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A single-step maximum likelihood estimation procedure is developed for multidimensional
scaling of dissimilarity data measured on rating scales. The procedure can fit the euclidian
distance model to the data under various assumptions about category widths and under two
distributional assumptions. The scoring algorithm for parameter estimation has been developed

and implemented in the form of a computer program. Practical uses of the method are
demonstrated with an emphasis on various advantages of the method as a statistical procedure.
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Introduction

In applications of multidimensional scaling (MDS) dissimilarity judgments are often

measured on rating scales with a relatively small number of observation categories. For

example, an investigator may ask the subject to rate the degree of similarity between a

pair of objects on a 7-point rating scale. Descriptive names of those categories might be:

very similar, moderately similar, somewhat similar, neutral (neither similar nor dissimi-

lar), somewhat dissimilar, moderately dissimilar, and very dissimilar. The same-different

judgment is another example of category judgment in which the number of observation

categories is restricted to two. Thus, the confusion data arising from the same-different
judgments (Type I confusion data in Kruskal and Wish’s terminology, 1978; see Rothkopf,

1957, for an example) can be analyzed as if they were two-category judgments. Rating

judgments with a relatively few observation categories (say, up to seven or nine) are not

only easy to make on the part of subjects, but also offer an important advantage regarding

the statistical model evaluation. Since observed proportions of a certain dissimilarity

falling into certain categories provide the minimum sufficient statistics for true proportions,

it is possible to test the appropriateness of a distance representation against observed

proportions.
In this paper we develop a maximum likelihood (ML) multidimensional scaling

procedure specifically designed to analyze this type of similarity data. Our procedure is

similar in spirit to Zinnes and Wolff’s [1977] procedure for the same-different judgments,

but is much more widely applicable. A maximum likelihood estimation procedure has

been proposed for the method of successive categories scaling by Schbnemann and

Tucker [1967]. The major distinction between their method and ours is that the former

scales whatever is measured on rating scales without any concern about what is
measured. The current method, on the other hand, explicitly takes into account the

content of measurement (that the data pertain to similarity), and not only scales the data,

but also represents them by a distance model.
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Categorical similarity ratings have been analyzed in at least two different ways. One

approach, proposed by Messick [1956], is in the tradition of classical MDS [Torgerson,

1952], in which original observations are first transformed into "observed" distances

based on some Thurstonian rationale, and those "observed" distances are subjected to

Young and Householder’s [1938] method to find a spatial representation. This approach,

however, has a theoretical weakness in that it involves two distinct steps which are not

compatible with each other. Perhaps for this reason it faded away with the advent of more

powerful analysis tools.

The Shepard-Kruskal type of multidimensional scaling [Shepard, 1962; Kruskal,

1964a, b] has successfully been applied to many exploratory types of studies in which

similarity data are collected by the rating method having a few observation categories.

With their procedure the rating data can be analyzed either under the equal interval

assumption (metric MDS) or under the unequal interval assumption (nonmetric MDS)
between adjacent categories. Unlike classical MDS, the Shepard-Kruskal type of MDS is

a single-step procedure in which both the optimal data transformation and the optimal

data representation are obtained through the optimization of a single criterion. However,

as a data analysis technique it has one definite drawback, namely the lack of statistical

inference capability.

The maximum likelihood estimation procedure to be described in this paper, on the

other hand, is not only capable of performing both metric and nonmetric types of

analyses (like the Shepard-Kruskal type of procedures), but also offers the important

advantages of permitting hypothesis testing and providing estimators which are best

asymptotically normal (BAN) (see Wilks, 1962, for example). We refer to Ramsay [1977,

1978], Takane [1978a, b], and Takane and Carroll [Note 1] for maximum likelihood

MDS procedures designed for other types of similarity data. Those procedures, though

designed for different types of similarity data, also enjoy the same statistically nice

properties.

The Method

Preliminary Considerations

In developing a scaling procedure it is important to consider at least three aspects of

data: its empirical content, the nature of error processes, and the method by which the

data are collected. The empirical content of the data refers to the kind of conceptual
relationship that the data are pertaining to. For example, the data we typically deal with

in MDS represent some sort of similarity relationship between objects. The scaling (or

more precisely, the transformation) of the original similarity data in this case should
reflect reasonable assumptions about our concept of similarity. That is, the scaling of the

similarity data presupposes a model of similarity. This model is called the representation

model of the data.

Observed data are typically subject to a sizable amount of measurement error. How

we treat the error has important consequences upon the results of scaling, and thus the

scaling procedure should reflect reasonable assumptions about the error processes (i.e.,

where and how randomness enters into a data generation process). The scaling of the

original similarity data, for example, should in some sense be consistent with a specific
error model for similarity.

Data, whether similarity or not, arise in a variety of experimental settings, and there
are as many kinds of similarity data as there are methods to collect them. Similarity

judgments are sometimes obtained by pair comparisons or rank orderings of similarities;

sometimes they are obtained by ratings of similarities; yet at other times confusion

probabilities are taken as similarity measures. How do people compare similarities? How
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do they rank them? How do they categorize similarities and respond to rating scales?

