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ABSTRACT

Performing two-dimensional hydrodynamic simulations including a detailed treatment of the equation of state of the stellar plasma
and for the neutrino transport and interactions, we investigate here the interplay between different kinds of non-radial hydrodynamic
instabilities that can play a role during the postbounce accretion phase of collapsing stellar cores. The convective mode of instability,
which is driven by the negative entropy gradients caused by neutrino heating or by variations in the shock strength in transient phases
of shock expansion and contraction, can be identified clearly by the development of typical Rayleigh-Taylor mushrooms. However, in
those cases where the gas in the postshock region is rapidly advected towards the gain radius, the growth of such a buoyancy instability
can be suppressed. In this situation the shock and postshock flow can nevertheless develop non-radial asymmetry with an oscillatory
growth in the amplitude. This phenomenon has been termed “standing (or spherical) accretion shock instability” (SASI). It is shown
here that the SASI oscillations can trigger convective instability, and like the latter, they lead to an increase in the average shock radius
and in the mass of the gain layer. Both hydrodynamic instabilities in combination stretch the advection time of matter accreted through
the neutrino-heating layer and thus enhance the neutrino energy deposition in support of the neutrino-driven explosion mechanism. A
rapidly contracting and more compact nascent neutron star turns out to be favorable for explosions, because the accretion luminosity
and neutrino heating are greater and the growth rate of the SASI is higher. Moreover, we show that the oscillation period of the SASI
observed in our simulations agrees with the one estimated for the advective-acoustic cycle (AAC), in which perturbations are carried
by the accretion flow from the shock to the neutron star and pressure waves close an amplifying global feedback loop. A variety of
other features in our models, as well as differences in their behavior, can also be understood on the basis of the AAC hypothesis. The
interpretation of the SASI in our simulations as a purely acoustic phenomenon, however, appears difficult.
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1. Introduction

Hydrodynamic instabilities play an important role in core-
collapse supernovae, because on the one hand they may be cru-
cial for starting the explosion and on the other hand they may
provide a possible explanation for the observed anisotropy of
supernovae. There is a growing consensus that the neutrino-
driven explosion mechanism of core-collapse supernovae does
not work in spherical symmetry for progenitors more massive
than about 10 M⊙. None of the recent simulations with one-
dimensional (1D) hydrodynamics and a state-of-the-art descrip-
tion of the neutrino transport develops an explosion (Rampp &
Janka 2002; Liebendörfer et al. 2001; Liebendörfer et al. 2005;
Thompson et al. 2003; Buras et al. 2003, 2006a,b). However,
multi-dimensional effects were recognised to be helpful. In par-
ticular it was shown that convection is able to develop below the
stalled supernova shock and that it can increase the efficiency of
neutrino heating significantly (Herant et al. 1994; Burrows et al.
1995; Janka & Müller 1995, 1996). Current two-dimensional
(2D) simulations are thus considerably closer to the explosion
threshold than 1D models (Buras et al. 2003, 2006a,b), and
shock revival and the onset of an explosion has been reported
recently for a 2D calculation with an 11.2 M⊙ progenitor (Buras
et al. 2006b). In earlier 2D simulations, in which the angular
size of the numerical grid was constrained to less than 180◦

and in simulations in which the approximative description of the
neutrino transport resulted in a fast onset of the explosion, con-
vection was dominated by rather small angular scales of several
ten degrees (Janka & Müller 1994, 1996). However, in recent
2D calculations of Buras et al. (2006a,b); Scheck et al. (2004);
Burrows et al. (2006, 2007), and Scheck et al. (2006, henceforth
Paper I), a slower development of the explosion and the use of
a full 180◦ grid allowed for the formation of pronounced global
(dipolar and quadrupolar) modes of asymmetry.

The anisotropy in these models is of particular interest, as it
might provide the explanation for two results from observations:
Firstly, spectropolarimetry (Wang et al. 2001, 2003; Leonard
et al. 2006, and references therein) revealed that a non-spherical
ejecta distribution is a common feature of many core-collapse
supernovae and is probably caused by the explosion mechanism
itself, since the anisotropy increases if deeper layers of the ejecta
are probed. In the case of Supernova 1987A this non-spherical
distribution of the ejecta can even be directly imaged with the
Hubble Space Telescope (Wang et al. 2002). Secondly, neutron
stars move through interstellar space with velocities much higher
than those of their progenitors (e.g., Cordes et al. 1993; Lyne
& Lorimer 1994; Hansen & Phinney 1997; Arzoumanian et al.
2002; Zou et al. 2005; Chatterjee et al. 2005; Hobbs et al. 2005),
in some cases with more than 1000 km s−1. It was suggested by
Herant (1995) and demonstrated with hydrodynamic simulations
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by Scheck et al. (2004, 2006) that neutron star velocities of this
magnitude can result from strongly anisotropic (in the most ex-
treme cases “one-sided” i.e., dipole-dominated) explosions, in
which the total linear momentum of the ejecta must be balanced
by a correspondingly high recoil momentum of the neutron star.

In multi-dimensional simulations convective motions break
the initial global sphericity and support the explosion (or bring
the model closer to the explosion threshold) by transporting cool
matter from the shock to the gain radius where neutrino heating
is strongest and by allowing hot matter to rise and to increase
the pressure behind the stalled shock. However, it is not clear
whether convection can also be responsible for the development
of low modes in the postshock accretion flow, as suggested by
Herant (1995) and Thompson (2000). The l = 1 pattern stud-
ied by Herant (1995) was motivated by a perturbation analysis
of volume-filling convection in a fluid sphere by Chandrasekhar
(1961), who found the dipole (l = 1) mode to be the most unsta-
ble one. In fact, Woodward et al. (2003) and Kuhlen et al. (2003)
demonstrated with three-dimensional simulations that the l = 1
mode dominates the convection in red-giant and main-sequence
stars. Blondin et al. (2003), however, investigating an idealized
setup in 2D hydrodynamic simulations, discovered that an adi-
abatic accretion flow below a standing shock develops a non-
radial, oscillatory instability, which they termed “standing accre-
tion shock instability” or SASI, and which is dominated by the
l = 1 or l = 2 modes. This suggests that the low-mode asymme-
tries found to develop in supernova cores in multi-dimensional
models may be caused by global instabilities different from con-
vection. Foglizzo et al. (2006) performed a linear stability anal-
ysis for a problem that resembles the stalled shock situation in
supernovae, taking into account the limited radial size of the con-
vectively unstable layer below the shock and the finite advection
of matter through this region. The latter process turns out to have
a stabilising effect and can hamper the growth of convection sig-
nificantly. In particular, the lowest modes are convectively un-
stable only if the ratio of the convective growth timescale to
the advection time through the unstable layer is small enough.
Foglizzo et al. (2006) estimate that this may not be the case
in general and support the suggestion that instabilities different
from convection may be responsible for the occurrence of low-
order modes of asymmetry in the postshock accretion flow.

The “advective-acoustic cycle”, in short AAC (Foglizzo &
Tagger 2000; Foglizzo 2001, 2002), is a promising candidate for
explaining such a (SASI) instability. It is based on the acous-
tic feedback produced by the advection of entropy and vortic-
ity perturbations from the shock to the forming neutron star. By
means of linear stability analysis, Galletti & Foglizzo (2005)
showed that due to the AAC the flow in the stalled accretion
shock phase of core-collapse supernovae is unstable with re-
spect to non-radial perturbations, and that the highest growth
rates are found for the lowest degree modes (in particular for
the l = 1 mode).

The situation studied by Blondin et al. (2003) and Galletti
& Foglizzo (2005) was, however, strongly simplified compared
to real supernovae. Blondin et al. (2003) observed the growth of
non-radial perturbations in a flow between an accretion shock
and an inner boundary, which was located at a fixed radius. The
boundary conditions were taken from a stationary flow solution.
Furthermore, neither a realistic description of the equation of
state of the gas nor the effects of neutrinos were taken into ac-
count by Blondin et al. (2003). Improving on this, Blondin &
Mezzacappa (2006) adopted an analytic neutrino cooling func-
tion (Houck & Chevalier 1992), and Ohnishi et al. (2006) in
addition took into account neutrino heating and used the more

realistic equation of state from Shen et al. (1998). Both groups
concur in that low-mode instabilities develop also in these more
refined simulations. The nature of the instability mechanism is,
however, still a matter of debate. While Ohnishi et al. (2006)
consider the AAC as the cause of the low-mode oscillations,
Blondin & Mezzacappa (2006) argue that a different kind of in-
stability, which is purely acoustic and does not involve advec-
tion, is at work in their simulations. Yet, the eigenmodes found
in the latter simulations were also reproduced in a linear study of
Foglizzo et al. (2007), who demonstrated that at least for higher
harmonics the instability is the consequence of an advective-
acoustic cycle. Laming (2007), finally, suggested the possibility
that feedback processes of both kinds can occur and differ in de-
pendence of the ratio of the accretion shock radius to the inner
boundary of the shocked flow near the neutron star surface.

The work by Blondin & Mezzacappa (2006), Ohnishi et al.
(2006), and Foglizzo et al. (2007) shows that non-radial SASI
instability of the flow below a standing accretion shock occurs
also when neutrinos (which could have a damping influence)
are taken into account. This is in agreement with a linear sta-
bility analysis of the stationary accretion flow by Yamasaki &
Yamada (2007), who included neutrino heating and cooling, and
studied the influence of varied neutrino luminosities from the
proto-neutron star. They found that for relatively low neutrino
luminosities the growth of an oscillatory non-radial instability
is favored, with the most unstable spherical harmonic mode be-
ing a function of the luminosity, whereas for sufficiently high
neutrino luminosity a non-oscillatory instability grows. They at-
tributed the former to the AAC and the latter to convection.

All these studies concentrated on steady-state accretion
flows, made radical approximations to the employed neutrino
physics, and considered idealized numerical setups with special
boundary conditions chosen at the inner and outer radii of the
considered volume. Because of these simplifications such stud-
ies are not really able to assess the importance of the different
kinds of hydrodynamic instabilities for supernova explosions.
The growth rates of these instabilities depend on the properties
of the flow, and are thus constant for stationary flows. In real
supernovae, however, the flow changes continuously, because
the shock adapts to the varying mass accretion rate, the neutrino
heating below the shock changes, and the proto-neutron star con-
tracts. Therefore the growth rates also vary, and a priori it is not
clear whether they will be high enough for a long enough time
to allow a growth of some instability to the nonlinear phase on
a timescale comparable to the explosion timescale (which itself
can be influenced by the instability and is a priori also unknown).

The aim of this work is therefore to go some steps further in
the direction of realism and to abandon the assumption of a sta-
tionary background flow. To this end we study here the growth
of hydrodynamic instabilities in a “real” supernova core, i.e., we
follow in 2D simulations the post-bounce evolution of the in-
falling core of a progenitor star as provided by stellar evolution
calculations, including a physical equation of state for the stel-
lar plasma and a more detailed treatment of the neutrino physics
than employed in the previous works. The considered models
were computed through the early phase of collapse until shortly
after bounce by using state-of-the-art multi-group neutrino trans-
port (Buras et al. 2003, 2006a,b). In the long-time post-bounce
simulations performed by us, we then used an approximative
description of the neutrino transport based on a gray (but non-
equilibrium) integration of the neutrino number and energy
equations along characteristics (for details of the neutrino treat-
ment, see Scheck et al. 2006, Paper I). Compared to supernova
simulations with a state-of-the-art energy-dependent description
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of the neutrino transport (in spherical symmetry see, e.g., Rampp
& Janka 2002; Liebendörfer et al. 2001; Liebendörfer et al.
2005; Thompson et al. 2003, and for multi-group transport also
in 2D, see, e.g., Buras et al. 2003, 2006a,b) the models presented
here thus still employ significant simplifications. Such an ap-
proximative neutrino treatment must therefore be expected to
yield results that can differ quantitatively from those of more
sophisticated transport schemes. Nevertheless our approach is
able to capture the qualitative features of the better treatments.
It is certainly significantly more elaborate (and “realistic”) than
the schematic neutrino source terms employed by Foglizzo et al.
(2007) and Blondin & Mezzacappa (2006), and the local neu-
trino source description (without transport) adopted by Ohnishi
et al. (2006) and Yamasaki & Yamada (2007). We consider our
approximation as good enough for a project that does not intend
to establish the viability of the neutrino-heating mechanism but
which is interested mostly in studying fundamental aspects of
the growth of non-radial hydrodynamic instabilities in the envi-
ronment of supernova cores including the influence that neutrino
cooling and heating have in this context.

