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Cyber-Physical System (CPS) is an integration of distributed sensor networks with computational devices. CPS claims many
promising applications, such as traffic observation, battlefield surveillance, and sensor-network-based monitoring. One important
topic in CPS research is about the atypical event analysis, that is, retrieving the events from massive sensor data and analyzing them
with spatial, temporal, and other multidimensional information. Many traditional methods are not feasible for such analysis since
they cannot describe the complex atypical events. In this paper, we propose a novel model of atypical cluster to effectively represent
such events and efficiently retrieve them from massive data. The basic cluster is designed to summarize an individual event, and
the macrocluster is used to integrate the information from multiple events. To facilitate scalable, flexible, and online analysis, the
atypical cube is constructed, and a guided clustering algorithm is proposed to retrieve significant clusters in an efficient manner.
We conduct experiments on real sensor datasets with the size of more than 50 GB; the results show that the proposed method can
provide more accurate information with only 15% to 20% time cost of the baselines.

1. Introduction

The Cyber-Physical System (CPS) has been a focused research
theme recently due to its wide applications in the areas
of traffic monitoring, battlefield surveillance, and sensor-
network-based monitoring [1–6]. It is placed on the top of
the priority list for federal research investment in the fiscal
year report of US president’s council of advisors on science
and technology [7].

A CPS consists of a large number of sensors and collects
huge amount of data with the information of sensor loca-
tions, time, weather, temperature, and so on. In some cases,
the sensors occasionally report unusual or abnormal readings
(i.e., atypical data); such data may imply fundamental
changes of the monitored objects and possess high domain
significance. To benefit the system’s performance and user’s
decision making, it is important to analyze the atypical
data with spatial, temporal, and other multidimensional

information in an integrated manner. A motivation example
is shown as follows.

Example 1. The highway traffic monitoring system is a
typical CPS application. With the sensor devices installed
on road networks, the monitoring system watches the traffic
flow of major U.S highways in 24 hours× 7 days and acquires
huge volumes of data. In this scenario, one important type
of atypical events is the traffic congestion. Some frequent
questions asked by the officers of transportation department
are (1) where do the traffic congestions usually happen in the
city?, (2) when and how do they start? (3) and on which road
segment (or time period) is the congestion most serious?

In such queries, the users are not satisfied merely on a
database query returned with thousands of records. They
demand summarized and analytical information, integrated
in the unit of atypical event. The granularity of the results
should also be flexible according to the user’s requirements:
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some officers may be only concerned with the information
in recent days, whereas others are more interested in the
monthly or even yearly report. However, it is hard to support
such multidimensional analysis of atypical events in CPS
data, partly due to following difficulties.

(i) Massive Data. A typical CPS includes hundreds of
sensors, and each sensor generates data records in
every few minutes. The CPS database usually contains
gigabytes, even terabytes of data records. The man-
agement system is required to process the huge data
with high efficiency.

(ii) Complex Event. The atypical event is a dynamic
process influencing multiple spatial regions. Those
spatial regions expand or shrink as time passes by,
they may even combine with others or split into
smaller ones. Hence the atypical events do not have
fixed spatial boundaries. They are difficult to be
represented by traditional models.

(iii) Information Integration. In many applications, the
users demand integrated information for analytical
purposes. For example, a transportation officer may
need a monthly summary of the congestions in the
city. Then the system has to measure the similarity
among daily atypical events and integrate the similar
ones to provide a general picture.

(iv) Retrieving Effectiveness. A large-scale analytical query
may contain the data from hundreds of atypical
events; however, not all of them are interesting to
the users. The users may only prefer a few significant
results, that is, the most serious events that influence
large area and last for a long time. The system should
distinguish such significant events in the retrieving
process and emphasize them from the majority of
trivial ones.

In this study, we introduce the concept of atypical
connection to discover the atypical events and summarize
them as atypical clusters. The atypical cluster is a model
describing multidimensional features of the atypical event.
They can be efficiently integrated in a hierarchical framework
to form macroclusters for large-scale analytical queries. To
retrieve significant macroclusters, the system employs a
guided clustering algorithm to filter out the trivial results and
meanwhile guarantees the accuracy of significant clusters.
The data structure of atypical cube, which is a forest
of hierarchical clustering trees, is constructed to facilitate
scalable and feasible analysis. The proposed methods are
evaluated on gigabyte-scale datasets from real applications;
our approaches can provide more detailed and accurate
results with only 15% to 20% time cost of the baselines.

This paper substantially extends the ICDE 2012 con-
ference version [8], in the following ways: (1) introducing
the concepts of atypical cube as an integrated model for
multidimensional sensor data analysis in CPS; (2) proposing
the techniques to process OLAP queries based on the atypical
cube, including the algorithms for both the large-scale and
small-scale (i.e., drill-through) queries; (3) discussing the

issues of extending atypical cube to other dimensions and
introducing a case study in traffic application; (4) carrying
out the time complexity analysis of proposed algorithms;
(5) providing complete formal proofs for all the properties
and propositions; (6) covering related work in more details
and including recent ones; (7) introducing the bottom-up
styled cube in more details as the background knowledge; (8)
expanding the performance studies on real datasets.

The rest of the paper is organized as follows. Section 2
introduces the problem formulation and system framework;
Section 3 proposes the models of atypical clusters and the
algorithms to construct atypical cube; Section 4 introduces
the techniques to efficiently retrieve significant clusters for
OLAP queries; Section 5 evaluates the performances of
proposed methods on real datasets; Section 6 discusses the
extensions of proposed techniques; Section 7 makes a survey
of the related work, and in Section 8 we make the conclusion.

2. Backgrounds and Preliminaries

2.1. Problem Formulation. The cyber-physical systems mon-
itor real world by sensor networks. In most cases, a sensor
reports records with normal readings. If an atypical event
happens (such as a congestion is detected in traffic system),
the sensor will send out atypical records. The detailed
atypical criteria are different according to the application
scenarios and environments (e.g., the highway types and
speed limits); many state-of-the-art methods have been
proposed to select the trustworthy atypical records in traffic,
battlefield, and other CPS data [3, 9, 10]. Since the main
theme of this study is on multidimensional analysis of
atypical event, we assume that the atypical criteria are
given and clean atypical records can be retrieved by CPS.
In fact, some of such datasets are available to public
[11].

The atypical records are represented in the format of (s,
t, f (s, t)), where the severity measure f (s, t) is a numerical
value collected from sensor s in time window t. Without
loss of generality, we adopt the atypical duration as the
severity measure in this study, since it is commonly used in
many CPS applications. For example, (s1, 8:05 am–8:10 am,
4 mins) means that sensor s1 has reported atypical readings
for 4 minutes from 8:05 am to 8:10 am. Note that, although
we focus on atypical duration in this paper, the proposed
approach is also flexible to adjust to other domain-specific
measures.

The atypical events are dynamic processes including
many atypical records. In the traffic application, the atypical
event of a congestion usually starts from a single street,
which can only be detected by one or few sensors. Then the
congestion swiftly expands along the street and influences
nearby sensors. A serious congestion usually lasts for a few
hours and covers hundreds of sensors when reaching the full
size. As time passes by, it shrinks slowly, eventually reduces
the coverage, and finally disappears.

