling or random walk models [Stone, 1960; LaBerge, 1962;
Link, 1975; Grice, Nullmeyer & Spiker, 1977; Krueger, 1978]. However, Chocholle’s
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[1940] observation (reported in Laming, 1973, p. 156) that for simple reaction time its

standard deviation is roughly proportional to its mean makes the log normal distribution

particularly favorable. It is a characteristic property of this distribution (as well as that of

the gamma distribution.) Whether it carries over to choice reaction time situations still

remains an empirical question, and the empirical validity of the distributional assumption

will be critically examined in the discussion section in the light of specific analysis results.

Note that the log normal distribution is not properly defined for zero dissimilarity. This

will cause some problem in fitting a dissimilarity model to same pairs for which dii -- 0.

For example, we obtain du = 0 in the Minkowski distance model, so that this model

cannot be fitted to the same pairs under the log normal assumption. Some plausible

modification of the Minkowski power distance model in order to accomodate the same

pairs will be suggested in the discussion section.

It might be pointed out here that In T~jk, in (8) and (11) may be replaced 

In (T~jk, -- c), where c is some prescribed constant representing the minimum required time
for just responding. This may allow us to analyze pure comparison and decision times

independent of pure response times. It also has the consequence of avoiding T~k, ap-

proaching zero, as d~j approaches either infinity or zero in (8) and (11). The value 
generally ranges from 100 to 300 ms. However, it is likely that its optimal value is

situation-dependent, and its exact value seems difficult to specify a priori. Thus, for major

portions of our analyses the value of e is assumed to be zero (i.e., (8) and (11) are fitted 

their original form). Some rationale for this will be given later. However, MAXRT, the

program which performs the computations described in this paper has a provision that

allows us to analyze a same set of data repeatedly under different values of e. Thus, the

optimal value oft may be chosen a posteriori on the basis of analysis results.

Let gt~)(tUk,) and gld)(tijk, ) represent the conditional densities of Tok, for a "same" judg-
ment and a "different" judgment, respectively. The joint density g(t~jk,, Y~jk,) of ~k, and

~k, is then written as

9(t,g~,, y,~) = {9~)(to~3Q,g~}r’~’{9~a)(t,~,)(1 Q~)}~-m~,, (13)

where Q~ is defined in (6). Note that

~O<~)(ti~,)Qo~, when Yo~, = 1,
9(t~,, yi~,) = ~9~n)(t~,)(1 _ Q~), when yi~, 

The 9~)(to~,) and 9~n)(ti2~,) are as specified in (8) and (11).
The joint likelihood for the total set of observations can be stated as

L = H H H 9(ti~k,, Yijk,), (14)
k i,j r

where the products are taken over k (session), i and j (stimulus pair) and r (replication) 

which observations are actually made. This requires statistical independence among pairs

of observations (~k,, ~jk,) across k, i and j, and r. While this may not be exactly true due

to sequential effects [Laming, 1973], the dependency can be minimized by stretching

inter-trial intervals. By taking the log of (14) we obtain

where

and

In L = ~sx + qSz, (15)

k i,j r

(16)

~2 = ~ ~ts’~si’,~j~ In QUk + nijg(d). In (1 -- Qijk)} + constant (17)
k i, j
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with ttij
k~(s) 

= ~r Yijkr and-nij~td? = ~, (1 -- Yijkr)- From (8) and (11) we see 

11 {ln -- pk (ln bk -- ln d’j) -- ak}21In ~l(s)(tijkr) = constant - ~ In q~ + tijkr
q~

and

1[

{ln -- p~ (ln d,i -- ln bk) -- ak} 
In a<d)(ti~k~) = constant - ~ In q~ + ti$k~ . (19)

q~

The approach leading to (14) has some resemblance to Ramsay’s [1980] joint analysis 

similarity and preference data, in which he dealt with the problem of relating a common

stimulus configuration to two kinds of data. The major difference is that in his case the

two kinds of data were similarity and preference ratings made on a same set of stimuli

rather than reaction times and same-different judgments.

Estimation of Parameters

The log likelihood stated in (15) is maximized with respect to parameters in the
representation model (Ol; i = 1 ..... n),/~k = Inbk), Pk,ak and qk2. (The trk2 is not directly

estimated. It follows from (9), once pk and ~ ar e obtained.) In order to facilitate the

derivation we may further breakdown the log likelihood function.

Let
h(~) (20)ijk = Pk(~k -- In dij ) + ak,

and
hid) = (21)0k p~(ln d~j -- ~) + k.

Let C~j~ and DUk represent the sets of indices of replications for which the judgments are
"same" and "different", respectively, for stimuli i andj and in session k. Then the first part

of the log likelihood in (15) can be written 

1
~b1 = - ~ ~ Nk In qk2 -- $1, (22)

T

where Nk is the total number of observations in session k, and

Define

h(d)~21(In tijkr- h~)k) 2 + ~ (In tijkr --"ijk! J

(23)

1 r.(s) i~(s) h(s) ~2 .~ (d)l~-(d) /a(d)~2-1

~
k

L~’ijk~tijk- ~’ijk! + ~’ijk~ijk- ~’ijk) 
(24)

(where ~(~) "i jR "i jR are, as defined previously, the numbers of elements in Cij
k 

and Oljk,
respectively) and

2 k i.~ q~ ’

where

~ In tijkr

~is) r e Cij~
jk ~ n(S) 

ij~
(26)
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and

~ In tijkr

~ .)k _~_ r ~ Dq~

ijk
(27)

The ~ts) and~ijk gijk above are simple algebraic means of log reaction times over replications.
When either,,ijk"tS) or "Uk"~d) is zero, ~ijk~(s) or ~ijk~(d) ,o ~ undefined, and consequently the correspond-

ing terms in (24) and (25) should be deleted from $~ and $~*. It can be easily verified 

~l = $~ + $~*. Note that $~* does not involve any model parameters except q~. Hence

it can be ignored when parameters other than q~ are estimated. This would save a lot of

computer time, since $~ does not involve summations over replications. Furthe~ore, the

numerator of $~* (which does involve summations over replications) has to be calculated

once for all computations. Note also that ~) andVijk ~ijk are minimum sufficient for ~t~) and
htn) respectively. The log likelihood can now be written as

ijk ~

1
In L = ~ ~ Nk In q~ -- ~ - ~* + ~2- (28)

T

The log likelihood can be maximized by one of a variety of numerical methods for

optimization. We use Fisher’s scoring algorithm for solving maximum likelihood equa-

tions in combination with the partial alternating least squares. The scoring algorithm has

successfully been employed in a number of similar situations [Takane, 1978; Takane,

1981; Takane & Carroll, 1981; Takane, 1982]. This algorithm updates estimates of pa-
rameters ~ by solving ett)l(~tt))(~ tt+ x) _ ~(t)) = u(~tt)) for ~tt+ 1), ett) i s a stepsi ze param-

eter at iteration t,

(Oln L) (29)

and

EF(Oln L’] (Oln ~o~

The ~) is the current estimates of ~. The Moore-Penrose inverse of the information
matrix evaluated at the maximum of In L gives variance-eovariance estimates of esti-

mated parameters [Ramsay, 1978].