We made use of one more approximation that reduces the
complexity of our simulations compared to full-scale supernova
models, namely, we did not include the neutron star core but re-
placed it by a Lagrangian (i.e., comoving with the matter) inner
grid boundary that contracts with time to smaller radii, mim-
icking the shrinking of the cooling nascent neutron star. At this
moving boundary the neutrino luminosities produced by the neu-
tron star core were imposed as boundary conditions. This had the
advantage that we could regulate the readiness of a model to ex-
plode or not explode, depending on the size of the chosen core
luminosities and the speed of the boundary contraction. The in-
ner boundary of our computational grid is impenetrable for the
infalling accretion flow, but the accreted matter settles into the
surface layer of the forming neutron star, similar to what happens
outside of the rigid core of the compact remnant at the center of
a supernova explosion. This is different from the various kinds
of “outflow boundaries” employed in the literature1, although
Blondin et al. (2003) and Blondin & Shaw (2007) reported about
tests with several different prescriptions for the boundary treat-
ment without finding any significant influence on the growth of
the SASI. Our modeling approach therefore follows Scheck et al.
(2004) and Paper I, where indeed the development of low-mode
flow (with dominant l = 1 and l = 2 modes) between shock and
neutron star was found. In these previous papers we, however,
did not attempt to identify the mechanism(s) that were causal
for the observed phenomenon and just mentioned that convec-
tion and the acoustically-driven or AAC-driven SASI may yield
an explanation for the large global asymmetries seen to develop
during the neutrino-heating phase of the stalled shock. There was
no analysis which mechanism was active and why it had favor-
able conditions for growth.

1 Blondin et al. (2003) used a “leaky boundary” and Ohnishi et al.
(2006) a “free outflow boundary”, both assuming non-zero radial ve-
locity at the grid boundary. In contrast, Blondin & Mezzacappa (2006)
adopted a “hard reflecting boundary”. Although in this case the radial
velocity at the boundary is taken to be zero, there is still a non-zero
mass flux as the density near the boundary goes to infinity. The differ-
ence can be important for the spurious generation of acoustic feedback
by vorticity perturbations.

In the present work we return to these questions. In particular
we aim here at exploring the following points:

– What is the timescale for a non-radial instability of the
stalled accretion shock (SASI) to develop in a supernova
core? How is it influenced by neutrino effects?

– Can the instability be identified as consequence of an ampli-
fying advective-acoustic cycle, of a growing standing pres-
sure wave (Blondin & Mezzacappa 2006) or of something
else?

– What determines its growth rate? For which conditions does
the instability grow faster than convection and which influ-
ence may this have on the subsequent (nonlinear) evolution?

– What is the relationship between convection and the insta-
bility in the nonlinear phase?

– What is the possible supportive role of the SASI in the con-
text of neutrino-driven explosions and in creating the low-
mode ejecta asymmetry identified as cause of large neutron
star kicks by Scheck et al. (2004) and Scheck et al. (2006)?

In order to address these questions we will first summarise the
most important properties of convection and of the AAC in the
gain layer in Sect. 2. This will serve us as basis for the later anal-
ysis of our set of two-dimensional simulations. In Sect. 3 we will
describe the computational methods and numerical setup we use
for these simulations and will motivate our choice of parameter
values for the considered models. We will present the simulation
results in Sect. 4 and will discuss them in detail in Sects. 5 and 6.
Section 7, finally, contains our conclusions.

2. Hydrodynamic instabilities

2.1. Linear and nonlinear convective growth
of perturbations

In a hydrostatic, inviscid atmosphere, regions with negative
entropy gradients (disregarding possible effects of composi-
tion gradients) are convectively unstable for all wavelengths.
Short wavelength perturbations grow fastest, with a local growth
rate ωbuoy > 0 equal to the imaginary part of the complex
Brunt-Väisäla frequency:

ωbuoy ≡

√
−agrav C / ρ. (1)

Here agrav < 0 is the local gravitational acceleration, ρ is the
density and

C ≡

(
∂ρ

∂S

)

P,Yl

·
dS

dr
, (2)

where S is the entropy, P is the pressure, and Yl is the total lepton
number per nucleon. Note that C > 0 is the instability condition
for Schwarzschild convection.

Foglizzo et al. (2006) pointed out that in the stalled shock
phase, the convective growth timescale ω−1

buoy
in the unstable

layer below the shock is of the same order as the timescale for
advection from the shock to the gain radius,

τ
g

adv
≡

∫ Rs

Rg

dr

|vr(r)|
, (3)

where Rg is the gain radius, Rs the shock radius and vr the ra-
dial velocity. Advection is stabilising because it gives pertur-
bations only a finite time to grow in the gain region, before
they are advected into the stable layer below the gain radius.
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Considering the local growth rate ωbuoy(r) given by Eq. (1) in
a reference frame advected with the flow, the amplitude δ of
a small-wavelength perturbation may grow during its advection
from the shock to the gain radius, at best by a factor exp(χ),

δgain = δshock exp(χ), (4)

where the quantity

χ ≡

∫ Rs

Rg

ωbuoy(r)
dr

|vr(r)|
= τ

g

adv
/τconv (5)

can be interpreted as the ratio of the advection timescale to
the average local growth timescale the perturbation experiences,
τconv ≡ 〈ω

−1
buoy
〉 (the latter quantity is implicitly defined by

Eq. (5)). Thus it would appear that in order to reach a given per-
turbation amplitude at the gain radius, a certain seed perturbation
amplitude of the matter crossing the shock would be necessary.

However, a linear stability analysis reveals that the stationary
accretion flow below the shock is globally unstable and perturba-
tions can grow from arbitrarily small initial seeds, if sufficient
time is available (Foglizzo et al. 2006). According to Foglizzo
et al. (2006) this is the case for a limited range [lmin, lmax] of
modes for which χ exceeds a critical value χ0,

χ > χ0, where χ0 ≈ 3. (6)

For χ < χ0 the flow remains linearly stable, even though a nega-
tive entropy gradient is present.

The analysis of Foglizzo et al. (2006) applies only for the
linear phase of the instability, i.e. for small perturbation ampli-
tudes. However, it is possible that the situation has to be con-
sidered as nonlinear right from the beginning, i.e. that the seed
perturbations grow to large amplitudes already during their ad-
vection to the gain radius. In this context “large” can be defined
by considering the buoyant acceleration of the perturbations.

For a small bubble, in which the density ρ is lower than the
one of the surrounding medium, ρsurr, the convective growth dur-
ing the advection to the gain radius may lead to an increase of the
relative density deviation δ ≡ |ρ − ρsurr|/ρsurr (which can be con-
sidered as the perturbation amplitude) as given by Eq. (4). The
bubble experiences a buoyant acceleration |agrav| δ towards the
shock, which is proportional to the local gravitational accelera-
tion agrav. The time integral of the buoyant acceleration becomes
comparable to the advection velocity, when the perturbation am-
plitude reaches a critical value

δcrit ≡
〈|vr |〉gain

〈agrav〉gain τ
g

adv

(7)

∼
〈|vr |〉

2
gain

Rs 〈agrav〉gain

Rs

Rg − Rs

∼ O(1%), (8)

where 〈|vr|〉gain and 〈agrav〉gain are the average values of the radial
velocity and the gravitational acceleration in the gain layer, re-
spectively. For δgain > δcrit a small-scale perturbation is able to
rise against the accretion flow. If the whole flow is perturbed, the
buoyant motions on small scales affect the situation globally and
could allow for the onset of convective overturn also on larger
scales. Note that in contrast to the linear growth of the instabil-
ity this process does not require χ > χ0 but it does require large
enough seed perturbations,

δshock >
δcrit

exp(χ)
· (9)

A sufficient condition for the suppression of convection is there-
fore that neither Eq. (6) nor Eq. (9) are fulfilled.

Fig. 1. Schematic view of the advective-acoustic cycle between the
shock at Rs (thick solid line) and the coupling radius, Rc (thick dashed
line), in the linear regime, shown for the case where the oscillation pe-
riod of the shock (τosc) equals the cycle duration, τaac. Flow lines carry-
ing vorticity perturbations downwards are drawn as solid lines, and the
pressure feedback corresponds to dotted lines with arrows. In the gray
shaded area around Rc the flow is decelerated strongly.

2.2. The advective-acoustic cycle

A second hydrodynamic instability has recently been recognised
to be of potential importance in the stalled shock phase. Blondin
et al. (2003) noticed that the stalled accretion shock becomes un-
stable to non-radial deformations even in the absence of entropy
gradients, a phenomenon termed SASI. It can be interpreted as
the result of an “advective-acoustic cycle” (in short AAC), as
first discussed by Foglizzo & Tagger (2000) in the context of
accretion onto black holes, and later studied for supernovae by
Galletti & Foglizzo (2005) and Foglizzo et al. (2007) by means
of linear stability analysis. The explanation of these oscillations
is based on the linear coupling between advected and acoustic
perturbations due to flow gradients.

Although this linear coupling occurs continuously through-
out the accretion flow from the shock to the neutron star surface,
some regions may contribute more than others to produce a pres-
sure feedback towards the shock and establish a global feedback
loop. The analysis of the linear phase of the instability in Sect. 5
reveals the importance of a small region at a radius Rc above the
neutron star surface, where the flow is strongly decelerated. The
feedback loop can be described schematically as follows: small
perturbations of the supernova shock cause entropy and vorticity
fluctuations, which are advected downwards. When the flow is
decelerated and compressed above the neutron star surface, the
advected perturbations trigger a pressure feedback. This pressure
feedback perturbs the shock, causing new vorticity and entropy
perturbations. Instability corresponds to the amplification of per-
turbations by a factor |Qaac| > 1 through each cycle.

The duration τf
aac of each cycle is a fundamental timescale.

It corresponds to the time needed for the advection of vortical
perturbations from the shock to the coupling radius Rc, where
the pressure feedback is generated, plus the time required by the
pressure feedback to travel from this region back to the shock.

The oscillatory exponential growth resulting from the AAC
can be described by a complex eigenfrequency ω = ωr + iωi

satisfying the following equation:

exp
(
−iωτf

aac

)
= Qaac, (10)

where the real part ωr is the oscillation frequency and the imag-
inary part ωi is the growth rate of the AAC. Note that Eq. (10) is
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a simplified form of Eq. (49) of Foglizzo (2002). For the sake of
simplicity, it neglects the marginal influence of the purely acous-
tic cycle of pressure waves trapped between the shock and the
accretor. This hypothesis is motivated by the recent estimate of
the efficiencies Qaac, Rac of the advective-acoustic and of the
purely acoustic cycles, respectively, obtained by Foglizzo et al.
(2007) in a simpler set-up when the frequency is high enough
to allow for a WKB approximation. According to their Figs. 8
and 9, the purely acoustic cycle is always stable (|Rac| < 1),
whereas the advective-acoustic cycle is unstable (|Qaac| > 1)2.
According to Eq. (10), the oscillation period τosc ≡ 2π/ωr of the
AAC depends both on the duration τf

aac of the cycle and on the
phase ϕ of Qaac:

ωrτ
f
aac + ϕ = 2nπ, (11)

where n is an integer labelling the different harmonics. In the
particular flow studied by Foglizzo et al. (2007), the oscillation
period of the fundamental mode is a good estimate of the du-
ration of the cycle (τosc ∼ τ

f
aac). This simple relationship is not

obvious a priori. For example, if Qaac were real and negative (i.e.,
ϕ = π), the oscillation period would scale like τosc ∼ 2τf

aac (be-
cause enhancing feedback requires a phase coherence between
the amplifying mechanism and the shock oscillation).

The amplitude of perturbations in the AAC increases like
exp(ωi t), with a growth rate ωi deduced from Eq. (10):

ωi ≡
ln(|Qaac|)

τf
aac

· (12)

Comparing Eqs. (5) and (12) it is interesting to note that a small
advection timescale suppresses the growth of entropy-driven
convection whereas it leads to higher growth rates for the AAC
(neglecting the logarithmic dependence on Qaac). Thus the AAC
may operate under conditions which are not favourable for con-
vection and vice versa. Investigating this further is one of the
goals of this work.

3. Numerical setup and models

In order to investigate the importance of instabilities like the
ones discussed in the previous section during the post-bounce
evolution of core-collapse supernovae, we performed a series
of two-dimensional (2D) hydrodynamic simulations. For this
purpose we used the same numerical setup as in Paper I. We
employed the version of the hydrodynamics code that was de-
scribed by Kifonidis et al. (2003). It is based on the piecewise
parabolic method (PPM) of Colella & Woodward (1984), as-
suming axisymmetry and adopting spherical coordinates (r, θ).