By observing the phenomenon of congestion, we find
that those records in an atypical event are spatially close
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Table 1: Example: atypical events.

ID Atypical Records

EA

〈s1, 8:05 am–8:10 am, 4 min〉; 〈s1, 8:10 am–8:15 am, 5 min〉;
〈s2, 8:10 am–8:15 am, 5 min〉; 〈s3, 8:15 am–8:20 am, 5 min〉;
〈s4, 8:15 am–8:20 am, 2 min〉; . . .

EB

〈s3, 6:20 pm–6:25 pm, 2 min〉; 〈s4, 6:20 pm–6:25 pm, 5 min〉;
〈s1, 6:25 pm–6:30 pm, 5 min〉; 〈s4, 6:25 pm–6:30 pm, 5 min〉;
〈s5, 6:30 pm–6:35 pm, 5 min〉; . . .

EC

〈s1, 8:20 am–8:25 am, 1 min〉; 〈s1, 8:25 am–8:30 am, 5 min〉;
〈s9, 8:25 am–8:30 am, 5 min〉; 〈s1, 8:30 am–8:35 am, 5 min〉;
〈s7, 8:35 am–8:40 am, 3 min〉; . . .

and timely relevant. Hence we introduce the following
definitions.

Definition 2 (Direct Atypical Connected). Let ri〈si, ti, f (si, ti)〉
and r j〈s j , t j , f (s j , t j)〉 be two atypical records in CPS, let δd
be the distance threshold, and let δt be the time interval
threshold. ri and r j are said to be direct atypical connected if
distance (si, s j) < δd and |ti − t j| < δt.

Definition 3 (Atypical Connected). Let r1 and rn be atypical
records. If there is a chain of records r1, r2, . . . , rn, such that ri
and ri+1 are direct atypical connected, then r1 and rn are said
to be atypical connected.

Based on the above concepts, we formally define the
atypical event as follows.

Definition 4 (Atypical Event). Let R be the set of atypical
records. Atypical Event E is a subset of R satisfying the
following conditions: (1) for all ri, r j : if ri ∈ E and r j is
atypical connected from ri, then r j ∈ E; (2) for all ri, r j ∈ E:
ri is atypical connected to r j .

Example 5. Table 1 shows three atypical events. Each event
contains hundreds of atypical records; part of their records
are listed in the second column.

Our task is to find out atypical events and integrate them
in a data structure to support online analytical processing
(OLAP) queries with multidimensional information. The
data cube is a subject-oriented and integrated structure
to support OLAP queries [12]. It organizes the data with
multiple dimensions as a lattice of cells. In the cube, every cell
corresponds to a degree of data summarization and stores the
concrete measures for different queries. For example, a cell
may store the atypical events as (Downtown LA, 8 am–9 am
Oct. 10th: EA). If a user wants to query the congestions in
that morning of Downtown LA, the precomputed event EA
can be retrieved immediately to process the query.

Property 1. The atypical event is a holistic measure.

Proof. A measure is holistic if there is no constant upper
bound on the storage size needed to describe a subaggrega-
tion [13].

Since the atypical events contain all the original records,
although their number can be bounded, the sizes are still
unbounded. Let us consider the worst case, in which there
is a heavy snow and the traffic of the entire region is tied up
through the whole day. In such case, even there is only one
event, it includes all the atypical records of the sensor dataset.
No constant bound of storage size can be found in this case.
Hence the measure of atypical event is holistic.

The atypical event is not feasible for data cubing because
a holistic measure is inefficient to aggregate and compute
[13]. A more succinct measure is thus required. The key
challenge in atypical cube construction is indeed at designing
such measure to model the atypical events and developing
the corresponding aggregation operations.

Task Specification. Let R be the atypical dataset in CPS;
the atypical cubing tasks are (1) finding out the atypical
events from R, representing them with a succinct measure
and aggregating the measure to construct a data cube;
(2) effectively and efficiently processing the OLAP query
Q(W ,T) with such cube.

2.2. System Framework. Figure 1 shows the overview of our
system framework. The system consists of two components:
the atypical cube construction module and the OLAP query
processing module.

Atypical Cube Construction. This component offline builds
up the atypical cube from the sensor data in CPS. The system
first retrieves the atypical events from the dataset and then
constructs the atypical microcluster to store the features
of each individual event. The similarity of micro-clusters
is measured based on the retrieved features. The system
merges similar micro-clusters as macroclusters to integrate
multiple events. The clusters are formed in hierarchical trees
to construct the atypical cube, which will be used to help
process the OLAP queries.

OLAP Query Processing. This component online processes
the OLAP query. The key issue is to efficiently retrieve
significant clusters in the query range. The query processing
algorithm first determines the possible regions where the
significant clusters might be (i.e., red-zones) and then
prunes the micro-clusters locating outside those regions.
Only the qualified micro-clusters are selected to generate
the macroclusters as query results. For the OLAP query in
small range, the system utilizes a two-stage query processing
technique: first returns an approximate answer in short time
and then computes the detailed query results.

We will introduce the cube construction methods in
Section 3 and query processing techniques in Section 4.
Table 2 lists the notations used throughout this paper.

3. Atypical Cube Construction

3.1. Bottom-up Styled Cube. Traditional methods construct
the atypical cube by aggregating severity measures in a
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OLAP query processingAtypical cube construction

The sensor data in CPS

Figure 1: The overview of system framework.

Table 2: List of notations.

Notation Explanation Notation Explanation

R The CPS dataset ri, r j
The atypical data
records

S The sensor set s1, s2 The sensors

T The time period t1, t2 The time windows

SF The spatial feature TF The temporal feature

f (s, t) The severity measure F(S,T) The total severity

EA,EB The atypical events W The spatial region

Q(W ,T) The analytical query CA,CB The atypical clusters

µi The agg. severity by si νi The agg. severity by t j

δt The time threshold δd
The distance
threshold

δs
The severity
threshold

δsim
The similarity
threshold

bottom-up style. The hierarchies are predefined on temporal,
spatial, and other related dimensions, and the severities are
then aggregated following such hierarchies. For example, the
severity is aggregated by hour, day, month, and year in tem-
poral dimension. In the spatial dimension, the hierarchies
are built by partitioning the data with fixed regions, such as
zipcode areas, street names [14], highway numbers [15], or
the R-trees rectangles [16].

In this study, we employ a common measure of severity to
describe the seriousness of atypical data in CPS. The severity
function f (w, t) is defined on the spatial and temporal
domains, where w can be any region in a spatial coverage
W and t can be any time of the temporal range T . Since the
CPS sensors are usually fixed in their locations, with the help
of a topology graph mapping the sensors to spatial regions,
the region W is then represented by a sensor set S that for
all s ∈ S, s is located in W . Then the total severity can be
computed on discrete sets as (1):

F(S,T) =
∑

s∈S

∑

t∈T

f (s, t). (1)

Property 2. The total severity F(S,T) is a distributive mea-
sure.

Proof. A measure is distributive if it can be derived from the
aggregation values of n subsets, and the measure is the same
as that derived from the entire data set [13].

