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We investigate the system of a heavy impurity immersed in a degenerated Fermi gas, where the
impurity’s internal degree of freedom (pseudospin) is manipulated by a series of radiofrequency (RF)
pulses at several different times. Applying the functional determinant approach, we carry out an
essentially exact calculation of the Ramsey-interference-type responses to the RF pulses. These
responses are universal functions of the multiple time intervals between the pulses for all time and
can be regarded as multidimensional (MD) spectroscopy of the system in the time domain. A Fourier
transformation of the time intervals gives the MD spectroscopy in the frequency domain, providing
insightful information on the many-body correlation and relaxation via the cross-peaks, e.g., the off-
diagonal peaks in a two-dimensional spectrum. These features are inaccessible for the conventional,
one-dimensional absorption spectrum. Our scheme provides a new method to investigate many-body
nonequilibrium physics beyond the linear response regime with the accessible tools in cold atoms.

I. INTRODUCTION

Spectroscopy, which records the responses of materi-
als to external electromagnetic fields, has long been and
probably will always be an essential tool to investigate
the structures, behaviors, chemical reactions, and phys-
ical processes in materials. Conventional spectroscopy,
such as ordinary nuclear magnetic resonance (NMR)
and optical spectroscopy, usually shows the responses
as a function of a single variable, e.g., the frequency
of the electromagnetic wave, and hence is called one-
dimensional (1D). In contrast, multidimensional (MD)
spectroscopy unfolds spectral information into several
dimensions, which improves resolution and overcomes
spectral congestion. In addition, MD spectroscopy car-
ries rich information on the correlations between res-
onance peaks and provides insights into physics that
1D spectroscopy cannot access. One of the earliest
and most widely successful MD spectroscopy is the two-
dimensional (2D) NMR, first proposed by Jean Jeener
and later demonstrated by Richard Ernst and collabo-
rators [1, 2]. 2D NMR can help distinguish overlapping
signals in complex molecules and unveil the couplings
between different resonances, which revolutionize, e.g.,
molecular dynamics and structural biology [3, 4].

As an analog of its NMR counterparts, optical MD co-
herent spectroscopy (MDCS) [5, 6] adapts similar tech-
nology for the IR, visible, or UV regions and sheds new
light on chemical kinetics and solid-state physics [7–15].
In particular, optical 2DCS reveals coherent and incoher-
ent coupling dynamics between resonances near the en-
ergy of neutral and charged excitons in atomically thin
transition metal dichalcogenides (TMD) [16, 17]. More
recently, people have believed that these resonances are
excitons dressed by Fermi sea electrons, i.e., quasiparti-
cles named attractive or repulsive exciton-polarons [18–
23]. Polaron, arguably the most celebrated quasiparticle
[24, 25], has also attracted intensive interest in atomic
physics experimentally [26–36] and theoretically [37–61].
A fundamental and quantitative understanding of these

nonequilibrium many-body dynamics between quasipar-
ticles shown in 2D spectroscopy is fascinating but chal-
lenging. While a commonly adapted approach, the modi-
fied optical Bloch equation with phenomenological terms
to include many-body effects [62–64], gives some intuitive
interpretations, first-principal calculations of 2D spec-
troscopy are rare. Despite some progress [65–67], a quan-
titative but perturbative study of the complete 2D spec-
troscopy has only been carried out recently using the
nonlinear (four-wave mixing) Golden Rule [17] and more
recently with functional determinant approach [68], with
parameters that can only be approximately obtained in
a complex solid-state system.

By contrast, we perform an in-principal exact calcu-
lation in a much simpler but realistic system: a heavy
impurity immersed in a degenerate Fermi gas. In such a
system, a single parameter, scattering length, can fully
describe the interaction between the impurity and the
isolated and non-interacting Fermi gas at ultracold tem-
perature and be accurately tuned by Feshbach resonance
[69]. This system is closely related to the Fermi po-
laron problem, whose 1D spectroscopy shows singular-
ities [70, 71] that are remnants of polaron resonances
destroyed by the well-known Anderson’s “orthogonal-
ity catastrophe” (OC) [72]. Our recent studies rigor-
ously proved that these singularities could reduce back
to polaron resonances if a mechanism exists to prevent
OC, such as a superfluid pairing gap [73, 74]. How-
ever, as far as we know, the correlations and coherent
dynamics between the Fermi singularities or polaron res-
onances in ultracold gases have never been investigated;
our work here is the first numerically exact calculation
of the MD spectroscopy of a polaron-like system in ul-
tracold gases. Here, we apply the functional determinant
approach (FDA) [75–78], a non-perturbative method that
rigorously includes all high-order correlations and beyond
mean-field many-body effects. Since exact solutions of
many-body systems are rare, our results can give new in-
sight, deepen our understanding of Fermi-edge singular-
ity and polaron physics, and be regarded as a benchmark
to access the accuracy of other approximation calcula-
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tions of MD spectroscopy.
We also propose a realistic experimental scheme to

measure the MD spectroscopy via a generalization of
Ramsey spectroscopy. Ramsey spectroscopy is another
technique similar to the NMR, which manipulates in-
ternal (e.g., pseudospin instead of spin) degrees of free-
dom and observes the interference determined by the sur-
rounding many-body environment. Ramsey spectroscopy
has found many vital applications in investigating many-
body physics: characterizing quantum correlations [79–
82], measuring topological invariance [83, 84], accessing
many-body interactions and beyond mean-field effects
[85–90], and studying impurity dynamics closely related
to polaron physics [70, 71, 91, 92]. Ramsey spectroscopy
has become a well-established experimental technique
in ultracold atomic gases [30], thanks to the unprece-
dented controllability and rich toolbox atomic physics
provides [69, 93]. However, to the best of our knowledge,
all previous studies of Ramsey spectroscopies are 1D.
Our work generalizes the Ramsey spectroscopy to mul-
tidimensional, opening the door to exploring high-order
many-body correlations and beyond mean-field dynamics
and providing a perfect meeting point for theoretical and
experimental efforts to examine complex nonequilibrium
responses that MD spectroscopy reveals.

The rest of this paper is organized as follows. In the
following section, we establish our general formalism and
show how to apply the exact FDA approach to calculate
MD spectroscopy. Section III is devoted to presenting
our numerical results. Finally, we conclude our paper by
discussing the physics and proposing future extensions in
section IV.

