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ABSTRACT

We study hydrodynamic instabilities during the first seconds of core-collapse supernovae by means of 2D simulations with approxi-
mative neutrino transport and boundary conditions that parameterize the effects of the contracting neutron star and allow us to obtain
sufficiently strong neutrino heating and, hence, neutrino-driven explosions. Confirming more idealised studies, as well as supernova
simulations with spectral transport, we find that random seed perturbations can grow by hydrodynamic instabilities to a globally
asymmetric mass distribution in the region between the nascent neutron star and the accretion shock, leading to a dominance of dipole
(I = 1) and quadrupole (/ = 2) modes in the explosion ejecta, provided the onset of the supernova explosion is sufficiently slower
than the growth time scale of the low-mode instability. By gravitational and hydrodynamic forces, the anisotropic mass distribution
causes an acceleration of the nascent neutron star, which lasts for several seconds and can propel the neutron star to velocities of
more than 1000 kms~!. Because the explosion anisotropies develop chaotically and change by small differences in the fluid flow, the
magnitude of the kick varies stochastically. No systematic dependence of the average neutron star velocity on the explosion energy
or the properties of the considered progenitors is found. Instead, the anisotropy of the mass ejection, and hence of the kick, seems to
increase when the nascent neutron star contracts more quickly, and thus low-mode instabilities can grow more rapidly. Our more than
70 models separate into two groups, one with high and the other with low neutron star velocities and accelerations after one second
of post-bounce evolution, depending on whether the / = 1 mode is dominant in the ejecta or not. This leads to a bimodality of the
distribution when the neutron star velocities are extrapolated to their terminal values. Establishing a link to the measured distribution

of pulsar velocities, however, requires a much larger set of calculations and ultimately 3D modelling.
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1. Introduction

Spectropolarimetry (Leonard et al. 2006; Wang et al. 2003, 2001,
and references therein) indicates that global anisotropies are a
common feature of many core-collapse supernovae (SNe). The
deeper one can look into the expanding and increasingly trans-
parent supernova ejecta, the higher is the asymmetry inferred
from the observed polarisation. This indicates that the origin of
the anisotropy seems to be intrinsically linked to the mechanism
of the explosion.

Recent high-resolution imaging of SN 1987 A with the
Hubble Space Telescope (Wang et al. 2002), as well as high
values for the measured space velocities of young galactic pul-
sars, may be interpreted as supporting such a link. The average
pulsar velocities are as high as 200—500 km s~!, and some neu-
tron stars (NSs) move through interstellar space with more than
1000 kms™! (e.g. Cordes et al. 1993; Lyne & Lorimer 1994,
Hansen & Phinney 1997; Zou et al. 2005; Chatterjee et al. 2005).
Claims of a bimodality of the pulsar velocity distribution are
still controversial. While some authors have obtained evidence
of such a bimodality (Cordes & Chernoff 1998; Fryer et al. 1998;
Arzoumanian et al. 2002; Brisken et al. 2003), others have found
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that a simple Maxwellian fit works best (Hansen & Phinney
1997; Hobbs et al. 2005).

Binary disruption, e.g. as a consequence of the SN explo-
sions that give birth to the NSs, does not lead to sufficiently
high velocities. Furthermore, the orbital parameters of many bi-
nary systems imply an intrinsic acceleration mechanism of the
pulsars, probably linked to their creation (see Lai 2001; Lai
et al. 2001 for reviews). Quite a number of explanations have
been suggested, mostly involving anisotropic mass ejection in
the SN explosion or anisotropic neutrino emission of the cool-
ing, nascent NS. The former suggestion might be supported by
the fact that some pulsars seem to propagate in a opposite direc-
tion to the mass distribution asymmetries of their associated SN
remnants. But clear observational evidence is missing, and hy-
drodynamic simulations have previously either produced rather
small recoil velocities (Janka & Miiller 1994), or started from
the assumption that a dipolar asymmetry was already present in
the pre-collapse iron core giving rise to a large anisotropy of the
SN explosion (Burrows & Hayes 1996). The origin of such big
pre-collapse perturbations, however, is not clear (Murphy et al.
2004).

Suggestions that a “neutrino rocket engine” boosts NSs to
high velocities (e.g. Chugai 1984; Dorofeev et al. 1985; Burrows
& Woosley 1986; Woosley 1987; for reviews see Lai 2001

http://dx.doi.org/10.1051/0004-6361:20064855



http://www.edpsciences.org/aa
http://dx.doi.org/10.1051/0004-6361:20064855

964

and Lai et al. 2001) make use of the fact that the huge reser-
voir of gravitational binding energy released during the col-
lapse of the stellar core is mostly carried away by the neutrinos.
Creating a global emission anisotropy of these neutrinos of even
only 1% — which is sufficient for obtaining an NS recoil of about
300kms~' —, however, turned out to be very difficult. Most
ideas refer to unknown neutrino properties (e.g., Fuller et al.
2003; Fryer & Kusenko 2006 and refs. therein) and/or require
the presence of a very strong magnetic field with a large dipole
component (instead of being randomly structured and variable
with time) in the newly formed NS (e.g. Arras & Lai 1999a,b;
Socrates et al. 2005). Such assumptions are not accepted gener-
ally and are not the result of self-consistent calculations, but are
put into the models “by hand”.

If the observed high pulsar velocities indeed go back to the
early moments of the SN explosion, the simplest explanation
would certainly be a common origin for explosion asymmetries
and pulsar acceleration. In this case anisotropic ejection of mass
would lead to a recoil (or “kick”) of the NS due to (linear) mo-
mentum conservation. Various kinds of hydrodynamic instabil-
ities might in fact be responsible for a large-scale deformation
of the ejecta and globally aspherical explosions. Perturbation
analysis of volume-filling thermal convection in a fluid sphere
by Chandrasekhar (1961) found the highest growth rates for
the [ = 1, m = 0 mode (in terms of an expansion in spheri-
cal harmonics Y}" of order /, m). This is supported by (full 4r)
3D simulations of convection in red giant and non-rotating main
sequence stars (Woodward et al. 2003; Kuhlen et al. 2003).
Motivated by Chandrasekhar’s analysis, Herant (1995) specu-
lated about the formation of a stable / = 1, m = 0 convective
mode in the neutrino-heated layers between the gain radius and
the supernova shock. In this configuration only a single buoyant
bubble (outflow) exists, along with a single accretion funnel (in-
flow), which reaches from the postshock region down to the NS.
Herant (1995) suggests the potential importance of such a con-
vective pattern for NS kicks up to nearly 1000 kms~!. Instability
of the accretion shock to a global Rayleigh-Taylor mode that
could lead to asymmetric shock expansion and a net recoil of the
NS of several 100 kms~! has also been predicted by Thompson
(2000). However, according to the linear analysis by Foglizzo
et al. (2006), advection tends to stabilise the growth of long-
wavelength perturbations in the neutrino-heated accretion flow
behind the standing shock. A convective trigger of such instabil-
ities therefore requires the local growth rate to exceed a critical
threshold value.

Non-radial, low-mode instability of shocked accretion flows
can also be caused by the “advective-acoustic cycle”. In the
astrophysical context, this instability was first discussed by
Foglizzo & Tagger (2000) and Foglizzo (2001, 2002) in an ap-
plication to the Bondi-Hoyle accretion of black holes. It was
more recently considered for supernova-core-like conditions by
Galletti & Foglizzo (2005). This instability relies on the fact that
the infall of entropy and vorticity perturbations produces acous-
tic waves that propagate outward and create new entropy and
vorticity perturbations when reaching the shock, thereby closing
an amplifying feedback cycle that eventually results in a dom-
inant [ = 1 or [ = 2 mode. The advective-acoustic cycle can
even operate under conditions in which convective instabilities
are hampered, e.g. if the advection of matter out of the convec-
tively unstable region is too fast to allow for a significant con-
vective growth of small perturbations.

By means of numerical simulations, Blondin et al. (2003)
investigated an idealised setup for the stalled shock in a su-
pernova core and showed that a spherical shock is dynamically
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unstable to non-radial perturbations, even without neutrino heat-
ing and convection. The authors referred to this as the “standing
accretion shock instability”, or SASI, which reveals a preferred
growth of [ = 1 mode deformation and which was explained by
Blondin & Mezzacappa (2006) as a consequence of the propa-
gation of sound waves in the volume enclosed by the shock.
While these investigations lacked a detailed description of
the neutrino physics and of the equation of state of the su-
pernova medium, Scheck et al. (2004); Janka et al. (2005b,
2004b, 2005a), Ohnishi et al. (2006), Buras et al. (2006b), and
Burrows et al. (2006) provide results that demonstrate that the
instability of the accretion shock also occurs in models that in-
clude the relevant microphysics with more realism. Scheck et al.
(2004) suggested a link of these low-mode instabilities of the
supernova shock during the neutrino-heating phase to global ex-
plosion asymmetries (see in particular Kifonidis et al. 2006)
and pulsar kicks. Most previous 2D simulations of successful
neutrino-driven explosions (Herant et al. 1992; Herant et al.
1994; Burrows & Fryxell 1993; Burrows et al. 1995) have failed
to see the development of [ = 1, 2 modes (such an anisotropy,
however, showed up in one of the weakly exploding models of
Janka & Miiller 1996), because most of the simulations were
done with limited computational wedges of only 90° to 120° lat-
itudinal width or because very rapid explosions were obtained.
In these cases the low-mode asymmetries were excluded by con-
straining boundary conditions, or they could not grow in the
time available between shock stagnation and revival. This effect
may have been the reason why low-mode instabilities were not
found to be dominant in the 3D simulations of Fryer & Warren
(2002, 2004), which developed explosions on rather short time
scales after bounce. It is also possible that these 3D simulations
were not evolved far enough in time to observe the formation
of [ = 1, 2 modes. Without a sufficiently strong contribution of
the [ = 1 mode, the neutron star recoil velocities remain low
(typically less than about 200 km s, see Janka & Miiller 1994).
The main goal of the present paper (the first in a series) is to
show that global anisotropies and large NS kicks can be obtained
naturally in the framework of the neutrino-driven SN explosion
mechanism due to the symmetry breaking by non-radial hydro-
dynamic instabilities, without the need to resort to rapid rota-
tion (e.g. Kotake et al. 2003), large pre-collapse perturbations
in the iron core (Burrows & Hayes 1996; Goldreich et al. 1996;
Lai & Goldreich 2000), strong magnetic fields (Wheeler et al.
2002; Kotake et al. 2004), anisotropic neutrino emission associ-
ated with exotic neutrino properties (e.g. Fryer & Kusenko 2006;
Fuller et al. 2003), or jets (Cen 1998; Khokhlov et al. 1999; Lai
et al. 2001). To this end we present a comprehensive 2D parame-
ter study of supernova dynamics that can be considered as a sig-
nificant improvement and extension of the earlier calculations of
Janka & Miiller (1996) with respect to the treatment of neutrino
transport, the assumed characteristics of the neutrino emission
from the neutron star core, the inclusion of rotation, the influ-
ence of the initial seed perturbations, the spatial resolution, and
the covered evolutionary time of the supernova explosions.
Parts of the present work already have been presented in
a Letter by Scheck et al. (2004), but a detailed description of
both our methods and results will be given here. We proceed by
summarising our numerical algorithms and computational ap-
proach in Sect. 2, and our boundary conditions and initial data in
Sect. 3. We then give an overview of our simulations in Sect. 4,
discussing two representative neutrino-hydrodynamic calcula-
tions in some detail. In Sect. 5 we explore the dependence of
our simulations on the properties of the stellar progenitors and
on the assumed core neutrino fluxes, and establish correlations
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between explosion parameters and neutron star kicks. Section 6
is devoted to the effects of rotation. In Sect. 7 we return to the
neutron star recoils and investigate their robustness with respect
to the approximations and assumptions that we have employed.
Furthermore, we investigate the long-time evolution of the recoil
velocities for a few models beyond the time interval of one sec-
ond after core bounce, for which we have evolved most of our
models. Estimating the terminal values of the NS velocities by a
calibrated extrapolation procedure, we speculate about the pos-
sible implications of our results for the velocity distribution of
neutron stars in Sect. 8. A summary of this work and our con-
clusions can be found in Sect. 9. In Appendix A we define and
tabulate some physical quantities of interest that characterise the
different runs of our large set of simulations. Furthermore, we
describe the post-processing procedures that we applied to the
numerical calculations to compute these characteristic quanti-
ties. Appendix B discusses the solution of the hydrodynamics
equations in an accelerated frame of reference. In Appendix C
we analyse the explosion energetics of our neutrino-driven su-
pernovae. Appendix D finally explains our new neutrino trans-
port scheme in detail.

2. Computational approach and numerical methods

In this section the employed numerical codes for hydrodynamics
and neutrino transport will be briefly described.

2.1. Hydrodynamics and gravity

The basic version of the computer program that we employed
for this study is described in Kifonidis et al. (2003). It con-
sists of a hydrodynamics module, which is based on the direct
Eulerian version of the piecewise parabolic method (PPM) of
Colella & Woodward (1984) (augmented by the HLLE solver
of Einfeldt 1988 to avoid the odd-even-decoupling instability),
and on a module that computes the source terms for energy
and lepton number that enter the hydrodynamic equations due
to neutrino absorption, scattering, and emission processes (see
below). The equation of state is that of Janka & Miiller (1996).
In contrast to Kifonidis et al. (2003, 2006), we do not follow
explosive nucleosynthesis in this work. This allows us to save
a considerable amount of computer time, which is mandatory
for carrying out an extended parameter study like the one pre-
sented here. For the same reason, the neutrino transport in our
simulations is described approximately (see Sect. 2.2) and the
dense NS core is replaced by a moving inner boundary (usu-
ally a Lagrangian shell) whose contraction mimics the shrinking
proto-neutron star.

We include self-gravity with relativistic corrections by first
solving the Newtonian 2D Poisson equation using a Legendre
expansion according to Miiller & Steinmetz (1995), and by sub-
sequently replacing the “spherical part” of the resulting gravi-
tational potential of the 2D mass distribution by the “effective
relativistic potential” of Rampp & Janka (2002) (for details, see
Marek et al. 2006). For describing the gravity of the central
“point mass” (i.e., the mass enclosed by our inner boundary),
we use the baryonic mass where Eq. (53) in Rampp & Janka
(2002) requires the gravitational mass. In our calculations, his
turned out to yield very good agreement with the improved ver-
sion of the effective relativistic potential developed by Marek
et al. (2006).
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2.2. Neutrino transport and neutrino source terms

The original code version of Kifonidis et al. (2003) made use
of a simple light-bulb approximation (Janka & Miiller 1996) in
which luminosities of neutrinos and antineutrinos of all flavours
were imposed at the inner boundary (which is usually below
the neutrinospheres) and kept constant with radius. These lumi-
nosities were typically not chosen to give accurate values for
the fluxes prevailing below the neutrinospheric layers, but their
choice was guided by the asymptotic luminosities that emerge
from the contracting and accreting nascent neutron star at large
radii. This was necessary in order to cope with the main problem
of a light-bulb approach, namely that it neglects the changes in
the neutrino fluxes and spectra that result from the interactions
of neutrinos with the stellar matter, thus ignoring, for example,
the contributions of the neutrino emission from accreted matter
to the neutrino luminosity.

In this work we considerably improve upon this former ap-
proach by explicitly including these effects. We achieve this by
abandoning the light bulb in favour of a gray, characteristics-
based scheme that can approximate neutrino transport in the
transparent and semi-transparent regimes. The approach is not
particularly suited to also handling the regime of very large
optical depths, 7. Therefore we still perform our simulations
with an inner grid boundary at 7 ~ 10...100. However, the
luminosities prescribed there have no relation to those used
in the older light-bulb calculations. We have chosen them to
qualitatively reproduce the evolution of the luminosities in a
Lagrangian mass shell below the neutrinospheres as obtained in
recent Boltzmann transport calculations (see also Sect. 3.2 and
especially Appendix D.2 for details).