Let us partition the dataset in S and T into n subsets,
each with Si ⊂ S and Ti ⊂ T . The severity of the ith subset
is computed by aggregating the severities of every subset as
shown in the following:

F(Si,Ti) =
∑

s∈Si

∑

t∈Ti

f (s, t). (2)

Then total severity is computed as F(S,T) =
∑n

1 F(Si,Ti).
Since

⋃

i=1,...,n Si = S and
⋃

i=1,...,n Ti = T ,

F(S,T) =
∑

s∈S

∑

t∈T

f (s, t). (3)

Therefore F(S,T) is in the same format from the one derived
from the entire dataset, and it is a distributive measure.

The distributive measure is efficient to compute [13], and
the bottom-up styled approach is fast in both cube construc-
tion and query processing. However, the information of total
severity is too abstract to answer the queries like “where and
how do the traffic congestions start and expand?”

Example 6. The bottom-up styled cube is constructed by
zipcode areas. The regions with high total severity are tagged
out as red zones, for example, a, b, . . . , g in Figure 2. However
the cube only points out where the congestions are. It does
not give detailed information on when those congestions
start and which part is the most serious in a specified red
zone.

The bottom-up styled cube cannot provide details since
the numeric measure of total severity is not enough to
describe the complex atypical events. In addition, the
atypical events may not follow predefined regions. The three
major congestions A, B, and C in Figure 2 are partitioned
into seven red zones by bottom-up styled cube. It is natural to
lead users to illusions that the fragments of A and B congest
together in area a. But a careful examination reveals that the
highway segments A (freeway 10W) usually congest in the
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Figure 2: Problems of Bottom-up Styled Cube.

morning rush hours and the segments B (freeway 10E) jam
in the evenings. They seldom congest together and should be
distinguished from each other.

3.2. Basic Atypical Cluster. In real applications, the users
usually cannot provide accurate boundaries to separate
atypical events. Instead, the system is required to discover
such boundaries automatically and distinguish different
atypical events to the users. For this purpose, we propose the
concept of basic atypical cluster.

Definition 7 (Basic Atypical Cluster). Let E be an atypical
event with sensor set S = {s1, s2, . . . , sn} and time window
sequence T = {t1, t2, . . . , tm}; the basic atypical cluster
C of E is defined as C = 〈IF, SF, TF〉, in which IF
is the identity features, such as cluster ID, date, street
name, and highway numbers; the spatial feature SF =

{〈s1, µ1〉, 〈s2, µ2〉, . . . , 〈sn, µn〉}, µi =
∑

T f (si, t) is the
aggregated severity of sensor si; the temporal feature TF =
{〈t1, ν1〉, 〈t2, ν2〉, . . . , 〈tm, νm〉}, ν j =

∑

S f (s, t j) is the
aggregated severity of time window t j .

Intuitively speaking, the spatial feature is the summary of
the atypical event in temporal dimension, and the temporal
feature is the summary of the event in spatial dimension.
µi represents how long the sensor si is atypical in E, and ν j

reflects how many sensors are atypical during time window
t j of E. In this way the basic atypical cluster C denotes
the coverage, time length, and seriousness of corresponding
atypical event.

Example 8. Table 3 shows the basic atypical clusters retrieved
from Example 6. The ID feature is a general description
of the corresponding atypical event; for example, CA is
generated from event EA which happens in highway 10W
on October 30th. The spatial and temporal features are

Table 3: Example: basic atypical clusters.

ID features Spatial features Temporal features

CA, highway
#10W, Oct 30th

〈s1, 182 min〉;
〈s2, 97 min〉;
〈s3, 33 min〉;
〈s4, 12 min〉; . . .

〈8:05 am–8:10 am, 4 min〉;
〈8:10 am–8:15 am, 10 min〉; . . .

CB , highway
#10E, Oct 30th

〈s1, 12 min〉;
〈s2, 51 min〉;
〈s3, 34 min〉;
〈s4, 140 min〉; . . .

〈6:20 pm–6:25 pm, 7 min〉;
〈6:25 pm–6:30 pm, 13 min〉; . . .

CC , highway
#5N, Oct 30th

〈s1, 103 min〉;
〈s2, 75 min〉;
〈s7, 54 min〉;
〈s9, 60 min〉; . . .

〈8:20 am–8:25 am, 1 min〉;
〈8:25 am–8:30 am, 15 min〉; . . .

generated by aggregating the atypical records. Note that since
the sensors may have different atypical durations in a time
window, we still use the accumulated time duration to denote
the number of atypical sensors in temporal features. The
spatial and temporal features can be directly used to answer
the queries in Example 1; for example, the congestion event
A starts at around 8:05 am, and the most serious part is
the road segment monitored by s1; it experiences total 182
minutes of congestion in event EA.

The atypical events are retrieved by a single scan of
the dataset, and the basic atypical clusters can be generated
simultaneously. Algorithm 1 shows the detailed process.

The basic cluster generation algorithm randomly picks a
seed record from the dataset (Line 2) and retrieves all the
atypical connected records to it (Line 3). Then the algorithm
groups those records as an atypical event (Line 4) and
generates the spatial and temporal features of basic cluster
(Lines 6–13). Those steps are repeated until all the data are
processed.
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Input: the time interval threshold δt , distance threshold δd , atypical
dataset R

Output: The basic atypical cluster set basic set
1 repeat
2 randomly select a seed record r from R;
3 retrieve all the atypical connected records from r w.r.t. δt and δd ;
4 group those records to form an atypical event E(S; T);
5 initialize basic cluster C〈IF; SF; TF〉;
6 foreach sensor si ∈ S do
7 compute the sensor severity µi;
8 add 〈si,µi〉 to SF;
9 end
10 foreach time window t j ∈ T do
11 compute the time window severity ν j ;
12 add 〈t j , ν j〉 to TF;
13 end
14 add C to basic set;
15 R← R− E
16 until R = φ;
17 return basic set;

Algorithm 1: Basic cluster generation.

Proposition 9. The time complexity of Algorithm 1 is O(n2)
without index and O(n · log(n)) with spatial index (e.g., R-
tree), where n is the number of atypical records.

Proof. The major cost of Algorithm 1 is on Line 3 to retrieve
the atypical connected records. If there is no index on
the temporal and spatial dimensions, it costs O(n) time
to retrieve the neighbors of one seed, and each atypical
record’s connected records are retrieved only once. Thus the
entire step takes O(n2) time. However the neighbor searching
algorithm can speed up toO(log(n)) with a spatial index such
as R-tree, and hence the time complexity of the algorithm is
improved as O(n · log(n)).