2 This discussion applies for the growth behavior of the advective-
acoustic cycle and of the purely acoustic cycle in the presence of a pres-
sure feedback produced at the coupling radius and reaching the shock.
The calculation of Rac and Qaac by Foglizzo et al. (2007) does not as-
sume a purely radial acoustic feedback but fully takes into account the
azimuthally traveling sound waves as well as evanescent pressure waves
(pseudosound), which do not propagate. Nevertheless, it is currently a
controversial issue whether the analysis by Foglizzo et al. (2007) allows
one to draw conclusions on the kind of instability proposed by Blondin
& Mezzacappa (2006) and Blondin & Shaw (2007), who advocate a
growth mechanism driven by sound waves traveling solely in the angu-
lar direction. The possibility of understanding the development of SASI
modes in our hydrodynamic supernova simulations by an acoustic cycle
with non-radial sound wave propagation will be discussed in Sect. 5.

The calculations were performed on a polar grid that had typi-
cally 800 zones in radial direction and 360 zones in lateral di-
rection (extending from polar angle θ = 0 to θ = π). The lat-
eral grid was equidistant while the radial grid had logarithmic
spacing with a ratio of radial zone size to radius that did not
exceed 1%. For the neutrino number and energy transport we
applied a gray, characteristics-based transport scheme that was
able to efficiently approximate the transport in the transparent
and semi-transparent regimes up to optical depths of several 100.
Only transport in the radial direction was taken into account, but
we allowed for lateral variations of the neutrino flux by solving
one-dimensional transport equations independently for all dis-
crete polar angles of the r-θ grid. A detailed description of the
transport method is given in Paper I.

3.1. Initial and boundary conditions

We used an initial model (the ‘W’ model from Paper I) that was
obtained by evolving the 15 M⊙ supernova progenitor s15s7b2
of Woosley & Weaver (1995) through collapse and core bounce
until shock stagnation in a simulation with a detailed, energy-
dependent treatment of neutrino transport (Buras et al. 2003; see
their Model s15). We started our runs at a time of 16 ms after
core bounce. In order to enable the growth of hydrodynamic in-
stabilities we perturbed the initial model, unless noted otherwise,
by adding random, zone-to-zone velocity perturbations of 0.1%
amplitude.

The neutron star core (i.e. typically the innermost 1.1 M⊙)
was not included in our simulations but was replaced by a con-
tracting inner boundary of the computational grid. Boundary
conditions were imposed there for the hydrodynamics and the
neutrino transport, and a point-mass potential of the excised core
was adopted to account for the gravitational influence of this re-
gion. Although the treatment of gravity is not of primary rele-
vance for the fundamental questions studied in this paper, we
mention here that the description of the gravitational potential
took into account the self-gravity of the gas on the grid with its
two-dimensional distribution, as well as an approximative treat-
ment of general relativistic effects (for details, see Paper I).

The inner grid boundary was placed at a Lagrangian shell
with enclosed mass of M = 1.1 M⊙ at which we imposed condi-
tions describing hydrostatic equilibrium. Its radius was assumed
to evolve according to

Rib(t) =
Ri

ib

1 + (1 − exp(−t/tib)) (Ri
ib
/Rf

ib
− 1)
, (13)

where Rf
ib

is the final (asymptotic) boundary radius, tib is the

contraction timescale and Ri
ib
≈ 65 km is the initial radius, which

is given by the initial model. The neutrino luminosities from the
neutron star core, which we imposed at the inner boundary, were
assumed to be constant during the first second after core bounce.
This simple choice can be justified by the results of core-collapse
simulations with sophisticated neutrino transport (see Paper I).

With this approach we parametrized the cooling and shrink-
ing of the core of the nascent neutron star and its neutrino emis-
sion, which all depend on the incompletely known properties of
the nuclear equation of state. Different choices of the bound-
ary motion and strength of the neutrino emission allowed us to
vary the properties of the supernova explosion and of the devel-
oping hydrodynamic instabilities in the region between neutron
star and stalled shock. It is very important to note that the stag-
nation radius of the stalled shock reacts sensitively not only to
the mass infall rate from the collapsing progenitor star and to the
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Table 1. Important quantities for the simulations discussed in this paper.

Name† Lib Rf
ib

tib δi Lνe+ν̄e tnl texp ∆Mgain Eexp Mns vns

[B/s] [km] [s] [B/s] [s] [s] [M⊙] [B] [M⊙] [km/s]

W00FA – 8.0 0.5 10−3 vr 0.0 – – – – – –

W00F 0.2 8.0 0.5 10−3 vr 99.0 0.154 0.194 0.004 0.37 1.50 200

W00 0.2 15.0 1.0 10−3 vr 51.7 0.346 – – – 1.63 −3

W00S 0.2 15.0 4.0 10−3 vr 29.6 – – – – – –

W05S 7.4 15.0 4.0 106 cm/s 38.3 – – – – – –

W05V 7.4 15.0 10.0 3 × 107 cm/s 33.5 – – – – – –

W12F 29.7 10.5 0.25 10−3 vr 109.3 0.144 0.164 0.010 0.87 1.44 −558

W12F-c 29.7 10.5 0.25 O(10−2) vr 112.5 0.090 0.117 0.015 0.94 1.41 612

† The constant boundary luminosity is denoted by Lib, Rf
ib

is the asymptotic inner boundary radius (see Eq. (13)), tib the contraction timescale of
the inner boundary, δi the amplitude of the initial velocity perturbations (which was chosen to be proportional to the local radial velocity vr in most
cases – see text for details), Lνe+ν̄e is the luminosity of electron neutrinos and antineutrinos at a radius of 500 km at 150 ms after the start of the
simulations, tnl the time at which the average lateral velocity in the gain layer exceeds 109 cm/s, ∆Mgain the mass in the gain layer at the time texp

when the explosion starts, Eexp the explosion energy, Mns the neutron star mass, and vns the neutron star velocity as computed from momentum
conservation. The last three quantities are given at t = 1 s, for Model W00F at t = 750 ms, and texp is defined as the moment when the energy of the
matter in the gain layer with positive specific energy exceeds 1049 erg. Model W00FA is a hydrodynamic simulation without including neutrino
effects. Only Models W00F, W12F, and W12F-c developed explosions and values for the corresponding explosion and neutron star parameters are
given. The neutrino luminosities imposed at the inner boundary are kept constant during a time tL = 1 s. The energy unit 1 B = 1051 erg is used
and all times are measured from the start of the simulation, i.e. t = 0 s means 16 ms after core bounce.

rate of neutrino heating in the gain layer, but also to the contrac-
tion behavior of the neutron star. A faster contraction usually
leads to a retraction of the shock, whereas a less rapid shrink-
ing of the neutron star allows the shock to expand and stagnate
at a larger radius. This, of course, causes important differences
of the postshock flow and thus affects the growth of non-radial
hydrodynamic instabilities.

In some of the simulations discussed here, the rapid contrac-
tion of the forming neutron star caused the density and sound
speed at the inner boundary to become so high that the hydrody-
namic timestep was severely limited by the Courant-Friedrich-
Lewy (CFL) condition. Moreover, when the optical depth in this
region increased to more than several hundred, numerical prob-
lems with our neutrino transport method occurred unless very
fine radial zoning was chosen, making the timestep even smaller.
In such cases we moved the inner grid boundary to a larger ra-
dius and bigger enclosed mass (i.e., we increased the excised
neutron star core). Hereby we attempted to change the contrac-
tion behavior of the nascent neutron star as little as possible. The
new inner boundary was placed at a radius Rib

′ where the opti-
cal depth for electron neutrinos was typically around 100. When
doing this, the gravity-producing mass of the inner core was ad-
justed appropriately (see Arcones et al. 2006) and the boundary
neutrino luminosities were set to the values present at Rib

′ at the
time of the boundary shifting, thus making sure that the gravi-
tational acceleration, the neutrino flux, and neutrino heating and
cooling above Rib

′ followed a continuous evolution. The parame-
ters in Eq. (13) were adjusted from the old values Ri

ib
and Rf

ib
to

new values R̃ i
ib

and R̃ f
ib

, respectively, in the following way:

R̃ i
ib = Ri

ib × (Rib
′ /Rib),

R̃ f
ib = Rf

ib × (Rib
′ /Rib). (14)

This simple rescaling had the consequence that during the sub-
sequent evolution small differences of the contraction velocity
of the new inner boundary and therefore of the settling neutron
star appeared, which led also to minor changes of the decay of
the neutrino luminosities with time. Nevertheless, no significant
impact on the simulations was observed, e.g., Model W00F de-
veloped an explosion at the same time, independent of whether
or not the boundary was shifted according to our recipe.

3.2. Model parameters

The characteristic parameters and some important quantities of
the eight models investigated here are listed in Table 1. The mod-
els differ concerning the included physics, assumed boundary
conditions, and the initial perturbations used to seed the growth
of hydrodynamic instabilities.

The most simplified case we considered, Model W00FA, is a
purely hydrodynamic simulation without including neutrino ef-
fects. This choice follows Blondin et al. (2003), who also ig-
nored neutrinos. In comparison with the other models we com-
puted, it allows us to study the influence of neutrino cooling and
heating. Blondin et al. (2003) also placed an inner boundary at
a fixed radius and applied outflow conditions there to allow for
a steady-state accretion flow (alternatively, they also tested re-
flecting conditions with a cooling term to keep the shock at a
steady radius). In contrast, in Model W00FA accretion is en-
abled by the retraction of the inner boundary of the computa-
tional grid, which mimics the Lagrangian motion of a mass shell
in a contracting neutron star. Another difference from Blondin
et al. (2003) is the fact that in our models the accretion rate
shrinks when infalling matter from the less dense layers at in-
creasingly larger radii reaches the shock. Thus the development
of hydrodynamic instabilities occurs in a situation that is gener-
ically non-stationary.

In five other simulations we included neutrinos and chose
boundary conditions such that the growth of convection was sup-
pressed. This allowed us to identify and study other instabilities
like the SASI more easily. The suppression of convection could
be achieved by prescribing vanishing or negligibly low core lu-
minosities. In such cases only the luminosity produced between
the inner boundary and the gain radius causes neutrino energy
deposition in the gain layer. Therefore the neutrino heating re-
mains weak, resulting in a shallow entropy gradient and con-
sequently in a large growth timescale for convection. This im-
plies that for low core luminosities the ratio of the advection
to the buoyancy timescale, χ (Eq. (5)), remains below the crit-
ical value and therefore in spite of a negative entropy gradient
in the neutrino heating region, the postshock layer remains con-
vectively stable due to the rapid advection of the gas down to
the gain radius (see Sect. 2.1). The five simulations where this
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is the case are Models W00F, W00, W00S, W05S, and W05V.
These models differ in the prescribed contraction of the inner
boundary. Models W00 and W00F employ the “standard” and
“rapid” boundary contraction, respectively, of Paper I. In order
to cover a wider range of advection timescales – which will help
us to gain deeper insight into the mechanism that causes the
low-mode instability found in our simulations (see Sect. 5) – we
performed three simulations with slower boundary contraction,
namely Models W00S, W05S, and W05V (Table 1). In the last
two models the core neutrino luminosity has a non-negligible
(but still fairly low) value. The correspondingly enhanced neu-
trino heating leads to larger shock radii and thus longer advec-
tion timescales. Models W00F, W00, and W00S were computed
with our standard initial perturbations (0.1% random noise on
the velocity). For Models W05S and W05V an l = 1 velocity
perturbation was applied. This allowed us to suppress high-mode
noise and to measure the oscillation period of the low-mode in-
stability despite the low growth rates in these models.

For Models W12F and W12F-c, finally, we adopted bound-
ary conditions that were guided by core-collapse simulations
with sophisticated multi-group neutrino transport. The contrac-
tion of the inner boundary was chosen to match the motion of
the corresponding mass shell in such simulations for the same
progenitor (Buras et al. 2003). The boundary luminosity we im-
posed led to typical explosion energies of about 1051 erg. Despite
the non-negligible core luminosity convection in these models
was suppressed because of the rapid boundary contraction. The
latter caused the radius of the stalled shock to become rather
small, and consequently the accretion velocities in the postshock
layer were very large. Therefore the advection timescale was
short and the parameter χ did not exceed the critical value of
about 3. In such a situation the amplitude of the progenitor per-
turbations can decide about whether convection sets in (start-
ing in the nonlinear regime as discussed in Sect. 2.1) or not.
Since the properties of the perturbations in the progenitor star are
not well known, we decided to explore two cases, one (Model
W12F) with small initial perturbations (our standard 0.1% ve-
locity perturbation) such that the growth of convection was sup-
pressed, and another case where the initial perturbations were
large enough so that convection could develop. For the latter
model, W12F-c, we used the same perturbations as for Models
W12-c and W18-c of Paper I with amplitudes of up to several
percent and a spatial variation as given by the velocity fluctua-
tions that had grown during a 2D core-collapse simulation of a
15 M⊙ star (Model s15r of Buras et al. 2003, 2006b).