What processes underlie a confusion process, and what is its relationship to similarity?
Presumably, different types of judgments require different mental operations on the part

of subjects. The scaling procedure should reflect reasonable assumptions about the psy-

chological processes involved in a specific task situation which generates a specific type

of data. The likelihood function, or any other sensible criterion for parameter estimation,

must be constructed in such a way that it captures essential features of the data generat-

ing processes. The model of these processes is called the response model for the data.

Any scaling procedure, explicitly or implicitly, presupposes the three types of models

discussed above. Our contention is that they should always be made explicit, that they

should be empirically sound, and that the data transformation as well as the data

representation must be optimal with respect to all of them.

Likelihood Function

In line with the discussion in the previous section we present our method centering

around its major constituents, namely the representation model, the error model and the

response model. The discussion on these models should naturally lead to a specification

of the likelihood function.

The representation model: A variety of models other than the distance model have

been proposed for similarity data [see, for example, Johnson, 1967; Carroll, 1976;

Tversky, 1977]. For the purpose of this paper, however, we deliberately restrict our

attention to the euclidian model defined by

j ,a |I/2
X \2~

d,~= la~=1 (X,a-- ja) i 

(I)

where dij is the euclidian distance between objects i and j, xia is the coordinate of object i
on dimension a, and A is the dimensionality of the space. This by no means implies that
our approach cannot be generalized to other representation models. In fact it is fairly
straightforward to extend our approach to models other than euclidian distance.

The error model: The distance defined by (I) is assumed to be error-perturbed 
some process, and the error model specifies distributional properties of this perturbation
process.

The following two error models will be considered in this paper:

~ - "~ ~ ~ (Additive error model) (2)(t) 2

and
= ~ij~ijk

(Multiplicative error model) (3)
~ijk ~

The parenthesized superscript (t) here indicates an occasion of a particular judgment.

(This occasion index may be omitted in the discussion to follow.) The k is an index 

subject (or individual). Note that tr] has subscript k, implying that we may allow for

individual differences in dispersion. However, when subjects are taken as mere replica-

tions, index k is null, and trk 2 reduces to a single common dispersion (a2).

Model (2) postulates that the error is additive, and is normally distributed over
2 (within each subject). This errorreplications of judgments with constant variance o-k

model was implicit in the initial scaling phase of classical MDS [Torgerson, 1952]. More
recently this model was successfully employed in the confusion-choice model for multi-

dimensional psychophysics by Nakatani [1974].
Model (3), on the other hand, assumes that the error is multiplicative, and that the

log transform of the error follows the normal distribution with a constant variance. This
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error model is equivalent to the log-normal distributional assumption made by Ramsay

[1977] in his maximum likelihood MDS for dissimilarities measured on relatively "contin-

uous" scales, and he also discussed some desirable properties of the log-normal

assumption.

Our approach to the problem of specifying the error model is purely empirical.

Rather than deciding which error model is correct on a priori grounds, we incorporate

both error models in the estimation procedure. We can then analyze the same set of data

under the two different distributional assumptions, compare the goodness of fit of the

two competing error models, and decide which model fits better in a specific situation. If

one model is found consistently better than the other, we can subsequently employ this

better model in similar situations without carrying out the comparison each time. (We

will demonstrate how this comparison may be done with our procedure in the later

section.)

The response model: Based on the representation and error models given above we
now specify the model which captures the transformation mechanism from ~")Aij k to a

category judgment. When rating scales have a small number of observation categories (as

has been assumed in the present case), it is more natural to assume that each category

represents an interval rather than a single point. An observation that a certain similarity

falls in a certain category is interpreted as implying that the similarity takes some

unknown value within the interval corresponding to that category. An appropriate re-

sponse model in this case would be the successive categories scaling model [see Torger-

son, 1958].
In the method of successive categories, observation categories are represented by a

set of ordered intervals, mutually exclusive and exhaustive, defined on the set of all

possible values of similarity. These intervals are delimited by the upper and lower boun-

daries. Let bkm denote the upper boundary of the mth category. (The upper boundary of

the mth category coincides with the lower boundary of the (m + 1)st category.) Without

loss of generality we may assume - oo = bko < ’" --< bkm < "’" < bk~a = oo where M is the

total number of categories on a scale. (Note that the category boundaries have subscript
k to allow for possible individual difference.) Then the probability (Pi~k.) that the similar-

ity between objects i and j for subject k falls in category m is given by

Pok,. = Pr(bkt,,- 1) < 2ok < bk,.). (4)

Under the distributional assumption made in (2) or (3), this equation becomes

Pokm = j g()’Ok) d2ijk, (5)
bk(m- 1)

where g is the density function of 2~k- By standardizing )-~k in (5) we obtain for 

additive error model
. aijkm

p@,, = j f(z) dz,
aijk(m- 1)

where f is the density function of the standard normal distribution, and where

’~ijk -- dij

~k

bklra- 1) -- dij
aijk(m- 1) 

bkrn -- dij

aijkr a --
~k

(6)

(7)
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For the multiplicative model (7) should be replaced 

In 2i~k -- In di.~
Z-~-

t7k

In bkt,,,_.l~ -- In di~
aijk(ra- 1) ~---

O"k

In bkm -- In di~
aijkr a ~

ffk

If we let

then

(8)

where

P~km = F~km -- Fi~Rt~-~. (10)