3.3. Atypical Cluster Aggregation. The first task of cluster
aggregation is to compute the similarities between two
atypical clusters. The cluster similarity is measured based on
both the spatial and temporal features, as shown in (4). Two
clusters are considered similar to each other only when they
have atypical records at the same places during the same time
periods. Equations (5) and (6) show the calculation of spatial
and temporal similarities, where Si is the sensor set, Ti is the
time window set, and µi and ν

i are the aggregated severity
of sensor s and time window t in cluster Ci, respectively.
Equation (5) computes the severity percentages of common
sensors over a cluster and balances the values on two clusters
by a mathematical function g(p1, p2). The function g(p1, p2)
could be in the form of max, min, the arithmetic mean,
harmonic mean, or geometric mean. The reason of using
different mathematical balance function here is that the
size of two clusters may be different. When comparing
the similarity between a large cluster and a small one, the
percentage of common sensors is inevitably small for the

larger cluster. If we use the max function, the two clusters
are still similar even if the common sensor percentage is low
for the larger cluster:

Sim(C1,C2) =
1

2
(SimSF(C1,C2) + SimTF(C1,C2)), (4)

SimSF(C1,C2) = g

(
∑

S1∩S2
µ1

∑

S1
µ1

,

∑

S1∩S2
µ2

∑

S2
µ2

)

, (5)

SimTF(C1,C2) = g

(
∑

T1∩T2
ν

1

∑

T1
ν

1
,

∑

T1∩T2
ν

2

∑

T2
ν

2

)

. (6)

Once two micro-clusters are merged, a single macro-
cluster is created to represent the result out of this merge
(here we use the term micro-cluster to denote the merge input
and macro-cluster to denote the merge result). The spatial
feature of the macro-cluster is calculated as shown in (7): the
system accumulates the severities of common sensors from
two micro-clusters and keeps the nonoverlapping ones; so is
the temporal feature. A new ID is generated for the macro-
cluster:

SFnew =
{〈

si,µ
1
i + µ2

i

〉

| si ∈ (S1 ∩ S2)
}

∪
{〈

s j ,µ j

〉

| s j /∈ (S1 ∩ S2), s j ∈ (S1 ∪ S2)
}

.
(7)

Property 3. The spatial and temporal features in atypical
clusters are algebraic measures.

Proof. A measure is algebraic if it can be computed by
an algebraic function with m arguments (m is a bounded
positive integer), and each of the arguments is distributive
[13]. We will prove that the spatial feature is algebraic in the
process of integrating n micro-clusters to a macro-cluster by
mathematical induction.
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(1) The Basis. First we study the case that n = 2.
Let S1 and S2 be the sensor sets of two micro-clusters; the

spatial feature of macro-cluster SFmacro is computed as (8):

SFmacro =
{〈

si,µ
1
i + µ2

i

〉

| si ∈ (S1 ∩ S2)
}

∪
{〈

s j ,µ j

〉

| s j /∈ (S1 ∩ S2), s j ∈ (S1 ∪ S2)
}

.
(8)

The sensor severity µ is a distributive measure, according to
the definition, and spatial feature is algebraic when n = 2.

(2) The Inductive Step. Suppose that the statement holds
for n− 1; we study the case of integrating n micro-clusters.

The macro-cluster CN can be seen as the integration of
the macro-cluster CN−1 and the nth micro-cluster Cn. Let
SN−1 and Sn be the corresponding sensor sets; the spatial
feature of macro-cluster SFN is computed as (9):

SFN =
{〈

si,µ
1
i + µ2

i

〉

| si ∈ (SN−1 ∩ Sn)
}

∪
{〈

s j ,µ j

〉

| s j /∈ (SN−1 ∩ Sn), s j ∈ (SN−1 ∪ Sn)
}

.

(9)

Therefore the statement holds for case of integrating n
micro-clusters. The spatial feature is algebraic.

From the same steps, it is easy to obtain that the temporal
feature is also algebraic.

The algebraic measures are also efficient to compute and
aggregate [13]; thus we use atypical clusters as the measure in
atypical cube. The detailed micro-cluster merging steps are
shown in Algorithm 2. The system accumulates the severity
of common sensors in two micro-clusters (Lines 2–6) and
copies the nonoverlapping ones (Line 7); the same steps are
carried out in temporal features (Lines 9–16).

Property 4. The operation of merging atypical clusters is
mathematically commutative and associative.

Proof. To prove that the merge operation is mathematically
commutative, we have to show that for any C1 and C2, C1

merge C2 = C2 merge C1.
For two clusters C1 and C2, the spatial feature of their

integrating cluster is SFnew computed as

SFnew =
{〈

si,µ
1
i + µ2

i

〉

| si ∈ (S1 ∩ S2)
}

∪
{〈

s j ,µ j

〉

| s j /∈ (S1 ∩ S2), s j ∈ (S1 ∪ S2)
}

.
(10)

The positions of S1 and S2 are equal in the above
equation; SFnew is not influenced by the order of C1 and C2.
It is the same for temporal feature computation. And the
identity feature is generated independently. Therefore for any
C1 and C2, C1 merge C2 = C2 merge C1. The merge operation
is mathematical commutative.

To prove that the merge operation is mathematically
associative, we have to show that for any C1, C2 and C3, (C1

merge C2) merge C3 = C1 merge (C2 merge C3).
Let us denote the following:

C4 = C1 merge C2; C5 = C2 merge C3;

C6 = C4 merge C3 = (C1 merge C2) merge C3;

C7 = C1 merge C5 = C1 merge (C2 merge C3).

The spatial feature SF(C6) is computed as

SF(C6) =
{〈

si,µ
4
i + µ3

i

〉

| si ∈ (S4 ∩ S3)
}

∪
{〈

si,µi
〉

| si /∈ (S4 ∩ S3), si ∈ (S4 ∪ S3)
}

.
(11)

Since S4 = S1 ∪ S2, (11) can be written as

SF(C6) =
{〈

si,µ
1,2
i + µ3

i

〉

| si ∈ ((S1 ∪ S2)∩ S3)
}

∪
{〈

si,µi
〉

| si /∈ ((S1 ∪ S2)∩ S3),

si ∈ ((S1 ∪ S2)∪ S3)}

=
{〈

si,µ
1
i + µ2

i + µ3
i

〉

| si ∈ (S1 ∩ S2 ∩ S3)
}

∪
{〈

si,µ
1
i + µ3

i

〉

| si ∈ (S1 ∩ S3), si /∈ S2

}

∪
{〈

si,µ
2
i + µ3

i

〉

| si ∈ (S2 ∩ S3), si /∈ S1

}

∪
{〈

si,µ
1
i + µ2

i

〉

| si ∈ (S1 ∩ S2), si /∈ S3

}

∪
{〈

si,µi
〉

| si ∈ (S1 ∪ S2 ∪ S3),

si /∈ (S1 ∩ S3), si /∈ (S2 ∩ S3), si /∈ (S1 ∩ S2)}.

(12)

Since S5 = S2 ∪ S3, (12) can be converted to

SF(C6) =
{〈

si,µ
1
i + µ2,3

i

〉

| si ∈ (S1 ∩ (S2 ∪ S3))
}

∪
{〈

si,µi
〉

| si /∈ (S1 ∩ (S2 ∪ S3)),

si ∈ (S1 ∪ (S2 ∪ S3))}

=
{〈

si,µ
1
i + µ5

i

〉

| si ∈ (S1 ∩ S5)
}

∪
{〈

si,µi
〉

| si /∈ (S1 ∩ S5), si ∈ (S1 ∪ S5)
}

= SF(C7).

(13)

Equation (13) shows that the spatial features are the same
for the macroclusters C6 and C7, so are the temporal features.
And the identity feature is generated independently. Hence
the merge operation is mathematical associative.