4. Results

In this section we will give an overview of the simulation re-
sults, whose interpretation will be given in more detail in Sects. 5
and 6.

4.1. A model without neutrinos

Although Model W00FA does not include neutrino heating, con-
vective fluid motions develop in this case because a convectively
unstable region with a negative entropy gradient is present at
r ≈ 70 km already in the initial conditions of our simulations.
This feature is a consequence of the decreasing shock strength
before shock stagnation. Soon after we start model model run
W00FA, buoyant bubbles form in the unstable region and rise to-
wards the shock (Fig. 2). Convective action continues during the
whole simulation because neutrino cooling, which could damp
convection, is disregarded, and because convectively unstable

Fig. 2. Entropy distribution of model W00FA 30 ms and 190 ms after the
start of the simulation. The initial entropy profile and postshock entropy
gradients caused by shock motions give rise to weak convection. A low-
amplitude l = 1 oscillation develops. (Color figures are available in the
online version.)

Fig. 3. Mass-shell trajectories for model W00FA. The spacing of the
thin lines is 0.01 M⊙. Green lines mark the mass shells at which the
composition of the progenitor changes. The red lines are the minimum,
average, and maximum shock radii, the black line marks the radius, at
which the average density is 1011 g/cm3. The difference between mini-
mum and maximum shock radius is caused by bipolar shock oscillations
(see Fig. 2). (A color figure is available in the online version.)

entropy gradients are created by shock motions that are caused
by variations of the preshock accretion rate and by bipolar shock
oscillations due to SASI modes (see Sect. 6.1). However, with-
out neutrino heating the convective overturn does not become
as strong and dynamical as in the simulations of Paper I, where
neutrino effects were included. Also the bipolar shock oscilla-
tions are rather weak (the shock deformation amplitude does
not exceed 15%) and occur quasi-periodically with a period of
20–50 ms (Fig. 3).

These multi-dimensional processes do not affect the overall
evolution of the model and the shock position as a function of
time is almost identical to the one found in a corresponding
one-dimensional simulation. In spite of the contraction of the
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inner grid boundary, the shock expands slowly and continuously
(Fig. 3). A transient faster expansion occurs at t ≈ 150 ms, when
a composition interface of the progenitor star falls through the
shock and the mass accretion rate drops abruptly. After 660 ms
we stopped the simulation. At this time the shock had reached a
radius of 400 km.

Although the shock expands slowly, this does not lead to an
explosion because without neutrino heating the specific energy
of the matter behind the shock remains negative. The shock ex-
pansion takes place because matter piles up in the postshock re-
gion and forms an extended atmosphere around the neutron star.
This slowly pushes the shock further out in response to the ad-
justment of hydrostatic equilibrium by the accumulation of mass
in the downstream region. Since in the absence of cooling pro-
cesses the matter cannot lose its entropy, it is not able to set-
tle down onto the neutron star quickly. Therefore the behavior
of Model W00FA is destinctively different from the situation
obtained in supernova simulations with neutrino transport, and
it also differs from the stationary flow that was considered by
Blondin et al. (2003). The postshock velocity in Model W00FA
is much lower and the shock radius becomes larger.

Neutrino cooling is therefore essential to obtain a quasi-
steady state accretion flow when simulations are performed in
which the central neutron star is included (in our models it is
partly excised and replaced by an impenetrable inner grid bound-
ary). Only when neutrinos remove energy and reduce the entropy
of the gas can the matter be integrated into the dense surface
layers of the compact object. The rapid flow of the gas from
the shock to the neutron star implies short advection timescales,
which are crucial for the growth of the SASI (see the discus-
sion in Sect. 2.2). Although the accretion flow that develops
in our supernova simulations is similar to the one assumed by
Blondin et al. (2003) and Ohnishi et al. (2006), there are still
potentially important differences. Because of the contraction of
the neutron star and due to the density gradient in the collaps-
ing star, the mass accretion rate varies (usually decreases) with
time and the accretion between shock and neutron star surface
never becomes perfectly stationary. Our simulations also differ
from those of Ohnishi et al. (2006) and Blondin & Mezzacappa
(2006) by our more detailed treatment of the neutrino effects.
Altogether this allows us to assess the questions how non-radial
hydrodynamic instabilities develop at more realistic model con-
ditions for the supernova core than considered in previous stud-
ies, and how such instabilities may influence the onset of the
supernova explosion.

4.2. Models with suppressed convection

In the models including neutrino transport the accreted matter
loses energy and entropy by neutrino cooling and thus is able to
settle down onto the neutron star, following the contraction of
the inner boundary. Comparing the mass shell trajectories of the
neutrinoless Model W00FA and of Model W00 (shown in Figs. 3
and 5, respectively) this difference becomes evident. Since the
accreted matter does not pile up, also the shock turns around af-
ter an initial expansion phase and recedes continuously during
the later evolution (except for a short, transient expansion phase
a t ≈ 150 ms, which is initiated when a composition interface
of the progenitor star crosses the shock). Due to the miniscule
boundary luminosity the neutrino heating remains weak and the
parameter χ of Eq. (5) stays below the critical value (Fig. 4).
Consequently, there is no evidence of convection in the gain
layer and Model W00 evolves nearly spherically symmetrically
in the first 300 ms.

Fig. 4. Evolution of the quantity χ (upper panel, see Eq. (5)) and of
the ratio δgain/δcrit (lower panel, see Eqs. (4), (8)) for Models W12F-c,
W12F, W00F and W00. All lines end 10 ms before the nonlinear phase
begins at time tnl, when the average lateral velocity in the gain layer
exceeds 109 cm/s. At later times χ and δcrit cannot be measured reliably
any longer. In all models, χ � χ0 ≈ 3 at t < tnl. Only in Model W12F-c
the ratio δgain/δcrit gets very close to unity before t = tnl, which means
that only in this model convection is able to set in faster than the SASI.

However, already several ten milliseconds after the start of
the simulation a lateral velocity component (which changes di-
rection with a period of about 30 ms) is observable in the flow be-
tween shock and neutron star surface. The amplitude of this l = 1
oscillation mode starts to increase continuously after t ≈ 100 ms
and grows by a factor of about two per period. However, the
amplitude is not large enough to affect the shape of the shock
before t ≈ 250 ms because the finite resolution of the numeri-
cal grid prevents the shock from being pushed out by less than
one radial zone and thus it remains perfectly spherical for low
oscillation amplitudes (lateral variation is already visible in the
postshock flow, though).

In the subsequent evolution the shock radius is initially still
slowly decreasing and the shock shape remains approximately
spherical, but the shock surface moves back and forth along the
axis of symmetry assumed in our two-dimensional simulations.
The direction of the postshock flow changes periodically and
the flow transports matter between the southern and the northern
hemispheres (Fig. 6). This situation is quite similar to the bipo-
lar oscillations encountered in some models discussed in Paper I
and also in full-scale supernova simulations with sophisticated
neutrino transport (Buras et al. 2006b). However, because con-
vection is absent, the flow pattern and the shape of the shock are
much less structured in Model W00.
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Fig. 5. Same as Fig. 3, but for Models W00 (upper panel) and W00F
(lower panel). The blue line marks the position of the gain radius. Up
to t ≈ 300 ms Model W00 remains nearly spherical and evolves like the
corresponding one-dimensional simulation. However, an initially very
weak l = 1 oscillation mode in the postshock flow grows in this phase
and finally becomes nonlinear, causing strong shock oscillations. Yet,
this model does not explode. Although the shock expands transiently
in a quasi-periodic manner, the average shock radius decreases and all
matter remains bound. In Model W00F an l = 2 mode develops and
starts to affect the shape of the shock at t ≈ 150 ms, much earlier than
in Model W00. The oscillations become nonlinear, and at t = 194 ms
(marked by a dotted vertical line) the model explodes. (Color figures
are available in the online version.)

At t ≈ 360 ms the amplitude of the shock oscillations has
become very large, the shock radii at the poles differ by up to
50 km, whereas the average shock radius is only about 100 km.
In this phase the entropy behind the shock starts to vary strongly
with time and angle (Fig. 7). Steep negative entropy gradients
(dS /dr = O(1 kb/km)) develop and Rayleigh-Taylor instabilities
start to grow at the boundaries between low- and high-entropy
matter. The postshock flow reaches lateral velocities of several
109 cm/s and supersonic downflows towards the neutron star
form (see Sect. 6.1 for a discussion of these processes). Within
a few oscillation cycles the whole postshock flow becomes very
similar to the nonlinear convective overturn present at the onset
of the explosion in those models of Paper I where the explosion
energy was rather low.

However, in contrast to these simulations of Paper I, Model
W00 does not explode. At t ≈ 390 ms the bipolar oscillations
reach their maximum amplitude. In the further evolution they be-
come weaker and on average the shock radius decreases (Fig. 5).
The slow decay of activity is interrupted by several short phases
of stronger shock expansion and bipolar oscillation, which occur

quasi-periodically every 50–100 ms. When we stop the simula-
tion at t = 1 s the shock has retreated to a radius of only 70 km
on average.

Models W00S, W05S, and W00V, in which a slowly con-
tracting neutron star was assumed, evolve qualitatively very
similar to Model W00. However, with increasing contraction
timescale the oscillation period becomes longer (up to 100 ms)
and the growth rate of the low-mode instability decreases. All
these models are dominated by an l = 1 SASI mode and none of
them is able to explode.

Also Model W00F with its rapidly contracting inner bound-
ary evolves initially quite similar to Model W00 (Fig. 5).
However, all timescales are shorter: The oscillation amplitude
starts to grow already after 50 ms, the shock becomes non-
spherical at t ≈ 130 ms and convection sets in at t ≈ 160 ms.
Furthermore, Fig. 6 shows that in this model the l = 2 mode (i.e.
oscillation between prolate and oblate states) is initially more
strongly excited than the l = 1 mode, which starts to dominate
only just before the onset of the explosion.

In contrast to the models with slower boundary contrac-
tion, the continuous neutrino heating in Model W00F is strong
enough to trigger an explosion at texp = 194 ms. This difference
is caused by the fact that the faster contraction leads to gravita-
tional energy release (the accreted matter heats up by compres-
sion) and thus to higher neutrino luminosities (see Sect. 6.2 for
further discussion). The anisotropic gas distribution caused by
the low-mode oscillations becomes frozen in when the shock
accelerates outward. The shock develops a prolate deforma-
tion and a single accretion funnel forms in the northern hemi-
sphere. Since the explosion attains a large-scale asymmetry, the
anisotropic distribution of the ejecta exerts a strong gravitational
force that causes an acceleration of the newly formed neutron
star (see Paper I for details about this process and the proce-
dure of evaluating (postprocessing) our simulations for the re-
sulting kick velocity of the neutron star3) Due to the miniscule
boundary luminosity the energy of the explosion remains rather
low (0.37 × 1051 erg at 750 ms after bounce, see Table 1, and

3 Due to the fact that the neutron star core is replaced in our simu-
lations by an inner grid boundary and thus anchored at the grid center,
our conclusions on the neutron star kick velocities need to be confirmed
by independent hydrodynamic models without such a numerical con-
straint. Burrows et al. (2006, 2007) seem to be unable to reproduce our
findings with their recent simulations, using a code setup that allows
the neutron star to move and employing a strictly momentum conserv-
ing implementation of the gravitational effects in the fluid equation of
motion. However, the numerical consequences of their new treatment
of the gravity source term, and in particular the supposed superiority
compared to other (standard) treatments, must be demonstrated by de-
tailed numerical tests, which Burrows et al. (2006, 2007) have so far
not presented. The exact reasons for the potentially discrepant results
are therefore unclear to us and may be manifold. We strongly empha-
size here that the neutron star kicks reported by Scheck et al. (2006)
were calculated by two independent methods of postprocessing analy-
sis. First, making use of total linear momentum conservation, the neu-
tron star recoil was estimated from the negative value of the momentum
of all gas on the computational grid at the end of the simulations (note
that using an inner grid boundary at some radius r > 0 leads to momen-
tum transfer to the excised inner core so that the gas in the simulation
domain does not retain zero z-momentum). Second, the different time-
dependent forces that can contribute to the neutron star acceleration,
i.e., the gravitational force excerted by the anisotropically distributed
matter around the neutron star as well as the momentum transfer associ-
ated with anisotropically accreted or outflowing gas of the neutron star,
were added up and then integrated in time. Both of these completely
independent approaches led to estimates for the neutron star kick veloc-
ities in very nice agreement with each other.
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Fig. 6. Lateral velocities (color coded; superimposed are the vectors of the velocity field, which indicate the direction of the flow) for Models W00
and W00F. The white lines mark the shock, the black dotted lines the gain radius. For both models we show the situation at two times near t = tnl,
at which the oscillations are in opposite phases (i.e. the times differ by half an oscillation period), and at a third time, when the oscillations have
run out of phase (see Sect. 6.1). In Model W00 an l = 1 SASI mode develops, i.e., the still nearly spherical shock moves back and forth along the
z-axis, whereas in Model W00F an l = 2 SASI mode becomes dominant, i.e., the shock oscillates between a prolate and an oblate deformation. The
postshock matter attains high lateral velocities, because the radial preshock flow hits the shock at an oblique angle when the shock is nonspherical
or when its center is displaced from the grid center. (Color figures are available in the online version.)