Define an indicator variable Z~k,~ which takes the value of one when the similarity

between objects i and j for subject k falls in category m at replication r, and zero

otherwise. That is,

Z’~k,.r = l~ when °’~k" ~ C’notherwise, (11)

where Oi~kr ~ C~ means that O~k, (the similarity between objects i and j for subject k at
replication r) falls in category m (C,.). Since each Oqkr belongs to one and only one

category, we have ~m~= ~ Zi~k,~ = 1 and Zi~k,~ Zi~km,, = 0 for tn 4: tn’. The probability of a

particular rating judgment can then be written as

M

Pi.ik, = 1-I P~],~"" (12)
m=l

The joint likelihood of the total observations is now stated as

L = 1-I I-I 1-I P,~k,, (13)
k i,j r

where the products are to be taken over the terms for which Zi~R,~’S (m = 1 ..... M) are

actually observed. Substituting (12) in (13) gives

L = I~I I-I l-I l-I p~" = 1-I 1-I l-I p~’~’, (14)
k i,j r m k i,j ra

= (15)

The Y~k~, in the above equation is the frequency with which the similarity between i and j

falls in category m. It is well-known that it is a minimum sufficient statistic for P~k,.

[Wilks, 1962]. The expression L in terms of this statistic (the second equation in (14)) 
very convenient when we have a large number of replicated observations.

The log of L in (14),

In L = E E E Yijkm In Pijkm, (16)
k i, j ra

is maximized over the stimulus coordinates {x~.} in the representation model, over the

dispersions {ak} in the error model, and over the category boundaries {bkm} in the re-

sponse model.
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Constraints on Category Boundaries

There are N x (M - 1) [number of subjects times number of category boundaries

per scale] category boundaries to be estimated in the response model if they are fully

realized. (The only restriction so far is that they are ordered within each subject.) Thus, 

seems worthwhile to try to reduce this number by making various structural

assumptions.

One plausible assumption is that the category boundaries are equally spaced. (This

allows us to perform a metric type of analysis with the current method.) Many alterna-

tive parametrizations are possible in this case, among which we choose the following

expression:

bkm = am + b, (Linear constraint) (17)

where a(>0) is a scale factor, and b is an additive constant. Both a and b are to 

estimated from the data. Equation (17) states that the category boundaries are linearly

related to each other, and that there are no individual differences in subjects’ response

style. To put it differently category boundaries are assumed to constitute an interval scale

common to all subjects. (If, further, b is assumed to be zero, it would be a ratio scale.)

Under (17) there are only two response parameters (a and b) to be estimated.

The restriction (17) should be applicable, at least in principle, to the case of multipli-

cative error model (3) as well. In this case, however, it is more natural to assume that

bk,, = brrf, (Log-linear constraint) (18)

instead of (17). Again, a(>0) and b(>0) are the parameters to be estimated from 

data. The above restriction is equivalent to saying that category boundaries constitute a

log-interval scale. (If a is further restricted to be unity, it reduces to a ratio scale.) Note

that (18) does not imply equal spacing among original category boundaries or among
log-transformed category boundaries, unless a is fixed to unity.

A much more flexible restriction than (17) or (18) 

bk,, = b,,. (Unrestricted, no individual differences) (19)

There are no individual differences, but no particular functional relationships are

assumed among category boundaries. Thus, they are free to take any values except that

they are common to all subjects and that they have a prescribed order. The above

restriction permits a nonmetric type of analysis (without individual differences in sub-

jects’ response style) with the current method.

Finally, we may impose no additional restrictions on b~,, (unrestricted, individual

differences). With this option we can perform a nonmetric MDS with individual differ-

ences in subjects’ response style.

The chief advantage of allowing different structural assumptions on category boun-

daries in the estimation procedure is again that we can empirically choose the best

structural model using the hypothesis testing capability of the present method.

Algorithmic Considerations and Derivatives

The log likelihood defined in (16) can be maximized by various numerical optimiza-

tion methods. In this section we briefly discuss one of those methods, which is imple-
mented in the current procedure.

While good approximation methods for the normal integral in (6) exist [Hastings,

1951], it is more convenient to substitute the logistic distribution for the normal distribu-

tion. The logistic distribution is known to give a close approximation to the normal

distribution [Bock & Jones, 1968; Lord & Novick, 1968]. One of the desirable features of
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the logistic distribution is that its distribution function has an explicit analytical expres-

sion, which is given by

1
FUk’~ = 1 + exp(- skaiik,,)’

(20)

where sk is approximately n/(31/aak).