II. FORMALISM

The basic setup of our system is shown in Fig. 1 (a).
We place a localized fermionic or bosonic impurity (the
big black ball) with two internal pseudospins (hyperfine)
states | ↑〉 and | ↓〉 (illustrated by the black arrow) in the
background of a single-component ultracold Fermi gas
(the red dots). The localization of impurity can be ei-
ther achieved by confinement of a deep optical lattice or
treated as an approximation to an impurity atom with
heavy mass. At ultralow temperature, the background
Fermi gas is considered non-interacting. We also assume
the fermionic background atoms do not interact with | ↓〉,
while s-wave interactions dominate interaction with | ↑〉.
This interaction is characterized by the s-wave scattering
length a and can be tuned via, e.g., Feshbach resonances
[69]. The general spirit of our scheme is similar to the
original Ramsey interferometry, where one uses radio-
frequency (RF) pulses to manipulate the superposition
of pseudospin states. Throughout this work, we assume
the RF pulses to be infinitely fast rotations of pseudospin
that do not perturb the background Fermi gas. After
some time of evolution, dynamical phases accumulate for
different pseudospin states, which reflects the many-body

responses to the different impurity-background interac-
tions and can be measured by the interference. However,
there is one crucial difference in our scheme: we use mul-
tiple pulses with different time delays in between to drive
the pseudo-spin through many different quantum path-
ways that give nonlinear many-body responses in an MD
spectroscopy.

One example of a three-pulse scheme is shown in Fig.
1 (a), which is similar to one of the most common 2D
NMR pulse sequences, namely EXSY (EXchange Spec-
troscopY). In this scheme, we prepare the impurity in the
non-interacting state | ↓〉 initially, and apply the first π/2

pulse that rotates the pseudospin state to (| ↑〉+| ↓〉)/
√

2.
After some time τ , we apply the second pulse. Subse-
quently, we wait for another period of time, T , before
applying the third pulse and carry out a detection some
time t afterward. Following the same procedure as EXSY
in NMR, we take the Fourier transformation with respect
to both time variables τ and t to generate a 2D spectrum
as a function of an absorption frequency ωτ and an emis-
sion frequency ωt, respectively, whose physical interpre-
tation will become clear later (in the last paragraph of
section II). The mixing time T allows many-body dynam-
ical evolution between absorption and emission. Figure
1 (b) sketches a 2D spectrum in the box, where diagonal
peaks (red crosses) on the dashed line mirror the singu-
larities in the linear 1D spectrum (shown on the top and
to the right of the box). Coupled resonances give rise
to the off-diagonal cross-peaks (orange crosses) with the
absorption frequency of one resonantce and the emission
frequency of the other, whereas uncorrelated resonances
produce no cross-peaks. The corss peaks are thus the
signature of correlations between resonances, which the
1D spectrum cannot distinguish. Figure 1 (c)-(g) shows
several different pulse schemes investigated in this work.
Most of the pulses in this work are π/2 pulses, except
for the second pulse in the scheme of Fig. 1 (g), which
is a −π/2 pulse. For convenience, we name (f) and (g)
EXSY+ and EXSY−, respectively.

Using the unit ~ = 1 hereafter, we write the many-
body Hamiltonian as,

Ĥ = Ĥ↑| ↑〉〈↑ |+ Ĥ↓| ↓〉〈↓ |, (1)

where the non-interacting (H↓) and interacting (H↑)
Hamiltonian are given by Ĥ↓ =

∑
k εkc

†
kck and Ĥ↑ =

Ĥ↓+
∑

k,q Ṽ (k−q)c†kcq+ωs. Here, ωs denotes the energy

differences between the two pseudospin levels. c†k and ck
are creation and annihilation operators of the background
fermions with momentum k, respectively. εk = k2/2m
is the single-particle kinetic energy of the background
fermions with mass m. Ṽ (k) is the Fourier transform
of V (r), the interaction potential between | ↑〉 and the
background fermions. Initially, we prepare the impurity
in | ↓〉 and the background fermions at some temperature
T ◦. The background fermions can be described by a ther-
mal density matrix ρFS = exp[−(Ĥ↓ − µN̂)/kBT

◦]/ZFS,
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FIG. 1. (a) A sketch of system setup: A localized impurity (the big black ball with an arrow indicating pseudospin states) is
immersed in a sea of host fermions (red dots) and is manipulated by a series of RF pulses with time intervals between pulses
and detection (indicated by the red six-point star). (b) is an example of a 2D spectrum, where the absorption (ωτ ) and emission
(ωt) frequencies are obtained from the Fourier transformation for τ and t, respectively. The two red crosses on the diagonal
(dashed line) mirror the two singularities in the 1D spectrum shown above and to the right of the 2D spectrum. The two
orange crosses on the off-diagonal are called cross-peaks, revealing the correlations between the two singularities. (c) shows a
pulse sequence for the 1D Ramsey scheme, (d) for the 1D spin-echo scheme, and (e) for the 2D spin-echo scheme. (f) and (g)
are EXSY pulse schemes with different pulse phases, which we call EXSY+ and EXSY−, respectively.

where N̂ =
∑

k c
†
kck is the number operator, ZFS is a nor-

malization constant, and kB is the Boltzman constant.
Here, µ ' EF is the chemical potential determined by
number density n, where EF is the Fermi energy that
also gives a typical many-body time-scale τF = E−1

F and
momentum scale kF =

√
2mEF .

We aim to investigate the dynamics of the system
under multiple RF pulses with different time delays in
between. As a concrete example, we focus on a three-
pulse EXSY+ scheme, as illustrated in Fig. 1 (f). The
RF pulses can manipulate the spin-state of the impurity
within a much shorter time than the intrinsic time scales
of the background fermions τF . As a result, one can ne-
glect the evolution of the Fermi sea during the pulse and
describe the pulse’s effect as a rotation of the impurity’s
spin state. For example, a pulse that achieves a π/2 ro-
tation can be defined as

R(π/2) ≡

(
R

(π/2)
↑↑ R

(π/2)
↑↓

R
(π/2)
↓↑ R

(π/2)
↓↓

)
=

1√
2

(
1 1
−1 1

)
. (2)

The total time evolution in EXSY+ scheme is thus given
by the unitary transformation

U(t, T, τ) = U(t)R(π/2)U(T )R(π/2)U(τ)R(π/2), (3)

where

U(t′) =

(
e−iĤ↑t

′
0

0 e−iĤ↓t
′

)
(4)

gives the time evolution in between pulses. We denote
the initial state as ρi = ρFS ⊗ | ↓〉〈↓ | and arrive at the
final density matrix as ρf = UρiU†. We can define a
multidimensional response function in the time domain,
S(τ, T, t), by measuring

Re[S(τ, T, t)] = −Tr (σxρf ) , Im[S(τ, T, t)] = −Tr (σyρf ) ,
(5)

where σx and σy are the usual Pauli matrices in the spin-
basis. A tedious but straightforward manipulation of al-
gebra can give a close form

S(τ, T, t) =

16∑
i=1

Si(τ, T, t) ≡
1

4

16∑
i=1

Tr[Ii(τ, T, t)ρFS]. (6)