0.5 × 1051 erg for the extrapolated value at 1 s), but the neu-
tron star attains a fairly high kick velocity (vns ≈ 200 km s−1

at 750 ms post bounce and estimated 350 km s−1 for t = 1 s).

4.3. Models with typical explosion energies

While the simulations discussed so far demonstrate clearly the
existence of a non-radial instability that is not convection, they
were based on the assumption that the core neutrino luminosities
are negligibly small. In contrast, in W12F and W12F-c bound-
ary luminosities were assumed such that the explosion energies
reached values close to those considered to be typical of core-
collapse supernovae. An overview of the evolution these models
can be obtained from Figs. 8 and 9, where we show entropy dis-
tributions at several times and the mass-shell plots, respectively.

In Model W12F-c, in which large initial seed perturbations
were assumed (cf. Table 1), the first convective bubbles form at
t ≈ 60 ms, and at t ≈ 90 ms the whole gain layer has become
convective (see Fig. 8). From this time on the total energy in the
gain layer rises continuously and already at texp ≈ 120 ms the

first zones acquire positive total energy and the model explodes.
The initially weakly perturbed Model W12F behaves differently
in the first 200 ms. There is no sign of convection and for the
first 100 ms the shock radius evolves as in a corresponding one-
dimensional model. However, as in Model W00 a weak l = 1
oscillation mode is present in the postshock flow already at early
times (t ≈ 30 ms) and grows exponentially to large amplitudes.
At about tnl ≈ 150 ms steep convectively unstable entropy gra-
dients are generated behind the oscillating shock and within two
cycle periods a situation develops that strongly resembles model
W12F-c at the onset of the explosion. Also Model W12F ex-
plodes, though a bit later than Model W12F-c, at t = 164 ms.

Although the pre-explosion evolution and the explosion
timescales of the two models are different, the models behave
quite similar after the explosion has set in. The convective struc-
tures merge and downflows form at the interface between ex-
panding, neutrino-heated gas and the matter with lower entropy
just behind the shock. The number of downflows decreases with
time and from t ≈ 200 ms on a single downdraft dominates
the anisotropic gas distribution. Its position differs in the two
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Fig. 7. Entropy distribution of Model W00 for several moments near the beginning of the nonlinear phase (the displayed times have a separation
of half an oscillation period), and at t = 1 s. Within each SASI oscillation cycle the postshock entropies vary strongly and steep, unstable entropy
gradients develop in the postshock flow. Finally, the Rayleigh-Taylor growth timescale becomes smaller than the oscillation period and the char-
acteristic mushroom structures are able to grow. In the subsequent evolution the low-mode oscillations saturate and the model does not develop an
explosion. (Color figures are available in the online version.)

Fig. 8. Entropy distribution of Models W12F-c (left column) and W12F (right column) for several times. Model W12F-c quickly develops
anisotropies because of the onset of convection, whereas in Model W12F convection is initially suppressed and low-mode SASI oscillations be-
come visible after about 100 ms. After these oscillations have grown to large amplitude and have begun to trigger convection also in Model W12F,
the two models explode in a qualitatively very similar way, although the detailed structure and asymmetry of the postshock flow and supernova
shock are clearly different. (Color figures are available in the online version.)
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Fig. 9. Upper panel: same as Fig. 5, but for Model W12F. After an ini-
tial phase, in which the model remains nearly spherically symmetric,
the SASI becomes strong enough to deform the shock and to trigger
convection. This model explodes at t ≈ 160 ms (marked by the vertical
dotted line), after the oxygen-enriched silicon shell is has fallen through
the shock. Lower panel: Mass-shell plot for Model W12F-c. Convective
activity starts to deform the shock in this model at t ≈ 60 ms, and the
explosion occurs already at t ≈ 120 ms, before the oxygen-enriched sil-
icon layer (whose inner boundary is indicated by the line labelled with
“O in Si”) has fallen through the shock. (Color figures are available in
the online version.)

models, as does the shape of the shock, but the explosion ener-
gies and even the neutron star velocities grow nearly in the same
way after t ∼ 0.3 s and reach essentially the same values at the
end of our simulations (Fig. 10).

5. The linear phase of the instability: identification

of the AAC

We now turn to a detailed investigation of the question which
physical mechanism is responsible for the SASI that we have
seen in the models discussed in the previous section.

5.1. Motivation and method

In a number of studies (e.g., Galletti & Foglizzo 2005; Burrows
et al. 2006; Ohnishi et al. 2006; Scheck et al. 2006; Foglizzo
et al. 2007; Yamasaki & Yamada 2007) the advective-acoustic
cycle was identified or invoked as the cause of the SASI os-
cillations that were found in these studies to occur as observed

by Blondin et al. (2003). This interpretation is currently chal-
lenged by Blondin & Mezzacappa (2006), who advocate as an
explanation of the SASI modes a purely acoustic process, which
is driven by sound waves traveling solely in non-radial direc-
tion (Blondin & Shaw 2007). One difficulty of deciding about
the correct interpretation is due to the fact that the oscillation
timescale of the SASI can either be understood as the acous-
tic timescale along a well chosen transverse path, or the advec-
tion time down to a suitably chosen coupling radius. From the
physics point of view, however, the foundations of the advective-
acoustic mechanism are well documented (see the papers cited in
Sect. 2.2 and the references therein), whereas the purely acous-
tic mechanism is still incompletely understood (Laming 2007).
In particular Blondin & Mezzacappa (2006) argued that the ex-
istence of a different gradient of the momentum flux on both
sides of the shock is responsible for the instability. This argu-
ment, however, is so inconclusive that it was used by Nobuta &
Hanawa (1994, Fig. 10) in order to reach the exactly opposite
conclusion, namely the stability of a stationary shock in an ac-
cretion disk.

Independent of any timescale consideration, Foglizzo et al.
(2007) were able to directly measure the efficiencies of both
advective-acoustic and purely acoustic cycles using a WKB ap-
proximation, i.e. for perturbations whose wavelength is shorter
than the size of the flow gradients near the shock. For every un-
stable eigenmode for which this quantitative estimate was pos-
sible, it showed the stability of the purely acoustic cycle and the
instability of the advective-acoustic one. The WKB approxima-
tion is unfortunately unable to treat accurately the lowest fre-
quency modes, whose wavelength is comparable to the radius of
the shock. This argument in principle leaves room for alternative
explanations of the instability of the lowest frequency modes.
This is why we do not discard the possibility of a purely acous-
tic, unstable cycle a priori, despite its unsatisfactory theoretical
foundation.

The quantities and results shown in Figs. 11–16 in the
present paper are supposed to characterize the development of
the SASI in a time-dependent environment and to serve com-
parison of the SASI properties with the expectations of either
an advective-acoustic or a purely acoustic process. Using a pro-
jection of perturbations on spherical harmonics, the time evo-
lution of the radial structure of the most unstable eigenmode is
visualized, and the oscillation frequency ωr and growth rate ωi

can be measured. The oscillation timescale is then compared to
some reference timescales associated with advection and acous-
tic waves. The acoustic timescales chosen for this comparison
are τrad

sound
, computed along a radial path crossing the shock di-

ameter and back, and τlat
sound

, computed along the circumference
at the shock radius (i.e., immediately behind the shock position):

τrad
sound ≡ 2

∫ Rsh

Rib

dr

c − v
+ 2

∫ Rsh

Rib

dr

c + v
+

4Rib

cs,ib

, (15)

τlat
sound ≡

2πRsh

csh

· (16)

Following Foglizzo et al. (2007), the reference timescales cho-
sen for the advective-acoustic cycle are the advection time τ∇

adv
from the shock to the radius R∇ of maximum deceleration, and
an estimate of the full cycle timescale τ∇aac based on a radial ap-
proximation for simplicity:

τ∇adv ≡

∫ Rsh

R∇

dr

|v|
, (17)
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Fig. 10. Evolution of the explosion energy (thick) and the neutron star
velocity (thin) for Models W12F (solid) and W12F-c (dotted).

τ∇aac ≡

∫ Rsh

R∇

dr

|v|
+

∫ Rsh

R∇

dr

c − |v|
· (18)

The consistency of the advective-acoustic interpretation is fur-
ther tested by comparing the timescale of deceleration |dv/dr|−1

with the oscillation time of the instability. If velocity gradients
are indeed responsible for the acoustic feedback, unstable flows
should correspond to abrupt deceleration while smoothly decel-
erated flows should be stable. Moreover, the amplification fac-
tor Q during one oscillation is compared to the value measured
in the simpler setups studied by Blondin & Mezzacappa (2006)
and Foglizzo et al. (2007).

5.2. Extracting eigenfrequencies from the simulations

In Fig. 12, advected perturbations are displayed by the
amplitudes of the largest modes of the spherical harmonics of
a quantity A(r, t, θ), which turns out to be particularly useful for
a quantitative analysis of the SASI. It is defined as

A(t, r, θ) ≡
1

sin θ

∂

∂θ
(vθ(t, r, θ) sin θ) , (19)

with r−1A being the divergence of the lateral velocity compo-
nent, i.e., A ≡ rdiv(vθ eθ), which scales with the size of the lateral
velocity of the fluid motion. At the gain radius, its expansion in
spherical harmonics Yl,m(θ, φ) is written as

A(t,Rg(t), θ) =

∞∑

l=0

al(t) Yl,0(θ, 0), (20)

where due to the assumption of axisymmetry only m = 0 has to
be considered.

For l > 0, the spherical harmonics coefficients al of this
quantity are proportional to the ones of the shock displace-
ment (see Foglizzo et al. 2006, Appendix F), so A(t,Rg, θ) con-
tains basically the same information as Rs(t, θ). As Blondin
& Mezzacappa (2006), we prefer to consider a local quantity
A(t,Rg(t), θ) in the postshock layer here rather than the shock
displacement δR = Rs(θ)−〈Rs〉θ (used in Blondin et al. 2003 and
Ohnishi et al. 2006), because A is much less affected by noise
(A(t) = 0 for a non-stationary spherical flow, whereas Rs(t) is
varying) and allows one to measure the oscillation period and the
growth rate much more sensitively than it is possible by using Rs.

Fig. 11. Time evolution of the amplitude of the dominant spherical har-
monics mode of the pressure, normalized by the amplitude of the l = 0
mode, as function of radius for Models W00, W00F and W12F. The
solid lines are the minimum, average, and maximum shock radius, the
dotted line is the gain radius, the dashed line is the neutron star surface
(defined as the location where the density is 1011 g cm−3), and the dash-
dotted line marks the position, R∇(t), of the largest velocity gradient.
A low-mode oscillation develops in the postshock flow. A pronounced
phase shift is visible at a radius Rϕ(t) that agrees well with the position
of the largest velocity gradient. The “noise” (short-wavelength sound
waves) visible in the early phase after bounce is caused by the shock
propagation and is not related to the advective-acoustic cycle. (Color
figures are available in the online version.)

Tests showed that for our models, in which relatively large seed
perturbations were imposed on the infalling stellar matter ahead
of the shock, A as defined in Eq. (19) yields a cleaner measure
of the SASI even for very low amplitudes than the perturbed en-
tropy or pressure considered by Blondin & Mezzacappa (2006).
As an example, the absolute values of the coefficients a1 and a2

are shown as functions of time for Model W00F in Fig. 13.
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Fig. 12. Time evolution of the amplitude of the dominant spherical har-
monics mode of the quantity A(r, t, θ) of Eq. (19), displayed as func-
tion of radius for Models W00, W00F and W12F. The lines have the
same meaning as in Fig. 11. As in the latter figure, a zebra-like pat-
tern becomes visible here already several ten milliseconds after bounce
a zebra-like, indicating that matter with a nonvanishing lateral velocity
component is advected from the shock towards the neutron star. (Color
figures are available in the online version.)