In order to maximize the log likelihood we must seek a point where the gradients of

the log-likelihood function vanish. We use Fisher’s scoring algorithm (see, for example,

Rao, 1952) to locate a desired point. It is an iterative procedure in which parameter

values are updated by the following formula:

0<q+ 1) = 0<q) + e~q)i(0,~))- lu(0~)), 

where (q) is the index of iteration number, 0 is a vector of unknown parameters, ~ is 

step-size parameter, and u(0) and I(0) are defined 

and

tO In L1 (22)
I’

Ida In L]

(23)

respectively. When the information matrix I(0) defined above is singular due

to nonuniqueness of parameters (as in the present case), we may simply replace the

regular inverse in (21) by the Moore-Penrose inverse of I(0) [Ramsay, 1978]. Of course,

in the course of iterations the inverse of I(0) does not have to be explicitly evaluated. 

may simply solve e~q)I(0~))(0~+ u _ 0~q)) = u(0)(q) ~q+ ~)

Fisher’s scoring algorithm is almost as quick as the Newton-Raphson method which

has the quadratic convergence, and is known to be generally very effective for locating a

precise optimum (see Takane, 1978a, b, for example).

Fisher’s scoring algorithm is also known to be equivalent to the Gauss-Newton
method for minimizing a weighted least squares criterion, when the assumed population

distribution belongs to the regular exponential family [Jennrich & Moore, Note 2]. This

is the case here, since as we can see in (12), we have a kernel of the multinomial
distribution. The equivalent weighted least squares criterion in this case is given by

1
~ ~ ~ --(Y~jkm- nu~pu~m)~, (24)
k i,j m ~ijkPijkm

where nu~ = ~= ~ ~m. The expected value of the Hessian (the matrix of second order

derivatives) of (24) is given 

H(0) = 2 
i,

which is known to be proportional to I(0). [H(0) = 21(0).] Thus, the explicit form 
information matrix can be readily obtained without taking the second order derivatives
of the log likelihood.

The gradient u(0) is given 



16 PSYCHOMETRIKA

Thus, we need to obtain 63Pqkm/690 to evaluate both u(0) and I(0). We 

OPijkm __ ~Fijk,n (~Fijktm- 1)

~0 ~0 ~0

By breaking down the 0 into its components, we have

~i~m= [~fijkm~[Odij ~

where

or

and where

(27)

(28)

OFijk., _ Fqk,.( 1 _ Fqkm)Sk, (Additive error model)
(29)

c~d~

dij
(Multiplicative error model) (29’)

c3dij _ (6iq - ~jq)(x,a - x~a)
(30)

(~Xqa dij

(&. is a Kronecker delta). For derivatives of F~2k,. with respect to the dispersion par-

ameters we have

~F,~k,. _ Fijkm(1 -- Fijkm)hijkm
(31)

c~sk

where hijkm = ffk aijkm" Derivatives of Fijkm with respect to the parameters of the response

model have to be given separately for each different type of restriction. Under the linear

or the log-linear assumption [(17) or (18)] we 

t~gijkm -- Fijkm(1 -- Fijkm)Sk m

t3a
(Additive error model) (32)

t3Fi~k,~ _ Fi~km(1 -- Fqk,~)Sk
gb

or

63Fijkm -- Fqk.,(1 -- Fijk.,)sk In m
c3a

(Multiplicative error model) (32’)

OFi~k,. Fi2km(1 -- Fi2k.,)Sk

Ob d~

For the monotonic case without individual differences [(19)], we have

t~Fijkra -- Fijkm(1 -- Fijkm)Sk (Additive error model) (33)

or

OFijkm _ Fi2km(1 -- Fijkm)Sk (Multiplicative error model) (33’)
c~b,. b,~
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Finally, for the completely unrestricted case we have

t~Fiik’~ -- Fijk,,(1 -- FORm)Sk (Additive error model)

,~bk,~

’~Fi~k’~ -- Fi~k"(1 -- Fi~R’~)SR (Multiplicative model)
~bkm bkm

(34)

(34’)

Results and Discussion

As noted earlier, the statistical inference capability of maximum likelihood estima-

tion offers several important advantages over other fitting procedures. In this section we

would like to demonstrate some of these in the context of multidimensional scaling.

One of the advantages of maximum likelihood estimation derives from the fact that

the inverse of the information matrix at the maximum provides asymptotic variance and

covariance estimates of estimated parameters. Using this property along with the asymp-

totic normality of maximum likelihood estimators, we can obtain asymptotic confidence
intervals or regions (of a prescribed size) for any subsets of parameters.

With maximum likelihood estimation a goodness of fit criterion can be readily

derived from the general principle of likelihood ratio [Wilks, 1962]. Specifically, minus

twice the log likelihood ratio has asymptotically a chi-square distribution with degrees of

freedom equal to the difference in the number of parameters. This statistic can be used to

determine whether one model fits to the data significantly better than the other.
Tl~e use of the asymptotic chi square for a model comparison is, however, limited to

the case in which one model is a restricted version of the other. It cannot be used, for

example, to compare the additive error model (2) with the multiplicative error model (3),
since neither is a proper subset of the other. The AIC statistic, introduced by Akaike

[1973, 1977], can be used instead, where the asymptotic chi-square test is not feasible.
The AIC statistic associated with a model is defined by

AIC = -2 In L + 2 d.f., (35)

where L is the maximum likelihood of the model and d.f. is the effective number of

parameters in the model.

Note that adding twice the degrees of freedom compensates for the "loss" of error

d.f. as a consequence of increasing the number of parameters. If more parameters are

used to describe the data, it is natural to get a larger likelihood, possibly without

improving a true goodness of fit, and the AIC avoids this spurious improvement of fit by

penalizing the use of additional parameters. The model which gives the minimum AIC

value is considered the best fitting model. We may, of course, divide the AIC by - 2 and

choose the model which maximizes In L - d.f.