Here, Ii(τ, T, t), which we name as pathways, are a direct

product of six operators in the form of e±iĤt,

Ii(τ, T, t) = c~σie
iHσ′

1i
τ
e
iHσ′

2i
T
eiH↑te−iH↓te−iHσ2iT e−iHσ1iτ ,

(7)
where ~σi ≡ (σ1i, σ2i, σ

′
1i, σ

′
2i) is a collective in-

dex that takes sixteen different combinations, and

c~σi = −8R
(π/2)
↑σ′2i

R
(π/2)
σ′2iσ

′
1i
R

(π/2)
σ′1↓

R
(π/2)
↓σ2i

R
(π/2)
σ2iσ1iR

(π/2)
σ1i↓ are co-

efficients that take values of ±1. Here, we have applied
the relation R(π/2)−1 = R(−π/2) = R(π/2)T for the
derivation, where the superscript T denotes the trans-
pose of a matrix (and should not be confused with mixing
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time T ). The sorting of the pathways can be arranged
arbitrarily for convenience. Here, our first four pathways
are chosen as

I1(τ, T, t) = eiĤ↓τeiĤ↑T eiĤ↑te−iĤ↓te−iĤ↑T e−iĤ↑τ , (8)

I2(τ, T, t) = eiĤ↓τeiĤ↓T eiĤ↑te−iĤ↓te−iĤ↓T e−iĤ↑τ , (9)

I3(τ, T, t) = eiĤ↓τeiĤ↓T eiĤ↑te−iĤ↓te−iĤ↑T e−iĤ↑τ , (10)

and

I4(τ, T, t) = eiĤ↓τeiĤ↑T eiĤ↑te−iĤ↓te−iĤ↓T e−iĤ↑τ . (11)

The expressions for other twelve pathways can be found
in Appendix A.

The contribution of each pathway, Si(τ, T, t), can be
calculated exactly via FDA. To proceed, we define H↓ ≡
Γ(h↓) and H↑ ≡ Γ(h↑) + ωs. Here Γ(h) ≡

∑
k,q hkqc

†
kcq

is a bilinear fermionic many-body Hamiltonian in the
Fock space, and hkq represents the matrix elements of
the corresponding operator in the single-particle Hilbert
space. These matrix elements are explicitly given by
(h↓)kq = εkδkq and (h↑)kq = εkδkq + Ṽ (k − q). With
these definitions, we can rewrite

Si(τ, T, t) =
1

4
S̃i(τ, T, t)e

−iωsfi(t,T,τ), (12)

where e−iωsfi(t,T,τ) gives a simple phase and S̃i(τ, T, t)
is a product of the exponentials of the bilinear fermionic
operator, both of which can be calculated exactly. For
example, we have S1(τ, T, t) = S̃1(τ, T, t)eiωste−iωsτ/4,
where

S̃1(τ, T, t) =Tr[eiΓ(h↓)τeiΓ(h↑)T eiΓ(h↑)t×
e−iΓ(h↓)te−iΓ(h↑)T e−iΓ(h↑)τρFS]

. (13)

Applying Levitov’s formula gives

S̃1(τ, T, t) = det[(1− n̂) +R1(τ, T, t)n̂], (14)

with

R1(τ, T, t) = eih↓τeih↑T eih↑te−ih↓te−ih↑T e−ih↑τ , (15)

and n̂ = nkδkk′ , where nk = 1/(eεk/kBT
◦

+ 1) denotes
the single-particle occupation number operator. Calcu-
lations of other pathway contributions are similar, which
are presented in Appendix A.

Numerical calculations are carried out in a finite sys-
tem confined in a sphere of radius R. Keeping the density
constant, we increase R towards infinity until numerical
results are converged. Typically, we choose kFR = 250π
in a calculation. We focus on the s-wave interaction
channel between | ↓〉 and the background fermions near

a broad Feshbach resonance, which can be well mim-
icked by a spherically symmetric and short-range van-
der-Waals type potential V (r) = −C6 exp(−r6/r6

0)/r6.
Here, C6 determines the van-der-Waals length lvdW =
(2mC6)1/4/2, and we choose lvdWkF = 0.01 � 1,
so the short-range details are unimportant. The low-
temperature many-body physics can be determined by
the s-wave energy-dependent scattering length a(EF ) =
− tan η(kF )/kF at the Fermi energy EF , with η(EF ) be-
ing an energy-dependent s-wave scattering phase-shift
tuned by adjusting r0. For the simplicity of notation,
we denote a ≡ a(EF ) hereafter. Consequently, S̃i(t, T, τ)
is a universal function of kBT

◦/EF , kFa, t/τF , and τ/τF
in the whole time domain.

A summation of the contributions of all pathways gives
the total response S(t, T, τ), and the spectrum in the
frequency domain can be obtained via a double Fourier
transformation

A(ωτ , T, ωt) =
1

π2

∫ ∞
0

∫ ∞
0

dtdτeiωττS(τ, T, t)e−iωtt,

(16)
where ωt and ωτ are interpreted as an absorption and
emission frequency, respectively. On the other hand,
the T -dependence of A(ωτ , T, ωt) can reveal the many-
body coherent and incoherent dynamics. We notice that
A(ωτ , T, ωt) =

∑16
i=1Ai(ωτ , T, ωt) can also be expressed

as a summation of sixteen pathways, where the expres-
sion of each pathway is given by Eq. (16), with A and S
replaced by Ai and Si, respectively.

We emphasize that the MD spectroscopy contains all
the information of 1D spectroscopy. For example, one
can examine the T = t = 0 case, where the pulse
scheme becomes the same as the original 1D Ramsey
scheme shown in Fig. 1 (f). In this case, S(τ, T =
0, t = 0) reduces to the 1D Ramsey response function

Sa(τ) = Tr(eiĤ↓τe−iĤ↑τρFS), which is also called the
time-dependent overlap function. Similarly, we have
Se(t) ≡ S(τ = 0, T = 0, t) = S∗a(t), where the super-
script ∗ denotes complex conjugate. Correspondingly, we
have

∫
dωtA(ωτ , T = 0, ωt) = Aa(ωτ ), where Aa(ωτ ) =∫

dτSa(τ)eiωττ/π is the 1D absorption spectrum. Simi-
larly, we have Ae(ωt) =

∫
dωτA(ωτ , T = 0, ωt) = A∗a(ωt).