The scoring algorithm may not be very efficient when it is used to update a large

number of parameters simultaneously. When a large number of parameters are involved,

we may partition the total set of parameters into several subsets, and update each subset

successively within each iteration. As a consequence, more iterations are needed for con-

vergence, but each iteration can be done much more efficiently, and there is usually a

great economy in terms of total computation time. In the current MAXRT we first update
parameters in the representation model, ~, with the other parameters (~k, Pk, ak and qk2)

being fixed. We then update ~k, Pk, ak and q~2 in this order. In updating one set of parame-

ters those in the other subsets are always fixed at their current estimates.

One additional advantage of this conditional estimation scheme is that parameters

specific to experimental sessions (those with subscript k) can be updated independently
within each subset of parameters. (For example, Pk and p~, (k ¢ k’) can be updated inde-

pendently of each other.) This is because derivatives of any terms related to k in the log

likelihood with respect to parameters related to k’ (k ~ k’) are always zero. The infor-
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mation matrix in this case is diagonal, implying that their estimates do not influence each

other, given the other subsets of parameters. When the information matrix is diagonal, the

solution of the updating equations is rather trivial. When the session-specific parameters

are assumed equal, they are not session-specific anymore, but then there is only a single

parameter in each subset, and they can be updated as efficiently as before.
The conditional estimate of ak can be obtained in a closed form (again provided that

the other parameters are fixed). The ak is related to only $~’ in (28), which is quadratic 

ak. Consequently the stationary equation involving ak is linear. This estimate is given by

where

(g..k -- Pk Z..k)
(31)ak --

Nk
’

g..k 2 [~(s) ~(s) ~(d) ~(d)~
= ("ijk Yijk "J¢" ~ijk Yijk),

z(S) In dlj, (d,) 
ijk -~" -- Zijr -- 2;ijk ~

~’~. z-(s) _(s)
~(d) ~(d)~

(tlijk ~ijk + "ijk
i,j

and

When ak = a for all k, it is given by

(g... - pz...)

\ q~ ,]

where p~ = p is also assumed for all k, and

\ ].

(32)

It is important to have good initial estimates for both faster convergence and avoid-

ing nonglobal maxima. They are estimated as follows. First, initial estimates of stimulus

dissimilarities are obtained by taking means of reciprocal reaction times (I/T) from cor-
rect "different" judgments. Parameters in the representation models are then estimated by

assuming that they are ratio measures of true stimulus dissimilarities. For the Minkowski

power distance model we apply the Young-Householder procedure [Torgerson, 1958]

assuming that the model is tentatively euclidean. For the linear model and Tversky’s

feature matching model we apply the ordinary linear least squares regression analysis.

(Tversky’s feature matching model reduces to a linear model if fix = 1 is assumed in (69).)

Threshold values are estimated by first taking averages of dissimilarities corresponding to
"different" judgments and "same" judgments separately and then further averaging the

two averages. Once d~j and bk are estimated, we may plug them in (24) to obtain Pk and ak.
Finally, qk2 is obtained by

q~ = (9..k -- P~Z..k)2

Nk

The above initialization method seems to work reasonably well. In the Monte Carlo

study to be reported in the discussion section, we obtained solutions using both the "true"
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parameter values and the built-in initialization method. In all cases we obtained virtually

indistinguishable results.

Derivatives

In this section we collect derivatives necessary to "operationalize" the algorithm. Let

us first define several quantities in order to simplify the notation. Let

Cuk = ¢(Vuk), (33)

where

--pk(~k -- In dij)
VUk = , (6’)

qk

"Ukl (34)tJij k =
q~ ’

~(d) "ijk~ijk -- nijkl (35)~ijk ~ q~ ,

and

Q~k = nl~)~ n’jk (36)
QUk 1 -- Qijk"

Parameters in the representation models of dissimilarities (0), the log threshold parame-
ters (~k), and the slope parameter (Pk) are related to only ~k~’ and ~k2 in (28). Consequently

derivatives of the log likelihood with respect to these parameters all have the same struc-

ture:

Oln L

where { is either O, ~k or p~.

For 0 we have

where

and

where

-- - 0~ + 0~-’
(37)

’~ijk -- Pk

00 dij

(38)

00 = k~ Z Q~J~ , (40)
i,j

00 q~ dij "

The additional derivative (Odu/O0) necessary to fit a specific representation model of dis-
similarities will be given where it is specified.

For the log threshold/~, we obtain

0(- ~b ~*) t~) ~d)’~. (42)~ ~ijk ~ijkll/k ,
~ ~ +

and OHij~k --
t/"ijk

(39)
00 00 ’
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and

where

63Qijk (bijk Pk

C3~k -- qk

When ~k = ~ for all k, 01n L/O~ = Y’,k (Oln L/c3f~k).

For the slope parameter Pk, we have

- ~’~ijk -- GiSk)( k -- In dis),
OPk i, S

(43)

(44)

(45)

and

where

Opk = ~ Q~k ,

OQijk C~ijk(~k -- In dij)

63Pk qk

When p~ = p for all k, t~ln L/Op is obtained by the sum of 0In L/Opk.
For q~ we obtain

c3lnL 1 INk-- (¢~ + ¢~’*)]

(~)cgq~ - 2 q~ + ~., . Q~k ,

where

OQijk _ C~iSk Pk(~k -- In d?)
~q~ 2q~

When qk2 = q2 for all k, dln L/Oq2 is again obtained by the sum of 0In L/Oq~.
The information matrix also has the same structure for 0, bk and Pk, i.e.,

I(~) = I1(~) + I2(~),

where I1 and I 2 correspond with ¢~’ and ¢2, respectively, and are given by

(46)

(47)

(48)

(49)

(50)

(51)

and

I~(~) 
LQ,~(1 -Q~sk)\ 0~ )\ 0~ 

(52)

where",ijk’(S) .~_ "ijk."(d) The summations above extend over i and j. They may also extend over k

depending on ~. For q~, the 12 part in (52) remains the same. The I~ part should 

modified into

Ng
(53)

I~(qk2) -- qk4,
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(or I(q 2) = N*/q* where N* = ~.ak Nk ") Expressions for 11 and 12 were readily obtained by

noting the equivalence of the Gauss-Newton method for certain weighted least squares

problems and the scoring algorithm for maximum likelihood estimation when the as-

sumed population distribution is one of exponential type.

Some indication that the procedure outlined above indeed works will be given in the

discussion section.

Representation Models of Dissimilarities and their Goodness of Fit

In this section we present some empirical results obtained by the method described in

the previous sections. In stating the model we intentionally left the representation model

unspecified. We tried a number of alternatives to find the best representation model for

our data. Our strategy here is strictly empirical in the sense that we actually fit various

candidate models to the same set of data and choose the one which fits the data best

according to some statistical criterion.

In evaluating the goodness of fit of the models we use the AIC statistic [Akaike,

1974] defined by

AIC (~) = -2 In L + 2 n~, (54)

where n~ is the effective number of parameters in model n. Only relative magnitudes of

AIC are meaningful. (The model associated with a smaller value of AIC is considered the
better model.) One of the major advantages of the AIC statistic is that it may be used to

compare any models, contrary to the asymptotic chi-square goodness of fit test which
typically requires that one of the models to be compared is a constrained counterpart of

the other. Some useful applications of AIC to psychometric models can be found in

Takane 1,-1978, 1981], Takane & Carroll 1-1981] and Winsberg & Ramsay [1981]. Takane

[1981] in particular discusses other advantages as well as some limitations of the AIC

statistic.