For a given mode l the oscillation period τosc, l can be deter-
mined from the minima of |al(t)|, which occur at times t = tn

min, l

when n is a counter for the minima. The detection of the minima
works reliably only when the amplitude is large enough (it there-
fore fails in the first 10–20 ms) and is also not feasible when con-
vective instabilities involve a broad range of frequencies in the
nonlinear phase. During one cycle of mode l the corresponding
coefficient al(t) becomes zero twice, therefore the cycle period
can be measured as

τosc,l(t
n
min, l) = tn+1

min, l − tn−1
min, l. (21)

Fig. 13. Oscillatory growth of the amplitudes a1 and a2 of the l = 1, 2
spherical harmonics components of the quantity A(r, t, θ) of Eq. (19) at
the gain radius of Model W00F. (A color figure is available in the online
version.)

The evolution of the period of the l = 1 modes, τosc,1, evaluated
with Eq. (21), is displayed for three of our models in Fig. 15.

In order to measure the cycle efficiency, Q, we use again the
coefficients al defined in Eq. (20). We detect the positions of the
maxima of |al(t)|, which occur at times t = tn

max, l
(n now being

the counter for the maxima): if the oscillations of mode l are
dominated by the (k+1)-th harmonic, |al(t)| has 2(k+1) maxima
during one fundamental cycle period τf

aac, so the amplification
per fundamental cycle can be measured as

Q(tn
max,l) ≡ exp

[
2π(k + 1)

ωi

ωr

]
∼

⎡⎢⎢⎢⎢⎢⎣
al(t

n+1
max,l

)

al(t
n−1
max,l

)

⎤⎥⎥⎥⎥⎥⎦
k+1

· (22)

This method fails, if several of the harmonics are excited with
similar strength. However, these phases can be identified and
typically one of the harmonics dominates clearly (mostly the
fundamental mode, k = 0). The efficiencies measured by using
Eq. (22) are shown in Fig. 17.

5.3. Interpretation of the results

The projection of acoustic and advected perturbations on spher-
ical harmonics reveals that the shock oscillations are associated
with coherent pressure fluctuations and with the downward ad-
vection of perturbations produced at the shock. This associa-
tion is visible in all simulated cases, and is clearly illustrated
by Figs. 11 and 12 for Models W00, W00F, and W12F.

The pattern of the pressure perturbations in Fig. 11 reveals
the presence of a particular radius Rϕ where a phase shift occurs.
The dash-dotted line in these figures is defined as the radius R∇
where the velocity gradient of the unperturbed flow has a local
extremum. This particular radius seems to have an important in-
fluence on the properties and behavior of pressure perturbations;
in all studied cases the two radii coincide:

R∇ ∼ Rϕ. (23)

This striking coincidence might be interpreted as the conse-
quence of a particularly efficient coupling between advected
and acoustic perturbations in layers where the accretion flow is
strongly decelerated. In order to test this hypothesis, we have
compared the wavelength 2πv/ωr (ωr was defined in the context
of Eq. (10)) of advected perturbations at radius R∇ to the length
scale |d ln v/dr|−1 of this deceleration zone. An efficient coupling
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Fig. 14. Absolute values of the radial derivative of the radial velocity
component as functions of radius for Models W12F, W00F, and W00FA
at several times. The gray-shaded area indicates the range of values
of τ−1

osc during these times. In the models including neutrinos a pro-
nounced “deceleration peak” forms with a maximum value significantly
higher than τ−1

osc, whereas such a feature is absent in Model W00FA.

is expected if the flow velocity varies on scales shorter than the
wavelength of advected perturbations:

∣∣∣∣∣
d ln v

dr

∣∣∣∣∣
−1

�
2πv

ωr

←→ τosc �

∣∣∣∣∣
dv

dr

∣∣∣∣∣
−1

· (24)

This hypothesis is confirmed by our simulations for Models
W12F and W00F in Fig. 14. In the case of the neutrinoless
Model W00FA, where only a very weak SASI mode develops,
a prominent deceleration peak is indeed absent. Therefore the
interpretation of R∇ within the framework of the AAC as an

Fig. 15. Evolution of the l = 1 mode oscillation period, τosc, the advec-
tion time τ∇

adv
from the shock to the radius R∇ of strongest deceleration,

and the time τ∇aac for a radial advective-acoustic cycle, for Models W00,
W12F and W05V. The advection time τ∇

adv
agrees with the oscillation

time for Models W00 and W05V. In Model W12F, the oscillation pe-
riod is longer than both τ∇

adv
and τ∇aac, which can be explained by the

consequences of strong neutrino heating (see text). The oscillation pe-
riod is also compared to the radial sound travel time τrad

sound
through the

shock cavity and back, and the maximum lateral sound travel time τlat
sound

just behind the shock. τosc is close to τrad
sound

for Model W00, but is closer

to τlat
sound

for Model W05V. The vertical dotted lines enclose the time
intervals considered for the evaluations of Figs. 16 and 17.

effective coupling radius between advected perturbations and
acoustic feedback, i.e.

Rc ≡ R∇ ∼ Rϕ, (25)
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Fig. 16. Advection time τ∇
adv

of the fluid moving from the shock to the

radius of maximum deceleration, R∇, and the two acoustic times τrad
sound

(lower grey symbols) and τlat
sound

(upper grey symbols), versus the oscil-
lation period, τosc, for Models W00F, W00, W00S, W05S, W05V and
W12F. The data used in this figure are selected from phases in which
the oscillations can be clearly identified and in which the flow is quasi-
stationary (see Fig. 15). While τlat

sound
is clearly too long in all cases and

τrad
sound

is too short for all models except W00 and W00F, the oscillation

period is well approximated by τ∇
adv

for all models except W12F. The
special role of Model W12F can be explained by the effects of strong
neutrino heating (see text).

is consistent with the results of our simulations: efficient cou-
pling of advective and acoustic perturbations requires a well lo-
calized deceleration peak, in which case a strong SASI mode
can be expected to develop. We would like to mention that the
extrema of the flow deceleration that are present in our sim-
ulations with approximative neutrino transport are also found
in simulations with more sophisticated energy-dependent neu-
trino transport and therefore seem to be generic features of the
neutrino-cooled accretion flow.

It is interesting to compare the oscillation period τosc mea-
sured for our models with the timescale τf

aac of the fundamental
AAC mode, approximated by the advection time τ∇

adv
of the fluid

moving from the shock to R∇ (τf
aac ≈ τ

∇
aac ≈ τ

∇
adv

; Eqs. (17), (18),
and Fig. 15). A systematic comparison between the measured
oscillation timescale, the advection timescale, and the acoustic
timescales τrad

sound
and τlat

sound
is shown in Fig. 16 for six of our

eight models. In all models except W12F, the advection time
is very close to the oscillation period, whereas in Model W12F
we find τ∇

adv
< τosc. In the light of the perturbative analysis of

Yamasaki & Yamada (2007), this finding can be interpreted as
a consequence of the strong neutrino heating in Model W12F4.
Yamasaki & Yamada (2007) measured the continuous transition
of the eigenfrequency from the oscillatory SASI to the purely

4 Note that in Model W12F a larger core neutrino luminosity was as-
sumed than in the other models (see Table 1). Moreover, the prescribed
rapid contraction of the nascent neutron star leads to a large accretion
luminosity. Both contributions to the neutrino emission cause a partic-
ularly strong neutrino energy deposition in the gain layer.

Fig. 17. Cycle efficiency, |Q|, as a function of the oscillation period, τosc,
for Models W00F, W00, W00S, W05S, W05V and W12F. The partic-
ularly high values for Model W12F can be explained as a consequence
of strong neutrino heating in the gain layer (see text).

growing (ωr = 0) convective instability when neutrino heating
is increased. According to their work, the oscillation frequency
ωr of the SASI is sensitively decreased by the effect of buoy-
ancy in the gain region, resulting in a significantly longer oscil-
lation timescale (see Fig. 3 in Yamasaki & Yamada 2007). This
agrees well with our results, comparing in particular Models
W00F and W12F, whose prescribed contraction of the lower ra-
dial grid boundary is similar, but the latter model has a much
larger core (and higher total) neutrino luminosity (see Table 1),
much stronger neutrino heating, stronger buoyancy, and there-
fore a larger value of τosc. In contrast, the advection timescale is
increased by convection to a lesser extent (see Fig. 4 in Yamasaki
& Yamada 2007), consistent with our finding of the data points
(τosc, τ

∇
adv

) for Model W12F lying below the diagonal, dotted line
in Fig. 16. The effect of buoyancy can be seen in the pressure
evolution of Model W12F, shown in the lower plot of Fig. 11,
where a phase shift ϕ takes place in the vicinity of the gain ra-
dius (cf. Eq. (11)).

The effect of buoyancy in Model W12F is also visible in
Fig. 17 showing the amplification factor Q for six of our eight
simulated models . The amplification factor has modest values
between 1 and 3 in most cases, whereas it is as high as Q >∼ 6 in
Model W12F. This high value of Q can be understood as a direct
consequence of the small value of the oscillation frequency ωr,
see Eq. (22), because according to Yamasaki & Yamada (2007)
stronger neutrino heating sensitively increases τosc, i.e. reduces
ωr = 2π/τosc, but hardly affects the growth rate ωi (cf. Fig. 2 in
Yamasaki & Yamada 2007), which appears in the numerator of
the exponent in Eq. (22). Model W00F exhibits similar trends of
τ∇

adv
< τosc and Q-enhancement as Model W12F, however much

less strongly. Although in this model the rapid contraction of the
inner grid boundary leads to a significant accretion luminosity,
only a very small neutrino flux from the excised inner core was
assumed and therefore the neutrino heating in the gain layer is
less strong than in Model W12F.

We wish to point out that our calculation of the amplification
factor Q does not rely on any interpretation of the underlying
mechanism. Interestingly, however, the values between 1 and 3
are consistent with those measured by Foglizzo et al. (2007,
Fig. 17) for a shock radius Rsh ∼ 2R∇ in a much simpler con-
text. From the point of view of the underlying mechanism, these
values for Q are consistent with numbers obtained by downward
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extrapolation of the efficiency |Q|WKB of the advective-acoustic
cycle from the region of its validity at larger shock radii (also
shown in Fig. 17 of Foglizzo et al. 2007). For each of the models
depicted in Fig. 17, the amplitude of the spread of amplification
factors can receive a natural explanation in the context of the
advective-acoustic mechansim: the contribution of the acoustic
cycle can be either constructive or destructive, depending on the
relative phase of the two cycles, which varies with time as the
size of the cavity evolves. This dispersion can be interpreted as
a measure of the efficiency of the acoustic cycle, which is con-
sistently smaller than unity.

The comparison of the oscillation periods with the acous-
tic timescales shows that τosc is similar to the radial acoustic
timescale τrad

sound
only in Models W00F and W00. It is longer by

up to 30% in the case of Model W00S and by up to a factor
of about two in the case of Models W05S and W05V (Figs. 15
and 16). For all models, the upper bound of the acoustic time,
τlat

sound
, is always larger than τosc by 20–50%. Note that the setup

of Models W05S and W05V (with slow contraction of the in-
ner grid boundary and non-negligible core neutrino luminosities
and thus significant neutrino heating) was chosen such that the
radius of the standing accretion shock in these models is larger
than in the other cases and therefore the accretion velocities in
the postshock layer are smaller. This enhances the discrepancy
between the advection time and the radial sound crossing time
in these models. Given the lack of any better suggestions for a
unique definition of the timescale of the acoustic cycle than the
lower and upper bounds considered here, and because of the re-
markable correlation between the oscillation time and τ∇

adv
, we

interpret Fig. 16 as a clear support of our hypothesis that the
SASI oscillations are a consequence of the AAC and not of a
purely acoustic amplification process as suggested by Blondin
& Mezzacappa (2006).

5.4. Conclusions about the instability mechanism

The flow properties that are consistent with an advective-
acoustic cycle as the physical mechanism for the SASI are sum-
marized as follows:

(i) The acoustic structure of the unstable modes is strongly cor-
related with the structure of the velocity gradients (Fig. 11),

(ii) the deceleration region is more localized in unstable flows,
while smoothly decelerated flows are more stable (Fig.14),

(iii) the advection time τ∇
adv

is in good agreement with the oscil-
lation period of the instability (Fig. 16),

(iv) the typical efficiencies Q ∼ 1–3 computed in Fig. 17 are
consistent with those extrapolated from the WKB analysis
of the advective-acoustic cycle in Fig. 17 of Foglizzo et al.
(2007). Their dispersion smaller than unity is consistent with
the expected marginal effect of the purely acoustic cycle.

In contrast, a purely acoustic interpretation would have to con-
sider the properties (i), (ii), and (iii) as coincidences, and the
distribution of efficiencies Q remain uninterpreted. Although the
oscillation period is consistent with an acoustic timescale along a
carefully chosen acoustic path, Fig. 16 indicates that this acous-
tic path should be close to radial for some models, and much
more lateral in others. A theory of the purely acoustic instability
would have to explain this behavior.