The addition of 2 d.f. to -2 In L in (35) is by no means arbitrary. The AIC has been
derived as a measure which approximately maximizes the entropy defined by

= lni--f(~-[.~(y)dy ] (36)

j" f(y)ln f(y; x)de - j" f(y)ln f(y)dy,E

where x is the vector of observations, f(y) =- f(yl00) and f(y; x) -- f(y; xll) ) (where 0o

and ~ are the true and estimated parameter values, respectively) are the probability

density functions of the true and fitted models, respectively, and where E is the expecta-

tion of t~ with respect to f(x). Since the second term in (36)is a function of onlyf(y), 
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In f(y; x) which maximizes the first term is deemed desirable. Also, two competing
models, f and f,, can be compared entirely on the basis of the first term, since

B(f, f)- B(f, f)does not involve the second term.
The crucial thing is then to estimate the first term of B(f, f). Unfortunately the

formal derivation of this estimate is beyond the scope of this paper, and the interested
reader should consult Akaike’s original articles [1973, 1974, 1977]. It suffices here to
point out that In L - d.f. turns out to be the estimate.

The AIC cannot be used to compare two fitted models for which the density func-

tions of the true models are not the same. (This is because the second term in B(f,f)
would not cancel out.) This effectively excludes the possibility of comparing two models
applied to two different samples. On the other hand, AIC may be used to compare any

two models, so far asf(y) is common. No distributional properties of AIC are yet known,
so that it is a descriptive index of the goodness of fit of a model (as are the maximum

likelihood criterion and the least squares criterion). We choose the model with the
minimum AIC value, just as we choose the maximum likelihood or the least squares
solution over nonoptimal solutions. The AIC has been derived based on the asymptotic
properties of maximum likelihood estimators. Like the use of the asymptotic chi square,
its unmodified use should be limited to large sample problems. (We do not have 
definite guideline as to how large a sample should be, but a rule of thumb indicates ten
times the number of parameters estimated are more than enough, at least in the context
of maximum likelihood MDS of the sort presented in this paper. A study is being
conducted [Takane & Carroll, Note 3] to find a rule to modify AIC so that it is
applicable to small samples as well).

The AIC has successfully been applied to a variety of settings related to the
identification of the best fitting models. Those include the detection of outliers [Kita-

gawa, 1979], the identification of the best regression model in the analysis of cross-
classification tables [Sakamoto & Akaike, 1978], and the selection of the order in an
auto-regressive process [Shimizu, 1978], just to mention a few. More recently Steiger and
Lind [Note 4] compared the performance of AIC with other statistics (sequential likeli-
hood ratio and BIC, Schwarz, 1978) in determining the number of factors in factor
analysis. We refer to those articles as well as many others referenced in those articles for
examples of useful applications of AIC.

Krantz and Tversky’s Example

With the understanding of the general characteristics of maximum likelihood esti-
mation as described above, we now turn to a specific example of analyses with
MAXSCAL-2.1, a Fortran program incorporating the theoretical developments in the
previous section.

In Krantz and Tversky’s [1975] study on the psychological dimensions of similarity
between rectangles, a set of 17 rectangles were used to test the additivity of stimulus
dimensions in subjective judgments of dissimilarities. They considered two alternatives,
the height and width combination and the area (height x width) and shape
(height/width) combination, as possible candidates of psychological dimensions of rec-
tangles. (Rectangles are uniquely identifiable in terms of either one of these

combinations.)
They approached the problem from a measurement theoretic viewpoint. A set of

axioms characterizing the model were postulated, from which testable conditions were
derived. Those conditions were tested against empirical data. It was found that neither
combinations of stimulus dimensions were satisfactory. (The area and shape combination
was found to fit slightly better than the height and width combination.)
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Our first analysis is concerned with the tests of Krantz and Tversky’s two hypoth-
eses about the psychological dimensions of rectangles. Using the constrained optimiza-

tion feature of MAXSCAL-2.1 it is possible to test their hypotheses based on a rigorous

statistical inference, which was not possible in their original analysis. However, our test is

of a limited nature in the sense that the euclidian model, which is but a special case of the

additive difference model that Krantz and Tversky were dealing with, is assumed for the

representation of the similarity data.

A small experiment was conducted to collect the relevant data. Stimuli were cut

from Krantz and Tversky’s original report [Note 5], and were each pasted on a 6 by 3
inch blank index card. Stimuli were placed in pairs on the desk in front of the subject,

side by side (approximately two inches apart) at approximately 1½ feet from the subject.