When one of the two models to be compared is nested within the other (e.g., com-

parisons between different dimensionalities), we may apply the asymptotic chi-square sig-
nificant test. Let L1 and L2 denote the maximum likelihoods of more restrictive and less

restrictive models, respectively. We then calculate C = 2(In 2 -InLt), and compare this
value against an appropriate critical value of chi square with degrees of freedom equal to

the difference in the effective numbers of parameters in the two models. Where applicable,

we use both AIC and the asymptotic chi square to identify the best fitting model.

The Data

The stimuli we used were line drawings of 8 front-view faces derived from a larger set

of faces [Sergent, 1982]. The faces were made by combining each of two levels of three

features: hair style (H), eyes and eyebrows (E), and jaw and chin (J). Eight faces were 

constructed. The values taken on the three features are listed in Table 1, and the faces
themselves are displayed in Figures 2 and 3. Each possible combination of different face

pairs was photographed twice, one face above the other, so that for each pair a face was

once above a central fixation point and once below. Pairs of same faces were photo-

graphed once each. The stimuli were rear-projected onto a rectangular translucent screen,
18 x 13 cm, the bottom of the above-face and the top of the below-face failing .6 cm from

the black central fixation point. The faces, when projected, subtended a visual angle of

3°33’ in height and 2052’ in width. The slides were placed in a random-access projector.

Presentation was controlled by a computer, which selected the slides in a random order.

Each different pair appeared eight times, and each same pair appeared 28 times, yielding a
total of 448 trials per session, with an equal number of same and different pairs.
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The subjects were tested individually. Each subject sat about 80 cm in front of the

screen, in a dark room, his head adjusted in a chin-and-forehead rest so that his eyes were

constantly at the level of the central fixation point. A 500-msec tone warned the subject to

fixate the central point. The stimuli appeared 1 sec after onset of the warning tone, and

the subject was to press the right key if the faces were same and to press the left key if the

faces were different. The stimuli remained on the screen for 1 sec. The subjects were told

to respond as quickly and accurately as possible. The response deadline was set at 1.5 sec,

and no record was made of reaction times exceeding the deadline (There were only a few

such trials.) Each subject was tested in seven sessions of 448 trials. The first session served

as practice, and the six other were experimental and run on consecutive days. Two male

subjects participated in the experiment. They both had normal vision.

After several weeks the above procedure was repeated with the same subjects, but

with upside-down stimulus presentation. The results obtained from these data were very

similar to those obtained from the upright condition, and will not be presented in this

paper. However, they serve as a sort of replication data.

For the reason stated earlier (i.e., the incompatibility of the log normal distribution

with zero dissimilarities in the Minkowski power distance model) only those portions of

the data pertaining to different pairs (224 trials per session) were analyzed.

As mentioned earlier, we fit the Minkowski power distance model, the linear model

and Tverksy’s feature matching model to the above data. In fitting each model we state

some theoretical and/or empirical motivations behind the model, which presumably re-

flects the way the subject performs the required task.

Linear Model 1: The Dominance Metric

There are two classes of models which frequently appear in the reaction time litera-

ture. One is based on the analytic process assumption, and the other based on the holistic

process assumption [Nickerson, 1972]. In the analytic process model the subject is sup-

posed to make an independent decision ("same" or "different") for each discriminable

feature of the stimuli, an overall "different" decision being made when a difference is

detected, and a "same" decision resulting from an absence of difference. In the holistic
process model, on the other hand, information on different features of stimuli is first

integrated into a global judgment of dissimilarity on which the same-different decision is

Table i. The stimuli and their features.

Stimulus

Features

hair (H) eye (E) jaw (J)

Long Dark Angular

Short Dark Angular

Short Light Angular

Long Light Angular

Long Dark Round

Short Dark Round

Short Light Round

Long Light Round
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supposedly made. The representation model we consider first belongs to the analytic class.

Suppose the subject attends to one discriminable feature of stimuli at a time. If the

pair of stimuli differ in the first feature, he immediately gives a "different" response; other-

wise he moves on to the next feature. He repeats the same process until he encounters a

feature in which the two stimuli differ, or until he exhausts all relevant features without

finding any differences between the stimuli. If he follows this self-terminating serial scan-
ning process in a consistent manner, the dominance metric with externally identifiable

dimensions is obtained. (See below.)
The discriminability of the facial features from which the faces were constructed was

assessed in a previous experiment using reaction times to judge the two instances of each

feature as "same" or "different" [Sergent, 1982, Experiment 2]. It was found that the jaws

were discriminated significantly faster than the hairstyles which were in turn discrimi-

nated faster than the two types of eyes. While this may provide an objective measure of

the respective discriminability of each pair of features considered individually, it does not

necessarily imply that faces are compared serially as a function of the discriminability of

their features. Ellis [1975] pointed out that the upper part of the face was paid more

attention to than the lower part, and that subjects may analyze faces in a top-to-bottom

sequence. However, Davies, Ellis, and Shepherd [1977] have shown that the degree of

dissimilarity of the facial features was also an important factor in face comparison and

Sergent [1982] suggested that the scanning strategy involved in face perception may com-

bine a top-to-bottom analysis with a sensitivity to the more discriminable features. This

indicates that objective and subjective salience may not correspond.

Remember that the stimuli were factorially constructed by combining two levels in

each of three features. Thus, each pair of stimuli may be characterized by a set of three

binary variables, x~, x2 and x3, where

0, if the two stimuli are same in feature m,
(55)x,~ --- 1,

otherwise.

Note that there are eight possible patterns of zero and one in three binary variables. All

possible pairs of stimuli (28 different pairs and 8 same pairs) can be classified into one of

these eight groups. Suppose that features 1, 2, and 3 are salient in that order, and that the

subject consistently checks these features in the same order. Then he must follow one of

the four paths depicted in Figure 1 to reach his final judgment. If the two stimuli differ in

the most salient feature, the scanning process ends in Stage 1 [Path (4)]. Stimulus pairs
belonging to the last four groups should have the shortest reaction times. Furthermore,

the reaction times should be identical for the four groups. If, on the other hand, the two

stimuli do not differ in the most salient feature, the next feature is examined. If they differ

in this feature, the process terminates in Stage 2 [Path (3)]. Stimulus pairs, identical in the

first, but different in the second feature (group 3 and group 4), should have the next

shortest reation times. Again, the reaction times should be identical for the two groups.

The reaction times should be longest for the remaining two groups in which stimulus
pairs are identical in the first two features. In these cases the subject has to go into Stage 3

in order to make a "same" judgment [Path (1)] or a "different" judgment [Path (2)].

The essential feature of this strict sequential search hypothesis is that the reaction
time is a function of only the most salient dimension on which two stimuli differ. The

most salient dimension is the one on which the two stimuli differ most. This leads to the

dominance metric model, which is written, in the general form, as

dij = max I Oir~ - Oj. l, (56)

[Coombs, 1964]. Since for a "different" response the reaction time is inversely related to
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the dissimilarity between two stimuli, a shorter reaction time is expected for stimuli that

differ on a more salient dimension. However, once two stimuli differ on a more salient
dimension, possible differences on less salient dimensions have no effects on the overall

dissimilarity between the two stimuli.