Without claiming that our present knowledge of the
advective-acoustic theory is fully satisfactory in the complex
core-collapse context, its mechanism is understandable from the
physics point of view and allows us to explain several features
of the simulations, which would not be understood otherwise.

6. Interpretation of the nonlinear phase

In the following we will discuss our simulations during the non-
linear phase of the evolution in which the SASI cannot be con-
sidered as a small perturbation. In particular, we will analyse the
relation between the SASI and convective instability, as well as
the role these instabilities play for the explosion mechanism and
the resulting energy of the explosion.

6.1. The SASI as trigger of convective overturn

In models with low core neutrino luminosity convective activ-
ity does initially not occur because the corresponding instability
is suppressed in the accretion flow of the neutrino-heating layer
according to Eqs. (6) and (8). The first large-scale non-radial
perturbations in the postshock flow of such models are therefore
caused by SASI oscillations. Once large average lateral veloci-
ties around 109 cm s−1 or more are reached in the gain layer at
t > tnl (cf. Table 1), however, also the smaller-scale mushroom-
like structures that are typical of the onset of Rayleigh-Taylor in-
stability start to grow. Within only a few more oscillation cycles,
plumes of neutrino-heated matter and supersonic downdrafts of
low-entropy matter develop and violent convective overturn sets
in very similar to what we found in the case of the models de-
scribed in Paper I. There are two effects that are mainly respon-
sible for the corresponding change of the flow character; these
are linked to the unsteady motion and the growing deformation
of the shock, respectively.

Firstly, in course of radial expansion and contraction phases
the shock reaches velocities of O(109cm/s), which is a signif-
icant fraction of the preshock velocity. Since the postshock en-
tropy depends on the preshock velocity in the frame of the shock,
such fast shock oscillations cause strong variations of the en-
tropy in the downstream region. Rapid outward motion of the
shock produces high entropies in the postshock flow, whereas
phases in which the shock retreats lead to lower postshock en-
tropies. Periodic shock expansion and contraction thus results
in alternating layers with high and low entropies, which are
compressed as the accreted matter is advected towards the neu-
tron star. With increasing amplitude of the shock oscillations
the convectively unstable entropy gradients between these lay-
ers eventually become so steep that the growth timescale of
Rayleigh-Taylor instabilities shrinks to about 1 ms, which is
much shorter than the advection timescale. Therefore non-radial
perturbations are able to grow quickly at the entropy interfaces
and vortices and mushroom-like structures begin to form (see
Fig. 7).

Secondly, also the off-center displacement of the accretion
shock by the l = 1 SASI mode and the shock deformation
caused by l ≥ 2 modes play an important role when the ampli-
tudes become large enough. The radial preshock flow hits the de-
formed or displaced shock at an oblique angle. Since the velocity
component tangential to the shock is not changed when the gas
passes through the shock, in contrast to the normal component,
which is strongly reduced, the flow is deflected and attains a sub-
stantial lateral velocity component, whose size and sign changes
during the cycle period, see Fig. 6. As long as the cycle ampli-
tude is small, the lateral velocity components are also small, and
the postshock flow remains approximately radial. In the case of a
strongly deformed shock, however, the postshock flow becomes
mainly non-radial because the lateral velocity reaches a signif-
icant fraction of the preshock velocity (up to several 109 cm/s,
i.e. the lateral flow becomes supersonic). For an l = 1 mode, the
highest negative lateral velocities are obtained when the shock
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has its maximum displacement in the negative z-direction, see
Fig. 6, upper left panel. A shell of matter with high negative lat-
eral velocity formed in this phase is advected towards the neu-
tron star, and half an oscillation period later the highest posi-
tive lateral velocities are generated right behind the shock when
the shock expands into positive z-direction (Fig. 6, middle left
panel). With increasing oscillation amplitude the shock radius
– and consequently also the advection timescale and the cycle
period – begin to vary so strongly during one cycle that the
northern and southern hemispheres run “out of phase” so that
the shock radii at the north pole (θ = 0◦) and at the south pole
(θ = 180◦) reach their maximum values not alternatingly any
more, but at almost the same time. In this case streams of matter
with high positive and high negative lateral velocities emerge si-
multaneously near the north and south pole, respectively. These
streams collide and one of them is deflected upwards, producing
a bump bounded by two “kinks” in the shock surface, while the
other one is directed downwards, forming a supersonic down-
flow (see Fig. 6, lower left panel and Fig. 8, middle right panel),
a phenomenon that we have also observed in the simulations
of Paper I and that was also reported by Burrows et al. (2006,
2007).

Large-amplitude SASI oscillations are thus able to trig-
ger nonlinear convective overturn even in models in which the
growth of buoyancy instabilities is initially suppressed because
of unfavorable conditions in the accretion flow as discussed in
the context of Eqs. (6) and (8).

6.2. From SASI oscillations to explosions

Why is Model W00F able to develop an explosion while Model
W00 and the models with even slower boundary contraction
(W00S, W05S, W05V) do not explode? Models W00 and W00F
differ in the assumed contraction of the nascent neutron star,
i.e. in the parameters describing their final inner boundary ra-
dius, Rf

ib
, and the contraction timescale, tib. A smaller value of

Rf
ib

implies that the matter accreted on the forming neutron star
sinks deeper into the gravitational potential and thus more grav-
itational energy is released. The smaller value of tib causes this
release of energy to happen earlier. Most of the potential en-
ergy that is converted to internal energy by pdV-work is radiated
away in the form of neutrinos. Consequently, the neutrino lumi-
nosity that leads to heating in the gain layer is much higher at
early times in the case of Model W00F (Fig. 18).

Yet, these high luminosities alone are not sufficient to start an
explosion. This is demonstrated by a one-dimensional simula-
tion with the same boundary parameters as Model W00F, which
fails to explode. It is well known that in the multi-dimensional
case convection leads to an enhancement of the efficiency of
neutrino energy deposition in the gain layer, on the one hand
because non-radial convective motions stretch the time fluid el-
ements can stay in the gain layer and are thus exposed to ef-
ficient neutrino heating in the vicinity of the gain radius, on
the other hand because high-entropy, neutrino-heated matter be-
comes buoyant, expands quickly, and thus cools, which reduces
the energy loss by the reemission of neutrinos. The former of
these two effects effectively leads to an increase of the advection
timescale of accreted matter from the shock to the gain radius
(see also Buras et al. 2006b), as a consequence of which the
mass in the gain layer becomes larger. The same effect can also
be produced by large-amplitude SASI oscillations, because such
non-radial motions expand the average shock radius, thus lead-
ing to smaller postshock velocities, and deflect the postshock

Fig. 18. Evolution of the sum of the νe and ν̄e luminosities at the neutri-
nosphere and at r = 500 km for Models W00 and W00F. The luminosi-
ties decay with time because the largest mass accretion rates are present
at early times (t < 0.2 s). Model W00F has the higher luminosity, be-
cause the neutron star contracts faster, setting free more gravitational
energy.

flow in non-radial direction, also leading to a longer advection
time of accreted matter through the gain layer.

In Model W00F we observe such a rise of the advection
timescale starting at t ≈ 150 ms (Fig. 19) when the postshock
flow becomes strongly non-radial, but violent convective over-
turn has not yet set in (Fig. 6, right middle panel). This increase
of the advection time leads to a significant growth of the inte-
grated neutrino heating rate in the gain layer, an effect that be-
comes even more pronounced when the convective activity gains
strength (t � 170 ms). Initially the total specific energy of most
of the matter in the gain region is in a narrow range around
−11 MeV per nucleon, but the distribution of specific particle en-
ergies becomes broader by the influence of the large-amplitude
SASI and of convective overturn (Fig. 20). Due to the large en-
ergy deposition by neutrinos the mean value of the total energy
rises and ultimately some fraction of the matter in the gain layer
acquires positive total energy and the explosion sets in. Also
in Model W00 we see enhanced neutrino heating (up to two
times higher than in the corresponding one-dimensional simu-
lation) from t ≈ 350 ms on, caused by a combination of non-
linear SASI motions and convective activity (Fig. 19). However,
due to the low accretion rate at this late time the neutrino lumi-
nosity and thus the neutrino heating rate are much lower than in
Model W00F at t ≈ 200 ms. The total energy in the gain layer of
Model W00 increases only temporarily by about 1 MeV per nu-
cleon but then drops again soon and continues to decrease slowly
later on (Fig. 20). The distribution of specific energies of matter
in the gain layer does not become very broad and none of the
matter gets unbound. In both the Models W00 and W00F the
specific kinetic energy in the gain layer remains relatively small
(only about 1 MeV/nucleon, see Fig. 20).

Different from Blondin et al. (2003) we do not observe a
continuous increase of the kinetic energy associated with lateral
(turbulent) motion of the matter behind the shock. In their sim-
ulations without neutrino effects, Blondin et al. (2003) observed
that the SASI oscillation can redistribute some of the gravita-
tional binding energy of the accreted matter from coherent fluid
motion to turbulent energy, in fact with sufficient efficiency to
drive an expansion of the accretion shock. Since some of the tur-
bulent material had obtained positive total energy at the end of
their simulations, Blondin et al. (2003) concluded that the SASI
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Fig. 19. Evolution of mass in the gain layer,
∆Mgain, advection timescale τadv from the
shock to the gain radius, and neutrino heat-
ing rate integrated over the whole gain layer,
Qgain, for Models W00 and W00F (solid
lines). The dotted lines are results from cor-
responding 1D simulations. When the SASI
becomes nonlinear (t ≈ 350 ms for W00,
t ≈ 150 ms for W00F) and triggers convec-
tion (∼30 ms later), τadv and ∆Mgain begin to
grow. As a consequence, Qgain increases sig-
nificantly compared to the 1D simulations. In
the case of Model W00F the enhanced heat-
ing is strong enough to gravitationally unbind
the matter in the gain layer and to drive an
explosion. The advection timescale shows an
increase also in the 1D counterpart of Model
W00F at t ≈ 150 ms, because a composition
interface of the progenitor star falls through
the shock at this time and the strong de-
crease of the mass accretion rate leads to a
transient expansion of the shock and of the
gain layer. Nevertheless the 1D model does
not develop an explosion because without
the aid of multi-dimensional effects neutrino
heating cannot become powerful enough. In
Model W00 the neutrino energy deposition
rate is so low that even an increase by almost
a factor of two between 350 ms and 400 ms is
not sufficient for an explosion.

in their calculations was able to lead to an explosion. We do not
see this kind of process going on in our simulations (in agree-
ment with the results of Burrows et al. 2006, 2007). The reason
for this discrepancy may be the inclusion of neutrino heating
and cooling in our models. It is possible that the energy loss by
neutrino emission below the gain radius prevents the efficient
conversion of gravitational binding energy to turbulent energy.
Another reason may be the use of different conditions at the outer
radial grid boundary in our models; while Blondin et al. (2003)
assumed steady-state accretion and thus held the mass accretion
rate fixed with time, the stellar progenitor structure employed in
our work leads to a continuous decrease of the mass accretion
rate at the shock. Therefore less total kinetic energy is available
that can be converted to turbulent motions by the distorted ac-
cretion shock.

In our simulations a growth of the turbulent kinetic energy
of the matter in the gain layer is definitely not the reason for
starting the explosions. The corresponding lateral kinetic en-
ergy never exceeds a few 1049 erg in any of our models. This
is well below the size of neutrino energy deposition and of the
energy needed for unbinding matter and triggering an explosion.
Nevertheless, the non-radial flow associated with the SASI is
certainly helpful, in combination with convection actually cru-
cial for making the neutrino-heating mechanism work. The fail-
ure of one-dimensional simulations with the same treatment of
the neutrino physics clearly demonstrates the importance of non-
radial fluid instabilities, convection and the SASI, for a success
of the neutrino-driven explosion mechanism. These hydrody-
namic instabilities affect the gas motion in the gain layer such
that the advection timescale from the shock to the gain radius
is effectively increased. This enhances the efficiency of neutrino
energy deposition by allowing more matter to be exposed to the
intense neutrino flux near the gain radius for a longer time. Thus

both convection and the SASI can be considered as “catalysts”
that facilitate neutrino-driven explosions rather than being direct
drivers or energy sources of the explosion. As a consequence,
explosions in multi-dimensional simulations, i.e. even with the
support by convective overturn and the SASI, still require the
presence of strong enough neutrino heating. Our set of simula-
tions clearly demonstrates that only in the case of a sufficiently
large neutrino luminosity and thus only for sufficiently powerful
neutrino heating behind the shock, the models are able to de-
velop an explosion. This finding is in agreement with the results
of Ohnishi et al. (2006), who also obtained an explosion by neu-
trino heating only in a simulation with high neutrino luminosity,
while lower-luminosity cases failed to explode.