Since Aa(ωτ ) is the absorption spectrum, its complex
conjugate Ae(ωt) can thus be interpreted as an emission
spectrum. These interpretations are consistent with the
fact that the integration of A(ωτ , T = 0, ωt) over the
emission frequency ωt gives the 1D absorption spectrum
Aa(ωτ ) and vice versa. The physical process underlying
A(ωτ , T, ωt) can be interpreted as follows: the system
first gets excited by absorbing a photon with frequency
ωτ , after a period of mixing time T , and then emits a
photon with frequency ωt.
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FIG. 2. Universal 2D spin-echo response’s amplitude
|So(τ, t)|, as a function of τ and t, for (a) attractive interac-
tion kF a = −0.5 and (b) repulsive interaction kF a = 0.5. The
temperature is set as kBT

◦ = 0.03EF . (c) shows |So(τ, t = 0)|
[the slice of (a) along the x-axis] and |So(τ, t = τ)| [the slice of
(a) along diagonal] as a function of τ in the blue solid and red
dash-dotted curves, respectively. (d) shows the same slices
for (b).

III. RESULTS

A. Two-dimensional spin-echo response

Let us first investigate a relatively simple situation,
T = 0, which is equivalent to the two-pulse scheme illus-
trated in Fig. 1 (e). The response function in the time
domain is given by

So(τ, t) ≡ S(τ, T = 0, t) = Tr[Io(τ, t)ρFS], (17)

where Io(τ, t) = eiĤ↓τeiĤ↑te−iĤ↓te−iĤ↑τ . We notice
that when t = τ , the scheme is equivalent to 1D
spin-echo scheme investigated in Refs. [70, 71] and
illustrated in Fig. 1 (d), hence naming our scheme
as a 2D spin echo scheme. We can examine that
So(t, t) reduce to the 1D spin-echo response So(t) =
Tr[eiH↓teiH↑te−iH↓te−iH↑tρFS].

While we can also calculate So(τ, t) by using S(τ, T, t)
in Eq. (6) with T = 0, a direct calculation of Eq. (17)
is more convenient. The expression of the 2D spin-echo
response can be written as So(τ, t) = eiωstS̃o(τ, t)e

−iωsτ ,
where

S̃o(τ, t) = Tr[eiΓ(h↓)τeiΓ(h↑)te−iΓ(h↓)te−iΓ(h↑)τρFS] (18)

can be calculated exactly by applying Levitov’s formula
in the FDA

S̃o(τ, t) = det[(1− n̂) +Ro(τ, t)n̂] (19)

with

Ro(τ, t) = eih↓τeih↑te−ih↓te−ih↑τ . (20)

Examples of this universal 2D response function
|So(t, τ)| = |S̃o(t, τ)| with parameters kFa = −0.5 and
kFa = 0.5 at a finite temperature kBT

◦ = 0.03EF are
shown in Fig. 2 (a) and (b), respectively. The solid
and dash-dotted curves in Fig. 2 (c) show |So(τ, t = 0)|
and |So(τ, t = τ)| as a function of τ , i.e., the slice of (a)
along the x-axis and diagonal, respectively. Figure 2 (d)
shows the same slices for (b). Fig. 2 (c) indicates that
So(τ, t = 0) and So(τ, t = τ) reduce to 1D Ramsey re-
sponse Sa(τ) and 1D spin-echo signal So(τ), respectively.

B. 2D spin-echo spectrum

The 2D spin-echo spectrum in the frequency domain
can be obtained by applying a double Fourier transforma-
tion, Eq. (16), with the relation Ao(ωτ , ωt) = A(ωτ , T =
0, ωt). One can immediately observe that Ao(ωτ , ωt) =∫∞

0

∫∞
0
dtdτeiω̃ττ S̃o(τ, t)e

−iω̃tt/π2 with ω̃τ = ωτ−ωs and
ω̃t = ωt−ωs, i.e., the energy differences between two spin-
states only give simple shifts of frequencies. Hereafter,
unless specified otherwise, we denote ω̃ = ω− ωs for any
frequency variable ω. Figure 3 shows our finite tempera-
ture (kBT

◦ = 0.03EF ) results for attractive kFa = −0.5
and repulsive kFa = 0.5 interactions in (a1)-(a4) and
(b1)-(b4), respectively. We present the 2D contour of
Re[Ao(ωτ , ωt)] as a function of ω̃τ and ω̃t in Figs. 3 (a2)
and (b2) and the corresponding 3D landscape in Figs. 3
(a3) and (b3). Here, we denote Re[C] and Im[C] as the
real and imaginary parts of C, respectively. For compar-
ison, we also show the 1D spectra Re[Aa(ωτ )] in Figs.
3 (a1) and (b1) and Re[Ae(ωt)] = Re[Aa(ωτ )] in Figs.
3 (a4) and (b4). For completeness, we also show the
imaginary part and amplitude of the corresponding 2D
spectroscopy in Fig. 7 in Appendix B.

The absorption spectrum has been well studied before
[70, 71]. When the interaction is attractive (kFa < 0),
only one power-law singularity Re[Aa(ωτ )] ∼ θ(ωτ −
ωA−)|ωτ − ωA−|−aA− with exponent coefficient aA− > 0
appears near ωA− with a slight thermal broadening, as
shown in Figs. 3 (a1) and (a4). In contrast, Figs. 3
(b1) and (b4) show two singularities for a repulsive in-
teraction (kFa > 0). These singularities are understood
as manifestations of the well-known Anderson’s orthogo-
nality catastrophe (OC). Due to the existence of multi-
ple particle-hole excitations of the background Fermi sea
induced by the infinitely massive impurity, the many-
particle states with and without impurity interactions
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FIG. 3. (a1) and (a4) shows the 1D absorption spectrum for attractive interaction kF a = −0.05 and finite temperature
kBT

◦ = 0.03EF . The absorption singularity is denoted as A. (a2), and (a3) shows the contour and 3D landscape of the
2D spin-echo spectrum Re[Ao(ωτ , ωt)], where the diagonal peak is denoted as AA. (b1)-(b4) are the same as (a1)-(a4),
correspondingly, but for repulsive interaction kF a = 0.5. There are two singularities in (b1), the absorption spectrum, namely
repulsive and attractive singularities, which are denoted as R and A. The corresponding diagonal peaks in (b2) and (b3) are
denoted as AA and RR, while the off-diagonal cross-peaks are denoted as AR and RA.

are orthogonal, which leads to a vanishing quasiparticle
residue. Our recent studies further examined the sce-
nario where a mechanism, such as a superfluid gap or
finite impurity mass, suppresses those multiple particle-
hole excitations [73, 74]. In this case, OC can be pre-
vented, and the singularities reduce back to the so-called
attractive or repulsive Fermi polarons. At the same time,
the “wings” attached to the singularity, indicated in Figs.
3(a1) and (b1), separate from the polaron signal and re-
duce to the so-called molecule-hole continuums. Because
of their close relations to polaron resonances, we name
these singularities as attractive and repulsive singulari-
ties and denote them by A and R, respectively, in Figs.
3 (a1), (a4), (b1), and (b4).