Note that (56), as it is, presupposes no prescription of relevant dimensions. The domi-

nance metric is extremely difficult to fit in this general form. However, the situation is

greatly simplified, when, as in the present case, we may assume that the relevant dimen-

sions are known, and coincide with the defining features of the stimuli. (Whether this

assumption is justified is an empirical question.) The dominance metric in this case re-
duces to a simple linear model. Let

~x,,, = I O~m -- 0j, I > 0 (57)

for any stimulus pair whose members differ on dimension m. Here m = H(hair), E(eye) 

J(jaw). The dissimilarity between stimuli i and j can then be written 

du = Y. xu. ~. (58)

where xu, = 1, if m is the most salient feature in which those stimuli differ, and xu~ = 0,
otherwise. We may estimate a. directly. The only additional derivative necessary to fit

(58) 

ddu
~ = xu~.

(59)

The dominance metric, as expressed in the form of (58), was fitted under all six

possible salience orders among three features. The results are reported in Table 2. The

main entries of the table are the values of the AIC statistic. The n~ is taken to be 3

(an, ~E and ~a); parameters commonly used in all solutions are not counted, since for the
purposes of comparing goodness of fit only relative magnitude of AIC matters.

Among the six solutions only two are admissible for each subject in the sense that

INITIAL STAGE STAGE 1 STAGE 2 STAGE 3

!~0 INFORMATION CHECK THE CHECK THE CHECK THE

FIRST FEATURE SECOND FEATURE THIRD FEATURE

(Xl,X2,X3)

"SAME" (0,x2,~3)

"DIFFERENT" (l, x2,x3)

~ (0,0,x3)

~ RENT"

(0,l,x3)

[PATH (3)] {(O,l,0)(0,1,1)

PATH (4)]I
(i,0,0)
(i,0,i)
(i,i,0)
(i,i,i)

~ (0,0,0)[PATH (i)]

~ RENT~’

(0,0,1) [PATH (2)]

FIGURE 1.
The serial scanning process for same-different judgment.
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Table 2. The values of AIC obtained by fitting the dominance

metric model under six salience orders among features.

Dominance

Order Subject i Subject 2

i. H>J>E -5026.5"

2. H>E>J -4939.3

3. J>H>E -4936.2

4. J>E>H -4789.1

5. E>H>J -4733.2

6. E>J>H -4700.1

-3761.1

-3777.4

-3255.7

-3066.7

-3341.0

-3062.0

The indicates the minimum AIC solution.

Admissible solutions are underlined.

AIC = -2 in(L) + 

estimated ~’s agree with prescribed salience orders (e.g., if H > J > E is assumed, it must

be that an > as > ~E, etc.). The two solutions are underlined in the table. For both sub-
jects the salience order of H > J > E is among the admissible solutions. However,

J > H > E is admissible only for subject 1, whereas H > E > J is admissible only for
subject 2. For subject 1 both H and J are far more dominant than E, while the contri-

butions of H and J do not differ greatly. For subject 2, however, H is far more dominant

than both J and E, which themselves do not differ very much.

The minimum AIC criterion indicates that the salience order of H > J > E fits the

data best for subject 1, while H > E > J fits best for subject 2. In both cases the hair is the

most dominant feature. This is more or less consistent with the suggestion that spatially
dense and/or global features tend to be processed faster [Sergent & Bindra, 1981]. The

hair is both spatially dense and global. It is interesting to note that dissimilarity ratings of

the same set of faces have revealed that either E or J is the most dominant feature, and H

the least dominant. Perhaps the way different features are processed is different in time-

pressed situations.

The dominance metric model fitted above, however, is perhaps too simple-minded. It

assumes that the same scanning order is strictly maintained throughout e~perimental

sessions. Mean log reaction times were calculated for the eight groups of stimulus pairs

given in Figure 1, and are listed in Table 3. They clearly tend to decrease as more features
differ between two stimuli. This contradicts the prediction from the strict sequential scan-

ning hypothesis. Although there are other possibilities (e.g., probabilistic sequential scan-

ning hypothesis), it may support the view that features are not processed in an indepen-

dent manner [Lockhead, 1979]. That is, information on different features may somehow

be combined before the final same-different decision is made [Lockhead, 1972; Monahan

& Lockhead, 1977; Miller, 1978].

Linear Model 2: The Context Model

The problem now is how information on different features (or dimensions) is com-

bined. We discuss Medin and Schaffer’s 1-1978] cue context model in this section, and
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Tversky’s feature matching model and the euclidean model in the subsequent sections.

The context model defines similarity between two stimuli by a multiplicative rule. Let

sij represent the similarity between stimuli i and j. Then the model is formally written as

s,j = 1-I fore, (60)

where

1, if stimuli i and j are same in feature m,
f~"~ = r,,, otherwise.

The rm takes values between zero and one (i.e., 0 < zm < 1). Taking the log of (60) 

obtain

-In si~ = - ~ In f/j~
m

= ~_, x,j,,, %,,, (61)
m

where

and

0, if fore -- 1,
Xijr"= 1, if f~,. = Z.,, (62)

~m = --In z.,. (63)

Since gm is always positive, -- In s~ is always nonnegative. Thus, - In so may be viewed as
representing dissimilarity (do) between stimuli i and j. That is,

d0 = ~ x~,. ~,.. (61’)

This is linear in ~.
It can be shown that model (61’) can be interpreted as a special instance of the

city-block distance model defined by

d,~ = ~ l 0,= - 0~, [, (64)

Table 3. Mean log reaction times (ms) for eight groups of stimulus pairs.

Features

0 same

1 different

HJE Subject 1 Subject 2

0. 000 6.910 6.860

i. 001 6.923 6.863

2. 010 6.877 6.846

3. 011 6.852 6.806

4. i00 6.847 6.677

5. i01 6.810 6.646

6. ii0 6.796 6.623

7. iii 6.781 6.616
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where 0~m is the coordinate of stimulus i on dimension m. It is assumed that each feature
represents a dimension. Then I 0~m - 0~ I is either zero or some positive constant for any

pair of stimuli i and j. If it is zero, we set x~j,. = 0 in (61’), otherwise, we set x~j,~ = 1 and

~,, = lOire -- 0j,, 1. Then (64) reduces to (61’).
The context model was fitted to the present data in the form of (61’). The values 

the AIC statistic obtained were -5133.2 and-3822.3 for subject 1 and subject 2, respec-

tively. (The df for the representation model is 3 as in the case of dominance metric.) For

both subjects they are substantially smaller than the minimum AIC’s obtained from the
dominance metric. This result conforms to our previous observation in Table 3.

The context model of Medin and Schaffer assumes that contributions of same fea-
tures to overall dissimilarities are zero regardless of features and values the stimuli take

on the features. For example, two stimuli are same in feature H, whether they both have

long hair or they both have short hair, and the contribution of the hair dimension to the

overall dissimilarity is assumed zero in both cases. We next consider a model which is free

from this restriction.