The transport scheme itself solves the zeroth-order moment
equation of the Boltzmann equation. The transport of neutrino
number and energy is accounted for separately by integrating
two such moment equations for neutrinos and antineutrinos of
all flavours (e, , 7). This allows us to adopt a non-equilibrium
description with the assumption that the spectral form is Fermi-
Dirac, but the neutrino temperatures 7', are not necessarily equal
to the gas temperature 7. Solving transport equations for neu-
trino number and energy, we can locally determine neutrino
number and energy densities and thus the spectral tempera-
tures 7', from the mean neutrino energies. A detailed description
of our approximative solution of the non-equilibrium transport
problem and the exact expressions for the employed interaction
kernels can be found in Appendix D. While giving qualitatively
similar results as Boltzmann-solvers in spherical symmetry (cf.
Sect. 4.3), the computational cost of this approximative transport
scheme is two orders of magnitude lower.

2.3. Numerical grid and frame of reference

We adopted 2D spherical coordinates (r, #) and assumed axisym-
metry. Unless noted otherwise, the calculations presented in the
following are carried out in the full sphere, i.e. for 0 < 6 < n,
with a grid that is equidistant in the lateral direction. A non-
equidistant grid is employed in the radial direction whose local
spacing, Ar, is chosen such that square-shaped cells are obtained
in the convective region, i.e. Ar =~ rA@. Typically 400 radial
and 180 lateral zones are used.

The outer boundary of the computational domain is typi-
cally located at Ry, ~ 2 x 10*km, while the inner boundary
is placed within the forming neutron star after core bounce,
at a Lagrangian mass shell somewhat below the electron neu-
trinosphere. The spacing of the zones near and below the
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neutrinospheres is chosen such that variations in the optical
depth per zone remain smaller than a few. The baryonic matter
of the neutron star interior to the inner boundary, M.y (Which
is typically ~1.1 M,), is removed and its gravitational attraction
is taken into account by assuming a point mass at r = 0 (see
Sect. 2.1).

Since we are mainly interested in neutron star kicks in this
paper, we need to point out that the use of the inner boundary
condition (enclosing the NS “core”) implies that the NS is at-
tached to the centre of our computational grid. It is therefore not
free to move relative to the ejecta during the simulation (unless
special measures are taken, see below). This is tantamount to
assuming that the NS has an infinite inertial mass. Two implica-
tions result from this approximation: a potential hydrodynamic
feedback of a displacement of the NS relative to the ejecta is
neglected, and the neutron star recoil velocity has to be deter-
mined indirectly in a post-processing step by making use of the
assumption of total momentum conservation (see Appendix A).

The relative motion between neutron star and ejecta can,
however, be accounted for during a simulation by “wagging the
dog”, i.e. by assuming that instead of the neutron star the ejecta
move coherently in the opposite direction of the neutron star’s
recoil. This can be achieved technically by adding the velocity
of the relative motion to the gas velocity on the computational
grid, which is tantamount to performing (after every time step) a
Galilei transformation to a new inertial frame in which the neu-
tron star core is at rest and centred at r = 0 (see Appendix B
for details). Simulations including this procedure will be used
to investigate potential deficiencies of our standard assumption
that the NS has an infinite inertial mass and takes up momentum
without starting to move (see Sects. 4.4 and 7).

3. Initial and boundary conditions

In this section the initial and boundary conditions used for our
calculations will be defined.

3.1. Initial models and initial perturbations

Our calculations are started at ~15-20ms after core bounce
from detailed post-collapse models. We make use of four such
models that are based on three different SN progenitors. The
first was calculated by Bruenn (1993) with a general relativis-
tic, one-dimensional (1D), Lagrangian hydrodynamics code cou-
pled to neutrino transport by multi-group, flux-limited diffusion
(see his model WPELS5 LS 180). It employs the 15 M, progen-
itor of Woosley et al. (1988). Simulations based on this model
will henceforth be called the “B-series”.

Our second 1D post-collapse model, provided by M. Rampp
(priv. comm.), uses a 15 M progenitor star of Limongi et al.
(2000) and was computed with the PROMETHEUS PPM hydro-
dynamics code coupled to the VERTEX multi-group variable
Eddington factor/Boltzmann neutrino transport solver (Rampp
& Janka 2002). Our “L-series” of simulations makes use of that
model.

We also consider two post-bounce models that were com-
puted for the s15s7b2 progenitor of Woosley & Weaver (1995)
with PROMETHEUS/VERTEX by Buras et al. (2003, 2006a) (see
their models s15/1D and s15r). The first of these models is from
a 1D simulation and gives rise to the “W-series” of runs, while
the second is a rotating, 2D (axisymmetric) model, which we
use for our “R-series” of calculations. This model is described
in detail in Miiller et al. (2004).
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Fig. 1. Evolution after core bounce of the radius corresponding to a
mass coordinate of 1.1 M, from a supernova simulation with Boltzmann
neutrino transport (Buras et al. 2003), compared to the motion of the
inner boundary radius as defined by Eq. (1) for the standard boundary
contraction case (with 7, = 1 s) and the rapid boundary contraction case.

The level of numerical noise in our hydrodynamics code is so
low that a 1D, isotropic initial configuration remains isotropic,
even in the presence of a convectively unstable stratification.
Therefore we need to explicitly add random perturbations to
trigger the growth of non-radial hydrodynamic instabilities in
the post-shock flow. The portable, high-quality random number
generator RANLUX of James (1994, 1996) and Liischer (1994)
is employed. We apply the perturbation to the velocity field and
typically use an amplitude of 0.1%. To break the equatorial sym-
metry of the rotating 2D model of Buras et al. (2003, 2006a), we
have to add perturbations with an amplitude of several per cent,
since in this model the initial perturbations have already grown
to such a level by the time we map the model to our full 180° grid
(see Sect. 2.3).

3.2. Boundary conditions

For solving the hydrodynamics equations, reflecting boundary
conditions are imposed at the lateral boundaries at 8 = 0 and
0 = n, while transmitting (i.e. zero gradient) boundary con-
ditions are employed at the outer radial boundary. The inner
boundary, which is located at the Lagrangian mass coordinate
where we cut our initial (i.e. immediate post-bounce) models, is
taken to be impenetrable. The contraction of this mass shell (and
hence of the neutron star core) is mimicked by moving the inner
boundary of our Eulerian grid from its initial radius, R}b, inwards

to a final radius R].fb according to the expression
Ry,
U+ (1= exp (—/t)) (R /RE, — 1)

of Janka & Miiller (1996). The parameter Rib is typically in the
range 55 km < R%b < 85km.

For Rifb and #;, we use two alternative prescriptions. In what
we henceforth will call the “standard boundary contraction case”
— as this is the original parametrization that was employed by
Janka & Miiller (1996) — we set Rifb = 15km and t;, = t;, where
the time scale 7 is connected to the luminosity decay and is de-
fined in Appendix D.2. In the second prescription, the so-called
“rapid boundary contraction case”, we set R].fb = 10.5km and
iy = 0.25s.

Figure 1 compares Rj,(f) for both parameter choices with
each other and with data from a supernova simulation with the

Rip(1) =

ey
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nuclear equation of state of Lattimer & Swesty (1991) and with
Boltzmann neutrino transport (Buras et al. 2003) for one of our
initial models. The standard boundary contraction leads to a
larger final radius and a slower contraction of the neutron star.
The rapid boundary contraction gives results that are almost in-
distinguishable from the Boltzmann calculation. Although the
latter parametrization is potentially more realistic than the for-
mer, we have performed the simulations with the “standard” case
unless noted otherwise. On the one hand, this reduces the dif-
ferences compared to our previous work to only the treatment
of the neutrino transport. On the other hand, the more compact
neutron stars obtained with the “rapid” case require the use of
a much finer zoning for adequately resolving the steep density
drop in the neutron star “atmosphere”. This leads to computing
times that are at least a factor of five larger than those of the
standard case. Exclusive use of the rapidly contracting bound-
ary would thus have severely reduced the number of computed
models, leading to much poorer statistics. For this reason we
have chosen the rapidly contracting boundary only for a limited
set of models to investigate whether the results obtained for the
standard case change qualitatively. Both cases together therefore
provide information how the results depend on the contraction
behaviour of the forming neutron star (see Sect. 7.3).

The boundary conditions for the neutrino emission at the
inner grid boundary are chosen to be isotropic. Luminosities
and mean energies for neutrinos and antineutrinos of all three
flavours are imposed there in order to solve the transport prob-
lem as described in Appendix D. These luminosities and ener-
gies are chosen as time-dependent functions that are constrained
by prescribed and varied values for the total loss of energy and
lepton number from the core of the forming neutron star. For
example, the lepton number loss during the first second is of the
order of 0.1-0.2 in all our simulations, and the total (asymptotic)

energy loss AE}, .. does not exceed the gravitational energy

2
E ~3x10% My (
Mo

Ros \'
10km) e 2)

which can be released during the birth of a neutron star (see
Tables A.1-A.5).

4. Overview of the simulations

In the following we will give an overview of the simulations
based on the “standard” boundary contraction prescription. In
particular, we will discuss the character of the flow, the impact
of our neutrino treatment, and the acceleration of the neutron star
for two exemplary cases.

4.1. The computed models

Tables A.1-A.5 give an overview of all our simulations (which
were performed with the “standard boundary contraction”) in
terms of some characteristic quantities that are defined in
Appendix A.

The naming convention we have chosen for the models is
the following: The first letter denotes the initial model (i.e. the
progenitor/post-bounce data), followed by a two-digit code that
corresponds to the chosen value for the total asymptotic neu-

trino energy loss of the neutron star core, AE}, ., in units

of ﬁ Mec?. Thus B18, for example, refers to a simulation based
on the Woosley et al. (1988)/Bruenn (1993) initial data with an

assumed release of gravitational binding energy of the core of

967
AE. e = 0.18 Moc?. The second fundamental model parame-
ter, the luminosity time scale #;, is not taken into account in the
model names, because it has the same value for all models of a
series. The chosen value in each case is given in the captions of
Tables A.1-A.5.

Simulations performed on a larger grid (with an outer bound-
ary radius of 10'° cm and 500 radial zones) are indicated by the
letter “g” appended to the model name, e.g. B18-g, simulations
that account for the recoil motion of the neutron star contain
the letter “m” in the model name, and model series started from
different random seed perturbations are denoted by numbers ap-
pended to the model names. Hence model B18-1 differs from
model B18 (and from models B18-2, B18-3 etc.) only in the
random perturbations imposed on the initial velocity distribution
(with the perturbation amplitude being the same in all cases).

Note that in Tables A.1—-A.5 the total lepton number and en-
ergy loss of the neutron star core, AY core and AE‘V?Clore, respec-
tively, the time-integrated energy loss in v, and ¥, AEsq, the
explosion energy, Ecyp, the anisotropy parameter, s, the shock
deformation, dghock, the neutron star mass and recoil velocity,
M, and v}°, respectively, as well as the correction of the latter
due to the “neutrino rocket effect”, v7*”, are all given at the time

t = 1s, at which we usually stop our simulations.

We need to point out here that the listed neutron star veloc-
ities are not the final ones, but that even at the end of our simu-
lations the neutron stars can still experience a large acceleration.
We therefore also give this acceleration, a® = dv}®/dt (averaged
over the last 100 ms and without neutrino effects), and will at-
tempt to estimate the final neutron star velocities in Sect. 7.4.

4.2. The character of the flow

Giving an accurate qualitative description of the flow that estab-
lishes in our calculations is a difficult endeavour, as the evolution
that we observe during the first ~300—400 ms is wildly time-
dependent and extremely nonlinear. One may even characterise
it as chaotic. The layer between the proto-neutron star and the
supernova shock is Ledoux-unstable, because a negative entropy
gradient is established due to neutrino heating within ~50 ms af-
ter bounce. In all simulations discussed here, it is consequently
Ledoux convection that breaks the initial spherical symmetry:
small Rayleigh-Taylor mushrooms grow from the imposed ran-
dom seed perturbations and start rising towards the shock. They
merge quickly and grow to fewer but larger bubbles that deform
the shock and push it outward (Fig. 2).

Due to the violent motions of the rising high-entropy plumes
the shock gets bumpy and deformed, and caustic-like kinks
of the shock emerge where two such bubbles approach each
other and collide. Downstream of the shock, decelerated and
compressed matter forms a high-density (low-entropy) shell,
which sits atop high-entropy material that boils vigorously as
it is heated by neutrinos from below. The interface between
these layers is Rayleigh-Taylor unstable (Herant 1995) and
gives therefore rise to narrow, low-entropy downflows of matter,
which penetrate from the postshock layer to the neutron star with
supersonic velocities. When they reach surroundings with en-
tropies lower than their own, the downflows are decelerated and
their material spreads rapidly around the neutron star. The evo-
lution of these downflows is highly dynamic. They form, merge
with other accretion funnels, or are blown away by the rising
buoyant matter on a time scale of 10—20 ms, while their number
decreases with time. The most massive of these downflows orig-
inate from the kinks at the shock surface, where the deceleration
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Fig. 2. Entropy distributions in model B12 (left column) and model B18 (right column) for different times. The figures are plotted such that the
polar axis is oriented horizontally with “south” (6 = x) on the left and “north” (8 = 0) on the right. Dotted black lines mark the gain radius and
white lines the supernova shock. Note that the scales differ between the plots. Convective activity starts with small Rayleigh-Taylor structures
(t = 50ms), which then grow and merge to larger cells and global anisotropy. In contrast to model B18, the low-energy model B12 develops
pronounced bipolar oscillations (compare the plots for r = 200ms and r = 250 ms between both cases). After the explosion has set in, the
convective pattern “freezes out” and the expansion continues essentially self-similarly (see the plots for # = 500 ms and ¢ = 1000 ms). At 1s after
bounce model B18 shows the emergence of an essentially spherical neutrino-driven wind expanding away from the neutron star surface (region
around the coordinate center in the bottom right panel).
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Fig. 3. Density distributions one second after core bounce for four simulations with the same initial and boundary conditions as model B18, but
different patterns of the random seed perturbations imposed on the velocity field of the initial model. The amplitudes of the perturbations (10~%)
are the same in all cases. The morphology of the explosion depends in a chaotic way on the initial perturbations.

of the infalling matter is weaker due to the (local) obliqueness of
the shock.

During this phase of violent “boiling” the shock develops
a strong, time-dependent deformation and expands slowly out-
ward. In model B12, whose evolution is shown in the sequence
of plots on the left side of Fig. 2, pronounced bipolar hemi-
spheric oscillations become visible after about 150 ms. Such
bipolar oscillations (and the consequent “sloshing”) of the shock
have been found to be typical of / = 1 mode instabilities as
associated with the advective-acoustic instability or the SASI.
Hence these instabilities are likely to dominate the evolution of
this model in this strongly nonlinear phase. Note that model B12
differs from model B18 (on the right side of Fig. 2) by lower neu-
trino luminosities at the inner boundary and, correspondingly,
by a later onset of the explosion (at fex, = 220 ms compared to
fexp = 152 ms) and a lower explosion energy of 0.37 x 10°! erg
versus 1.16 x 10°! erg (measured at ¢ = 1s). Model B18 shows
also violent convective activity, but no bipolar oscillations. This
fact might indicate that in this model the convective instability
might play a more important role. A detailed investigation of the
growth of different kinds of non-radial instabilities in the post-
shock flow and their competition will be presented in a subse-
quent paper of this series (Scheck et al. 2006, in preparation).
Here we only note that their combined effects can have a deci-
sive impact on the explosion mechanism of supernovae, since
1D counterparts of both models B12 and B18 failed to explode.