The 2D spectrum in Figs. 3 (a2) and (a3) shows
a double dispersion lineshape commonly found in 2D
NMR around (ω̃τ , ω̃t) ≈ (ω̃A−, ω̃A−), which is called
a diagonal peak denoted as AA. For attractive inter-
action kFa = −0.5, the attractive singularity appears
at ω̃A− ≈ −0.28EF in the absorption spectrum. We
have numerically verified that the integration of 2D spec-
troscopy over emission frequency ωt gives the 1D absorp-
tion spectrum Aa(ωτ ) (not shown here). Interestingly, we
can observe that there is no diagonal spectral weight cor-
responding to the wing. Rather, the spectral weight on
the off-diagonal Ao(ωτ , ωt ≈ ωA−) and Ao(ωτ ≈ ωA−, ωt)
is significant and resembles the lineshape of the wing.
This is a non-trivial manifestation of OC in the 2D
spectroscopy: the inhomogeneous and homogeneous line-

shape does not have the OC characteristic. Here, the
inhomogeneous and homogeneous lineshape refer to the
lineshape near a singularity along the diagonal or the
direction perpendicular to the diagonal, which is better
illustrated in the amplitude of 2D spectroscopy shown in
Fig. 7 (c) in Appendix B. As we can observe, the widths
of the singularity are much sharper along these two di-
rections, which might help experimental identification of
the singularity, especially at finite temperatures. The ho-
mogeneous and inhomogeneous broadenings in MD spec-
troscopy also have their own experimental significance,
similar to their NMR or optical counterpart. In a real-
istic experiment, the ensemble average of the impurity
signal can give rise to a further inhomogeneous broad-
ening induced by the disorder of the local environment
(such as spatial magnetic field fluctuation). However,
these disorders are usually non-correlated and would not
introduce homogeneous broadening [6, 15, 16].

For repulsive interaction kFa = 0.5, there are two sin-
gularities, the attractive and repulsive singularities, in
the 1D absorption spectrum. These singularities appear
at ω̃A+ ≈ −0.98EF and ω̃R+ ≈ 0.28EF in Figs. 3 (b1)
and (b4). As shown in Fig. 3 (b2) and (b3), there are
two diagonal peaks, AA and RR, in the 2D spectroscopy
that mirror the attractive and repulsive singularities. In
addition, there are also two significant cross-peaks, AR
and RA, which indicate a strong many-body quantum
correlation between the attractive and repulsive singu-
larity. As far as we know, this is the first prediction
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FIG. 4. T -dependence of EXSY+ spectrum Ã(ωτ , T, ωt) for
(a) attractive interaction kF a = −0.5 and (b) repulsive inter-
action kF a = 0.5, with temperature kBT

◦ = 0.03EF . The
cross and circle symbols denote the real and imaginary parts
for the diagonal peak Ã(ωτ = ωA−, T, ωt = ωA−) in (a) and

the real part of cross-peaks Ã(ωτ = ωA+, T, ωt = ωR+) and

Ã(ωτ = ωR+, T, ωt = ωA+) in (b). The curves use the fitting
formula in the main text to fit numerical results at the late
time T ≥ 10τF . We, however, also show the fitting curve
at T < 10τF to emphasize the differences in the early time
behaviors.

of many-body correlations between Fermi singularities in
cold atom systems. If the impurity has a finite mass or
the background Fermi gas is replaced by a superfluid with
an excitation gap, we believe these cross-peaks would re-
main and represent the correlations between attractive
and repulsive polarons.

C. 2D EXSY spectrum

In this section, we focus on the 2D spectrum,
A(ωτ , T, ωt), of the EXSY+ pulse scheme illustrated by
Fig. 1 (f), which can be exactly calculated by Eqs. (6),
(12) and (16) with the FDA. As mentioned above, in a 2D
spin-echo spectrum (and the 1D spectra), the trivial en-
ergy difference between | ↓〉 and | ↑〉, ωs, only introduces
a frequency shift of the spectra as (ωτ , ωt) → (ω̃τ , ω̃t).
In contrast, the scenario is a bit more complicated for
the EXSY+ spectrum, where the spectrum can be ex-
pressed as a summation of sixteen pathway contributions,
and each pathway is associated with a different phase
e−iωsfi(t,T,τ) in Eq. (12) (see Appendix A for details).
Consequently, each pathway contribution Ai(ωτ , T, ωt)
has shifted to different centers in the frequency domain
accordingly. The features of Fermi singularities, in gen-
eral, lie within a frequency range of a few Fermi en-
ergy EF around (ω̃τ , ω̃t) = (0, 0) in the 2D spectrum
A(ωτ , T, ωt). In addition, for a typical ultracold exper-
iment, ωs is usually much larger than the Fermi energy

EF . As a result, only the first four pathways associated
with eiωste−iωsτ would give a non-negligible contribution,
i.e., A(ωτ , T, ωt) ≈ Ã(ωτ , T, ωt) =

∑4
i=1Ai(ωτ , T, ωt),

within the frequency range in interest. A comparison
between A(ωτ , T, ωt) and Ã(ωτ , T, ωt) for ωs/EF = 2π
is shown in Appendix A, where perfect agreement is ob-
served. Such reduction of pathways not only allows a
faster calculation but also helps us to identify the im-
portant pathways and further separate them using a so-
called “phase cycling” technique detailed in the next sec-
tion.

We find that the general landscape of the 2D spectrum
Ã(ωτ , T, ωt) also shows strong off-diagonal contributions
and cross-peaks (see Fig. 6, for example), similar to the
2D spin-echo spectrum Ao(ωτ , ωt). However, the depen-

dency of Ã(ωτ , T, ωt) on the mixing time T can give us
further information on the many-body coherent and inco-
herent dynamics. There is one additional complication,
though: we observe a fast oscillation with frequency ωs in
the T -dependency of Ã(ωτ , T, ωt), which originates from
the interferences between the contribution of I3 and I4,
that is proportional to e−iωsT and eiωsT respectively. We
are not interested in this trivial oscillation. Instead, we
would like to investigate the dynamic in the time scale
of τF and choose to study the signals at TMωs = 2πM ,
where M is an integer. Notice that since ωs � EF ,
TM/τF can be considered to be almost continuous. As
we will see later, this choice of TM is not necessary if we
apply the phase cycling to separate the pathways.