The Feature Matching Model

Tversky’s feature matching model postulates that the similarity between stimuli i and

j is given by

si~ = ~1 v(Qi c~ Qi) - ~2 v(Oi - Qj) - ~3 v(Qi - (65)

where Q~ and Q~ are the sets of features possessed by stimuli i and j, respectively, v is a
measure defined on a set of features, and/~1,/~2 and ]~3 (all assumed nonnegative) are the

weights representing the importance of the three components (three measures) in obtain-

ing the overall similarity between the two stimuli. The v(Q~ ~ Qi) represents the (un-
weighted) contribution of features commonly possessed by stimuli i and j, v(Qi - Q~) rep-

resents the distracting effect of features possessed by stimulus i but not by stimulus j, and

v(Qj - Qi) the distracting effect of features possessed by stimulus j but not by stimulus i. It
is clear from (65) that the v-scale is determined up to an interval scale [Tversky, 1977],

and consequently features common to all stimuli may be excluded from (65).
Some simplifying assumptions are necessary to fit the feature matching model. The

following assumptions are similar to those made by Keren and Baggen [1981] who re-

cently fitted the feature matching model to the confusion data.

(I) Feature Independence.

v(Q) ~’, v(w), (66)

where w is a feature, and Q is a collection of features. The above equation implies that the

combined effect of features is obtained by simple addition of contributions from ele-

mentary features, and that there are no interactive effects of more than one feature.
(II) Symmetry.

/~ = ~3 = ½ (67)

We simply make this assumption, since no systematic assymmetric effects are fore-
seen [Podgorny & Garner, 1979].

(III) Lo9 Linearity.

In d~j = -s~j (68)

The s~j in (65) gives an interval scale of similarity. The exp (-sgi) will effectively
transform the interval scale of similarity into a ratio scale of dissimilarity.

Finally, we assume that the three defining features of the stimuli (H, J, and E) are the



YOSHIO TAKANE AND JUSTINE SERGENT 411

only relevant features. Each feature had two values. For the purposes of present analysis

each level of the three features is taken as a "feature". (We distinguish the two uses of the

word feature by putting quotation marks to the latter.) Thus, there are six "features"
altogether. Each "feature" is either shared by a pair of stimuli, possessed by only one

member, or not possessed by either member. Let

x(C) ~ 1,
if stimuli i and j share "feature" m,

ij,~ =(0,
otherwise,

and

x(.O) ~1,
if either stimulus i or j (but not both) possesses "feature" 

,jm[0,
otherwise.

Then -slj may be written as

- s,j ln di~ ~ - (c) (O)~a_ (69)= = ([JlXijm "-~ Xijm! --,

where a,~ is the effect of "feature" m on the overall similarity between the two stimuli. The

above model is slightly more complicated than the simple linear model due to the multi-
plicative parameter ill. Derivatives necessary to fit (69) are given as follows:

din dij __ R ~..(C) x.tD)
(70)

darn -- I"l’~’ijm "~ "~’ijrn,

and

din dij
"~ i jra am ̄

m

The AIC values obtained by fitting (69) were -5125.1 (6 dr) for subject l, 

-3818.9 (6 df) for subject 2. (There arc 7 parameters in the model, but due to the interval

scale nature of am, one of them can be arbitrarily fixed.) For both subjects they indicate

poorer fits of the feature matching model than the context model discussed in the pre-

vious section. There arc at least two possible reasons for this: It might bc that the ad-.
ditional parameters introduced for possible differential effects of same features did not

significantly improve the goodness of fit of the model. Or it may bc that the log linearity

assumption (68) is unrealistic (though no other assumptions are readily obvious). At 

moment, however, there is no empirical evidence favoring one over the other.

Note that in all the models discussed so far we have assumed feature independence

and external indentifiability of relevant features. It still remains a question whether the
three physical properties used to construct the stimuli exhaust all relevant psychological

dimensions that the subject utilizes in reaching same-different decisions. It is possible that

some other aspects of the stimuli (e.g., length of forehead) may have been critical. It is also

possible that an entirely new psychological dimension emerges from the objective physical

components of the face. In fact, faces, as other visual shapes, have configural properties
that result from some form of interrelation between the stimulus components and that

exist in addition to the component properties [Garner, 1978].

The additive clustering (ADCLUS) analysis of Shcpard and Arabic [1979] is interest-

ing in this regard. The model decomposes the overall similarity between two stimuli into a

weighted sum of contributions from features commonly possessed by the two stimuli. The
most appealing aspect of the model is that it does not presuppose the knowledge of

relevant features. Rather, the method tries to identify a set of features necessary and

sufficient to account for the set of observed similarities. However, the ADCLUS model is
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extremely difficult to fit due to the discrete nature of the model [Arabie & Carroll, 1980].

If, on the other hand, the features are assumed known a priori, this model reduces to a

special case of Tversky’s feature matching model (fit = f12 = 0), which is easier to fit, but

then the ADCLUS model loses its most appealing feature. Of course it is possible to

identify potentially relevant features based on the least squares fitting of the ADCLUS

model [Arabie & Carroll, 1980] to reaction time data. We may then fit only a few candi-

date models by the present method for further model comparisons.

The Euclidean Model

Another class of models which do not presuppose a priori identification of relevant

stimulus attributes are the distance models used in the conventional multidimensional

scaling (MDS). In fact one of the most appealing features of MDS is that we do not have

to prescribe what aspects of stimuli are psychologically relevant, or how many aspects (or
dimensions) are necessary to account for the data.

The distance model most widely used in multidimensional scaling is the Minkowski

power distance model IKruskal, 1964a, b] defined by

dij = 11 Oi, - 0j, I ~ , (72)

where 0i,, is the coordinate of stimulus i on dimension m, u (> 1) is the Minkowski power,

and M is the dimensionality of the representation space. The derivative necessary to fit

(72) is given 

ddi~ = (6it _ (~jt) l Oi. - Ojm I u- 1 signum (O~m -- 0~.)
(73)

dOtr
n

di ~- 1 ’

where 6 is a Kronecker delta. The Minkowski power distance model generates a family

of distance models which differ in how dimensional differences contribute to the overall
distance, depending on the value of u. When u = 2, we obtain the familiar euclidean

distance model.

The euclidean distance model was fitted in four two to five dimensions. The results

are reported in Table 4. The values of AIC indicate that the best solution is four dimen-

sional for both subjects. The asymptotic chi-squares also indicate that it is the best solu-

tion. The chi-squares representing the difference between the four and five dimensional

solutions are 1.8 with 3 df for subject 1 and 4.2 with 3 df for subject 2. The fifth dimension

thus seems nonsignificant. However, the fourth dimension seems significant. The chi-

squares are 12.6 and 15.6 for subject 1 and subject 2, respectively, each with 4 df.
The AIC values of -5146.9 and -3850.2 are also both substantially smaller than

those obtained from the context model, indicating that the four-dimensional euclidean

model is the best model so far. Figures 2 and 3 display derived four-dimensional stimulus
configurations. Stimulus coordinates on the fourth dimension are given in the lower right

corner. The first three dimensions of the configurations roughly correspond with the three

defining features of the stimuli, namely hair, jaw and eye, in this order. The third dimen-

sion in the four-dimensional solutions shows some curious pattern, which does not show

up in the three-dimensional solution; on this dimension stimuli 2 and 3, and stimuli 5 and
8 are distinctly closer to each other than stimuli 1 and 4, or stimuli 6 and 7. This is partly

compensated by the fourth dimension, on which those closer stimulus pairs are located far

apart. The average standard error (as determined by the asymptotic variance-covariance

estimates of the estimated parameters) is approximately 3/10 and 1/3 of the distance be-

tween stimuli 2 and 9 on the fourth dimension for subject 1 and subject 2, respectively.
(The standard error estimate for each parameter is obtained by the square root of 
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Table 4. Summary of the results obtained by fitting the euclidean model.