The subject rated the similarity between all possible pairs (136 pairs) of rectangles 

7-point rating scales (very similar to very dissimilar). A single subject (male adult)

replicated the experiment six times (either one or two days apart between sessions). Each

session lasted about 50 minutes. The order of stimulus presentation was randomized over

replications of the experiment. Seventeen perceptual stimuli were large enough in number

to prevent systematic memory effects on the judgments of dissimilarities. Replications

were made within a single subject rather than over subjects in this experiment, since

Krantz and Tversky’s analysis indicated clear individual differences in the evaluation of

stimulus dimensions.
In order to determine the most appropriate model the data were analyzed under

various sets of assumptions. The results are reported in the upper half of Table 1 (the

portion labeled "Unconstrained Solution"). Three figures are reported in each cell; the
top figure is minus twice the log likelihood, the middle is the value of the AIC statistic

and the bottom is the d.f. associated with the model. The d.f. for a model is evaluated by

nA - A(A + 1)/2 + nc where n is the number of stimuli, A is the dimensionality of the

space and nc is the number of independent parameters needed to specify category boun-

daries. For example, nc = M - 1 for the unrestricted, no individual differences case and

n~ = 2 for the linear or log-linear constraint. The MAXSCAL-2.1 program is capable of

performing MDS under two different distributional assumptions about the error process.
Which error model is more descriptive of the error process is as empirical a question as

the identification of the best representation model. Columns 1 and 3 of Table 1 compare

the goodness of fit of the multiplicative or log-normal error model with that of the

additive error model. In both two- and three-dimensional solutions the multiplicative

model shows a better fit. From our limited experience the multiplicative error model

seems to fit to the rating data generally better than the additive error model. However, in

other types of judgments (e.g., pair comparisons and rankings) the additive error model

has been found consistently superior [Takane, 1978b; Takane & Carroll, Note 1].

Given that the error model is multiplicative, we now examine the restriction on

category boundaries. The first and second columns of Table 1 compare the goodness of

fit of two assumptions: the unrestricted, no individual differences case (19) and the

log-linear case (18). In both two- and three-dimensional solutions, the former gives
smaller values of AIC, indicating a better fit. The asymptotic chi squares representing the

differences between (18) and (19) were 104.92 with 4 d.f. (p < .001) for three-dimensional

solution, and 117.95 with 4 d.f. (p < .001) for two-dimensional solutions. Thus, in both

dimensionalities the unrestricted case is significantly better than the log-linear constraint.

The unrestricted category boundaries estimated under the multiplicative error model and

with a two-dimensional stimulus configuration are displayed in Figure 1 along with the
95 ~ asymptotic confidence intervals. In the figure, tick marks are placed at the middle of

vertical line segments (corresponding to the 95~ asymptotic confidence intervals) 

indicate point estimates of category boundaries. Circular dots indicate estimates of
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TABLE 1

Summary of MAXSCAL-2.1 Analyses of Rectangle Data

Error Model

Category
Boundaries

Multiplicative

unconstrained
no individual log

differences linear

Additive

unconstrained
no individual

differences

Unconstrained Solutions

3 dimensions -2 In(L) 1543.10
AIC 1645.10
(d.f.) (51)

2 dimensions -2 In(L) 1571.66
AIC 1645.66

(d.f.) (37)

Constrained Solutions

Shape and area -2 In(L) 2037.24
factorial hypothesis AIC 2065.24

(d.f.) (14)

Height and Width -2 In(L) 1910.83

factorial hypothesis AIC 1946.83

(d.f.) (18)

Sch6nemann’s -2 ln(L) 1707.22
hypothesis 1 AIC 1737.22

(d.f.) (15)

Sch6nemann’s -2 in(L) 1830.93
hypothesis 2 AIC 1848.93

(d.f.) (9)

Sch6nemann’s - 2 In(L) 1933.97
hypothesis 3 AIC 1949.97

(d.f.) (8)

1648.02 1604.18
1742.02 1706.18
(47) (51)

1689.61 1654.34
1755.61 1728.34

(33) (37)

1847.06 1793.63

1869.06 1823.63

(II) (15)

category boundaries under the log-linear assumption. The function relating these dots is
virtually linear, though slightly convex downward (fi = 1.025, /~ = .375). However, 

indicates a clear departure from the unrestricted case. It may be seen from the graph that
the fit of the log-linear constraint would have been much better, if an additive constant
term were included (i.e., bkm =bm~ + c). The power transformation has to be more
convex in order to more closely approximate the unrestricted category boundaries, but
this seems to be hindered by the fact that the power transformation passes through the
origin.

Assuming that the unrestricted, no individual differences restriction is appropriate,
we are now in the position to choose appropriate dimensionality of the representation
space. We have the AIC values of 1645.10 and 1645.66 for three- and two-dimensional

solutions (Column 1 of Table 1) respectively, implying that the three-dimensional solu-
tion is slightly better. The difference is small. Nevertheless, it seems significant
(:t2= 28.56 with 14 d.f.; p < .05). Furthermore, the third dimension is clearly inter-
pretable; it contrasts inside stimuli with those located at the periphery of the
configuration. Thus, we are inclined to conclude that three dimensions are needed to
describe the data adequately. (An alternative interpretation of the third dimension will be
given later.) For illustrative convenience the two-dimensional configuration is displayed
instead in Figure 2. The reader may exert a little imagination here to obtain the desired
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ESTIMATE OF

CATEGORY BOUNDARIES

I I I

EQUALLY SPACED CATEGORY BOUNDARIES

4 5 6

~ Estimates of unconstrained category boundaries and
corresponding 95% asymptotic confidence intervals.