Property 4 tells us that the order of micro-clusters does
not influence the macro-cluster results. Thus we design
the aggregation clustering process as Algorithm 3. The
algorithm starts by checking each pair of the micro-clusters.
If their similarity is larger than the given threshold, a merge
operation is called to integrate them (Lines 2–4). This process
is irrelevant to the order of micro-clusters. The new cluster is
put back to the set, and the old pair is discarded (Lines 5–6).
The program stops until no clusters could be merged (Line
9).

Proposition 10. Let m be the number of micro-clusters; the
time complexity of Algorithm 3 is O(m2).

Proof. In the worst case, there are no similar pairs that can
be found to be merged together. Then the algorithm needs
to check the similarity between every pair and the total
calculation times are m(m−1)/2. Hence the time complexity
of Algorithm 3 is O(m2).
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Input: micro-clusters C1〈IF1, SF1,TF1〉 and C2〈IF2, SF2,TF2〉

Output: macro-cluster Cnew〈IFnew, SFnew, TFnew〉

1 foreach sensorsi ∈ SF1 do
2 if si ∈ SF2 then
3 µnew

i = µ1
i + µ2

i ;
4 add 〈si,µ

new
i 〉 to SFnew;

5 remove the records of si from SF1 and SF2;
6 end
7 add the rest records of SF1, SF2 to SFnew

8 end
9 foreach time windowt j ∈ TF1 do
10 if t j ∈ TF2 then
11 ν

new
j = ν

1
j + ν

2
j ;

12 add 〈s j ,µ
new
j 〉 to TFnew;

13 remove the records of t j from TF1 and TF2;
14 end
15 add the rest records of TF1, TF2 to TFnew;
16 end
17 generate IFnew;
18 return Cnew;

Algorithm 2: Merge Micro-Clusters.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

b1 b4 b6

a1

b5b3b2

Figure 3: Example: the framework of atypical cube.

Note that the similarity threshold δsim is an important
parameter for Algorithm 3. δsim should be set larger than
0.5, since the clusters should be both spatially close and
temporally related. On the other hand, if δsim is too high (e.g.,
δsim = 1), no atypical cluster will merge with other ones and
the macroclusters with high severity cannot be generated.
We have conducted a performance study in Section 5.3; the
experiment results suggest that the algorithm has the best
performance if δsim is set around 0.6.

Example 11. Table 3 lists three atypical clusters, namely, CA,
CB, and CC . Suppose that δsim is set as 0.6. The aggregation
clustering algorithm first checks the cluster pair of CA and CB

and computes their similarity. Since they are only spatially
close but not timely related, Sim(CA,CB) = 0.49, which is
less than δsim. Hence this pair will not be integrated in one

cluster. Then, the system picks the pair of CA and CC , since
these two clusters have most of their atypical data in the
common areas with similar times, Sim(CA,CC) = 0.87; thus
they should be merged according to (4). The merged result is
tagged as cluster CD. And the similarity between CB and CD

is still lower than δsim. The aggregation clustering algorithm
stops and outputs CB and CD as the results.

The aggregation clustering algorithm takes the micro-
clusters from children cells as input and outputs the mac-
roclusters to store as measures in the parent cell. Such mac-
roclusters are also going to be used as new inputs to get even
higher-level clusters. In this way a hierarchical clustering tree
is built up.

The atypical cube is constructed as a forest of hierarchical
clustering trees, where each tree represents an aggregation
path in the cube. Figure 3 shows the framework of atypical
cube for the case of traffic congestions. Ten basic atypical
clusters are stored in the lowest-level cells. The aggregation
cells b1, . . . , b6 are built on them, and the apex cell a1 has
two macroclusters integrated from the micro-clusters in
b1, . . . , b6.

4. OLAP Query Processing

4.1. Processing Large-Scale Queries. In practical applications
we do not precompute the entire atypical cube due to storage
limits. In most cases only the basic clusters and some low-
level micro-clusters are precomputed. With such a partially
materialized data structure, the system needs to dynamically
integrate the low-level clusters to process OLAP queries in
large query range. The online clustering process is similar
to the cluster integration algorithm. However there are two
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problems. (1) The first one is efficiency: the time complexity
of cluster aggregation algorithm is quadratic to the number
of input clusters. Therefore the system should select only
the relevant micro-clusters to reduce the time cost. (2) The
second is effectiveness: if the query scale is large, for example,
the users want the monthly congestion report of the whole
city. There may be a large number of macroclusters in the
query range, but only few of them are significant clusters
with high severities, while the others are negligible. When
constructing atypical cube, the process is offline and the
system can store all the clustering results. When processing
online queries, the users usually demand the significant
clusters being delivered in short time and do not prefer the
results mixed with trivial clusters.

Definition 12 (Significant Cluster). Let Q(W ,T) be a query
with the range in region W and time T . The cluster C is
significant if severity(C) > δs · length(T) ·N , where δs is the
severity threshold and N is the number of sensors in W and
severity(C) =

∑

SF µi =
∑

TF ν j .

Note that the system measures the cluster significance
by a relative threshold δs, because severity(C) is influenced
by the query scales; for example, the severities of high-level
clusters in one month are usually larger than the low-level
clusters in a day.

The key challenge for online clustering is to prune the
trivial micro-clusters and meanwhile guarantee the accuracy
of significant macroclusters. One strategy is beforehand
pruning: the system pushes down the prune step to lower
levels by only selecting the significant micro-clusters for
integration. However this strategy cannot guarantee finding
all the significant macroclusters, because a micro-cluster
that contributes to a significant macro-cluster may not be
significant by itself. If the algorithm prunes all insignificant
micro-clusters beforehand, the severity of the macro-cluster
will also be reduced and may not be significant anymore.

Example 13. The micro-clusters of Los Angeles in October
30th are shown in Figure 4(a), and the monthly significant
macroclusters A and B are plotted in Figure 4(b). In
Figure 4(a), the micro-clusters a, b, j, k, and o are going to
be integrated as parts of the significant macroclusters even if
they are relatively trivial. The micro-clusters e, h, and i are
significant in the scale of one day, but actually they can be
pruned since they have no contribution for any significant
macroclusters in one month.

Can We Foretell Which Microcluster Will Become a Part of
the Significant Macroclusters and Which Will Not? If the sys-
tem knows such guiding information, it can improve query
efficiency and meanwhile guarantee the result’s accuracy. The
heuristic comes from the bottom-up method: recall that the
bottom-up method uses total severity F(S,T) as the measure.
As a distributive measure, F(S,T) is efficient to compute [13]
and can be employed as the guidance to retrieve significant
clusters.

One may worry that F(S,T) is computed on predefined
regions such as zipcode areas, and their boundaries are

different from the atypical clusters. Fortunately, Property 5
shows that there is a relation between predefined regions and
atypical clusters.

Property 5. Let Q(W ,T) be an OLAP query, let δs be the
relative severity threshold, let W ′ be a spatial region that
W ′ ⊆ W , and let S′ and S be the sensor sets installed in
regions W ′and W, respectively. If F(S′,T) < δs · Length(T) ·
|S|, then there is no significant macro-cluster in S′ within
time T .

Proof. We will prove the statement by contradiction.
Suppose that there is a cluster C j with sensor set S j ⊆ S′

and time window sequence T j ⊆ T , such that Severity(C j) ≥
δs · Length(T) · |S|.