Figure 4 (a) shows the real and imaginary part of
A(ωτ ≈ ωA−, T, ωt ≈ ωA−) for kFa = −0.5 as cross
and circle symbols, showing a damping oscillation be-
havior at a late time. This long-time behavior can be
fitted perfectly with a formula F (T ) = Aa cos(ωaT +
ϕa) exp(−T/Ta)+B for the real and imaginary parts sep-
arately, both of which give ωa ≈ 0.28EF and Ta ≈ 80τF .
We also find this damping oscillation behavior with the
same ωa and Ta at other parts of the spectrum. One can
recognize ωa ≈ |ωA−| and the damping lifetime Ta re-
flects a non-coherent many-body dynamic, which might
be related to the finite temperature kBT

◦ ≈ 0.03EF .
Figure 4 (b) shows the T -dependence of Re[Ã(ωτ , T, ωt)]
with kFa = 0.5 for AR and RA cross-peaks as cross
and circle symbols, which can be fitted by a combina-
tion of two damping oscillations F (T ) = Aa cos(ωaT +
ϕa) exp(−T/Ta) + Ar cos(ωrT + ϕr) exp(−T/Tr) +B il-
lustrated by the solid curves. The numerical fitting gives
ωa ≈ |ωA+|, ωr ≈ |ωR+|, Ta ≈ 30τF and Tr ≈ 80τF .
These long-time damping oscillations indicate the non-
trivial relaxation process during the mixing time T , in-
duced by multiple particle-hole excitations. However, at
a very early time, probably only a few particle-hole pairs
have been excited, and higher order correlation has not
been built up, which explains the deviation between the
fitting results and numerical calculation. It is also in-
teresting to notice that Ta and Tr are different, which
implies there might be an intrinsic dynamical process be-
tween the attractive and repulsive singularities.
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FIG. 5. The same as Fig. 4, but for a phase cycling spectrum
A(ωτ , T, ωt).

D. Phase cycling

Since the total spectrum is a summation of multiple
pathway contributions, it is sometimes important to be
able to separate and measure one or some of the path-
way contributions. For example, we notice that the third
and fourth pathways, I3(τ, T, t) = ...eiH↓T ...e−iH↑T ...
and I4(τ, T, t) = ...eiH↑T ...e−iH↓T ..., are the ones re-
sponsible for a fast oscillation in the mixing time T
with the trivial frequency ωs. In addition, we have
I3(τ, T, t) = Io(τ + T, t) and I4(τ, T, t) = Io(τ, T + t),
implying these two pathways give the same information
as the 2D spin-echo sequence. Therefore, it would be
interesting to be able to eliminate the contributions of
I3 and I4, which can be achieved by following the same
spirit as phase cycling, an important technique in NMR.

Phase cycling is a technique that uses a linear combi-
nation of signals (with possibly different weights) from
different pulse schemes to select the contribution of one
or few coherent pathways. As a concrete example, we
define A(ωτ , T, ωt) ≡ Ã(ωτ , T, ωt)− Ã−(ωτ , T, ωt), where

Ã−(ωτ , T, ωt) is the 2D Ramsey response for the EXSY−
pulse scheme indicated in Fig. 1 (g). A manipulation of
algebra gives (see Appendix A)

A(ωτ , T, ωt) = 2A1(ωτ , T, ωt) + 2A2(ωτ , T, ωt), (21)

which only includes the first two pathways. One can
immediately notice that both pathways, I1(τ, T, t) and
I2(τ, T, t), are independent of ωs, where we are no longer
restricted to measuring signals at T = TM .

The corresponding double Fourier transformation
A(ωτ , T, ωt) is studied in Fig. 5. For the attractive
(kFa = −0.5) interaction case shown in Fig. 5 (a), a nu-
merical fitting with formula F (T ) = A exp(−T/Ta) + B
indicates a pure exponential relaxation with lifetime Ta ≈
5τF . On the contrary, for the repulsive (kFa = +0.5)

interaction case shown in Fig. 5 (a), a damping oscilla-
tion F (T ) = A∆ cos(ω∆T∆ + ϕ∆) exp(−T/T∆) + B∆ of
ω∆ ≈ |ωR+ − ωA+| and damping lifetime T∆ ≈ 10τF .
This damping oscillation indicates the intrinsic coherent
and incoherent many-body dynamics between the attrac-
tive and repulsive Fermi singularity. We notice that a
similar damping oscillation between exciton-polarons in
TMDs has previously been observed in the non-rephasing
signal of an optical 2D spectroscopy [16] and explained
by the nonlinear Golden Rule [17]. More recently, this
behavior has also been observed in a FDA study [68]. To
our knowledge, our result is the first prediction of the
coherent and incoherent dynamic process between the
two Fermi-edge singularities in ultracold gases. We also
believe the same procedure can be applied to study the
many-body dynamical process between attractive and re-
pulsive polarons.

IV. CONCLUSION

In summary, we have investigated how to extend the
1D Ramsey spectrum to multidimensional, which goes
beyond the linear response regime and can reveal corre-
lations between many-body singularities and resonances.
Multidimensional spectroscopy also allows us to investi-
gate the many-body coherent and relaxation dynamics
that are not accessible in 1D spectra. Such a scheme is
especially suitable and accessible in the clean and con-
trollable systems of ultracold gases.

As a concrete example, we investigate the Fermi sin-
gularity problem and present a numerical exact many-
body formalism for the simulation of the multidimen-
sional Ramsey spectrum of a heavy impurity in a Fermi
gas, both in the time domain and frequency domain. We
believe this is the first investigation of the nonlinear re-
sponses in such systems and the first prediction of many-
body correlations between attractive and repulsive sin-
gularities, remnants of polaron resonances destroyed by
Anderson’s orthogonal catastrophe. For the first time,
we also predict the many-body coherent dynamic and re-
laxation between the two Fermi singularities.

We believe these many-body correlations and dynam-
ics should also exist between attractive and repulsive po-
larons, which can be calculated exactly if the background
gas is a Bardeen–Cooper–Schrieffer superfluid [73, 74].
Another approach would be to investigate mobile impu-
rity with a Chevy ansatz. Although this is an approx-
imated approach, it might lead to intuitive understand-
ing. Finally, we argue that the application of multidi-
mensional Ramsey spectroscopy should not be limited to
impurity systems, and the same spirit can be generalized
to other ultracold atom systems [79–90].
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Appendix A: Pathway contributions

In the main text, Eq. (6) indicates that S(τ, T, t) can
be written as a summation of sixteen different path-
way contributions S(τ, T, t) =

∑16
i=1 Si(τ, T, t) where

Si(τ, T, t) = Tr[Ii(τ, T, t)ρFS]/4. The sixteen pathways
Ii(τ, T, t) can be written out explicitly:

I1(τ, T, t) = eiĤ↓τeiĤ↑T eiĤ↑te−iĤ↓te−iĤ↑T e−iĤ↑τ ,
(A1a)

I2(τ, T, t) = eiĤ↓τeiĤ↓T eiĤ↑te−iĤ↓te−iĤ↓T e−iĤ↑τ ,
(A1b)

I3(τ, T, t) = eiĤ↓τeiĤ↓T eiĤ↑te−iĤ↓te−iĤ↑T e−iĤ↑τ ,
(A1c)