The highly dynamic phase of the evolution comes to an end
around 300-400 ms after bounce. At that time the explosion is
well underway, and the overall flow settles into a state of quasi-
self-similar expansion, which is remarkably stable (compare the
lower panels of Fig. 2, and see also Herant 1995). Yet the con-
sequences of the dynamic phase are felt long thereafter, since
the strongly nonlinear boiling motions lead to a final morphol-
ogy that is sensitive to even tiny initial differences in the flow.
These may not only result from the influence of different bound-
ary conditions, as in case of models B12 and B18. The late-time

morphology is even sensitive to the seed perturbation that we
apply to trigger the non-radial instabilities. Figure 3 illustrates
this for the B18-series of models in which the seed perturbation
was varied as described in Sect. 4.1. It is obvious that the dom-
inant mode in the flow is unpredictable. It can be [ = 2, with
two bubbles that are separated by a single accretion funnel, and
that occupy roughly a hemisphere each (as in model B18-4 and
the original model B18). Yet the bubbles may also differ signif-
icantly in size resulting in a dominance of the [ = 1 anisotropy
as in model B18-3 (top right panel of Fig. 3) and model B12
(left panels of Fig. 2). This sensitivity to the seed perturbation
is so extreme that the system may be described as exhibiting
symmetry breaking in a chaotic manner. In fact even the same
model computed on different machines (with slightly different
64-bit round off behaviour) may actually end up with a different
morphology.

For sufficiently high core luminosities, accretion of matter
onto the neutron star is eventually superseded by the onset of a
nearly spherically symmetric neutrino-driven wind (see the re-
gion around the coordinate center in the lowermost right panel
of Fig. 2 and in the left panels of Fig. 3; cf. also Burrows et al.
1995; Janka & Miiller 1996). If the wind is strong enough, as
in model B18 where the mass-loss rate of the nascent neutron
star by the wind is M,s = —5.1 X 1072 My/s, it blows away
the accretion funnel and establishes a high-entropy shell or cav-
ity of rapidly expanding low-density material around the neu-
tron star, which is separated from the ejecta by a strong reverse
shock. Otherwise accretion through the funnel continues until
more than about 1 s after bounce, as in model B12. In this case
the accreted material reaches infall velocities of about 1/4 of the
speed of light, while the accretion rate at r = 1 s has decreased to
Myeer = 4 x 1072 My /s. Since at the same time the neutron star
mass changes at a rate of My, ~ 1.1 x 1072 My/s, only a fraction
of ~25% of the infalling matter is actually integrated into the
neutron star. The remaining 75% are heated and reejected with
high velocity in a neutrino-driven wind that inflates a buoyant
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bubble of neutrino-heated gas in the northern hemisphere op-
posite to the remaining accretion funnel on the other side (see
Fig. 2, lowermost left panel). The resulting flow, which is char-
acterised by a strong dipole mode, can be conveyed only incom-
pletely with plots such as Fig. 2 and is much more impressively
captured by movies that we have produced from our data’.
These movies also show that the impact and rapid decel-
eration of the accretion streams in the vicinity of the form-
ing NS create acoustic and weak shock waves that emanate
from the neutron star’s surface. As was recently also noted by
Burrows et al. (2006), these waves propagate predominantly
into the hemisphere opposite to the accretion funnel. While
traversing the low-density cavity, also the acoustic waves steepen
into shocks, dissipate energy, and heat the expanding material.
However, in accordance with the results of Janka & Miiller
(1996), we observe only a modest production of entropy due to
these waves when they propagate outward in the rapidly expand-
ing neutrino-driven wind. In case of the Burrows et al. (2006)
simulation the acoustic energy input from neutron star g-mode
oscillations was found to be crucial for the explosion of an 11 M
model. Nonspherical accretion was found to lead to the excita-
tion of core g-mode oscillations at late times (300—500 ms) af-
ter bounce, whose sonic damping transfers a significant amount
of acoustic power to the surrounding medium and supernova
shock. G-mode oscillations are in fact also present in the outer
layers of our neutron stars — i.e. in the layers that are included
on our grid — but their amplitudes are modest and thus they do
not lead to the strong consequences reported by Burrows et al.
(2006). It is possible, however, that our simulations underes-
timate such effects, which would require the inclusion of the
whole neutron star without excising the central core, and the
ability to follow the excitation of deep modes due to a self-
consistent coupling between accretion, core motion, and core-
mode generation. On the other hand, our models are charac-
terized by explosions due to convectively supported neutrino
heating (whereas the 11 My, model of Burrows et al. seem-
ingly did not explode in that way). After the explosion has
been launched, our models reveal the development of a strong
neutrino-driven wind, in which the dissipation of acoustic waves
may have a different effect than in a more or less static gas
around the oscillating neutron star. We point out that numeri-
cal simulations of this neutrino-driven outflow require very high
radial resolution of the steep density gradient near the neutron
star surface. We are not sure whether sufficiently fine grid zon-
ing was guaranteed in the simulation by Burrows et al. (2006).
A more detailed investigation of such questions is in progress.

4.3. The influence of the neutrino transport

The fact that earlier 2D simulations, which were performed
with a neutrino light-bulb description (Janka & Miiller 1996;
Kifonidis et al. 2003), were not dominated by low-order modes,
poses the question to which extent the development of such
global asphericity in the flow is sensitive to the treatment of
the neutrino transport. Figure 4 shows that our new neutrino
transport description yields radial profiles for the sum of the v,
and V. luminosities which deviate markedly from the radius-
independent luminosities used in a light-bulb approach: the
luminosities are significantly modified compared to the values
imposed at the inner boundary. After some adjustment to the lo-
cal thermodynamic conditions, which takes place in a few radial
zones next to the inner boundary, the luminosities rise steeply in

L' A collection of movies is provided as online material of this article.
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Fig. 4. Radial profiles of the sum of the v, and ¥, luminosities for mod-
els B12 and B18 at different times after the start of the simulations.

the cooling region below the gain radius, and decline slightly in
the heating region farther out. The rise is caused by the creation
of neutrinos when gravitational energy is released during the ac-
cretion and the contraction of the neutron star, while the slight
decline results from the absorption of the v, and v, in the heating
region.

The “accretion” luminosity that is produced on the grid is
usually of the same order as the luminosity emerging from the
core. In low-energy models, like B12, the accretion component
exceeds the core component early on, while in high-energy mod-
els the core component is dominant at all times (see the neutrino
“lightcurves” for models B12 and B18 shown in Fig. 5).

Our transport scheme can account qualitatively well for the
evolution of core and accretion components of the neutrino lumi-
nosities, for the radial and temporal evolution of the luminosities
and mean energies of the radiated neutrinos, and for the relative
sizes of the v, and ¥, emission (see Figs. 4—6, and compare with
Liebendorfer et al. 2001; Liebendorfer et al. 2005; Rampp &
Janka 2000; Buras et al. 2003, 2006a,b; and Thompson et al.
2003). We therefore think that our current transport treatment is
a reasonably good method for performing parametric explosion
studies with the aim to better understand the role of hydrody-
namic instabilities during the shock-revival phase of neutrino-
driven supernova explosions.

Yet, we point out here that all the previously not modelled
neutrino transport effects are not the reason why the develop-
ment of / = 1,2 modes is seen here, whereas it was not visi-
ble in the calculations of Janka & Miiller (1996) and Kifonidis
et al. (2003). Highly anisotropic explosions can also be obtained
with the light-bulb assumption (see Janka et al. 2003; Janka et al.
2004a for an example). In other words, the details of the func-
tional form of L(r), which are visible in Fig. 4, are not decisive
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Fig. 5. Evolution of the luminosities of v, and ¥, at the inner boundary,
at the v.-sphere, and at a radius of 500 km. Note the different importance
of the accretion contribution to the luminosity in the low-energy explo-
sion (model B12) compared to the high-energy explosion (model B18)
and the rapid decay of the accretion luminosity after the onset of the
explosion in the latter model.

for the growth of the / = 1,2 modes. What is crucial, however,
is that the explosions in the current models start slowly. This
was not the case in all but one of the simulations of Janka &
Miiller (1996) and Kifonidis et al. (2003), where the neutrino
luminosities were assumed to decay exponentially with a time
scale of typically 500—-700 ms (see Table 1 in Janka & Miiller
1996) instead of varying slowly. The exponential, “burst-like”
decline of the neutrino light bulb implied fairly high initial Iu-
minosities (i.e., 4.5-5 x 102 ergs™! for v, plus ¥, at the inner
grid boundary) — which were required in case of the exponen-
tial decay for getting “typical” supernova explosion energies —
and thus strong neutrino heating occurred at early times after
bounce. This led to rapid explosions, which in turn did not leave
enough time for the convective cells and bubbles to merge before
the expansion became so fast that it continued in a quasi self-
similar way. Since these bubbles are initially small, their early
“freezing out” in the rapidly expanding flow had the effect that
small structures (i.e. high-order modes) prevailed until very late
times. The rapid explosions also caused a quick end of accretion
onto the proto-neutron star, and therefore the neutron stars re-
mained small. In contrast, the present transport description gives
neutrino luminosities between the neutrino spheres and a radius
of 500km that vary much less steeply than exponentially with
time (see Fig. 5). This leads to explosion time scales that are
sufficiently long to allow for the formation of low-order modes.

971

<e,> [Mev]

16-B18 o]

<e,> [MeV]

v—sph. 500km

10

0.2 0.4 0.6 0.8
time [s]

0.0 1.0

Fig. 6. Evolution of the mean v. and 7. energies at the inner bound-
ary (ib), at the v.-sphere, and at a radius of 500 km. Note that due to the
contraction and compressional heating of the nascent neutron star the
average energies of the radiated neutrinos continue to rise until the end
of our simulated evolution.

4.4. Acceleration and recoil of the neutron star

As is detailed in Appendix A, in a 2D axisymmetric calculation
the neutron star recoil can only have a component parallel to the
z-axis. For its calculation only the z-momenta of the gas in the
northern and southern hemispheres need to be considered (see
Eq. (A.20)). If the momentum density of the ejecta, p.(r,6), is
mirror symmetric with respect to the equatorial plane, i.e., if

p(r,0) = —p.(r,m — 6) 3)
holds, the sum of the z—momenta of the two hemispheres
vanishes

Pz,gas = PN

z,gas

+PS_ =0, 4)

z,gas

and thus also the neutron star remains at rest (cf. Eq. (A.10)). The
latter situation is given e.g. for an / = 2 mode, i.e. for two polar
bubbles of equal size separated by a single downflow that is lo-
cated in the equatorial plane. However, in general the expansion
of the ejecta will proceed differently in the two hemispheres, so
that a net momentum P_ g, # 0 will result.

If a single downflow has formed, e.g., in the southern hemi-
sphere, the expansion of the ejecta will be hampered there.
On the other hand it will proceed unaffected in the northern
hemisphere, and thus |P§ga$| will be larger than |P§’gas|. Hence,
P_ g5 will be dominated by Pljgas (which is positive since all
of the gas in this hemisphere is moving outwards). According
to Eq. (A.10), the neutron star must then be accelerated in the
negative z-direction, i.e. towards the (southern) hemisphere that
contains the downflow. This is the situation that ultimately es-
tablishes in model B12 (compare Fig. 2 and Table 1), and which
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Fig. 7. Graphical illustration of the momentum balance between neutron star and ejecta. The largest fraction of the ejecta mass is concentrated in a
dense shell behind the shock (bright coloured ring). For a spherical explosion (left panel) the momenta of the neutron star and the ejecta are zero.
If the expansion of one hemisphere lags behind the other, the gas has a net momentum in the direction of the faster expanding hemisphere. The
neutron star is always accelerated in the opposite direction, i.e. towards the slower moving gas (middle and right panels). This acceleration can
be mediated by the gravitational attraction of the anisotropic ejecta (middle panel). In case accretion flows reach down to the neutron star surface
(right panel), additional (hydrodynamic) forces may contribute, but the gravitational force, in general, remains dominant.

Table 1. Integrated momenta of the ejecta in the northern (6 < m/2)
and southern hemispheres, as well as their sum, P_ 4, and the resulting
neutron star recoil velocity, v7°, at t = 1s.

vodt P[] P [52] re [] o [¥]
B12 1.26 x 104 -0.20 x 10* 1.06 x 10*! -389.3
B18 177 x 104 -3.07 x 10" -1.30 x 10% 515.1

is also illustrated in the right panel of Fig. 7. In this case the neu-
tron star has attained a velocity of v}° = —389 km s~! one second
after core bounce, and is still accelerated with a}® = —372km s72
(Fig. 8).

Model B18 also develops a single downflow, which, how-
ever, is located in the northern hemisphere, rather close to the
equator. Although this model is clearly less anisotropic than
model B12 (which is dominated by an / = 1 mode), the larger
explosion energy and faster expansion result in a larger |P_ g,
(Table 1). This leads to a larger neutron star kick of v}® =

515kms™! at r = 1s, while the acceleration at this time is
az® = 290km s (Fig. 8). Note that these values are compara-
ble to the mean pulsar birth velocities derived from observations
(see Sect. 7.4), and that they are considerably higher than those
found in earlier simulations (e.g. Janka & Miiller 1994). This is
mainly due to the low-order modes in our calculations, which
result in a larger gas momentum anisotropy, s (cf. Eq. (A.13)
for a definition), compared to previous work.

The neutron star velocities shown in Fig. 8 (left panels),
as well as their time-derivatives labelled with “derivative” and
plotted with solid lines in the acceleration plots of Fig. 8 (right
panels), are calculated from the simulation data with our stan-
dard post-processing approach by assuming total momentum
conservation (see Appendix A). The use of this approach re-
quires a justification, because, numerically, energy and momen-
tum might not be strictly conserved (i.e. up to machine accu-
racy)?. Moreover, momentum conservation can be guaranteed
analytically only if the gravitational potential can be written
as the solution of a Poisson equation. This is, of course, the
case for Newtonian gravity. Yet, for the “general relativistic

2 The energy and momentum conservation properties of neutrino-
hydrodynamic codes like the employed one are discussed in much detail
in Rampp & Janka (2002) and Marek et al. (2006).

potential” of Rampp & Janka (2002) that we used in the simu-
lations, an equivalent of the Poisson equation cannot be derived
(Marek et al. 2006).

Since the neutron star kicks discussed in this work depend on
the anisotropic distribution of the ejected gas, we do not expect
that the small general relativistic corrections or numerical errors
of the mentioned kind can seriously affect the results of our cal-
culations to an extent that unrealistically large values for the neu-
tron star recoil velocities are obtained. This expectation is sup-
ported by the fact that we find similarly large neutron star kicks
in simulations with Newtonian gravity (see Sect. 7.3). Since the
NS recoil estimated from our simulations is a consequence of the
anisotropic ejection of mass in the explosion, it is also unlikely
to be linked to nonconservation of energy and/or momentum on
a small level. In order to provide additional and independent ev-
idence that the neutron star velocities estimated on grounds of
the assumption of total momentum conservation are reliable, we
check them by verifying the estimated neutron star acceleration
as a sum of the different forces that contribute to a momentum
transfer to the neutron star.

For this purpose we consider a sphere of radius rp ~ 1.1R
that encloses the neutron star. The time-derivative of the neutron
star momentum (and hence the neutron star acceleration at a cer-
tain time) can then be obtained by integrating the Euler equation
over the volume of that sphere, resulting in

Py~ —95 PdS—SE ovo, dS +f GMys — dm. ()
r=ro r=ro r>ro r

Here the individual terms account for the varying pressure
around the sphere, the flux of momentum through the sur-
face of the sphere, and the gravitational acceleration due to the
anisotropic matter distribution outside the sphere. For the grav-
itational term we assume that the matter distribution inside the
sphere is spherically symmetric and that the gravitational poten-
tial is Newtonian.