Since F(S′,T) is the aggregation of total severity in S′ and
T ,

F(S′,T) ≥ Severity
(

C j

)

≥ δs · Length(T) · |S|. (14)

We now have a contradiction with the condition that
F(S′,T) < δs · Length(T) · |S|. Hence there does not exist
such cluster C j .

Property 5 can be used to help filtering the micro-
clusters. The system only needs to integrate the clusters in the
regions where the total severities are larger than threshold,
that is, the red zones.

Example 14. In Figure 5, the red zones are tagged out. They
are generated by the bottom-up styled cube with a predefined
zipcode area hierarchy. The micro-clusters e, g, i, and m can
be pruned safely since they are outside the zones; a, b, and
d should be kept for clustering since they are in the zones; c,
k, f , o, and n are also kept since they intersect with the red
zones and may contribute to macroclusters.

Algorithm 4 shows detailed steps of red zone guided
online clustering. The system first computes the severity on
predefined regions in bottom-up styled cube and retrieves
the red zones (Lines 1–4) and then selects out the micro-
clusters in red zones (Lines 5–7). The clustering algorithm
(Algorithm 1) is called to generate the macroclusters (Line
8). Since the algorithm can only guarantee there are no false
negatives (i.e., not missing any significant macroclusters),
it is possible to generate some false positives. A check
procedure is processed to prune the clusters without enough
severity at the last step (Lines 9–11).

The major cost of Algorithm 4 is at Line 8 to call the
clustering algorithm. In the worst case, no cluster could
be filtered out, and the algorithm’s time complexity is still
quadratic to the number of micro-clusters. However, in our
experiments, about 80% micro-clusters could be filtered out
with reasonable δs, and the query efficiency was improved
dramatically.

4.2. Drill-Through Query Processing. In some rare cases, the
users require detailed results in a very narrow range, such
as “what is the congestion details from 8:45 am to 9 am
of the highway #101 near downtown?” The system needs
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(a) Microclusters in October 30th

A

B

(b) Significant macroclusters in October

Figure 4: Example: problem of beforehand pruning.
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Figure 5: Red-zone guided clustering.
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Input: micro-cluster set micro set from lower cells, similarity
threshold δsim

Output: the macro-cluster set macro set
1 repeat
2 foreach micro-cluster pair Ci,C j do
3 if Sim (Ci, C j) > δsim then
4 Cnew = merge(Ci, C j);
5 add Cnew to micro set;
6 remove Ci,C j from micro set;
7 end
8 end
9 until no clusters can be merged in micro set;
10 macro set ←micro set;
11 return macro set;

Algorithm 3: Aggregation clustering.

Input: query Q(S,T), micro-cluster set micro set from materialized
children cells, bottom-up style cube bu cube, similarity
threshold δsim, relative severity threshold δs

Output: the significant macro-cluster set sig set for the query
1 Compute F(Si,T) from bu cube for Q(S,T);
2 If F(Si,T) ≥ δs · Length(T) · |S| then
3 add Si to red zone set red set;
4 end
5 foreach micro-cluster Ci ∈ micro set do
6 if Ci ∈ red set or Ci intersects with red set then add Ci to
7 sig micro set;
7 end
8 sig set ← clustering (sig micro set, δsim) (Algorithm 1)
9 foreach cluster Ci ∈ sig set do
10 if Severity(Ci) < δs · Length(T) · |S| then remove Ci;
11 end
12 return sig set;

Algorithm 4: Red-zone guided clustering.

to decompose basic atypical clusters to answer them. Such
queries actually drill through the atypical cube to the original
sensor dataset.

We propose a two-stage algorithm to process this kind
of queries. The system first returns the related basic atypical
clusters as an approximate result and then decomposes them
for precise answers. The details are shown in Algorithm 5 as
a two-stage process: in the first stage, the system retrieves all
related micro-clusters, directly integrates them and returns
the macroclusters as approximate result (Lines 1–5); then it
drills through to the sensor dataset and refines those micro-
clusters in the second stage (Lines 6–12). The precise results
are computed and returned later.

Since the query range is narrow, the size of the micro set
is usually small; the major cost of Algorithm 5 is in the drill-
through step with high I/O overhead (Line 7). However if the
system builds an index for the atypical events in the sensor
data and maintains an inverted pointer p from each basic

atypical cluster to the corresponding atypical events, the time
cost of Algorithm 5 will be improved significantly.

5. Performance Evaluation

Since the idea of this study is motivated by practical
application problems, we use real world datasets to evaluate
the proposed approaches. Twelve datasets are collected from
the PeMS traffic monitoring system [11]; each stores one-
month traffic data in the areas of Los Angeles and Ventura.
The data are collected from over 4,000 sensors on 38
highways. There are more than 1.1 million records for a
single day and totally 428 million records for the whole year.
The total size of all the datasets is over 54 GB.

The experiments are conducted on a PC with an Intel
2200 Dual CPU at 2.20 G Hz and 2.19 G Hz. The RAM is
1.98 GB, and the operating system is Windows XP SP2. All
the algorithms are implemented in Java on Eclipse 3.3.1
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Input: atypical cube cube, drill-through query Q, similarity threshold
δsim

Output: The approximate result Ra, the precise result Rp

1 foreach basic atypical cluster Ci in cube do
2 if Ci related to Q then add Ci to micro set;
3 end
4 Ra ← clustering (micro set, δsim) (Algorithm 1);
5 return Ra;
6 foreach Ci do
7 drill through to the sensor dataset;
8 C′i ← filter the records in Ci with Q’s condition;
9 add C′i to micro set′;
10 end
11 Rp ← clustering (micro set′, δsim);
12 return Rp;

Algorithm 5: Drill-through query processing.

Table 4: Experiment settings and parameters.

Dataset Date Sensor. no.
Reading.

no.
Atypical Data

%

D1 Oct. 2008 4,076 3.4∗107 ∼2.3%

D2 Nov. 2008 4,052 3.3∗107 ∼3.7%

. . . . . . . . . . . . . . .

D12 Sep. 2009 4,076 3.3∗107 ∼4.0%

the severity threshold δs: 2%–20%, default 5%

the distance threshold δd : 1.5 mile–24 mile, default 1.5 mile

the time interval threshold δt : 15 min–80 min, default 15 min

the similarity threshold δsim: 0.1–1, default 0.5

the g function: max, min, arithmetic mean, harmonic mean,

and geometric mean, default: arithmetic mean

platform with JDK 1.5.0. The detailed experimental settings
and parameters are listed in Table 4.

5.1. Evaluations of Cube Construction. In this subsection
we evaluate the algorithms of offline cube construction.
CubeView [14] is a bottom-up method on traffic data. The
original CubeView algorithm aggregates all the traffic records
with predefined spatial and temporal hierarchies. In this
experiment, the system carries out a preprocessing step to
select atypical records and adjusts CubeView to construct
the cube only on the atypical data. We first construct the
cubes on a single dataset, then gradually increase the number
of datasets, until all the twelve datasets are used in the
experiment. Figure 6 shows the time costs of the original
Cubeview (OC), modified CubeView (MC), the preprocess-
ing step (PR), and our atypical-cluster-based method (AC).
The x-axis is the number of datasets used in the experiment,
and y-axis is the time cost of the algorithms. MC and AC
are an order of magnitude faster than OC because they are
constructed on the atypical data, which are only 2% to 5% of
the original datasets. The time cost of PR is close to OC since
both of them have to scan the original datasets with huge
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Figure 6: Efficiency: construction time cost versus no. of datasets.