¯ ~stimates of constrained category boundaries.

FIGUR[ 1

Estimates of category boundaries and 95~ asymptotic confidence intervals obtained ~om unconstrained two-

dimensional solution.

three-dimensional configuration; all outside stimuli (1 through 8) are slightly above the

surface, while all inside stimuli (9 through 17) are slightly below the surface. Otherwise,

this two-dimensional configuration is very much like the one obtained by Krantz and

Tversky [1975]; the horizontal axis roughly corresponds with the area dimension and the

vertical axis with the shape dimension (with some qualification to be noted later on).

We may now go on to test Krantz and Tversky’s hypotheses. Their original hypoth-

eses are, strictly speaking, inconsistent with a three-dimensional solution. However, it

would still be informative to see how they are formally tested using MAXSCAL-2.1 in

two dimensions.

A set of rectangles employed in Krantz and Tversky’s study was constructed by
factorially combining several levels of the area and shape dimensions of rectangles. Thus,

under the additivity assumption of these dimensions, some of the rectangles ought to

take equal coordinate values along these dimensions. In Figure 2 those stimuli whose

coordinate values must be equal are connected by line segments for each dimension. For

example, Rectangles 1, 2 and 3 have the same area, and Rectangles 3, 4 and 5 have the

same shape, etc. The additivity hypothesis can be tested by explicitly obtaining an MDS

solution which satisfies the condition implied by the hypothesis, and then by comparing
the goodness of fit of this constrained solution with that of the unconstrained solution

obtained earlier. Equality constraints can be imposed by treating those parameters
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FIGURE 2

Unconstrained two-dimensional solution.
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FIGURE 3

Constrained solution obtained under the area (horizontal) and shape (vertical) factorial hypothesis.
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FIGURE 4

Constrained solution obtained under the width (horizontal) and height (vertical) additivity hypothesis.

assumed equal as a single parameter [Takane, 1978a]. The constrained solution is pre-
sented in Figure 3. The value of the AIC statistic associated with this solution is 2065.34,

(the eighth row, first column) which is a way higher than 1645.66 for the two-dimensional

unconstrained solution (Z2 = 465.58 with 23 d.f.; p < .001) under the equivalent condi-

tion. This is, of course, not unexpected after having looked at the unconstrained stimulus

configuration. In Figure 2 it can be observed that the shape difference tends to be judged

larger at larger area levels, indicating the failure of the area and shape additivity

hypothesis.

The set of rectangles employed in the experiment was also constructed in such a way

that some rectangles have the same height or width levels. Thus, we may test the height

and width additivity hypothesis by imposing another set of equality constraints. Figure 4

displays the constrained solution obtained under this hypothesis. Note that coordinate

values are equated for equal height (vertical direction) and width (horizontal direction)

levels. The AIC value of this solution is 1946.83, (eleventh row, first column) which 
much smaller than that of the previous solution, but is still substantially larger than that

of the unconstrained solution (Z2 = 339.17 with 19 d.f.; p < .001). Thus, the height and

width additivity hypothesis is also rejected. The fact that this case is still better than the

area and shape additivity hypothesis, though it contradicts Krantz and Tversky’s finding,

may be clearly seen in Figure 4; if the configuration is rotated about 90° clockwise, it

becomes evident that it better captures an important feature of the unconstrained solu-

tion (Figure 2) that the judged shape difference increases as the area increases.

Sch6nemann [1977] observed the same general pattern in Krantz and Tversky’s
configuration, and proposed a hypothesis that the perceived difference in shape increases

in a specific way with the area of rectangles. A hypothesis slightly more general than
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FIGURE 5
Illustration of SchiSnemann’s hypothesis that the perceived shape difference increases as the area increases.

Sch6nemann’s original hypothesis is depicted in Figure 5. While area levels are assumed

to contribute to overall dissimilarities independently from the shape dimensions (as

indicated by the parallel vertical lines connecting rectangles with physically identical

areas), shape levels are assumed to diverge, so to speak, as area levels go up.

Without loss of generality Rectangle 17 may be placed at the center (origin) of the

configuration. If we denote each successive interval between adjacent area levels by

uj (j = 1, ..., 4) from left to right and each successive interval between adjacent shape

levels at area level = 0 by vj (j = 1, ..., 4) from bottom to top, and if we assume that the

divergence rate of the shape levels is tan 0 = cy where c is some constant and y is the
vertical coordinate of a particular shape level at area level = 0, then the stimulus coor-

dinates can be reparametrized as shown in Table 2. Let us call the structural assumption
represented in Table 2 Sch6nemann’s Hypothesis 1. We may also assume that all inter-

vals along the area dimension are equal (ul = u2 = u3 = u,~), and that all intervals along

the shape dimension are equal (vl = v2 = v3 = v,0. This is in fact Sch6nemann’s original

hypothesis (we call this SchiSnemann’s Hypothesis 2). Finally, all intervals (Ul ..... u4, vl,
.... v4) may be assumed equal (Sch6nemann’s Hypothesis 3).