6.3. The importance of the seed perturbations

The comparison of our results shows that explosions during the
first second after core bounce do not only require the neutrino
luminosities to be large enough but also that the SASI and con-
vection are able to reach the nonlinear phase sufficiently quickly.
Whether this is the case or not depends on their growth rates,
which in turn depend on the properties of the postshock flow.
The latter are a complex function of the progenitor structure,
the neutron star contraction, and neutrino cooling and heating
in the layer between neutron star and shock. Last but not least,
also the size of the seed perturbations, i.e. the inhomogeneities
present in the collapsing star, can play a role for the develop-
ment and growth of non-radial hydrodynamic instabilities after
core bounce.

In our Models W12F and W12F-c (as well as in most of the
recent simulations with multi-energy group neutrino transport by
Buras et al. 2006a,b) the advection time through the gain layer is
so short and the growth rate of convective instabilities (Eq. (1))
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Fig. 20. Average total (kinetic plus internal plus gravitational) energy
per baryon (thick solid line) and kinetic energy per baryon (dashed line)
versus time in the gain layer of Models W00 and W00F. The thin solid
lines correspond to the energy interval that contains 90% of the mass of
the gain layer.

in that region so small that the timescale ratio χ of Eq. (5) re-
mains below the critical threshold χ0 for a linear growth of glob-
ally unstable modes, i.e., χ < χ0 ≈ 3 according to Foglizzo
et al. (2006), see Eq. (6) and also Fig. 3 in Buras et al. (2006b).
This means that the fast advection of the flow from the shock
to the gain radius suppresses the growth of convective modes
according to linear stability analysis. However, as explained in
Sect. 2.1, in this case buoyancy can nevertheless drive bubble
rise and convective instability in a nonlinear way if the initial
density perturbations δ in matter falling through the shock are
large enough, i.e. δ > δcrit exp(−χ) according to Eq. (9), with
δcrit being typically of the order of some percent (see Eq. (8)).

The inhomogeneities in the matter upstream of the shock
originate from seed perturbations in the progenitor star,
whose size and amplitude are not well known because three-
dimensional, long-time stellar evolution simulations for full-
sphere models until the onset of core collapse have not been
possible so far (see, e.g., Bazan & Arnett 1998; Murphy et al.
2004; Young et al. 2005; Meakin & Arnett 2006, 2007a,b). With
our assumed initial inhomogeneities in the case of Models W12F
and W12F-c (see Table 1 and Sect. 3.2), the perturbation am-
plitudes remain below the critical value δcrit in the former case,
whereas they become larger than this threshold value in the latter
case (see Fig. 4). Therefore, as visible in Fig. 8, the fastest grow-
ing non-radial instability on large scales is the SASI in Model
W12F, whereas it is convective overturn in Model W12F-c. Only
because of the growth of SASI modes does Model W12F also

develop convective activity in the gain layer, which enhances
the efficiency of neutrino energy deposition and finally leads
to an explosion also in this case. The crucial role of these non-
radial instabilities is demonstrated again by a corresponding one-
dimensional simulation that does not develop an explosion. In
Model W12F the SASI is a key feature in the multi-dimensional
evolution, because the development of convective modes is not
possible in the first place due to the low initial amplitude of per-
turbations and the insufficient growth of these perturbations in
the advection flow from the shock to the gain radius.

Considering Models W12F and W12F-c, however, no notice-
able memory of the initial source of the low-mode asymmetries
is retained during the long-time evolution. Although the early
postbounce evolution of these two models is clearly different and
the times of the onset of the explosion differ, the global parame-
ters of the explosion become very similar (see Table 1). Neither
the explosion energy nor the neutron star mass and kick velocity
are strongly affected by the different explosion times, because
the conditions in the infalling stellar core change only on longer
timescales and the ejecta energy and neutron star recoil build
up over a much more extended period of time after the launch of
the explosion (see Paper I). Since the anisotropies develop chaot-
ically and in a very irregular way during the nonlinear phase, the
final ejecta morphology is the result of a stochastic process and
does not depend in a deterministic and characteristic manner on
the type of non-radial instability that has grown fastest after core
bounce. It therefore seems unlikely that observational parame-
ters of supernova explosions are able to provide evidence of the
initial trigger of the large-scale anisotropies that develop in the
early stages of the explosion. Future simulations with a more de-
tailed treatment of the neutrino transport (instead of our approx-
imative description) and without the use of the inner boundary
condition of the present models will have to show whether the
gravitational-wave and neutrino signals carry identifiable finger-
prints of this important aspect of supernova dynamics.

7. Summary and conclusions

We performed a set of two-dimensional hydrodynamic simu-
lations with approximative neutrino transport to investigate the
role of non-convective instabilities in supernova explosions. As
initial data we used a postbounce model of a 15 M⊙ progenitor
star, which had been evolved through core collapse and bounce
in a computation with detailed, energy-dependentneutrino trans-
port. For following the subsequent, long-time evolution, the neu-
tron star core (above a neutrino optical depth of about 100) was
excised and replaced by a contracting Lagrangian inner bound-
ary that was intended to mimic the behavior of the shrinking,
nascent neutron star. The models of our set differed in the choice
of the neutrino luminosities assumed to be radiated by the ex-
cised core, in the prescribed speed and final radius of the con-
traction of the neutron star, and in the initial velocity perturba-
tions imposed on the 1D collapse model after bounce.

Our hydrodynamic simulations indeed provide evidence –
supporting previous linear analysis (Foglizzo et al. 2006, 2007;
Yamasaki & Yamada 2007) – that two different hydrodynamic
instabilities, convection and the SASI (Blondin et al. 2003), oc-
cur at conditions present during the accretion phase of the stalled
shock in collapsing stellar cores and lead to large-scale, low-
mode asymmetries. These non-radial instabilities can clearly
be distinguished in the simulations by their growth behav-
ior, location of development, and spatial structure. While con-
vective activity grows in a non-oscillatory way and its onset
can be recognized from characteristic mushroom-type structures
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appearing first in regions with steep negative entropy gradients,
the SASI starts in an oscillatory manner, encompasses the whole
postshock layer, and leads to low-mode shock deformation and
displacement.

As discussed by Foglizzo et al. (2006), the growth of con-
vection is suppressed in the accretion flow because of the rapid
infall of the matter from the shock to the gain radius, unless ei-
ther neutrino heating is so strong and therefore the entropy gra-
dient becomes so steep that the advection-to-growth timescale
ratio (χ of Eq. (5)) exceeds the critical value χ0 ≈ 3, or, alter-
natively, sufficiently large density perturbations in the accretion
flow (cf. Eq. (9)) cause buoyant bubbles rising in the infalling
matter. While convective instability is damped by faster infall
of accreted matter, the growth rate of the SASI increases when
the advection timescale is shorter. Moreover, the quasi-periodic
shock expansion and contraction with growing amplitude due
to the SASI produce strong entropy variations in the postshock
flow, which can then drive convective instability. Even when the
neutrino-heated layer is not unstable to convection in the first
place, the perturbations caused by the SASI oscillations can thus
be the trigger of “secondary” convection.

Our detailed analysis of the evolution of the SASI modes in
our simulations, of their dependence on the model parameters,
and of the cooperation between convection and the SASI in the
nonlinear regime revealed the following facts:

1. When the SASI reaches large amplitudes and supersonic lat-
eral velocities occur in the postshock flow, sheets with very
steep unstable entropy gradients are formed. As a conse-
quence, low-mode convective overturn grows in a highly
nonlinear way. Since the SASI and strong convective activ-
ity push the accretion shock to larger radii, they reduce the
infall velocity in the postshock layer. Moreover, the flow in
the neutrino-heating region develops large non-radial veloc-
ity components and therefore the accreted matter stays in
the gain layer for a longer time. This increases the energy
deposition by neutrinos in this region and facilitates the ex-
plosion. However, like convection the SASI does not guaran-
tee an explosion on the timescale considered in our simula-
tions (in agreement with the findings of Burrows et al. 2006,
2007): the kinetic energy associated with the SASI remains
negligible for the explosion energetics. Therefore sufficiently
strong neutrino heating and consequently a sufficiently large
neutrino luminosity are still necessary to obtain explosions.

2. The growth rate (and amplification) and oscillation fre-
quency of the SASI depend sensitively on the advection time
from the shock to the coupling region and the structure of the
flow in this region. The latter, in turn, depends on the neutron
star contraction (which has a strong influence on the shock
radius), on the neutrino luminosities and the corresponding
heating and cooling, and on the mass accretion rate of the
stalled shock in the collapsing star. For a wide range of in-
vestigated conditions (changing the parameters of our mod-
els), we found the SASI being able to develop large ampli-
tudes on timescales relevant for the explosion. Therefore the
SASI turned out to create large-scale anisotropy also in cases
where convective activity was not able to set in in the first
place.

3. In our simulations we could clearly identify a faster contrac-
tion and a smaller radius of the excised core of the nascent
neutron star as helpful for an explosion. We therefore con-
clude that a softer high-density equation of state and general
relativity, which both lead to a more compact neutron star,
are favorable for an explosion. This is so because on the one

hand the accretion luminosities of neutrinos become higher,
correlated with stronger neutrino heating behind the stalled
shock, and on the other hand the amplification of the SASI
increases with enhanced neutrino heating. Since the initial
growth of convection is damped or suppressed by more rapid
infall, the presence of the SASI instability and its ability to
trigger convection as a secondary phenomenon, play a cru-
cial role for the final success of the delayed neutrino-heating
mechanism.

4. The amplitude of the initial seed perturbations in the collaps-
ing core of the progenitor star, which is not well constrained
due to the nonexistence of fully consistent and long-evolved
three-dimensional stellar evolution models, has an influence
on the question whether convection or the SASI develop
more rapidly after core bounce. While this can determine
how fast the explosion sets in, we found that once the two
non-radial instabilities are simultaneously present and coop-
erate in the nonlinear regime, the global properties of the ex-
plosions are essentially insensitive to the initial phase. Since
the final anisotropic distribution of the ejecta is the result of a
very stochastic and chaotic process, it has also lost the mem-
ory of the early evolution. Neither the explosion energy nor
the neutron star kick velocity are therefore good indicators
of the initial seed perturbations that existed in the progenitor
star and of the type of the fastest growing non-radial insta-
bility. Future supernova models without the approximations
used in our simulations will have to show whether the neu-
trino and gravitational-wave signals, which will be measur-
able in detail from a galactic event, carry any useful infor-
mation about this crucial aspect of the postbounce explosion
dynamics.

5. While most of the above conclusions and the corresponding
evaluation of our simulations are independent of the exact
physical mechanism that is responsible for the growth of the
SASI, we nevertheless tried to explore this important ques-
tion, which is still controversially discussed in the literature.
To this end we analysed our models in the linear regime of
the SASI and compared the results on the one hand to pre-
dictions based on the hypothesis that the SASI growth is due
to an advective-acoustic cycle (AAC), and on the other hand
to the possibility that the SASI is driven by a purely acoustic
mechanism. Our analysis shows that many of the observed
SASI properties are consistent and can be well understood
with the AAC hypothesis. This is the case for: (1) The os-
cillation period of the SASI, which agrees well with the ad-
vection time of perturbations from the shock to a radius R∇
where the deceleration of the accretion flow is strongest. This
radius is located in the neutrino-cooling layer somewhat out-
side of the neutrinosphere. (2) The acoustic structure of the
unstable modes is strongly correlated with the velocity gra-
dient in the postshock layer and more SASI-unstable flows
are obtained in more abruptly decelerated accretion flows.
(3) The amplification factors found for the SASI agree with
extrapolated WKB results for the AAC. Moreover, the effect
that stronger neutrino heating causes a larger SASI amplifi-
cation efficiency can be explained on grounds of an assumed
AAC. In contrast, our measured oscillation timescales for the
SASI are not consistent with a uniquely chosen path for the
sound wave propagation through the shock cavity in all mod-
els, but would require that the acoustic waves travel more ra-
dially in some cases and more in angular direction in other
models. This as well as the other mentioned features are not
satisfactorily accounted for by the existing theory of a purely
acoustic instability. We therefore think that our analysis
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provides significant support for the suggestion that the am-
plification of the SASI happens through an AAC rather than
a purely acoustic mechanism.

While the presented simulations employed a number of approx-
imations like the neutrino transport scheme and the use of an in-
ner boundary condition instead of following the evolution of the
neutron star core, we are confident that our main findings do not
depend on these simplifications. In fact, recent long-time stel-
lar core-collapse simulations with detailed, multi-energy-group
neutrino transport and fully consistent consideration of the cen-
tral part of the nascent neutron star basically confirm the impor-
tance of the SASI and its nonlinear interaction with convective
instability for the viability of the delayed neutrino-driven explo-
sion mechanism (Marek & Janka 2007).
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