I4(τ, T, t) = eiĤ↓τeiĤ↑T eiĤ↑te−iĤ↓te−iĤ↓T e−iĤ↑τ .
(A1d)

I5(τ, T, t) = eiĤ↓τeiĤ↑T eiĤ↑te−iĤ↓te−iĤ↑T e−iĤ↓τ ,
(A1e)

I6(τ, T, t) = −eiĤ↓τeiĤ↓T eiĤ↑te−iĤ↓te−iĤ↓T e−iĤ↓τ ,
(A1f)

I7(τ, T, t) = eiĤ↓τeiĤ↓T eiĤ↑te−iĤ↓te−iĤ↑T e−iĤ↓τ ,
(A1g)

I8(τ, T, t) = −eiĤ↓τeiĤ↑T eiĤ↑te−iĤ↓te−iĤ↓T e−iĤ↓τ ,
(A1h)

I9(τ, T, t) = eiĤ↑τeiĤ↑T eiĤ↑te−iĤ↓te−iĤ↑T e−iĤ↑τ ,
(A1i)

I10(τ, T, t) = −eiĤ↑τeiĤ↓T eiĤ↑te−iĤ↓te−iĤ↓T e−iĤ↑τ ,
(A1j)

I11(τ, T, t) = −eiĤ↑τeiĤ↓T eiĤ↑te−iĤ↓te−iĤ↑T e−iĤ↑τ ,
(A1k)

I12(τ, T, t) = eiĤ↑τeiĤ↑T eiĤ↑te−iĤ↓te−iĤ↓T e−iĤ↑τ ,
(A1l)

I13(τ, T, t) = eiĤ↑τeiĤ↑T eiĤ↑te−iĤ↓te−iĤ↑T e−iĤ↓τ ,
(A1m)

I14(τ, T, t) = eiĤ↓τeiĤ↓T eiĤ↑te−iĤ↓te−iĤ↓T e−iĤ↓τ ,
(A1n)

I15(τ, T, t) = −eiĤ↑τeiĤ↓T eiĤ↑te−iĤ↓te−iĤ↑T e−iĤ↓τ ,
(A1o)

I16(τ, T, t) = −eiĤ↑τeiĤ↑T eiĤ↑te−iĤ↓te−iĤ↓T e−iĤ↓τ .
(A1p)

Since the dimensions of the many-body operator H↓
and H↑ grows exponentially with respect to the num-
ber of particle N , a direct calculation of Si(τ, T, t) is
not accessible. However, by applying Levitov’s formula
in FDA, we can show that Si(τ, T, t) reduces to a de-
terminant in a single-particle Hilbert space that grows
only linearly to N , allowing an in-principle exact calcu-
lation. For this purpose, we rewrite H↓ ≡ Γ(h↓) and

H↑ ≡ Γ(h↑) + ωs, where Γ(h) ≡
∑

k,q hkqc
†
kcq is a bilin-

ear fermionic many-body operator, and hkq represents
the matrix elements corresponding to the single-particle
operator. As a result, each pathway’s contribution can be
written as Si(τ, T, t) = S̃i(τ, T, t)e

−iωsfi(t,T,τ)/4, where

S̃i(τ, T, t) = Tr[Ĩi(τ, T, t)ρFS ]. Here, Ĩi(τ, T, t) has the
same expression as Ii(τ, T, t) but with H↓ and H↑ re-
placed by Γ(h↓) and Γ(h↑), respectively. Since both
Γ(h↓) and Γ(h↑) are fermionic bilinear operators, apply-
ing Levitov’s formula gives

S̃i(τ, T, t) = det[(1− n̂) +Ri(τ, T, t)n̂], (A2)

where Ri(τ, T, t) has the same expression as Ii(τ, T, t) but
with H↓ and H↑ replaced by h↓ and h↑, respectively. The

phase factor e−iωsfi(τ,T,t) can also be obtained by replac-
ing e±H↓t

′
and e±iH↑t

′
with 1 and e±iωst

′
in the expression

of Ii(τ, T, t), where t′ can be τ , T , or t. This expression
is now ready for numerical calculation as mentioned in
the main text.

While S̃i(τ, T, t) are universal functions of kBT
◦/EF ,

kFa, t/τF , and τ/τF , the total response S(τ, T, t) involves
the interference of phase factors e−iωsfi(τ,T,t) between
each contribution. The resulting oscillation in frequency
ωs is not very interesting. Nevertheless, we find that
only a few pathways contribute to the singularities of
A(ωτ , T, ωt) we are interested in. Our numerical results

show that S̃i(τ, T, t) oscillates at frequency ∼ EF , much
slower than ωs � EF in usual ultracold experiments.
Consequently, if we focus on the Fermi singularity fea-
tures that appear at |ωτ − ωs|, |ωt − ωs| ∼ EF in the
2D spectrum A(ωτ , T, ωt), only the pathways I1, I2, I3,
and I4 associated with the phase factor eiωste−iωsτ con-
tribute. The phase eiωste−iωsτ only gives rise to a simple
frequency shift of ωt → ω̃t and ωτ → ω̃τ . Figure 6 com-
pares A(ωτ , T, ωt) and Ã(ωτ , T, ωt) =

∑4
i=1Ai(ωτ , T, ωt)

that only includes contributions from the first four path-
ways, for a set of chosen parameters: kFa = 0.5, kBT

◦ =
0.03EF , ωs/EF = 2π, and T = 5τF . Figure 6 (a)
and (b) shows the whole 2D spectrum for A(ωτ , T, ωt)
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FIG. 6. (a) shows the 2D spectroscopy A(ωτ , T, ωt) that
includes pathway contributions from all sixteen pathways,
and (b) Ã(ωτ , T, ωt) only includes the first four. Solid and
dashed curves in (c) compare A(ωτ = ωR, T, ωt) [the slice

along the dashed line in (a)] and Ã(ωτ = ωR, T, ωt), respec-
tively, and show excellent agreement by an essentially overlap-
ping. (d) shows the same comparison for A(ωτ , T, ωt = ωR)

and Ã(ωτ , T, ωt = ωR) [the slice along the dashed line in
(b)]. Other parameters are kF a = 0.5, kBT

◦ = 0.03EF ,
ωs/EF = 2π, and T = 5τF .

and A(ωτ , T, ωt), respectively. The solid and dashed
curves in Fig. 6 (c) show the spectrum A(ωτ , T, ωt) and

Ã(ωτ , T, ωt) along ωτ = ωR, the slice indicated by the
dashed line in Fig. 6 (a). Fig. 6 (d) shows the same com-
parison for ωt = ωR, the slice indicated by the dashed line
in Fig. 6 (b). All comparison gives perfect agreement,
e.g., the solid and dashed curves essentially overlap in
Fig. 6 (c) and (d).