The time evolution of the acceleration corresponding to these
terms, calculated from the data of models B12 and B18, is shown
in the right panels of Fig. 8. Here the second term has been
split into two components associated with momentum flux into
(“downflows”) and out of the sphere (“outflows”). Also dis-
played is the sum of all terms (labelled by “total”). Integration
over time of the latter quantity yields the dashed velocity curve
for v;™" in the left panels of Fig. 8. This should be compared

to the solid curve (v?°) which was computed with our standard
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Fig. 8. Left: evolution of the neutron star velocities for models B12 and B18. The solid curve is the neutron star recoil velocity derived from total
momentum conservation of gas and neutron star (see Eq. (A.10)). The dotted curve includes corrections due to anisotropic neutrino emission. The
dashed curve is an estimate obtained by integrating Eq. (5) over time. Right: evolution of the neutron star acceleration (solid curve), as computed
from the (numerical) time derivative of the solid curve shown in the velocity plots on the left side. Also shown are the individual terms of Eq. (5),
corresponding to momentum transfer due to downflows, outflows (e.g. in the neutrino-driven wind), anisotropic pressure distribution around the
neutron star, and gravitational pull of the anisotropic ejecta. The sum of these terms (the long-dashed curve labelled “total”’) agrees well with the
(solid) curve obtained independently from total momentum conservation applied to the hydrodynamics results.

post-processing approach of the gas momentum (and which in-
cludes the effects due to general relativistic corrections). It is ev-
ident that there are only small differences between both results,
which are significantly smaller than 10%. This demonstrates that
the flow morphology indeed produces an anisotropic momentum
transfer to the nascent NS, which is the cause of the estimated
NS velocities.

An interesting implication of Fig. 8 is the fact that the largest
contribution to the acceleration is, in general, due to the gravi-
tational term. In certain evolutionary phases also the other terms
may contribute significantly. Yet, the total acceleration points
nearly always in the same direction as the gravitational pull.
Momentum transfer by pressure and gas flow (the first and the
second term in Eq. (5)) are only important as long as the inho-
mogeneous ejecta have sonic contact with the neutron star and
thus can exert hydrodynamic forces on the central object. This
is the situation found in model B18 for times before r = 0.5s.
After that time the supersonic neutrino-driven wind, which is
very strong in this energetic model (due to the high neutrino lu-
minosities) has blown away the accretion downflows from the
neutron star. Ongoing acceleration is then exclusively caused
by the gravitational pull of the anisotropic ejecta and decreases
slowly as the nearly spherically symmetric wind clears the sur-
roundings of the neutron star. Hydrodynamic forces therefore do

not contribute at later times in model B18. On the other hand,
they are important at all times in model B12. The acceleration
due to the momentum flux associated with the narrow downflows
that reach the neutron star is usually the second most important
term, and is directed opposite to the gravitational acceleration.
Anisotropies in the pressure distribution and wind outflow con-
tribute on a smaller level.

Finally, we show in Fig. 8 (left) with dotted lines the neu-
tron star velocities corrected for the effects of anisotropic neu-
trino emission (see Appendix A). These effects turn out to be
small. For model B12 the neutron star kick is thus reduced by
about 10%, which is unusually large. For most of our models (in-
cluding model B18) the corrections due to anisotropic neutrino
emission are smaller than 5% (for more details, see Sect. 7.1).

5. Dependence on the initial model and the core
luminosity

In this section we discuss the variation of the quantities intro-
duced in Appendix A as functions of the initial model and a sys-
tematic variation of the imposed core neutrino luminosity Lip.
Tables A.1-A.5 give an overview. To facilitate their interpreta-
tion, we also display the most important quantities for all models
as a function of L;, graphically in Fig. 9.
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Fig. 9. Dependence of some global quantities on the inner boundary luminosity. The quantities in the left column (explosion time scale, explosion
energy, and neutron star mass) depend only on the progenitor and the boundary conditions. The quantities in the right column (anisotropy, neutron
star velocity, and acceleration) are strongly influenced by the initial perturbations. All time-dependent quantities are shown at ¢ = 1 s. Crosses
stand for the B-series of models, stars mark results for the L-series, triangles denote the W-series, and diamonds refer to the R-series of models

(see Sect. 3.1 for the differences between these models).

The results plotted in that figure show that the neutrino-
driven mechanism as computed in our models is able to account
for different key observational aspects of supernovae and neu-
tron stars simultaneously, provided that sufficient time is avail-
able for low-order unstable modes to form. Typical supernova
explosion energies of about 103! erg, typical baryonic neutron
star masses around 1.4 M, (actually between 1.3 and 1.6 M, de-
pending on the progenitor) and high neutron star recoils (with a
maximum of 800 km s~! in model B18-3 after 1 s of post-bounce
evolution, see Table A.1), are obtained at the same time.

What is also apparent is that the quantities displayed in Fig. 9
can be grouped in two classes, those which show a clear cor-
relation with the core luminosity, Li,, and those which do not.
Among the former are the explosion time scale, fxp, the explo-
sion energy, E.xp, and the neutron star mass, M. For a given ini-
tial model these integral quantities show a systematic variation
with the boundary luminosity with only little scatter. In partic-
ular, these quantities (together with the mean shock radius) are
only weakly affected by varying the random seed perturbations
in the way described in Sect. 4.1 (see Tables A.1-A.5). Among
the quantities which do not correlate with L, are the ones that
depend on the morphology of the explosion, i.e. the anisotropy

parameter, @, the neutron star recoil velocity, v7°, and the

neutron star acceleration, a,s. These show a strong sensitivity
to small differences in the flow (e.g. to the initial perturbations),
and hence essentially stochastic behaviour. The large scatter of
neutron star recoil velocities for models B18-1 to B18-6 of be-
tween ~80 kms~! and 800kms~! (see Table A.1) illustrates this
clearly.

A higher luminosity, Lj,, from the neutron star core causes
the explosion to develop faster, to become more energetic, and
to leave behind a neutron star with a smaller mass, because less
material can be accreted onto the core when the explosion occurs
faster. The monotonic correlation between L, and the explosion
energy Ecx, shows that our chosen approach to parameterise our
simulations can also be interpreted as one in terms of explosion
energy. In this sense Li, and E., can be exchanged as govern-
ing parameters. Note, however, that the Lip—E.y, relation differs
between the initial models.

A similar behaviour is also visible in Fig. 10 for AMg;in (fexp),
the mass contained in the gain layer at time fp, as a function
of Ly for all models. In fact, it is actually AMg,in(fexp) that is
responsible for the progenitor dependence of the Li,—E.y, rela-
tion visible in Fig. 9, mainly because the recombination of free
nucleons to a particles and nuclei in the expanding and cool-
ing ejecta from the gain layer yields a significant fraction of the
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Fig.10. Mass of the gain layer at the onset of the explosion (fep) as
a function of the boundary luminosity for the set of models displayed
in Fig. 9. For every initial model there exists an approximately linear
relation between AMg,i, and L,

final explosion energy. This energy contribution increases with
more mass in the gain layer. The rest of the explosion energy
is due to the power of the neutrino-driven wind of the proto-
neutron star (see Appendix C). Since AM i (fexp) depends on
the mass accretion rate through the shock, there is a dependence
on the density profile of the progenitor star. The different initial
models reveal significant differences in this respect. In particu-
lar, the Limongi et al. progenitor exhibits considerably higher
densities at the edge of the iron core and in the silicon shell than
the Woosley et al. models, but this progenitor explodes later and
thus at a time when the mass accretion rate has already decreased
significantly.

It should be noted that rotation will also affect AM i (fexp)
(see Sect. 6). The systematically larger mass of the gain layer
(Fig. 10), and the up to ~50% higher explosion energies of
the rotating models compared to the non-rotating models of the
s15s7b2 progenitor (Fig. 9), though, are strongly affected by the
larger initial perturbations that we have used in the rotating case
(see Sects. 3.1 and 6).

A progenitor dependence is also visible in case of fp
and M, as a function of L;,, as displayed in the left column
of Fig. 9. The simulations that are based on the newer 15 M,
progenitor model s15s7b2 of Woosley & Weaver (1995) give
explosion time scales that are systematically higher by ~30%,
and final neutron star masses that are higher by ~10% than those
of the older Woosley et al. (1988) core. On the other hand, the
results belonging to the Limongi et al. (2000) progenitor again
exhibit larger systematic deviations from those for the Woosley
et al. stars. The higher mass accretion rate in simulations with the
Limongi et al. progenitor delays the development of convective
motions, and thus the onset of the explosion (fexp) compared to
the other models. This prolongs the time that the revived bounce-
shock needs to reach a certain radius. It also reduces the explo-
sion energy, and leads to a larger neutron star mass, for a given
value of the boundary luminosity L.

We focus now on the right column of Fig. 9. Recalling the
highly nonlinear, chaotic hydrodynamic evolution in response to
a variation of the initial perturbations described in Sect. 4.2, one
can understand that there is no clear correlation between L, and
the quantities ag,, v7°, and al®, which depend on the explosion
morphology. When, however, @ is plotted as a function of the
explosion energy (see Fig. 11), it becomes apparent that the area
near the upper right corner in the @gas—FEexp diagram, satisfying

agas/aO + Eexp/Eexp,O > 1 (6)
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Fig.11. Anisotropy parameter ag. (upper panel) and (scalar) quasi-
momentum of the ejecta, P, (lower panel, see Eq. (A.12)) for a time
of 1 s after core bounce as a function of the explosion energy. The dif-
ferent symbols have the same meaning as in Fig. 9.

with Eexpo = 2 X 10°! erg and @y ~ 0.3, is almost void. This
indicates that high-energy explosions with large anisotropies are
disfavoured, which is plausible because there is not sufficient
time available for high-order modes to merge. In order to as-
sess the impact of this result on the neutron star recoil by virtue
of Eq. (A.14), we need to consider also the scalar quantity Pe;,
which is defined in Eq. (A.12). Figure 11 shows that it is lin-
early increasing with the explosion energy. Since [v7°| o¢ @/gasPejs
this increase of P with Ec, will tend to compensate the smaller
values of @, for higher explosion energies. Therefore high neu-
tron star velocities (up to 800kms™" at z = 1) can result for a
wide range of explosion energies, or, equivalently, boundary lu-
minosities (cf. Fig. 9). Indeed we see that neither bipolar oscilla-
tions nor the dominance of an / = 1 mode are excluded when the
explosion energy is moderately large. We expect, however, that
for sufficiently large boundary luminosities the explosion time
scale, and correspondingly @g.s, will become so small that the
neutron star velocities will remain low for (very) large explosion
energies.

An important result of the present work is that neutron
stars that have attained high velocities at + = 1s typically
experience very high accelerations, too (reaching up to more
than 700 km s~2). This becomes apparent in the panels of Fig. 12,
which display the acceleration at the end of our simulations (top)
or averaged over the last half of a second, respectively, as a func-
tion of the neutron star recoil velocity. In fact two populations of
models may be discriminated, a low-velocity, low-acceleration
component and a second component extending to much higher
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Fig.12. Top: neutron star acceleration as a function of the neutron
star velocity after one second. Bottom: acceleration computed as time-
averaged value over the last half of a second of the simulations ver-
sus neutron star velocity. The acceleration is multiplied by a factor
o = sign(v), i.e. 0{a’*) < 0 corresponds to a deceleration of the neu-
tron star. The different symbols have the same meaning as in Fig. 9.
Typically, low values of the acceleration (o(a:*) < 250km s72) are as-
sociated with low velocities ([v7°] < 200km s"), while much higher
values of o(af*) are reached for higher velocities [vf°|. This suggests
two components of the distribution, one with low velocities and lower
average acceleration values and one with both values being higher. The
thin solid line indicates the mean values of o(aZ*), binned in velocity
intervals of 100kms~!.

accelerations and velocities. The latter contains simulations with
a strong contribution of the / = 1 mode, whereas the former is
made up of models in which / = 2 or higher modes are dominant.
Since in many of the simulations the accelerations are still high
atr = 1s, one can expect that their neutron star recoil velocities
will significantly increase at still later times. We will discuss this
in Sect. 7.4.

6. The effects of rotation

‘We have shown that the magnitude of the neutron star recoil de-
pends sensitively on the convective mode. Here we will consider
the influence of rotation, which can have an effect on the pattern
of convection via the Hgiland condition, which states that the
flow is stable to convection if

CH = Cs +CL

1dji.2 1 d )
==Y Ca ) ws+ () wrlso, )
B dx p S Jpy. dYe)ps
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holds (see e.g. Tassoul 1978). Here a is the total (gravitational
and centrifugal) acceleration, and j, is the specific angular mo-
mentum (j, = x - vy, where x = rsin# is the distance from
the axis of rotation). In the non-rotating case the condition of
Eq. (7) reduces to the familiar Ledoux criterion for stability,
CL > 0, whereas for negligible entropy- and Y.-gradients Eq. (7)
becomes the Solberg-condition Cs > 0.

In order to investigate how rotation changes the morphol-
ogy, the energetics of the explosion, and the neutron star recoil
velocities, we have computed the R-series of our models. These
models start from a post-bounce configuration with a perturba-
tion amplitude of several percent (cf. Sect. 3.1), which is more
than an order of magnitude larger than the standard perturbations
that we employed in our non-rotating models. Such a large in-
crease of the perturbation amplitude leads to noticeable changes
in the explosion time scale and energy. A clean discussion of ro-
tationally induced effects therefore requires recomputing some
of the non-rotating models with a higher amplitude of the initial
random perturbations. We do this in case of models W12-c and
W18-c (see Table 2), in which the same initial perturbations are
applied as in models R12-c and R18-c, whose results are also
listed in Table 2.

6.1. Evolution of the rotation rate

The initial rotation profile that we employ was discussed in de-
tail by Miiller et al. (2004) (see also Fig. 1 there). Our choice
of this angular velocity profile on the one hand maximises rota-
tional effects in view of the most recent evolution calculations
for magnetised rotating massive stars: it yields rotation rates that
are more than a factor of two higher in the iron core, and on
average a factor of ten higher in the silicon shell than in the cal-
culations of Heger et al. (2004). On the other hand, it avoids
sub-millisecond rotation of the newly formed neutron star, which
would result for rotation rates that are significantly higher than
the 0.5 rad/s with which our iron core was assumed to rotate
prior to collapse. With our “standard” contraction law the proto-
neutron star spins up due to angular momentum conservation to
a maximum angular velocity of about 8 x 10?rad/s at one sec-
ond after core bounce. This corresponds to a rotation period of
several milliseconds at the end of our simulations (and close to
1-2ms after NS contraction to a radius of 10 km).

6.2. Morphology

The rotating models evolve almost identically to the non-rotating
ones during the first 75 ms after the start of the calculations.
This is so because the Solberg-term, Cs, is negligible in this
early phase. The total angular momentum and the derivative
of j, in the postshock region are initially rather small (Fig. 13).
However, the influence of the Solberg term increases with time
because there is a positive gradient of j, upstream of the shock,
and matter with increasingly large specific angular momentum
is advected into the postshock region (see Figs. 13 and 14).
Therefore the positive derivative of j, with x grows within the
postshock flow. Note that, since we assume axisymmetry, there
are no forces (other than fictitious ones) acting in ¢ direction,
and hence no source terms for j, are present. The specific an-
gular momentum of a fluid element therefore remains constant,
and j, is simply carried along with the flow.

For ¢ > 75 ms this causes the Solberg term to become suf-
ficiently large so that it affects the pattern of convection and
thus leads to differences compared to the non-rotating case: all
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Table 2. Rotating and non-rotating models with the same initial perturbations. For more details, see the caption of Table A.1.