Dimensionality Subject i Subject 2

in(L) 2598.5 1950.1

nz
25 25

AIC -5146.9 -3850.2

In(L) 2597.6 1948.0

n~
22 22

AIC -5151.2 -3852.1

in(L) 2591.3 1940.2

n~
18 18

AIC -5146.6 -3844.4

In(L) 2548.1 1918.1

n~
13 13

AIC -5070.2 -3810.1

The minimum AIC solution

respective diagonal element in the Moore-Penrose inverse of the information matrix de-
fined in (30).) From this, one can get a rough impression of how reliably parameters 

estimated.
Furnas [Note 2] at Bell Laboratories suggested that the fourth dimension might

Eye

Sub. 1

FIGURE 2.

Derived stimulus configuration for subject 1.

Sex

Consistency

ST. No.
MORE
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Eye

5

6

Sub. 2 ~

FIGURE 3.

Derived stimulus configuration for subject 2.

Sex

Consistency

!ST. No.

MORE 2

7

4

LESS
5
3

represent sex consistency. Short hair, angular jaw, and small dark eyes are considered
typical male features, whereas long hair, round smooth jaw, and big light eyes are female

features. The stimuli most consistent with these sex profiles (i.e., stimuli 2 and 8) are

located at the top of the fourth dimension. For stimuli 1 and 7 the hair is inconsistent.

For stimuli 3 and 5 both the hair and the jaw are inconsistent. These six stimuli are

aligned in pairs roughly in the order given above from nearest to furthest from stimuli 2

and 8. (For subject i the last four stimuli, namely, 4, 6, 3, and 5, have approximately equal

coordinates on the fourth dimension. This may be because for stimuli 3 and 5 it can also

be said that only the eyes are inconsistent.)

The significant fourth dimension seems fairly persistent. It has appeared consistently

for both subjects. Arrangements of the stimuli along this dimension are also very similar
for both subjects. Furthermore, the significant fourth dimension was also obtained from

the data taken under the upside down stimulus presentation. Again the stimulus configur-

ation along this dimension was very similar to those obtained from the upright condition.

It must be pointed out that this finding does not bear on the issue of the processes

underlying face identification. Whereas it is well established that inverting the orientation

of a face impairs its identification [e.g., Rock, 1973], the present experiment involved a

discrimination between two simultaneously presented unfamiliar faces having no identity,

and therefore required processes unlike those underlying the recognition of a face as that

of a unique individual.

However, it is still possible that the fourth dimension has resulted from some misspe-

cification of the model. We discuss two possibilities. One concerns with the function relat-

ing the distance to the reaction time, and the other pertains to the representation model.
Note that, by increasing the dimensionality from three to four, the distances remain

intact for stimulus pairs differing in all three features. This implies that the three dimen-

sional euclidean space (defined by the first three dimensions in the four dimensional solu-

tion) tends to underestimate small distances, which, in turn, implies that the fourth dimen-

sions would not have emerged, if the function (10) relating d to T* had yielded even

smaller estimates of distances for small distances. That is, the estimated function may

have been too steep. Kruskal [Note 3] suggested that this might be due to the fact that, as

mentioned earlier, we set the baseline parameter c for reaction time to zero in all analyses
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conducted so far. If, however, some positive value is specified for c the function would
necessarily be less steep, since it is bounded from below by c.

The euclidean model was thus fitted for several prescribed values of c (c ranging from

100 to 500 ms in the step of 100 ms) under the assumption that T-c is log normal. The
likelihood, however, was found to get consistently worse as the value of c was increased

from zero. The estimated function (10) relating d to T* is steepest for subject 2’s last

session. Even in this case the distance has to be more than four times larger than the

largest existing distance to reach the point where the function predicts the mean reaction
time of 300 ms, which is just about the absolute minimum for reaction times. Thus, at

least for the difficulty level of the present discrimination task (and, consequently, for the

range of reaction times we obtain) there is no indication that the function is too steep,

though for much simpler tasks the parameter c may still be important.

Another possible cause for the emergence of the fourth dimension is inadequacy of

the euclidean distance model as a combination rule. Suppose we have a right isosceles

triangle, whose equal sides are oriented along the reference axes of the space in which the

triangle is embedded. Suppose further that its hypothenuse is of a fixed length, say, h.

Then the euclidean model predicts that the two isosceles sides have a length of hi(2)1/2.

The dominance metric (i.e., the case in which u-, ~ in (72)), on the other hand, predicts

that they are h, which is larger than hi(2) 1/2. Thus, the underestimation of small distances

by the three-dimensional euclidean model may be corrected by the Minkowski power

distance model with the power greater than two. The Minkowski power model is closer to
the dominance metric in this case. The Minkowski power distance model was fitted in

both three and four dimensions with u systematically varied between 2.5 and 5.0. In all

cases larger likelihoods were obtained than in their euclidean counterparts. Note, how-

ever, the Minkowski power distance model (u ¢ 2) generally uses more parameters than

the euclidean model, since the former does not allow rotations of axes. This difference

being taken into account in the AIC statistic, none of the Minkowski solutions (u > 2)

were better than the euclidean four-dimensional solutions.
Shepard [1974] notes, as an observation first made by Arabie (see also Koopman 

Cooper, Note 4), that if one finds a local maximum of a likelihood function (as a function

of u) at u = ul, one tends to find another local maximum (called a conjugate maximum)
around u2 where ul and u2 satisfy 1/Ul + 1/U2 = 1. For u1 > 2, u2 must be smaller than 2.

This and the fact that the stimulus features (at least those physically manipulated) are

fairly distinct (separable) tempted us to fit the Minkowski power distance model with

u < 2 I-Shepard, 1964; Hyman & Wells, 1967, 1968] including the city block distance

(u = 1) [Attneave, 1950]. Shepard’s [1974] remark was indeed true. However, the AIC’s

corresponding to the conjugate maximum of the likelihood function were found still

larger than those for the four-dimensional euclidean solutions. Thus, even though the

physically manipulated features are separable, the finding of a fourth dimension may be

consistent with Garner’s [1978] suggestion that integral (configural) properties can 
derived from, and exist in addition to, the component features of a visual stimulus.

The Null Model

It was already mentioned that a(s) in (26) and a(d) in (27) are the minimum sufficient~t ijk ~t i jk

statistics for ~,ts~ in (20) and ,_ta) in (21), respectively. Similarly, ~ijk ~(s)/~ (where~ijk I’lljk ~ "ijk I t "ijk ~lijk
n{~ ~,ta)~ is minimum sufficient for Qqg. This implies that all the information pertinent to

ijk "~- t;ijkJ
¯ ¯ (s) (d) ¯ ;-,(s) ~(d)the estimation of hijk, hi,~k and Q~ijk 1S contained in and~ijk, ~ijk Qijk, respectively. In a

sense the set, {~]~, ~]k~, Qi~k}, provides a model of reaction times and same-different judg-

ments, which does not assume any representation or response model. This benchmark

model is called the null model here. It is the most general model in the sense that it yields
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the largest possible likelihood among all conceivable models that treat replications as

such. Thus, it is of some interest to compare the four dimensional euclidean solution

against this null model.