The values of the AIC statistic corresponding to these solutions are 1737.22

(Hypothesis 1), 1848.93 (Hypothesis 2), and 1949.97 (Hypothesis 3) (see Table 

Hypothesis 1 has the minimum AIC value among these. There is a clear tendency that

the area intervals get larger for higher area levels, though this tendency is less clear for

the shape intervals. (Note that rectangles are equally spaced in terms of the log trans-
formed physical area and shape dimensions.) However, the AIC value of 1737.22 from
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TABLE 2

Stimulus Coordinates as Functions of Reduced Model

Parameters given in Figure 6

Dimension

Stimulus Area Shape

25

Hypothesis 1 is still substantially larger than 1645.66 from the two-dimensional uncon-
strained solution {Z2 = 135.56 with 22 d.f.; p < .001). It seems that the unconstrained
solution is a better account of the data. From Figure 2 we can observe that the
configuration not only diverges along the area dimension, but also is curved in an
interesting way; curves connecting the rectangles with the same area levels shape like
arcs drawn from a common focal point, so that the whole configuration looks like an
open fan. This feature is not captured in any of Sch6nemann’s hypotheses.

The alternative hypothesis to Sch6nemann’s is proposed in Figure 6, which more
closely simulates the above feature of the unconstrained solution. In terms of the polar
coordinate system whose origin is placed at P, this hypothesis can be completely charac-
terized by four angle parameters (01 ~ 04) and five interval parameters I ~ r~). Of
course, we may further assume 01 = 02 = 03 = 0~, and/or r2 = r~ = r4 = r~. Unfor-
tunately MAXSCAL-2.1 is not yet up to fitting this hypothesis.

This hypothesis, however, is interesting in another respect; it gives important insight

about the nature of the third dimension we discussed previously. We interpreted the third

dimension as contrasting inside stimuli with outside stimuli, but an alternative inter-

pretation is also possible; all stimuli are seen equally distant from an origin, just like

stimuli with a same shape are at a constant distance from P in Figure 6. Note that all the

stimuli employed were rectangles with constant number of sides, constant curvature of

sides, etc. Since the plane at a constant distance from a point is necessarily curved in the
euclidian space, the third dimension emerged. If more heterogeneous stimuli had been

included in the experiment, the existence of the third dimension might have been more
clearly substantiated.

Concludin# Remarks

We have seen the kind of analyses which can take place with MAXSCAL-2.1. First
of all we can perform either metric or nonmetric types of MDS. Alternatively, we may
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FIGURE 6
The proposed alternative hypothesis to Sch6nernann’s.

perform both types of analyses to choose a more appropriate measurement assumption.

The important point is that this can be done strictly on an empirical basis.
Secondly, we can perform MDS under two representative distributional assumptions

about the error process. The minimum AIC criterion can be used to compare the

goodness of fit of the two error models. The conventional significance testing procedure

has little to say in a situation like this, where either one of the two models is not

subsumed under the other.

The MAXSCAL-2.1 program has a constrained optimization feature. Thus, in addi-

tion to the test of dimensionality of the representation space and the test of appropriate

restrictions on category boundaries we may perform the tests of various structural

hypotheses on the stimulus configuration. To the best of the present author’s knowledge

MAXSCAL-2.1 is the first MDS program which is capable of imposing the kind of

constraints discussed in this paper. The importance of this is in the fact that MAXSCAL-

2.1 can provide suitable statistical criteria for identification of the best fitting model.

Although the range of constraints that can be handled by MAXSCAL-2.1 is still limited,

it should not be very difficult to extend its scope to the kinds of constraints discussed by

Bentler and Weeks [1978] and Bloxom [1978]. (See also Ramsay, 1980a.)
The chief advantage of collecting dissimilarity data by rating scales with a relatively

small number of observation categories lies in the existence of the minimum sufficient

statistic for Pljkm. Specifically, Yijkm/rlijkm is the maximum likelihood estimate of P~km,

when no further structural assumption is made about P~km. Thus, Y~km/n~km, as a.model

of Pijkm, may be called the null model. We may then ask a question about the adequacy

of the (euclidian) distance representation (5) of the data against the null model. This 

be done by comparing the goodness of fit of the two models. The log likelihood of the
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null model is naturally very large (-2 In L = 1127.90), but it uses 816 parameters 
achieve this. The best solution under model (5) (i.e., the three-dimensional unconstrained
solution), on the other hand, has 1543.10 for -2 In L with 51 d.f. The difference between
the two models is not significant (~(2= 415.20 with 765 d.f.). Thus it seems fair 
conclude that the distance representation is adequate in this instance. Note also that the

AIC value of 2759.90 for the null model is the worst among all solutions obtained. (See
Table 1.)

There are a number of things left to be done in the future, of which the following

two are perhaps worth mentioning here. First, the small sample behavior of maximum
likelihood estimates should be systematically investigated, as has been done for MULTI-

SCALE [Ramsay, 1980b]. Second, the relative efficiency of collecting dissimilarity data
using rating scales with a small number of response categories should be examined in
relation to other data collection methods. The effect of the number of response categories
has been studied [Ramsay, 1973; Green & Rag, 1970; Okada, Note 6] in somewhat
different contexts. Now that MAXSCAL-2.1 is available, this can be done in the specific
context of maximum likelihood multidimensional scaling.
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