Model Lib AE}/?éore AYc,corc <L500> AESOO Ecxp tcxp Mns U;'S 1215,1/ a;'s agas dshock
(B/s] [B] [B/s] (Bl [B] [s] [Mo] [kms™'] [kms™'] [kms’]
WIi2-¢c 29.7 71.5 0.11 68.7 57.1 040 0301 1.535 44.4 54.0 854 0.03 0.63
WIi8-c 445 107.3 0.16 79.0 61.1 1.06 0215 1.392 640.4 -8.5 4444 0.21 0.08
R12-c 29.7 71.5 0.11 64.8 5.1 043 0329 1480 49.9 313 148.1 0.04 -0.03
R18-c 44.5 107.3 0.16 75.5 58.1 126 0236 1.345 166.1 -3.5 116.2 0.04  0.05
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Fig.13. Radial profiles of the specific angular momentum, j,, at
the equator of model R18-c for several times after the start of the
simulation.

z [10” cm]

Fig. 14. Distribution of the specific angular momentum j, of the rotating
model R18-c at r = 150 ms. Matter with larger and larger specific an-
gular momentum has fallen through the shock (outer solid line), which
leads to an overall positive gradient dj,/dx in the gain layer. However,
due to convection, which is suppressed only near the poles, the j, strat-
ification and its gradient are locally perturbed. The rotation axis is ori-
ented horizontally.

the rotating models develop downflows at both poles, whereas
there is no preference for the formation of polar downflows in
the non-rotating models (compare Fig. 15 with Figs. 2 and 3).
These polar downflows remain stable until they are blown away
from the vicinity of the neutron star by the neutrino-driven wind.
The stabilisation is caused by the positive x-derivative of jg in
the Solberg term, which is amplified by the factor 1/x> near the
axis of rotation. Given a positive derivative of j?, a matter el-
ement pushed towards the axis feels a larger centrifugal accel-
eration a. = jf /x® than the surrounding matter, and therefore
moves back to its original position. Analogously, a fluid element
pushed away from the axis feels a restoring force as well. Thus,
perturbations perpendicular to the axis are suppressed and per-
turbations of a gas configuration in rotational equilibrium can
only grow parallel to the axis of rotation.

ter the start of the simulations. The white line marks the supernova
shock. Note the two polar downflows. The rotation axis is oriented
horizontally.

For ¢+ > 75ms this stabilising effect of the positive angu-
lar momentum derivative becomes sufficiently large to suppress
convection near the axis of rotation, i.e. to make Cy = Cs +Cr >
0 there. In the rest of the postshock flow the Solberg term is
negligible (because of its dependence on x3) compared to the
Ledoux term (i.e. |Cs| < |CL|) and convection is not affected
much. Radial profiles of Cs and Cy, illustrating this situation are
shown in Fig. 16.

The fact that only polar downflows and no polar outflows
form can also be easily explained. Material inside a polar down-
flow always consists of the lowest j.-gas that is advected through
the shock (see Fig. 14). This guarantees a stable situation be-
cause the angular momentum derivative with x remains positive.
In contrast, a polar outflow, i.e. a rising polar bubble, would con-
tain postshock matter that would be rather well mixed, because
a convective plume encompasses matter from a larger range of
latitudes. Therefore such a polar bubble would not consist of gas
with a lower j, than the infalling material near the poles that sur-
rounds such a bubble. This situation would therefore be unstable
due to the absence of a positive derivative d j2/dx.

Besides the differences in the pattern of convection another
morphological difference becomes evident: The rotating models
remain more spherical, whereas the non-rotating models in gen-
eral develop a clear prolate deformation (Fig. 17). This is partly
due to the polar downflows, which damp the shock expansion
near the poles. A second reason is the centrifugal acceleration
of the matter between neutron star and shock. Owing to the ac-
cumulation of angular momentum behind the shock, the initially
weak centrifugal forces increase, and their radial components
reach up to 20% of the gravitational acceleration. Consequently
the shock is pushed out farther in the equatorial region than in
the non-rotating models. This has interesting consequences for
the explosion energy.
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Fig.16. Radial profiles of the Solberg-term, Cs, and of the Ledoux-term, C., (see Eq. (7)) for 6 = 5° (“pole”) and 6 = 90° (“equator”) in
model R18-c. We show these quantities for = 50 ms (left column) and 7 = 150 ms (right column). For regions in which Cs or C are negative, the
absolute values are plotted as dotted lines. At# = 50ms |CL| > |Cs| and unstable regions (C. + Cs < 0) are present for both latitudes. At a time
of 150 ms the gradient djZ/dx has become sufficiently large to make Cs > |Cy| at the pole, and thus to stabilise the flow, whereas in the equatorial

region |Cs| is still small.
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Fig.17. Evolution of the shock deformation parameter dgoc (see
Eq. (A.8)) for the rotating (R-series) and the non-rotating models
(W-series). Positive and negative values of dg,ocx characterise oblate and
prolate deformation of the shock, respectively.

6.3. Energetics

In both rotating models R12-c and R18-c that are listed in
Table 2 the explosion energies are higher and the neutron star
masses are correspondingly lower than in their non-rotating
counterparts, W12-c and W18-c, also listed in that table. In

case of models R18-c and W18-c the energy difference amounts
to ~20% (i.e. 0.2 x 10°! erg) and must be caused by rotational ef-
fects. This difference builds up when the expanding and cooling
neutrino-heated matter in the gain layer recombines from free
nucleons to alpha particles (and partly to nuclei) and remains
approximately constant in the subsequent phase, in which the ex-
plosion energy increases further due to the neutrino-driven wind
(see Fig. C.6 and Appendix C). It is caused by the larger equato-
rial shock radius in the rotating model R18-c and the thus wider
gain layer, which increases the recombining mass by 0.013 Mg
compared to the non-rotating case.

6.4. Neutron star recoil

What are the implications of the morphological differences be-
tween rotating and non-rotating models for the neutron star
kicks? In the non-rotating case the highest recoil was obtained
for model B18-3, in which a pronounced / = 1 mode with a sin-
gle polar downflow is present. In the rotating case such a flow
pattern cannot establish, since we always obtain downflows at
both poles. However, significant asymmetries can still develop,
since one of the polar accretion funnels may be much stronger
than the other, or a third downflow may be dominating the mass
distribution. High neutron star recoils are thus not precluded,
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although we expect the mean and the maximum kicks to be
somewhat smaller than in the non-rotating case.

The results of our rather few simulations, which comprise
only nine rotating models (see Tables A.4 and 2), are in agree-
ment with this expectation: The largest neutron star recoil ve-
locity obtained in the R-series of models is 321 km s~! whereas
it is 640kms~! in case of the W-series (see model W18-c in
Table 2). The average kick velocities for the R- and W-type mod-
els are 151 kms™!, and 280kms™, respectively. If one omits
model W18-c, the only W-type model with a “pure / = 1 mode”,
the average kick velocity of the non-rotating models decreases
to only 228 kms™!, i.e. it is 50% larger than that of the rotating
models. This is a relatively moderate effect if one recalls that
the initial angular velocity assumed in the progenitor core of our
calculations is clearly extreme compared to the rotation rates ob-
tained from the latest stellar evolution calculations (Heger et al.
2004).

6.5. Spin-kick alignment?

Does rotation lead to an alignment of the kick direction with the
rotation axis (the so called “spin-kick alignment”)? This ques-
tion cannot be conclusively answered on the basis of 2D axisym-
metric simulations, because in this case the neutron star kick is
always along the rotation axis due to the assumed symmetry of
the calculations.

However in the context of our kick scenario also in the
3D case effects can be imagined that may lead to a spin-kick
alignment. On the one hand, the rotation axis is a preferred phys-
ical direction of the system such that the development of global
anisotropies (e.g. polar accretion and outflow, bipolar oscilla-
tions) might be favoured along this direction. On the other hand,
if the rotation period is smaller than the duration of the neutron
star kick by a one-sided, non-axial acceleration (in the corotat-
ing frame), then any asymmetry will retain only its component
parallel to the spin axis, while the perpendicular component will
be reduced or extinguished by rotational averaging.

Our results seem to suggest that the first effect may be the
more important one. For the angular momentum present in our
models there is a tendency of anisotropies (e.g. of downflows) to
develop preferably aligned with the rotation axis. While for the
relatively “fast” rotation of our models (in the sense discussed
in Sects. 3.1 and 6.1), the second effect may also contribute to
produce spin-kick alignment, the influence of rotational averag-
ing will be weaker for slower and possibly more realistic rota-
tion. In case of “slow” rotation, i.e. for spin periods of tens of
milliseconds in the nascent neutron star and many hundreds of
milliseconds in the neutrino-heated convective postshock layer
(which are ten times or more larger than in our models), rotation
will be unable to enforce perfect alignment of the directions of
kick and spin.

Depending on the amount of angular momentum in the su-
pernova core, the hydrodynamic kick mechanism discussed in
this paper therefore allows for both possibilities, spin-kick align-
ment for rapid neutron star rotation (f,s < 1s) and misalign-
ment or incomplete alignment for long rotation periods (f,s =
some 100 ms). This seems to be compatible with recent stud-
ies of observational constraints on neutron star kicks for iso-
lated pulsars and for neutron stars in binary systems (Wang et al.
2006), although the interpretation of observations is still am-
biguous (Johnston et al. 2005).
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7. Robustness and long-time evolution
of the neutron star recoils

We have seen above that rotation, even if it is noticeably faster
than in the most recent stellar evolution models, does not pre-
clude neutron star kicks of several hundred km s~'. However, we
have made a number of approximations in our post-processing
analysis and used assumptions in our simulations whose impact
on the neutron star recoil still needs to be assessed. In addition,
we have stopped most of our simulations at a time of one sec-
ond after core bounce, when the neutron star acceleration was,
in many cases, still high. Hence we need to comment also on
the later evolution of the kicks. These issues are discussed in the
following.

7.1. Anisotropic neutrino emission

The neutron star recoil velocities, v", that are listed in

Tables A.1-A.5 are computed from Eq. ?A.IO), i.e. they do not
include the effects of anisotropic neutrino emission. As we show
in Appendix A, anisotropic neutrino emission results in a cor-
rection, v;*”, of the neutron star velocity that is described by
Egs. (A.17) and (A.19). In Sect. 4.4 we have already seen that
this correction is small for models B12 and B18. This actually
holds for most models. Only in a few cases is [v;*" /02| > 10%,
and in most of these cases the neutron stars have small recoil ve-
locities (cf. Tables A.1-A.5). The correction due to anisotropic
neutrino emission in general reduces the kick. This can be un-
derstood from the fact that in most models a single prominent
accretion funnel is present. The neutron star recoil caused by
gas anisotropies is always directed towards this downflow, while
the neutrino emission associated with the “hot spot” created by
the downflow on the neutron star surface results in a “neutrino-
rocket engine” that kicks the neutron star in the opposite direc-
tion (this circumstance was observed and discussed before by
Fryer 2004). However, the acceleration due to the neutrino emis-
sion remains small because the anisotropy parameter of the ac-
cretion luminosity is typically only a few per cent.

There are several reasons for that. On the one hand, the
neutrino-radiating tip of the accretion downstream is highly un-
stable and its position varies with time, reducing the neutrino
emission anisotropy by temporal averaging. On the other hand
there is a projection factor of cos 6 of the downflow impact polar
angle, 6, to be included due to the axial symmetry of our mod-
els. This factor also reduces the kick. Finally, the time scale of
neutrino energy release from the accreted matter is typically sig-
nificantly longer (the cooling time scale is of order 10 ms) than
the time scale that the gas remains compressed in the downflow
tips (between 0.1 and 1 ms) before it spreads around the neutron
star surface. Only very close to the lower end of the downdrafts
the density of the gas is so high (p $ 10!! gcm™3) that the neu-
trino emission is extremely large. During its violent impact on
the NS surface, the gas, however, overshoots equilibrium con-
ditions. Once decelerated, it bounces back, reexpands immedi-
ately, and wraps around the neutron star at radii considerably
larger than the minimal radius of impact. This is mainly due to
the fact that the gas comes from far out in the progenitor star
and is shock heated during accretion. As a consequence, its en-
tropy is still considerably higher than the entropy of the layers
around and inside the neutrinosphere (remember that neutrino
cooling during the infall is too slow to cool the gas efficiently).
Therefore the gas floats and forms an essentially spherical, high-
entropy and low-density (o ~ 10'° gcm™) envelope that radi-
ates neutrinos with significantly lower rates than the dense tips
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of the impinging downflows. A part of the gas is integrated in
the cooling layer and in response to the neutrino losses settles
rather slowly on the NS, while the other, higher-entropy part is
added to the region outside of the gain radius and is neutrino-
heated until it is blown away again in the neutrino-driven wind.
As a result, our models reveal that only at most 10—15% of the
binding energy of the infalling gas in the downflows are radiated
highly anisotropically. A much larger part of the released gravi-
tational binding energy is not emitted in the downflows but from
the essentially spherical layer enwrapping the nascent NS and
settling on it>. Due to the mass ejection in the wind, the total rate
of energy loss in neutrinos is actually significantly smaller than
the rate of release of gravitational binding energy correspond-
ing to stationary accretion with the mass infall rate through the
downflow.

7.2. Inertial mass of the neutron star

In most of our simulations we make the simplifying assumption
that the inertial mass of the neutron star is infinite, i.e. the con-
sequences of the neutron star motion are ignored during the hy-
drodynamic simulation. This assumption is dropped in one set
of models that is listed in Table A.5. In these simulations the
feedback effect of the neutron star motion is taken into account
by changing the frame of reference in every time step, thus al-
lowing the ejecta to move relative to the neutron star instead of
following the neutron star motion through the ambient gas (see
Sect. 2.3 and Appendices A and B).

Comparing the results obtained from both approaches for a
sample of about 30 simulations (which made use of the bound-
ary parameters of models B12 and B18), one sees that any
given model, all else being equal, develops different explosion
asymmetry and therefore NS kick, although the explosion en-
ergy and time scale are very similar (see Tables A.1 and A.5).
The ensemble distribution of kick velocities, however, shows lit-
tle change, and in particular neutron star velocities in excess
of 400 kms™! after 1s of post-bounce evolution are found re-
gardless of whether the relative motion of the neutron star is in-
cluded or not.

Inspecting our simulations with and without NS motion, we
can actually not discover any obvious differences caused by the
moving NS (the reader is invited to have a look at the movies
for models B12 and B12-m6 that are provided as online material
of this article). We think that there are a variety of reasons for
that. In the first place, the neutron star acceleration and velocity
are typically rather small, in particular before and just after the
explosion is launched when the acceleration is still unsteady (see
Figs. 8 and 18). Secondly, the downflow deceleration and impact
on the NS surface are so extremely violent and create so much
sound wave and shock activity that the small effect of NS motion
cannot be discerned from other dynamical effects. Thirdly, the
downflows and also the neutrino-driven wind at later stages are
so fast (>10000kms™") and their accelerations so high that the
neutron star motion even with hundreds of km s™! (but still rather
modest acceleration) is only a small correction.

Since the explosions in our models are triggered by neu-
trino heating, supported by violent hydrodynamic instabilities,

3 1t should be noted that our transport approximation, which assumes
that the transport equations in radial direction can be solved indepen-
dently in all angular zones of the grid, has the tendency to overestimate
the neutrino emission anisotropy compared to a fully multidimensional
treatment. Therefore our “neutrino recoil” is likely to be an upper limit
of the corresponding effect rather than an underestimation.
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Fig. 18. Neutron star velocities (absolute values) as functions of time
for models W12F-c, W12F and several other models with fast neutron
star contraction. In six out of eight models the neutron star moves faster
than 300kms™' at 7= Is.

we suspect that the influence of the neutron star motion might
just be masked and dwarfed by other dynamics so that the ex-
plosion energy and time scale do not reveal any visible de-
pendence. On the other hand, the nonlinear growth of the hy-
drodynamic instabilities in the shocked layer is so chaotic that
any small changes, independent of their detailed origin (e.g.,
different initial seed perturbations, different rounding errors on
different computers, different neutrino interactions, the moving
neutron star, etc.) lead to modifications of the mass and momen-
tum distributions at the end of our simulations. Taking into ac-
count the NS motion by our transformation does not have any
specific consequences compared to other effects that influence
randomness.