I/O overhead. However the preprocessing step only needs to
carry out once for constructing different cubes.

Figure 7 shows the constructed cube size of original
Cubeview (OC), modified CubeView (MC), and atypical
cluster method (AC). The size of corresponding atypical
events (AEs) is also recorded in the figure. MC achieves the
best compression effects since it only records the numeric
measure of total severity, but it cannot describe the complex
atypical events. AC stores all the critical information about
spatial and temporal features of AE, but only costs 0.5% to
1% space of AE.

Figure 8(a) records the constructed cube size of the
three methods on six different datasets. In general, the
construction overhead and storage size of OC are acceptable
since the cube is built offline. However, the results in
Figure 8(b) show that OC cannot be used to process queries
about atypical events. The average speeds of OC on all the
datasets are all around 65 mph, which are close to the speed
limit of California highway. The information is hence not
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Figure 7: Size: constructed cube size versus no. of datasets.

interesting to the users since the atypical events are dwarfed
by the majorities of normal data.

5.2. Comparisons in OLAP Query Processing. In this sub-
section we evaluate the performances of OLAP query
processing. Three query processing strategies are compared:
(1) integrating all the micro-clusters (All); (2) pruning the
insignificant clusters beforehand (Pru); (3) the red-zone
guided clustering (Gui).

In the experiments, the system only precomputes the
micro-clusters of each day. The analytical query’s spatial
range is fixed as Los Angeles, and time range gradually
increases from one week (requiring to aggregate the micro-
clusters of 7 days) to three months (84 days). Figures 9(a)
and 9(b) record the average time and I/O costs (measured
by the number of input micro-clusters). Although Gui has
extra cost to compute the redzones, the time efficiency is still
close to Pru. From the figure one can see clearly that Gui and
Pru are much more efficient than All. Gui’s time cost is only
about 15%–20% of All.

To evaluate the effectiveness of query results, we compute
the precision and recall of the significant clusters. Since the
integrating-all method prunes no clusters, its results contain
all the significant clusters. The system checks the results of All
and retrieves the true significant clusters as the ground truth.
The measures of precision and recall are then computed as
follows.

Precision. The precision is calculated as the proportion of
significant clusters in the returned query results.

Recall. The recall is the proportion of retrieved significant
clusters over the ground truth.

The system increases the query time range from 7 days to
84 days and records the precision and recall of three methods
in Figure 10. For all the methods, their precision decreases
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Figure 8: Results: cube size and avg. speed.

with larger query range, because the cluster severity does
not grow linearly with respect to the query range, and the
significant clusters are inevitably fewer in larger query range
with fixed severity threshold. In the experiment, Pru has the
highest precision, because it prunes all the trivial micro-
clusters and generates fewer macroclusters (Figure 10(a)).
However, as shown in Figure 10(b), Pru cannot guarantee
to find all the significant clusters. Its recall might even be
lower than 50% in some cases. Therefore, even if Pru is the
winner on efficiency and precision, it is not feasible to process
analytical query since the significant clusters may be missed
in the results.

In the next experiment, we fix the query time range as 14
days and evaluate the influence of severity threshold δs. The
experimental results are shown in Figure 11. The precision
drops with larger δs, because fewer macroclusters can meet
the high standard of severity to become significant. Another
interesting observation is that the recall of Pru increases
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Figure 10: Effectiveness: precision and recall with respect to query range.

when δs grows. Pru is unlikely to miss the macroclusters
with very high severities. However, the detailed spatial and
temporal features of those clusters may not be accurate,
because Pru filters out some micro-clusters that should be
integrated in.

The precision of Gui in the above experiments is not
high; however this measure can be easily improved. The sys-
tem can efficiently filter out the false positives and guarantee
100% precision by checking the macro-cluster’s total severity.
Gui has such a procedure (Lines 5–7 in Algorithm 4).
This procedure is turned off in the experiments for a fair
play.

5.3. Parameter Tuning for Atypical Cluster Method. In the
next experiment, we study the influence of the parameters
in the atypical-cluster-based method, including time interval
threshold δt, distance threshold δd, similarity threshold δsim,
and balance function g. The system first retrieves the micro-
clusters in each day with different δt and δd and then carries
out the cluster integration to generate the macroclusters
for every week and month. Figure 12(a) shows the average
number of the atypical clusters in every day, week, and
month. The figure also records the average number of
weekly/monthly significant clusters as sig(week)/sig(month).
One can clearly see that the numbers of weekly and
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Figure 11: Effectiveness: precision and recall with respect to δs.

monthly macroclusters are much larger than the micro-
clusters, but most of them are the trivial ones. Only 0.1%
to 0.5% of those macroclusters are significant. When δt
increases, more clusters can be merged together and the
numbers of macroclusters decrease rapidly. But the numbers
of significant macroclusters are more stable. Since those
significant clusters have already integrated a large amount
of micro-clusters, they can hardly merge with each other
due to large difference on spatial and temporal features.
In Figure 12(b) we record the numbers of atypical clusters
with different δd. The influence of δd is smaller than δt. The
number of significant cluster is also robust to this parameter.

We also study the influences of similarity threshold δsim

and the balance function g in (5) and (6). Since they only
influence the cluster integration results, we carry out the
integration process with various balance functions, including
max, min, the arithmetic mean (avg), the geometric mean
(geo) and harmony mean (har). Figure 13 shows the average
severity of the significant clusters with respect to δsim. Gener-
ally speaking, the max function integrates more clusters, and
the min function is the most conservative. The differences
among avg, geo, and har are minor. Hence we suggest that the
users may choose a mean function (e.g., avg) as the balance
function g.

From Figures 12 and 13, we can also learn that the
result of significant cluster is robust to the time interval
threshold δt and distance threshold δd, but the severity of
significant clusters may reduce rapidly with larger similarity
threshold δsim. The reason is that no atypical cluster is
totally the same with another one. If δsim is too high, the
micro-clusters cannot be merged and no significant clusters
can be generated. In addition, δsim should be set larger
than 0.5, since the clusters that merged together must be
both spatially close and temporally related. Based on the
experiment results, we suggest setting δsim around 0.6; in

such way the aggregation clustering algorithm generates a
few significant clusters with high severities.

5.4. Drill-Through Query Processing. At last we test the per-
formances of drill-through query processing methods. In
this experiment, the spatial range is no longer fixed to Los
Angeles; instead it is set to a very narrow range of random
road segments. In this way, the system has to drill through
the basic atypical clusters to the original sensor dataset.

Since the algorithm is a two-stage process, we evaluate
both stages separately in the experiments. We also compare
the drill-through stage with indexes and the one without.
Figure 14 shows their time costs w.r.t. the number of involved
cells. Note that the axis of query time is in logarithmic scale.
It is clear that the first stage of approximate query is much
faster than the second stage of precise query. In drill-through
queries, the I/O overhead is the dominant factor. The stage 1
of approximate query does not access to the detailed sensor
data, so it is very efficient, and the results are returned to the
users in less than ten seconds.