Among the first four pathways, there is still a phase
dependence on ωsT . To be specific, while A1(ωτ , T, ωt)
and A2(ωτ , T, ωt) are independent of ωs, A3(ωτ , T, ωt)
and A4(ωτ , T, ωt) has a phase dependence of e−iωsT and
eiωsT , respectively. To investigate the dynamics in the
time scale of τF , we can study the signals at TMωs =
2πM , where M is an integer. Notice that since ωs � EF ,
TM/τF can be considered to be almost continuous. Such
T -dependence is shown in Fig. 4 in the main text.

Another way to observe the T -dependence that is inde-
pendent of ωs is by using the so-call phase cycling, which
uses a linear combination of results from different pulse
schemes to eliminate some of the pathway contributions.
For example, in the EXSY− pulse scheme illustrated in
Fig. 1 (g), we can carry out the same calculation as

EXSY+ with the middle pulse replaced by a −π/2 rota-
tion

FIG. 7. (a) and (b) shows contour plots of the imaginary part
of the 2D spin-echo spectrum Ao(ωτ , ωt) for attractive kF a =
−0.5 and repulsive kF a = 0.5 interactions, respectively. (c)
and (d) show the amplitude for kF a = −0.5 and kF a = 0.5,
respectively. The temperature is set as kBT

◦ = 0.03EF .

R(−π/2) = R(π/2)T =
1√
2

(
1 −1
1 1

)
. (A3)

We also only need to focus on the first four pathways and
can find that I−1 = −I1, I−2 = −I2, I−3 = I3, and I−4 = I4,
where the superscript “−” indicates the quantities for
EXSY− scheme. Consequently, we have Ã− = −A1 −
A2 + A3 + A4. As a result, in the differences between
the EXSY+ and EXSY−, A(ωτ , T, ωt) ≡ Ã(ωτ , T, ωt) −
Ã−(ωτ , T, ωt), only the contributions from the first two
pathways remain, i.e.,

A(ωτ , T, ωt) = 2A1(ωτ , T, ωt) + 2A2(ωτ , T, ωt) (A4)

which no longer depends on ωs.

Appendix B: Imaginary part and Amplitude of the
2D spin-echo spectrum

For completeness, we show in Fig. 7 the imaginary part
and amplitude of the 2D spin-echo spectrum for the same
parameters in Fig. 3 in the main text. In particular, we
indicate the homogeneous and inhomogeneous lineshape
in Fig. 7 (c).
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Kreim, Theodor W. Hänsch, and Immanuel Bloch,
“Entanglement interferometry for precision measurement
of atomic scattering properties,” Phys. Rev. Lett. 92,
160406 (2004).

[80] Anatoly Kuklov, Nikolay Prokof’ev, and Boris Svis-
tunov, “Detecting supercounterfluidity by ramsey spec-
troscopy,” Phys. Rev. A 69, 025601 (2004).

[81] Takuya Kitagawa, Susanne Pielawa, Adilet Imambekov,
Jörg Schmiedmayer, Vladimir Gritsev, and Eugene Dem-
ler, “Ramsey interference in one-dimensional systems:
The full distribution function of fringe contrast as a probe
of many-body dynamics,” Phys. Rev. Lett. 104, 255302
(2010).

[82] Michael Knap, Adrian Kantian, Thierry Giamarchi, Im-
manuel Bloch, Mikhail D. Lukin, and Eugene Dem-
ler, “Probing real-space and time-resolved correlation
functions with many-body ramsey interferometry,” Phys.
Rev. Lett. 111, 147205 (2013).

[83] Marcos Atala, Monika Aidelsburger, Julio T. Barreiro,
Dmitry Abanin, Takuya Kitagawa, Eugene Demler, and
Immanuel Bloch, “Direct measurement of the zak phase
in topological bloch bands,” Nat. Phys. 9, 795 (2013).

[84] Dmitry A. Abanin, Takuya Kitagawa, Immanuel Bloch,
and Eugene Demler, “Interferometric approach to mea-
suring band topology in 2d optical lattices,” Phys. Rev.
Lett. 110, 165304 (2013).

[85] Martin W. Zwierlein, Zoran Hadzibabic, Subhadeep
Gupta, and Wolfgang Ketterle, “Spectroscopic insen-
sitivity to cold collisions in a two-state mixture of
fermions,” Phys. Rev. Lett. 91, 250404 (2003).

[86] S. Gupta, Z. Hadzibabic, M.W. Zwierlein, C.A. Stan,
K. Dieckmann, C.H. Schunck, E.G.M. van Kempen,
B.J. Verhaar, and W. Ketterle, “Radio-frequency spec-
troscopy of ultracold fermions,” Science 300, 1723
(2003).

[87] A. M. Rey, A. V. Gorshkov, and C. Rubbo, “Many-body
treatment of the collisional frequency shift in fermionic
atoms,” Phys. Rev. Lett. 103, 260402 (2009).

[88] Zhenhua Yu and C. J. Pethick, “Clock shifts of optical
transitions in ultracold atomic gases,” Phys. Rev. Lett.
104, 010801 (2010).

[89] M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang,
C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey,
and Jun Ye, “A quantum many-body spin system in an
optical lattice clock,” Science 341, 632 (2013).

[90] Bo Yan, Steven A. Moses, Bryce Gadway, Jacob P.
Covey, Kaden R. A. Hazzard, Ana Maria Rey, Deborah S.
Jin, and Jun Ye, “Observation of dipolar spin-exchange
interactions with lattice-confined polar molecules,” Na-
ture 501, 521 (2013).

[91] J. Goold, T. Fogarty, N. Lo Gullo, M. Paternostro, and
Th. Busch, “Orthogonality catastrophe as a consequence
of qubit embedding in an ultracold fermi gas,” Phys. Rev.
A 84, 063632 (2011).

[92] Mark T. Mitchison, Thomás Fogarty, Giacomo
Guarnieri, Steve Campbell, Thomas Busch, and
John Goold, “In situ thermometry of a cold fermi gas
via dephasing impurities,” Phys. Rev. Lett. 125, 080402
(2020).

[93] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger,
“Many-body physics with ultracold gases,” Rev. Mod.
Phys. 80, 885–964 (2008).


	Multidimensional Spectroscopy of Time-Dependent Impurities in Ultracold Fermions
	Abstract
	I Introduction
	II Formalism
	III Results
	A Two-dimensional spin-echo response
	B 2D spin-echo spectrum
	C 2D EXSY spectrum
	D Phase cycling

	IV Conclusion
	V Acknowledgments
	A Pathway contributions
	B Imaginary part and Amplitude of the 2D spin-echo spectrum
	 References