7.3. Neutron star contraction and gravitational potential

For practical reasons, all simulations listed in Tables A.1-A.5
and Table 2 were performed with our “standard” prescription for
the contraction of the neutron star core (see Sect. 3.2), although
the “rapid contraction case” also discussed in Sect. 3.2 is po-
tentially more realistic. To study the corresponding differences,
we take the “high-perturbation”, non-rotating model W12-c (see
Sect. 6 and Table 2) as a reference case and perform an additional
simulation, model W12F-c, in which we replace the slowly con-
tracting inner boundary of model W12-c with the prescription
for a rapidly contracting proto-neutron star. Table 3 compares
some quantities characterising the two models.

Model W12F-c explodes earlier and attains a higher ex-
plosion energy than model W12-c. This can be explained by
the fact that for a smaller inner boundary radius more gravi-
tational energy is released, and that for a shorter contraction
time scale this release occurs earlier (see also Appendix C).
With v*(1s) = 611 km s~! the neutron star recoil velocity of
model W12F-c is very high. Large kicks are also found in a set
of simulations performed with rapid boundary contraction. For
testing this we consider for instance cases with

1. smaller initial random velocity perturbations of 0.1%
(model W12F in Fig. 18);
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Table 3. Important parameters of models W12-c and W12F-c.
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Model Lib AE},?éore A Ye,core <L500> AESOO Eexp texp Mns U?S 1215,1/ a‘zls agas dshock
[B/s] [B] [B/s] [B] [B] [s] [Mo] [kms™'] [kms™'] [kms’]

Wli2-c 29.7 71.5 0.11 68.7 57.1 040 0301 1.535 44.4 54.0 854 0.03 0.63

WI12F-¢c  29.7 101.2 0.08 1109 62.0 094 0.118 1411 611.7 -1.9 580.6 0.21 0.31

2. a Newtonian gravitational potential and a constant central
point mass chosen such that the same initial gravitational
acceleration is obtained at a mass coordinate of 1.1 M as
in the models of Buras et al. (2003), see models W12F-n0,
WI12F-n1 and W12F-n2 in Fig. 18;

3. a Newtonian gravitational potential and a varying central
point mass, which is increased with time to reproduce the
evolution of the gravitational acceleration at a mass coor-
dinate of 1.1 M, in the models of Buras et al. (2003), see
models W12F-nv, W12F-nv1l and W12F-nv2 in Fig. 18.

All of these models have in common that they explode more
quickly than models with the standard boundary contraction.
Yet, for all of these variations we obtain at least one simula-
tion with a neutron star recoil velocity of more than 400 km s~
at + = 1s (see Fig. 18). This demonstrates that a faster neu-
tron star contraction does not preclude high neutron star kicks
and in particular, it shows that it is not the absolute value of
the time scale for the onset of the explosion that matters. What
matters is the ratio of the explosion time scale to the growth
time scale of low-mode anisotropies by hydrodynamic insta-
bilities like convection, the acoustic-vortex cycle or the SASI
mechanism. With the faster shrinking of the neutron star not
only the explosion time scale decreases, but also other important
conditions change. In particular the advection time scale in the
postshock layer and the sound travel time between shock and
neutron star become shorter, because the faster NS contraction
initially leads to a smaller shock radius, too. Therefore the ve-
locities ahead and behind the stalled shock are higher and the
densities in the accretion layer are larger. Since the flow pattern
between shock and neutron star surface reacts and adjusts on a
hydrodynamic time scale, which is significantly shorter than the
contraction time scale of the neutron star, the growth of nonra-
dial instabilities is accelerated in case of shorter dynamical time
scales in the accretion layer. Low-mode flow therefore develops
faster (more details will be given in Scheck et al., in prepara-
tion). Thus the faster NS contraction leads to larger global ejecta
asymmetry, in spite of faster explosions. Because of stronger
neutrino heating by the higher accretion luminosities the explo-
sion time scales are indeed similarly short as in the light-bulb
studies of Janka & Miiller (1994, 1996). The previous “burst-
like” light-bulb calculations were actually rather disfavorable
for large global anisotropies: due to the high initial luminosities
they produced fast explosions, and because of the extended NS
the growth of low-mode nonradial instabilities was slow. What
therefore finally matters is the ratio of explosion time scale to
low-mode growth time scale, and not the absolute period of time
in which the explosion develops. The faster growth of non-radial
instabilities can result in even higher values of the anisotropy pa-
rameter (g, for “rapid” as compared to “standard” models with
the same explosion energy. In other words, the envelope in the
@gas — Eexp plane of Fig. 11 appears shifted towards higher val-
ues of ag, for a faster contraction of the proto-neutron star, and
hence also the average recoil velocity (for a specified explosion
energy) increases.

In our largest sample of models sharing the same (slowly
contracting) boundary condition, i.e. the 18 B18-like models
listed in Tables A.1 and A.5, only three simulations develop
neutron star recoil velocities of more than 500 kms~!, and only
seven produce neutron stars with more than 300 kms" at 1 s. In
contrast, in just eight simulations with rapid boundary contrac-
tion we obtain six models with neutron star velocities of more
than 300 kms~! and three models with neutron stars moving
faster than 500 kms~! (Fig. 18). Better statistics would require
more simulations, which should also be based on the same initial
model* and should make use of the same gravitational potential.

We performed some of the simulations discussed above with
Newtonian gravity to demonstrate that the choice of the effec-
tive relativistic potential in our models was not essential for our
results. We recall that only when we use the Newtonian gravi-
tational potential, momentum conservation can be expected an-
alytically (irrespective of numerical errors and independent of
whether the point mass is increased with time, or not). The re-
sults therefore show that large neutron star recoil velocities are
not linked to any violation of total momentum conservation as-
sociated with the use of the effective relativistic potential (see
the discussion in Sect. 4.4).

7.4. Long-time evolution of the neutron star kicks

In order to investigate how the neutron star recoil velocities
evolve beyond a time of one second after core bounce, we per-
form six exemplary long-time simulations. For these we add
150 radial zones to our grid and place the outer grid boundary
at a larger radius of 109 c¢m, which allows us to simulate the
first 3—4 s of the post-bounce evolution. In three of the simula-
tions an infinite inertial neutron star mass is assumed, while in
the other models the hydrodynamic feedback of the neutron star
motion is taken into account. Four of the six models are just con-
tinued from models that we have computed up to a time of one
second with our standard grid. We map the corresponding data
onto the larger grid at + = 750 ms and extend the initial model
profile from the old to the larger outer boundary of the new grid.

The evolution of the neutron star velocities for all of the
long-time simulations is displayed in Fig. 19. The neutron
star of model B18-3 is accelerated to more than 1200 kms™!
within 3.7 s. This demonstrates that the acceleration mechanism
at work in our calculations has the potential to explain even
the highest observed pulsar velocities (see e.g. Chatterjee et al.
2005). The fact that model B18-3 is the only one in our sample
that produces a neutron star with more than 1000 kms~' does
not appear problematic to us. It may be a matter of low-number
statistics and might also change when more extreme conditions
are realized in models, e.g. by a faster contraction of the neu-
tron star than assumed in our standard set of models. In this re-
spect the sample of simulations plotted in Fig. 18 looks promis-
ing. In quite a number of those the neutron stars have large

4 The comparison between B and W models is viable, however, be-
cause both progenitor models are quite similar.
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Fig.19. Evolution of the neutron star velocities in six long-time sim-
ulations with the same boundary conditions as model B18. After four
seconds the acceleration has become very weak in all models and no
significant further increase of the velocities is expected. For each model
a thin horizontal line marks the extrapolated velocity value vy, according
to Eq. (8), which is a rough estimate of the final neutron star velocity.

velocities at one second and also still high accelerations (see,
e.g., model W12F-c in Table 3).

After 3—4s the neutrino-driven wind has blown away all
downflows from the neutron star vicinity and has generated a
nearly spherically symmetric wind bubble around it. Therefore
the neutron star acceleration diminishes and the recoil velocities
approach their terminal values. The latter can be estimated by
extrapolating the velocities at + = 1, applying an average ac-
celeration value (al*), as computed for the time interval between
t=0.5sand I s, over a time period Afexrapol, according to

U;T; = Urzls(t = 18) + Afextrapol X <028>~ (8)
The average acceleration (a}®) is introduced as a time-average
that is less sensitive to short-time variations and thus allows
for a more robust extrapolation of the velocities. The factor
Atexirapot = 0.35 s is “calibrated” by optimising the estimates in
case of the models of Fig. 19. The agreement of extrapolated and
computed terminal velocities is typically of the order of 10%. In
the following section we use Eq. (8) to estimate the final neutron
star velocities for all models listed in Tables A.1—-A.5. The basic
findings of our analysis do not depend on whether we use al®
(the acceleration values at the end of our simulations) or {(a;*)
(the mean values in the last 0.5 s) for extrapolating the velocities
beyond the simulated period of one second of evolution.

8. Implications for the neutron star velocity
distribution

In Sect. 5 we pointed out that Fig. 12, showing the neutron star
velocities and accelerations at ¢+ = 15, suggests the existence
of two groups of models. One group consists of cases with low
velocities and on average low acceleration, and the other group
cases with high velocities and significantly higher average accel-
eration. The latter models are typically characterised by a strong
[ = 1 mode in the flow pattern at the end of our simulations.

L. Scheck et al.: Multidimensional supernova simulations. I.

Provided the acceleration shows a trend of increasing more
steeply than linearly with the neutron star velocity, one can ex-
pect a growth of the separation of both populations when the ac-
celeration continues over a longer period of time. Thus a bimodal
velocity distribution will emerge, caused by the larger accelera-
tion associated with the presence of a dominant / = 1 mode in
the models of the high-velocity group. To test this possibility, we
extrapolate the neutron star motions of all of our 70 models listed
in Tables A.1-A.5 from one second to the expected final condi-
tions by applying Eq. (8). Figure 20 displays both the velocity
distribution at the end of the simulated evolution (at ¢ = 1 s; left
panel) and the terminal distribution (right panel).

A comparison of the panels in Fig. 20 shows that most
neutron stars of the high-velocity and high-acceleration group
(which is indicated by the darker shading) accelerate to signifi-
cantly higher velocities on time scales longer than one second. In
contrast, only very few stars of the low-velocity group reach ve-
locities in excess of 200 kms™!. As a consequence, a minimum
develops in the extrapolated distribution around 300 km s, sep-
arating clearly the two components in velocity space.

We interpret this result as an interesting demonstration that
the kick mechanism discussed here is able to produce a bimodal
distribution of neutron star velocities simply due to the presence
or absence of a dominant / = 1 mode in the spatial distribu-
tion of the supernova ejecta. Invoking two different processes
for neutron star acceleration is not required. It is, however, un-
clear whether this may provide an explanation of a possible bi-
modality in the observed velocity distribution of pulsars. The
existence of such a bimodality is not only ambiguous, some au-
thors finding hints (e.g. Cordes & Chernoft 1998; Fryer et al.
1998; Arzoumanian et al. 2002; Brisken et al. 2003), while oth-
ers favour a one-component Maxwellian distribution (e.g. Lyne
& Lorimer 1994; Hansen & Phinney 1997; Hobbs et al. 2005;
Zou et al. 2005). Also the parameters for the two-component fits
differ significantly between the publications.

Though our result is inspiring, as well as tantalising, we re-
frain from making a direct connection with observations. Such
attempts are hampered by the limitations of our analysis, which
does not only assume the extrapolation of Eq. (8) to be valid for
all cases. Our analysis is also affected by our finding that the
magnitude of the neutron star kicks seems to depend on the neu-
tron star contraction (see Sect. 7.3) that is mimicked in our sim-
ulations by a moving inner boundary of the computational grid.
Moreover, our analysis is constrained to a set of 15 My, stars’,
while linking theory with observations would require modelling
explosions for a representative distribution of supernova progen-
itors, making reasonable assumptions about the progenitor de-
pendence of the explosion energy and including the effects from
binary breakup. A large set of calculations would have to ac-
count for the stochastic nature of the discussed neutron star ac-
celeration mechanism, thus establishing the distribution of kick
velocities as a function of the progenitor properties. One might
have the concern that in the combined data of all of these runs the
minimum visible in the velocity distribution of Fig. 20 is filled
up. Finally, quantitatively meaningful calculations of neutron
star kicks will ultimately have to be obtained by 3D modelling.

5> The employed progenitor models, however, exhibit large differ-
ences in core sizes and core density profiles, which actually may be
considered as reflecting the variations over a broader range of progeni-
tor masses.
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Fig. 20. Histograms of the neutron star velocity distribution for the 70 models of Tables A.1-A.5. The left panel shows the velocity distribution at
t = 1s (solid black line). The darker shaded area corresponds to the fraction of models whose neutron stars are moving with more than 200 kms™!
one second after bounce. The same models are displayed with dark shading also in the right panel, which shows the final velocity distribution as

obtained by extrapolation with Eq. (8).

9. Summary and conclusions

The aim of this work was to investigate hydrodynamic instabil-
ities in the neutrino-heated postshock layer of core-collapse su-
pernovae and the importance of such instabilities for the devel-
opment of explosion anisotropies and neutron star kicks.

For this purpose we have presented more than 70 supernova
simulations in two dimensions (i.e., assuming axisymmetry) for
different 15 M, progenitor models, relying on the viability of the
neutrino-driven explosion mechanism. Since this viability is still
an open question and no explosions are obtained in 2D mod-
els with a detailed spectral treatment of neutrino transport for
stars more massive than about 11 M, (see Buras et al. 2006a,b),
we triggered the explosions in our simulations by replacing the
contracting core of the nascent neutron star by an inner bound-
ary of the computational grid and assuming suitable neutrino lu-
minosities there from the neutron star core (see the introduc-
tion in Kifonidis et al. 2006, for a motivation and justification
of this procedure in light of the results from recent Boltzmann
transport supernova simulations). The boundary was placed at a
Lagrangian mass coordinate typically of 1.1 M, where the neu-
trino optical depths were usually 10 or higher. A systematic vari-
ation in the core neutrino luminosities imposed at this boundary
allowed us to investigate the growth of hydrodynamic instabil-
ities. This variation also allowed us to study how the explosion
and the size of the explosion energy depend on the strength of
the neutrino heating.

In contrast to previous work (Janka & Miiller 1996;
Kifonidis et al. 2003), the neutrino luminosities of the neutron
star core in the models presented here were not assumed to de-
cay exponentially, but — in closer agreement with transport cal-
culations for the whole neutron star — were assumed to remain
(roughly) constant on a Lagrangian mass shell of 1.1 Mg over
hundreds of milliseconds after the bounce. With this boundary
condition, the approximative neutrino transport scheme devel-
oped for the present study ensures a radial and temporal be-
haviour of the neutrino luminosities and mean spectral energies
as also found qualitatively in more complete and fully consistent
supernova models, i.e. the core and accretion components of the
neutrino emission are both accounted for.

Our main results can be summarised as follows.