6. Extensions and Discussions

In this study, we illustrate the atypical cluster techniques
mainly on spatial-temporal dimensions and carry out the
performance evaluation on the sensor data in traffic system,
because (1) the spatial and temporal dimensions are actually
the most basic and important dimensions in many CPS
applications, and the user’s queries are usually related to
such two dimensions; (2) large volume of sensor data
in traffic applications is open to public; (3) the atypical
events of traffic (i.e., the congestions) are actually more
complex than in many other domains. Apart from spatial
and temporal dimensions, the users may require to analyze
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Figure 12: Size: no. of clusters versus δt and δd .
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the data on other domain specific dimensions. For example,
in the traffic system, the transportation officer may want to
check the congestions related to bad weather or the accident
reports. The proposed framework can be easily extended
to support the analysis on such context dimensions. The
weather dimension can be joined with temporal dimension
with the date, and the accident dimension can be joined with
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Figure 14: Efficiency: different stages of drill-through queries.

temporal and spatial dimensions by the accident time and
location. Figure 15 shows a snowflake schema of the atypical
cube with dimensions of temporal, spatial, weather, accident,
and so on.

By joining those dimension tables, the system can sup-
port OLAP queries on more dimensions. For instance, if
users want congestion reports related to traffic accidents, the
system will first select out the region W ′ and time window set
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Figure 15: Atypical cube schema for congestions.

T′ related to those accidents, then process query Q(W ′,T′)
by the red-zone guided clustering algorithm to get the results.

In the cube construction component, the major time
cost is on the preprocessing step, since the system has to
scan the original datasets with huge I/O overhead. However,
the preprocessing step only needs to carry out once for
constructing different cubes. The massive data can also be
pre-processed by the sensors themselves in a distributed
manner [17]. In such a way, the amount of data and events
can be reduced. Due to the hardware limitations, the sensors
are likely to report some error messages and untrustworthy
atypical data may be generated then. Since the main theme
of this study is on multidimensional analysis of atypical
data, we assume that the clean and trustworthy records
can be retrieved by CPS. In our previous studies, we have
proposed several methods to retrieve the atypical events from
untrustworthy sensors and carry out trustworthiness analysis
for the sensor networks. More details can be found in [3, 18].

The clustering and integration methods used in this
study are all “hard-clustering”; that is, a micro-cluster could
only be merged to one macro-cluster. Hence it is possible
that the clustering result may not be deterministic. However,
the influence is limited for the analytical query, because
the macroclusters are usually aggregated from hundreds of
micro-clusters, and there is almost no difference on merging
a single micro-cluster or not.

7. Related Works

According to the methodologies, the related works of atypical
cube can be loosely classified into two categories: the CPS
applications and the spatial and temporal data warehousing.

7.1. CPS Applications. PeMS is a cyber physical system
of freeway performance monitoring in California [1]. It
collects gigabytes data each day to produce useful traffic
information. PeMS obtains the data in the frequency from
every 30 seconds to 5 minutes from each district. The data
are transferred through the wide area network to which
all districts are connected. PeMS uses commercial-of-the-
shelf products for communication and calculation [19]. A g-
factor-based algorithm [20] is used to estimate the average
vehicle speed from collected data.

CarWeb is a platform to collect real-time GPS data from
cars [2]. When sufficient information has been collected,
the system estimates traffic information such as the average
speed of vehicles. Several algorithms are employed to esti-
mate more traffic measures.

Google Traffic is a service based on the Google Maps [21].
The feature package was officially launched in February 2007.
It automatically includes real-time traffic flow conditions to
the maps of thirty major cities of the United States. In a later
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released version a traffic model is used to predict the future
traffic situation based on historical data.

Most CPS applications do not support OLAP queries.
Some of them, like Google traffic, provide prediction func-
tions but still do not support analysis on historical data.

7.2. Spatial and Temporal Data Warehousing. The pioneering
work on spatial data warehousing is proposed by Stefanovic
et al. with the concepts of spatial cube [22]. Spatial cube is
a data cube where some dimension members are spatially
referenced on a map [23].

In [24], Giannotti and Pedreschi summarize the ideas of
trajectory cube. The motivation is to transform raw trajecto-
ries to valuable information that can be utilized for decision-
making purposes in ubiquitous applications. The system
supports two kinds of measures [22, 25, 26]: (1) spatial
measures represented by a geometry and associated with a
geometric operators and (2) numerical values obtained using
a topological or a metric operator.

Shekhar et al. propose a web-based visualization tool for
intelligent transportation system called Cubeview [14]. It is
aimed to investigate high-performance critical visualization
techniques for exploring real-time and historical traffic
data. Based on Cubeview, the Advanced Interactive Traffic
Visualization System (AITVS) is implemented by using two
or more distinct views to support the investigation [15].
A traffic incident detection module is also developed by
considering both spatial and temporal information [27].

Papadias et al. design efficient OLAP operations based on
R-tree index [16]. The aggregation R-tree defines a hierarchy
among MBRs that forms a data cube lattice. In a later
study [28], the authors extend the indexing techniques to
spatial and temporal dimensions. Historical RB-tree is built
to help aggregating the measures on static and dynamic
regions. The aggregate point-tree is proposed to solve range
aggregate queries [29]. In [30], Tao et al. combine sketches
with spatiotemporal aggregate indexes to solve the distinct
counting problem.

However, those spatial OLAP techniques are not fea-
sible for warehousing the atypical events in CPS data.
The main reason is about their measures: most methods
employ COUNT, SUM, AVG and other numeric measures
and aggregate them in predefined hierarchies. They cannot
describe the complex atypical events. In addition, those
spatial aggregations must be carried out in predefined
regions (e.g., R-tree rectangle, zipcode area, etc.), but the
atypical events may not follow their fixed boundaries. Table 5
summarizes the differences among atypical cube and some
related methods.

8. Conclusions and Future Work

In this paper, we have investigated the problem of multidi-
mensional analysis of atypical sensor data in cyber-physical
systems. A novel model of atypical cluster is designed to
describe the atypical events in CPS data. The atypical cube is
constructed as the forest of atypical clusters. The significant
cluster is introduced for effective query execution, and

Table 5: Comparison of related methods.

Name Measure
Analytical

query
Event

integration
Fixed

boundary

PeMS Traffic speed No No No

CarWeb Traffic speed No No No

Spatial Cube Count, sum, etc. Yes No Yes

CubeView Avg speed Yes No Yes

R-Tree OLAP Count, sum, etc. Yes No Yes

Atypical Cube Atypical cluster Yes Yes No

the red-zone guided clustering algorithm is proposed to
efficiently retrieve the significant clusters. Our experiments
on large real datasets show the feasibility and scalability of
proposed methods.

This paper is our first step in the CPS data analysis. In the
future we will extend the atypical event analysis to support
more complex applications, such as the event prediction
and trustworthiness analysis in atypical data. We are also
interested in applying the proposed methods to more
applications, such as intruder detection on battlefields.
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