The null model has yielded the log likelihoods of 2804.9 and 2153.6 for subject 1 and

subject 2, respectively, as opposed to 2597.6 and 1948.0 in the four dimensional euclidean

solution. However, the null model uses 363 and 378 parameters for subject 1 and subject

2, respectively, whereas the four-dimensional euclidean model uses only 46 parameters.

(Note that 22 df given in Table 4 does not include parameters in the error and the re-

sponse models.) The differences in the log likelihoods (207.3 and 205.6) are not as large 

the differences in the effective numbers of parameters (317 and 332) in the two models.

Both the asymptotic chi-square and the AIC statistics in this case would favor the more

restrictive model, which in the present case is the four-dimensional euclidean model.

Discussion

After conducting a series of analyses using the method introduced earlier in the

paper, we are now in the position to give overall evaluations of the method and to suggest
possible future studies.

Recovery of the Original Information

The validity of our results given in the previous sections depends on many factors.

Above all it depends on the ability of the proposed method to recover faithful stimulus

representations. In this section we give some indication that the method really works with

the amount of data we have collected in our experiment. We will assume, throughout this

section, that our model is correct. (Whether it is correct for our data will be discussed

later.)
For those who do not trust the asymptotic standard error estimates, the jack-knife

type of reliability assessment (which is conceptually similar to the split-half type of assess-

ment) may help observe how reliably model parameters have been estimated. For each

subject the data analyzed in this paper consisted of six experimental sessions. Thus, we

may analyze the data from each session separately, and see how the derived configura-

tions compare with those obtained from the entire data sets. In each case the euclidean

four-dimensional model (which was the best fitting model for the entire data sets) was

fitted. It was found that in all cases similar results were obtained to those obtained from
the entire data sets. Mean correlations between the stimulus configurations derived from

each session separately and the overall configurations were .95 (s = .03) for subject 1 and

.93 (s = .4) for subject 2. While these are by no means extraordinary, considering that the

mean correlation between two random configurations could be as large as .56 (s = .07)

with eight stimuli in four dimensions, they are still quite high, particularly in the presence

of generally large error variance in reaction time data (50 to 75% of the total variance in

log reaction times in the present case) and under the influence of massive data reduction

(as much as 1/6 of the entire data sets).

The above correlations, however, tend to overestimate the correlation between "true"

and estimated configurations for two reasons. First, same portions of the data were re-

peatedly used in deriving both the overall and session-wise stimulus configurations. Sec-
ondly, the stimuli used in our empirical study are all well separated from one another,

perhaps more than usual. (This is due to the factorial nature of the stimuli.) A small

Monte Carlo study was thus conducted in order to investigate the goodness of recovery of

the original information using randomly generated stimulus configurations. In order to

maximize the comparability of the results all parameters were set as equivalent as possible

to those set (or obtained) in our empirical study. It was assumed that there were eight
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stimuli represented in the four-dimensional euclidean space. A different stimulus configur-

ation was generated for each data set by uniform random numbers. The variance in reac-

tion times was set at approximately 65% of the variance in expected log reactions times,

as perhaps typical of the reaction time data comparable to ours. Ten independent samples

of data were generated for each of three sample sizes: one-session equivalent (i.e., 8 repli-

cations for each of 28 different pairs), three-session equivalent, and six-session equivalent.

Solutions were obtained in both four and five dimensions.

Mean correlations between the "true" configurations and the estimated four dimen-

sional configurations were found to be .86 (s = .05) for the one-session case, .93 (s = .02)

for the three-session case, and .97 (s = .01) for the six-session case. This implies that 

need as much data as can be collected in six sessions (48 replications for each stimulus

pair) to secure a stable .95 or above correlation with a "true" stimulus configuration. On

the other hand, three sessions are sufficient, if we are satisfied with the minimum corre-

lation of about .90. Three sessions were also found to be sufficient to rely on the AIC

statistic and the asymptotic chi-square goodness of fit statistic representing the difference

between four and five dimensional solutions. (The ratio of the number of observations to

the number of parameters is approximately 15 in this case.) Standard errors were, on

average, 2.1 and 1.5 times larger in the one-session and the three-session cases, respec-

tively, than in the six-session case.

The above study is obviously of a rather limited nature. But at least it indicates that

our empirical results are quite reliable, assuming that our model is correct.

The Representation Model

From the results presented in the previous sections it may be safely concluded that

the four-dimensional euclidean model gives a reasonable approximation to our data. The

results, however, may depend on the particular set of stimuli used in the present study.

Quite possibly, other representation models may fit better for other kinds of stimuli. This
possibility will be explored in a subsequent paper [Sergent & Takane, Note 5].

One of the major difficulties of the Minkowski power distance model as defined in

(72) is that it cannot be directly fitted to reaction times for same pairs. Although the same

pairs were excluded from the present analysis, their importance in choice-reaction time

experiments should not be neglected [Podgorny, 1980]. Two-choice reaction time data

and same-different judgments are usually recorded for both same and different pairs. Siz-

able portions of the data would then be discarded, if only different pairs are analyzed.
The importance of including the same pairs may be seen in Figure 4, in which esti-

mated functions [(10) and (12)] relating the dissimilarity to the reaction time are depicted

for a selected subset of experimental sessions. Functions for the "different" judgments are

indicated by dotted curves, while those for the "same" judgments are indicated by solid

curves. Note that the "same" function for subject l’s session 6 predicts longer reaction
times than for session 1. This has been caused by the lowered threshold in session 6.

(Estimated threshold values are indicated by x and b6 in t he figure.) B y s ession 6 subject

1 became completely familiar with the task and made only a few errors (i.e., "same"

judgments for different pairs). The threshold should have been lowered accordingly. Evi-

dently this was due to the fact that only different pairs were analyzed. It could be avoided

only if the same pairs were included in the analysis~
The joint analysis of same and different pairs is possible with the linear model and

Tversky’s feature matching model without any modification. The Minkowski power dis-
tance model, on the other hand, needs some modification. One possibility is to define

~j = (di~ + 0~o + 0jo)TM, (74)
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FIGURE 4.

Estimated functions relating dissimilarities to reaction times.

Distance

where do is the Minkowski power distance as defined in (72), and Oio and 0jo are additive
parameters representing stimulus complexity of stimuli i and j, respectively. These addi-

tive parameters are motivated by the empirical observations [Nickerson, 1967] that it

takes more time to identify two complex stimuli than simple stimuli. It is assumed that

0io > 0, so that for i = j, d. = (201o)1/" > 0, which conveniently introduces some random
component into ~’iik, =dii e,k. (under the distributional assumptions (3) and (4), V(7~.k,) 

0, if d, = 0). The above model is similar in form to Krumhansl’s [1978] distance-density

model, which is written, under the present notation, as

di~ = d~j + 0~o + 0~o. (75)

(Note that (75) is a somewhat simplified version of Krumhansl’s original model in that 

has no provision for asymmetric dissimilarity.) The major difference between (74) and (75)

is that the effect of 0~o diminishes in the former as di~ increases. In Krumhansl’s model 0~o
is interpreted as representing spatial density surrounding stimulus i. The 0~o in (74), on the

other hand, may be interpreted as stimulus specificity, analogous to a specific variance

component in common factor analysis. This interpretation can be afforded by the fact that
the coordinate matrix for model (74) is obtained by appending a diagonal matrix of ol/,,,,io to
the original coordinate matrix for (72).