. Random perturbations, by which we seed the growth of non-
radial instabilities in our simulations, can grow from small
initial amplitudes (between 0.1% and some percent of the
fluid velocity) to global asphericities by convective insta-
bility, as well as the vortical-acoustic cycle (Foglizzo 2001,
2002), provided the time until the onset of rapid shock ex-
pansion is long enough. Once the shock expansion gains mo-
mentum, the further growth of the instabilities, e.g. by the
merging of smaller structures to larger ones, is quenched, and
the flow pattern essentially freezes out. It is not the absolute
time until explosion that matters in this context, but the ratio
of the explosion time scale to the typical growth time scale of
the instability. A detailed investigation of the growth of dif-
ferent kinds of non-radial instabilities in the postshock flow
and their competition will be published in a subsequent pa-
per (Scheck et al. 2006, in preparation). The neutrino trans-
port description and employed inner boundary condition for
the transport used in this work ensured a sufficient delay of
the shock acceleration, in contrast to the light-bulb parame-
ters employed by Janka & Miiller (1996) and Kifonidis et al.
(2003).

2. The growth of the instabilities proceeds extremely nonlin-

early and chaotically such that the final ejecta anisotropy
turns out to be sensitive to the initial random pattern of the
seed perturbations, as well as to small differences between
numerical runs (connected, e.g., to small changes in the grid
zoning, machine roundoff errors, or small differences of the
input physics). Despite the different ejecta geometry, how-
ever, integral parameters of the models, such as the neutron
star mass, explosion time scale, or explosion energy, show
little variability.

. This is different for quantities, which depend on hemispheric
asymmetries. The instabilities lead to symmetry breaking,
and the ejecta can attain a net linear momentum, balanced
by the recoil absorbed by the neutron star. In practise, the
momentum exchange was found to be mediated by gravi-
tational, as well as hydrodynamic forces. Typically the for-
mer are more important, but in cases where the neutron star
accretes anisotropically over long periods of time, hydro-
dynamic interaction can also contribute significantly. In our
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standard setup for the calculations, the neutron star is fixed
(due to the use of the inner grid boundary) at the centre of
the grid. Since it therefore does not start moving, in spite of
momentum gain, this situation can be considered as a case
where the neutron star is assumed to have infinite inertial
mass. In order to test whether this affects the results, we per-
formed a number of runs by imposing the negative of the
instantaneous neutron star velocity (as calculated from its at-
tained momentum) on the ambient gas on the computational
grid. This leads to a collective gas motion relative to the neu-
tron star fixed at the grid centre, and it corresponds to chang-
ing the frame of reference by applying a Galilei transforma-
tion after every hydrodynamics step. Of course, for any given
model, all else being equal, the model with the transforma-
tion yields a different explosion asymmetry and a different
neutron star kick (but still very similar explosion energy and
time scale). But despite these differences in individual sim-
ulations, we could not detect any significant changes in the
ensemble behaviour with respect to explosion parameters or
magnitude and distribution of neutron-star kick velocities.
Further tests also showed that the details of the neutrino
treatment, the employed gravitational potential (i.e., per-
forming the simulations with Newtonian gravity or an effec-
tive relativistic potential according to Marek et al. 20006), the
assumed amplitude of initial perturbations, or the assumed
contraction of the inner grid boundary (which mimics the
shrinking of the cooling nascent neutron star) do not have
any qualitative influence on our results for the neutron star
kicks. Quantitatively, we discovered indications (based on a
limited set of computations, however) that a faster contrac-
tion of the forming neutron star — which may correspond to
a softer nuclear equation of state or more rapid cooling —
seems to favour higher neutron star kicks on average. This
can be explained by a more rapid growth of low-mode non-
radial instabilities, leading to higher values of the aniotropy
parameter g, for a given explosion energy.

. While the neutrino flux imposed at the inner grid boundary

was assumed to be isotropic in all of our simulations, the
neutrino radiation at large distances from the neutron star
could become anisotropic because of lateral differences in
the neutrino emission and absorption. The biggest such dif-
ferences are associated with long-lasting, narrow downflows
through which the neutron star accretes gas anisotropically.
The gas heats up strongly upon falling towards the neutron
star surface and getting decelerated in shocks. We found,
however, that the corresponding anisotropic neutrino emis-
sion produces a neutrino-mediated acceleration that accounts
only for small corrections to the neutron star velocities pro-
duced by the asymmetric mass ejection. These corrections
rarely exceed 10%. Both accelerations usually produce mo-
tion in opposite directions. The reason for this is that the
neutron star receives a kick rowards a downflow (which at-
tracts the neutron star gravitationally or leads to a momen-
tum deficit of the expanding ejecta shell on the side of the
downflow), whereas the neutrino radiation is more intense in
the hemisphere of the downflow and thus propels the neu-
tron star in the other direction. Since the accretion luminos-
ity is radiated near the neutron star surface, we do not think
that our use of the inner boundary underestimates this effect.
The inverse is more likely. Our radial transport tends to over-
estimate the anisotropy of the outgoing radiation, because
truly multi-dimensional transport would redistribute the lo-
cally emitted neutrinos more isotropically in all directions

6.

instead of favouring their radial propagation (see the discus-
sion in Livne et al. 2004).

After one second of post-bounce evolution, which was the
period of time we simulated for most models, we obtained
maximum neutron star velocities up to 800 kms~'. The mod-
els appear grouped in two populations, one in which the neu-
tron stars move with less than 200 km s~! and have low accel-
eration at ¢ = s, and another one, roughly equally strong,
where the stars have velocities higher than 200 kms~! and
on average also higher accelerations (see Fig. 12, and the
left panel of Fig. 20). The two groups differ by the absence
or presence, respectively, of a strong or dominant / = 1
dipole mode in the gas distribution around the neutron star.
The simulated models cover a range of explosion energies
roughly equally between about 0.3 x 10°! erg and more than
1.5 x 10°! erg. We could not detect any systematic variations
in the typical magnitude or scatter of the kick velocities with
the explosion energy. We also did not discover any obvious
correlation of the kicks with the properties of the three con-
sidered 15 M, progenitor stars, which exhibited major differ-
ences in their core sizes and density structures. Rotation with
a fairly high pre-collapse rate of 0.5rad/s in the iron core,
which in view of the most recent stellar evolution models
is probably unrealistically high for ordinary supernovae (see
Heger et al. 2004), leads to slightly higher explosion ener-
gies (due to a higher mass in the gain layer), a more spherical
shock surface, and the presence of downflows at both poles
of the rotating neutron star. This suggests a weaker contribu-
tion of an / = 1 mode in this situation compared to the non-
rotating models, where downflows in only one hemisphere
are rather common. Although very extreme cases were miss-
ing in our fairly small sample of simulations with such rapid
rotation, we nevertheless obtained kick velocities in excess
of 300 kms™! (still rising at one second after bounce), and
could not detect any bias towards the group with low veloci-
ties and low average acceleration.

The two populations in our velocity distribution at one sec-
ond are certainly interesting in view of the possibility of
a bimodality in the distribution of measured pulsar veloci-
ties, which however is still controversial. We therefore at-
tempted to derive, from our set of about 70 simulations, the
distribution at the time the neutron stars have reached their
terminal velocities. In order to do that we continued some
of our models until 3—4 s, at which time the accelerations
had become very small. These models served for calibrating
the typical period of time that a representative acceleration
must be applied to extrapolate from the velocity at one sec-
ond to the terminal values. The representative acceleration
was taken as the average value between 0.5s and 1s after
bounce, a choice which guaranteed that short-time fluctua-
tions of the size and direction of the acceleration (which are
rather frequent in the case of low-energetic explosions) do
not corrupt the extrapolation. Indeed, the extrapolated ve-
locity distribution revealed a clear bimodal structure with a
minimum around 300 km s~! and a high-velocity component
that extends up to 1300 kms™" (right panel of Fig. 20). This
component consists of most of the neutron stars that belong
to the high-velocity, high-acceleration group at one second.
Both components are similar in strength, but this may de-
pend on the choices of parameters for the considered set of
models. The basic result of a bimodality, however, turned out
to be very robust against variations in how the extrapolation
is done.



L. Scheck et al.: Multidimensional supernova simulations. I.

Although the presence or absence of a pronounced / = 1 mode in
the ejecta distribution offers a natural, as well as suggestive, way
to obtain a bimodality in the context of our hydrodynamic kick
mechanism, we refrain from claiming that our result strongly
supports the existence of such a bimodality in the observed dis-
tribution of pulsar velocities. There are too many uncertainties
that might lead to a filling of the minimum of our distribution.
Not only do we assume that our extrapolation law (Eq. (8)) can
be applied with the same value for the duration of the average
acceleration to all models of our sample, we also consider only
a very constrained selection of progenitor models, which is not
representative of the true distribution of supernova progenitors.
Though our simulations do not reveal systematic differences of
the kicks in dependence of the explosion energy or progenitor
structure, we do not feel able to exclude that a correlation of both
over the range of supernova progenitors could conspire such that
the bimodality of Fig. 20 gets wiped out.

The proposed hydrodynamic kick mechanism, however,
leads to an unambiguous prediction, which might be tested by
future detailed observations of supernova remnants: the mea-
sured neutron star velocity should be directed against the mo-
mentum of the gaseous supernova ejecta. This is different from
many theories that explain pulsar kicks by anisotropic neutrino
emission from the nascent neutron star. In that case the direction
of the acceleration can be independent of ejecta asymmetries.

Apart from all the assumptions and approximations entering
this work and discussed in detail above, the biggest deficiency in
the present analysis is that it is based on simulations that assume
axial symmetry with the polar axis being a coordinate singular-
ity that is impenetrable for the fluid flow. Currently it is neither
clear to what degree pronounced / = 1 modes of the ejecta distri-
bution and long-lasting downflows of matter to the neutron star
can develop in the 3D environment, and how common they are,
although first 3D simulations with the setup and input physics
described here are promising (they will be presented in a future
publication, but see Janka et al. 2005b for some results). Nor is it
clear what the distribution of neutron star recoil velocities from
3D models will be. The large number of long-time simulations
required by the stochastic nature and long duration of the pro-
posed hydrodynamic kick mechanism, is currently out of reach
due to its enormous demand in computer time. Our results must
therefore be considered as indicative, but they are far from pro-
viding definitive answers.
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Appendix A: Post-processing of the simulations

In the following we define and tabulate some interesting charac-
teristic quantities that were evaluated for our about 80 hydrody-
namic models by post-processing the data of the simulations. To
keep the evaluation as straightforward as possible we sometimes
employ approximations which we will detail below.

The inner boundary condition for the neutrinos is constrained
by the parameters 7, AE\% () and AY.cor(f). Their defini-
tions are given in Appendix D.2, while their actual values (at
t = ls in case of the time-dependent quantities) are listed in
Tables A.1-A.5. A characterising value for the neutrino lumi-
nosities imposed at this inner boundary is

Lip(7) = Ley, (Rip, 1) + Le s (Riv, 1), (A.D)

where L.,, and L.y, are the energy luminosities of v, and v, de-
fined in Appendix D.1. Equation (A.1) neglects the contribution
from heavy-lepton neutrinos, whose interactions in the compu-
tational domain are less important than those of v, and v., and
who, in particular, do not contribute to the neutrino heating be-
hind the shock at a significant level.

We also consider the sum of the v, and ¥, luminosities at a
radius of 500 km,

Lsoo(t) = Ley,(r = 500 km, 1) + Le 5, (r = 500 km, 1), (A2)

and define the time average of this quantity in the time inter-
val [0, zexp ] as

fexp
(Ls00) = fexp " L Lsoo(2) dt. (A.3)
The value of (Lso) represents approximatively the (v, + ¥.) lu-
minosity that is responsible for the energy deposition behind
the supernova shock until the explosion sets in at a post-bounce
time ¢ = fop. Therefore the difference between (Lsoo) and L,
can be considered as a rough measure for the radial change
of the neutrino luminosities in contrast to their constancy in
case of the light-bulb scheme used by Janka & Miiller (1996).
Furthermore, we list the total energy in v, and V. neutrinos that
streams through a sphere with a radius of 500km in the time
interval [O, 7],

!
AEsqo(t) = ‘f(Le,ye + Le3,)(r = 500km, ¢') dr’. (A4)
0

The explosion energy, Ecyp, of a model is defined as the sum
of the total energy of all zones of the grid where this energy is
positive, i.e.

Eexp = Z Ctot,i Am;,

€1, >0

(A.5)

where i is the zone counter, Am; the mass contained in zone i, and
the total specific energy e is given by the sum of the specific
gravitational, kinetic, and internal energies,

(A.6)

1 2
€t = €gray T EU + €int.

For the sake of simplicity we use here the 1D Newtonian
expression

GM(r)

egrav(r) == (A7)
to evaluate the gravitational energy, neglecting the relatively
small general relativistic corrections, which have been taken into
account in the simulations.

The explosion time scale, #.xp, is defined as the time after the
start of the simulation when E.,, exceeds 10%8 erg. It turns out
that the exact choice of this threshold value does not matter very
much. Other definitions of the explosion time scale (e.g., linked
to the time when the expansion velocity of the shock exceeds a
certain value) do also not lead to qualitatively different results.

To characterise the deviation of the shape of the super-
nova shock from a sphere we introduce a shock deformation
parameter,

max (Ry(0) cos 8) — min (R(6) cos (0)) B
2 X max (Ry(0) sin 6)

where Ry(6) is the local shock radius as a function of polar an-
gle 8. The numerator and denominator in Eq. (A.8) are the max-
imum shock diameters in projection on the symmetry axis and
perpendicular to it, respectively. A prolate deformation leads to
a positive value of dyock, an oblate deformation gives a negative
value. Note that a linear shift of the shock surface in the direction
of the z-axis does not change dgpock-

The neutron star mass and the neutron star radius are con-
sidered to be associated with a certain value of the density,
pns = 10''g cm™3. The neutron star radius, Ry, is then simply
defined as the radius where the lateral average of the density is
equal to py, and the baryonic mass of the neutron star, M, is
given by the sum of the central point mass and the mass integral
over all grid zones with densities >pp.

In evaluating the neutron star recoil velocity, v,s, we have to
distinguish between simulations in which we consider the neu-
tron star motion relative to the ejecta by changing the frame of
reference after each time step (see Sect. 2.3 and Appendix B),
and simulations in which this motion is not accounted for. In
the first case no post-processing is required, because the neutron
star velocity is given at all times by the accumulated effects of
the Galilei transformations applied until time ¢ or time step m,

Uys(2) = Z Avgore’
1,...m

n=1,...,

dshock = 1, (A.8)

(A9)

where Av},. is given by Eq. (B.9). In the second case, vy is
computed a posteriori, by making use of linear momentum con-
servation. The total momentum of the system, i.e. the sum of the
neutron star momentum P, = M0, and the momentum of the
surrounding gas on the computational grid, Pgys, is initially zero
(because all models that we consider are spherically symmetric
or equatorially and axially symmetric just after collapse). Hence
we have for all times

Uns(1) = _Pgas(t)/Mns(t)’

and v,5(7) can be determined by evaluating the neutron star mass
and the momentum integral of the ejecta gas,

Poa(t) = f pvdV.
Rps<r<oco

Here dV = r*sinf dr df d¢. Note that the volume integral in
Eq. (A.11) is limited by the outer boundary of our Eulerian grid
and that the momentum flux associated with anisotropic mass
flow over the grid boundary would have to be taken into account.

Equation (A.10) may actually also be coined in terms of an
anisotropy parameter of the ejecta, @y, (see Janka & Miiller
1994; Herant 1995). To accomplish this, we make use of the fol-
lowing scalar quantity

Ry(6)
Pei(?) :=f plol dV,
R

ns

(A.10)

(A.11)

(A.12)
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Table A.1. Simulations based on the Woosley et al. (1988)/Bruenn (1993) post-bounce model. The luminosity time scale #; is 1s. Unless noted
otherwise the inertial mass of the neutron star is assumed to be infinite for these and the simulations listed in the following tables, i.e. the neutron
star takes up momentum but cannot move on the grid. For the definitions of the listed quantities see the main text. All time-dependent quantities
are given at a time ¢ = 1s, when we terminated the simulations. Energies are given in units of 1 B = 1 Bethe = 10°! erg.