Of course there are other possibilities which are equally plausible. For example, the
noncentral chi-square distribution mentioned earlier allows for d~i = 0. It has other desir-

able properties as well (e.g., positive skewness, increasing variance for increasing mean,

etc.). However, considerable numerical approximations are necessary to evaluate its inte-

gral, and it is only appropriate for the (squared) euclidean model. Furthermore, d, = 
implies that all stimuli are equally similar to themselves, which seems far from the truth

[Tversky, 1977; Podgorny & Garner, 1979]. Thus, we believe that the redefinition of d. is
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not only mathematically convenient (the log normal distribution can still be used), but

also empirically pertinent [Krumhansl, 1978].

The Error and the Response Models

We made a rather specific distributional assumption to relate the representation
models of dissimilarities to the observed data. Whether it is adequate or not is of crucial

importance in evaluating the goodness of fit of the model. The validity of the maximum

likelihood estimation method employed in the present method critically depends on the
veracity of the distributional assumption.

Figure 5 presents four normal quantile plots obtained from the four-dimensional

euclidean solutions. Two plots were randomly sampled from each of the total of six ses-

sions for the two subjects. The vertical axis in each plot represents normalized log re-
_ ~,t~) ,.ta) depending on the type of judgment; "i~k

ni.iksiduals (i.e., In tijkr "ijk or In tijkr -- ~tij
k

/,~(s) and ,_td)

are defined in (20) and (21).), and the horizontal axis normal quantile scores. If the distri-

butional assumption is correct, the plots should exhibit 45° lines going from lower left to

upper right, as indicated by solid lines. Visual inspections of the plots indicate that the fit

is reasonably good in all cases, although in almost all cases we see some irregularities

(departures from the solid lines) near extreme ends of the distribution. It does not seem

too obvious whether any other distribution (than the log normal distribution) can correct

these irregularities. Furthermore, there seem to be small, but fairly systematic individual

differences. Whereas subject 1 tends to give too extreme reaction times in both tails of the

distribution (more often in the upper tail), subject 2 tends to do so in the lower tail of the

distribution (i.e., subject 2 tends to give too short reaction times). This difference may

reflect an important difference in the two subjects’ response style.
The adequacy of the log normal distributional assumption for the same-different

Ses.5

sub.2

Norm. Quantile

FIGURE 5.

Normal quantile plots of log residuals.
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judgments may be partially checked by the likelihood ratio of predicted Qijk to observed

Q~jk (i.e., 0~k). Minus twice the log likelihood ratio may be considered approximate chi-
square with 122 df, which is equal to 28 stimulus pairs times 6 sessions (the number of

0i~k’S) minus 46 estimated parameters. This value was found to be 121.5 for subject 1 and
167.1 for subject 2. While it may be a bit large for subject 2, it is still much smaller than

244, twice the corresponding degrees of freedom. (This criterion is equivalent to the AIC

statistic.) Furthermore, the 46 parameters were used to predict not only the probabilities

of the same-different judgments but also the reaction times. The 122 df is probably an

underestimation in this case. We may thus conclude that the log normal assumption is

adequate for the same-different judgments as well.

In connection with the too short reaction times it may be noted that the present

model almost invariably predicts relatively long reaction times for incorrect judgments. A

majority of incorrect reaction times are indeed long. However, there is a fraction of incor-

rect reaction times which are disturbingly short. These short incorrect reaction times may
be due to fast guesses [Ollman, 1966; Yellot, 1971]. If this is the case there should be

approximately equal number of fast guesses which happened to be correct. At present no
provision is made in our model to cope with possible fast guesses. However, guessing

parameters may be incorporated into our model much the same way as in Birnbaum’s

three-parameter logistic model [Lord & Novick, 1968] in mental test theory. In this case

we distinguish two kinds of responses, stimulus-controlled response and guessing re-

sponse. The model developed in this paper is presumed to apply to the stimulus-

controlled responses. The subject, however, is assumed to elicit a certain proportion of

guessing responses. If the probability and other distributional properties of the guessing

responses are parametrized, the distribution of the observed reaction times and same-

different judgments can be specified by a mixture of two distributions, one for the

stimulus-controlled responses and the other for the guessing responses. It is also possible
to construct a model in which the guessing rate may vary as a function of stimulus dis-

similarity and the threshold. Allowing the guessing parameters in the model in this way

may also account for the nonmonotonic "latency-probability" curves found in certain

choice reaction situations [Link, 1971; Link & Tindall, 1971; Petrusic & Jamieson, 1978].
It will be interesting to see how well our response model can put up with various task

requirements in reaction time experiments. The data analyzed in this paper were taken

under a specific condition, a clear viewing, a long exposure duration, no impending re-
sponse deadlines. This is so-called resource (or process) limited condition as opposed 

data (or state) limited condition [Garner, 1978]. While reaction times are typically taken

under the resource limited condition, accuracy measures (error rates) are taken under the

data limited condition. The joint analysis of both types of data has opened up possibilities

of analyzing a whole range of data collected under varying conditions between these
extremes. We have seen that our method works reasonably well under the resource limi-

ted condition. However, whether it will work equally well in other situations, or how
parameters in the response model will respond to the experimental condition, is yet to be

seen.

Concludin# Remarks

In this paper we developed and evaluated a method for joint analysis of reaction

times and same-different judgments. As a model of psychological process this method

attempts to explain both types of data by a single underlying process. As a data analysis

tool, it is capable of fitting the Minkowski power distance model, the linear model and a
somewhat restricted version of Tversky’s feature matching model. However, it is relatively

straightforward to extend the method to cover other representation models, such as Car-
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roll and Chang’s [1970] weighted distance model, Johnson’s [1967] hierarchical tree

model, Fishburn’s [1980] lexicographic additive difference model, etc. An interesting

possibility is the probabilistic sequential scanning model, which is a proper generalization

of the strict (= nonprobabilistic) search model discussed in this paper. In the former 

particular scanning order of features is assumed followed with a certain probability

(rather than consistently). However, at present we do not know what representation

model this probabilistic process model reduces to.

We made the specific assumptions both about the distributional properties of the

error and about the form of the function relating the represented dissimilarity between

stimuli and the observed reaction time and same-different judgment. We have seen that

these assumptions are satisfied to a reasonable degree by the data examined in this paper.

Their validity, however, need be carefully inspected in each specific instance to which the

present method is applied. This point should be emphasized, because at the moment we

have no evidence regarding how much violation the method can tolerate. Estimates of the

representation model may be fairly robust as is usually the case, though the goodness of

fit statistics (AIC and asymptotic chi-square) may be more susceptible to the violation. 

any case some systematic study is necessary on this point.

One may still argue that the present method lacks that remarkable generality that
traditional nonmetric MDS has enjoyed. It is our contention, however, that the richness

of analyses (i.e., variety, detailedness and decisiveness) we enjoy with the proposed method

more than compensates the loss of generality.
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