Model Lib AEL?CLOI—C A Ye,core <L500> AESOO Eexp texp Mns U?S UQSYV G?S gas dshock
[B/s] (B] (B/s] [B] [B] [s] [Mo] [kms'] [kms™'] [kms™]
B10 24.7 59.6 0.09 57.1 459 0.19 0294 1.426 -164.1 44.4 -180.2 0.24 0.67
B11 27.2 65.5 0.10 58.8 463 0.27 0.280 1.401 -23.6 0.7 -2489 0.03 0.97
B12 29.7 71.5 0.11 60.6 487 037 0220 1.399 -389.5 45.0 -3724 032 0.06
B12-1 29.7 71.5 0.11 60.5 475 033 0228 1.377 72.8 4.7 479 0.07 0.22
B12-2 29.7 71.5 0.11 60.9 485 039 0212 1.391 85.8 9.7 3457 0.07 0.82
B12-3 29.7 71.5 0.11 60.9 46.5 0.38 0.207 1.369 242.0 2.0 4643 0.18 0.97
B12-4 29.7 71.5 0.11 61.1 477 035 0216 1.385 -115.1 20.4 -154.2  0.10 0.51
B12-5 29.7 71.5 0.11 61.0 47.8 033 0211 1.387 -206.9 11.6 -483.1  0.19 0.52
B13 322 71.5 0.12 62.4 496 045 0.188 1.378 -355.3 32.0 -408.0 0.25 0.36
B14 34.6 83.4 0.13 63.6 49.6 051 0.198 1.345 -128.0 -11.2 -66.7 0.07 0.40
B15 37.1 89.4 0.14 65.3 503 065 0.162 1.318 36.1 -1.0 36.0 0.02 0.27
B16 39.6 95.3 0.15 66.3 51.8 0.81 0.160 1.305 -214.6 -2.6 -334.4  0.08 0.57
B17 42.1 101.3 0.15 67.6 533 095 0.146 1.289 -25.5 14.8 -102.6  0.01 0.05
B17-1 42.1 101.3 0.15 67.8 534 092 0.160 1.290 -354.0 5.6 -202.2  0.12 0.31
B18 44.5 107.3 0.16 68.3 548 1.16 0.152 1.275 515.3 5.2 290.5 0.15 0.42
B18-1 44.5 107.3 0.16 68.4 54.7 1.12 0.154 1.274 -126.5 -0.8 -49.1 0.04 0.20
B18-2 44.5 107.3 0.16 68.9 547 1.14 0.152 1.268 82.5 -5.2 16.5 0.02 0.07
B18-3 44.5 107.3 0.16 68.8 57.1 1.15 0.142 1.305 798.8 —41.2 552.1 024 -0.06
B18-4 44.5 107.3 0.16 68.2 54.6 1.14 0.150 1.272 -171.6 4.0 65.7 0.05 0.46
B18-5 44.5 107.3 0.16 68.5 552 1.09 0.164 1.280 -121.8 -0.9 154 0.04 -0.02
B18-6 44.5 107.3 0.16 68.7 554 1.11 0.160 1.283 502.1 -20.6 220.0 0.15 -0.06
B18-g1 445 107.3 0.16 68.7 545 1.12 0.142 1.269 -60.3 3.9 =554 0.02 0.06
B18-g2 445 107.3 0.16 68.7 548 1.12 0.138 1.273 267.9 -8.1 126.7  0.08 0.28
B18-g3 445 107.3 0.16 68.5 549 1.10 0.150 1.274 -7.4 -3.5 0.9 0.00 0.02
B18-g4 445 107.3 0.16 68.7 545 1.16 0.132 1.270 -416.8 1.7 -150.9 0.11 0.37
B19-g1  47.0 113.2 0.17 69.6 559 131 0.148 1.253 -273.8 0.3 -96.7 0.07 0.41
B19-g2  47.0 113.2 0.17 69.5 56.0 1.33 0.148 1.255 188.5 6.4 48.8 0.05 0.15
B19-g3  47.0 113.2 0.17 70.0 56.6 126 0.132 1.263 366.6 1.1 183.7 0.10 0.13
B19-g4 47.0 113.2 0.17 70.0 56.8 1.33 0.130 1.267 4717.1 -18.3 1956 0.12 -0.02
B20 49.5 119.2 0.18 71.0 573 149 0.128 1.238 133.2 5.6 52.6  0.03 0.40
B21 51.9 125.1 0.19 72.1 585 1.72 0.122 1.222 30.6 -0.9 -20.2  0.01 0.24

Table A.2. Simulations based on the Limongi et al. (2000)/Rampp post-bounce model. The luminosity time scale ¢, is 0.7 s for these simulations.
For more details, see the caption of Table A.1.

Model Lib AEE/(’)gore AYc,cnrc <L500> AESOO Ecxp Z‘cxp Mns 025 vrzls,v ags agas dshock
[B/s] [B] [B/s] [B] [B] [s] [Mo] [kms™'] [kms™'] [kms*]
L12 42.4 94.6 0.13 90.7 70.7 051 0321 1.677 278.5 -12.9 3343 024 0.11
L13 45.9 102.5 0.14 91.7 69.2 0.68 0.268 1.620 -92.6 =59 -333.6  0.05 0.77
L14 49.5 110.4 0.15 94.6 72.8 0.81 0.280 1.628 482.1 -22.0 297.1  0.26 0.31
L15 53.0 118.3 0.17 96.2 752 1.02 0266 1.617 -239.5 -39 -378.5 0.10 0.63
L16 56.5 126.2 0.18 97.8 763 1.07 0.256 1.586 -437.9 12.8 -715.2  0.17 0.47
L17 60.1 134.0 0.19 100.3 774 1.19 0.256 1.558 —24.7 5.5 -47.6 0.01 0.37

Table A.3. Simulations based on the non-rotating Woosley & Weaver (1995)/Buras et al. (2003) post-bounce model. The luminosity time scale #;,
is 1 s for these simulations. For more details, see the caption of Table A.1.

Model Lib AE\[/,oclorc AYe,core <L500> AESOO Eexp texp Mns U?S U?S,V G?S Qgas dshock
[B/s] (B] [B/s] (Bl [B] [s] [Mo] [kms'] [kms'] [kms]
W10 24.7 59.6 0.09 64.3 554 021 0420 1.568 -129.8 42.1 -443.1  0.15  0.81
W12 29.7 71.5 0.11 69.0 539 031 0.322 1.501 -97.7 -9.7 -132.5 0.10 0.61
Wi12-1  29.7 71.5 0.11 68.0 59.5 032 0374 1.563 -363.8 81.2 -377.0 032 0.13
w14 34.6 83.4 0.13 72.9 56.6 046 0250 1473 -62.0 -1.5 66.1 0.04 0.37
W16 39.6 95.3 0.15 76.0 58.5 0.67 0244 1.430 287.2 =55 4642 0.14  0.68
W18 44.5 107.3 0.16 79.3 61.5 0.89 0.226 1.401 -283.6 4.2 -290.1 0.11 0.44

W20 49.5 119.2 0.18 82.0 63.5 136 0.216 1.354 —3717.3 0.6 -277.0 0.10  0.39
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Table A.4. Simulations based on the rotating Woosley & Weaver (1995)/Buras et al. (2003) post-bounce model. The luminosity time scale 7, is

1 s. For more details, see the caption of Table A.1.

Model Lib AEL?CLOI—C AYe,core <L500> AESOO Eexp texp Mns U?S U;ls’v af—_“ Agas dshock
(B/s] [B] (B/s] (Bl [B] [s] [Mo] [kms™'] [kms™] [kms ]
R10 24.7 59.6 0.09 59.9 488 0.25 0418 1.521 -154 -14.3 -118.7 0.02 -0.02
R12 29.7 71.5 0.11 64.6 499 0.50 0316 1461 -235.8 17.5 -203.4 0.16 0.15
R14 34.6 83.4 0.13 69.2 524 0.69 0264 1420 88.4 14.6 86.9 0.04 0.15
R16 39.6 95.3 0.14 71.9 56.0 098 0.256 1.396 321.2 -8.9 210.1  0.11 0.06
R18 44.5 107.3 0.16 75.8 583 124 0232 1.349 -4.8 -3.7 -26.7 0.00 -0.07
R18-g 445 107.3 0.16 75.8 58,5 1.23 0226 1.352 -113.9 2.1 -188.1  0.03 0.07
R20 49.5 119.2 0.18 78.8 60.9 1.64 0214 1.309 280.1 0.8 123.9  0.06 0.14

Table A.5. Simulations based on the Woosley et al. (1988)/Bruenn (1993) post-bounce model. The luminosity time scale #; is 1 s. For more details,
see the caption of Table A.1. Different from the models listed in all other tables, the recoil motion of the neutron star was accounted for in the

simulations listed here (as described in Sect. 2.3 and Appendix B).

Model Lib AE}:;OW AYc,corc <L500> AESOO Ecxp tcxp Mns Ugs U?S,V ags agas dshock
[B/s] [B] [B/s] [B] [B] [s] [Mo] [kms'] [kms™'] [kms?]
B12-ml 29.7 71.5 0.11 60.9 474 036 0.226 1.384 -56.8 -1.7 -208.2  0.06 0.48
B12-m2  29.7 71.5 0.11 60.9 477 031 0222 1.385 -100.0 19.1 -63.5 0.10 0.72
B12-m3  29.7 71.5 0.11 61.2 47.8 0.38 0.210 1.388 272.6 -16.5 919 0.23 0.35
B12-m4  29.7 71.5 0.11 60.9 47.0 035 0209 1.378 -104.3 -7.4 -197.2  0.09 043
B12-m5 29.7 71.5 0.11 60.8 479 035 0219 1.389 365.6 -10.1 219.1  0.32 0.47
B12-m6  29.7 71.5 0.11 60.7 484 036 0229 1.395 -334.1 42.4 -4629 030 0.26
B18-m1 445 107.3 0.16 68.9 549 1.12 0.136 1.274 43.3 -4.8 -108.8 0.02 0.12
B18-m2 445 107.3 0.16 68.9 548 1.14 0.139 1.273 -86.8 -1.1 -31.1  0.03  0.20
B18-m3 445 107.3 0.16 68.8 553 1.12 0.131 1.281 76.4 -8.8 -11.4 0.03 0.39
B18-m4 445 107.3 0.16 68.5 549 1.14 0.150 1.274 -118.7 14.5 -1564 005 0.13
B18-m5 445 107.3 0.16 68.3 547 1.12 0.166 1.273 -339.7 -4.5 -1524 0.13 -0.06
B18-m6  44.5 107.3 0.16 68.6 554 1.12 0.166 1.283 —439.3 14.0 -1945 0.17  0.04
B18-m7 445 107.3 0.16 68.8 547 1.12 0.138 1.272 109.2 8.6 2.1 0.04 0.38
B18-m8  44.5 107.3 0.16 69.3 545 1.13 0.134  1.269 455.0 —4.1 1874 0.17 0.05

which has the dimension of a momentum. Then we can write the
anisotropy parameter as

Agas = |Pgas| [ Pejs (A.13)
and the absolute value of the neutron star velocity as
[ons| = Agas Pej [ M. (A.14)

The neutron star acceleration corresponding to the velocity
change at a given time is calculated by finite differences:
fn+1) _ fn=1)

(n=1)

_ — Ups
Apns =

(A.15)
In computing the recoil velocity according to Egs. (A.10)
and (A.14), we have so far neglected the fact that the neutron star
may also be accelerated by anisotropic neutrino emission. While
our core luminosities at the inner grid boundary are assumed
to be isotropic at all times and no neutron star acceleration can
result from these, direction-dependent variations of the thermo-
dynamic variables in layers close to the neutron star surface de-
velop during the simulations and ultimately lead to anisotropies
of the neutrinospheric emission of neutrinos. In particular, den-
sity inhomogeneities and local hot-spots (in temperature) occur
as a consequence of narrow accretion flows that transport gas
from the postshock layers to the neutron star, where they are de-
celerated in shocks and radiate away energy in neutrinos. The
anisotropy of this neutrino emission can give rise to a “neutrino
rocket effect”, whose magnitude can be estimated by considering
the integrated momentum of the escaping neutrinos.

For a transport scheme along radial rays like ours, the neu-
trino momentum density has only a radial component and can
thus be written as (see also Appendix D)

ny€&

pver = ey = €, (A.16)
where F, is the local neutrino energy flux and e, the unit vec-
tor in the radial direction. The integrated neutrino momentum at

time ¢ is then given by

P, = f pyedV
Rip<r<oco

!
=f pyerdV+fdt§ pyce:dS,
Rip<r<Rop 0 r=Rop

with the surface element dS = 7? sin #d6d¢. Here the surface in-
tegral accounts for the fact that a significant amount of neutrino
momentum may have left our grid through the outer boundary
by the time 7. The momentum of the neutron star, including now
also the effect of anisotropic neutrino emission, is

(A.17)

Py =—(Pys+P,), (A.18)
so that the neutron star velocity, corrected for the recoil by
anisotropic neutrino emission, can be written as

Ungs,corr = Uns + Unsy = _Pgas/Mns - Pv/Mmo (A19)

We finally note that for symmetry reasons Pg, and P,, and
thus also Py and vy, can have only a component parallel to the
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symmetry axis, i.e. along the z-axis, in 2D axisymmetric calcu-
lations. Equation (A.11), for instance, therefore reduces to

Pz,gas =2n f drf d9r*sin @ p.(1,6)
Rus 0

00 /2
= 2nf drf dor? sinb [ p.(r,0) + p,(r,m— 6)]
Rus 0

= PN

z,gas

S
+ szgas.

(A.20)

Here p,(r,0) = p (v, cos@ — vgsin6) is the z-component of the
momentum density of the gas, and ngas and Pigas are introduced
as the z-momenta of the gas in the northern and southern hemi-

spheres, respectively.

Appendix B: Hydrodynamics in an accelerated
frame of reference

In an inertial frame of reference the hydrodynamic equations are
given by

%+V~(pv)=0, (B.1)
ov

'D(E +(v- V)v) + VP = pg, (B.2)

ag—tE+V-((pE+P)v)=v-pg, (B.3)

where p is the density, v is the velocity, P is the pressure, g is the
gravitational acceleration and E = € +v*/2 is the sum of internal
energy, €, and kinetic energy, €y, per unit mass.

Let AF be a frame of reference that coincides with an inertial
frame IF at time r = 0 and accelerates with a constant rate a in
z-direction, a = ae,. The Cartesian coordinates of both frames
are then related by

(xl’y/’Z/»t,) = (-xyy»z_atz/zy t) (B'4)

(primed quantities are used for the accelerated frame), which im-
plies that

07 (x,y,z,1)/0t = —at and 8z(x',y’,7,t)/0f = at. (B.5)

For density, pressure, velocity, kinetic energy and gravitational
acceleration the following relations hold:

P,y 7 1) = p(x,y,z.1),

Py, 7. ) =P(x,y,z,1),

vx,y,7, ) =v(x,y,z,t) — ate,

€X' Y 70 = Ean(X,y, 2,0 — V22 + (v, — at)?/2,

g, y.7,0=gxy,z1) - ae.. (B.6)

From relations (B.4)—(B.6), it is easy to see that the equation
of mass conservation (B.1) does not change in the accelerated
frame. The momentum equation in this frame is

ov

—yey .

0z

Note that in contrast to Eq. (B.2) there is now an additional term
on the right hand side, which affects the momentum components
perpendicular to the direction of acceleration. Thus for instance
the x-component of the time derivative of the velocity is

o o' + @ -VW |+ VP —pg =-atp %ex +
ot 0z

A W AN /R
o~ \"aw ey Ty )T pax T Mg

where the additional (rightmost) term is negligible compared to
v} (0v',/9z7'), as long as |at| < |v].

Similarly, it can be shown that the additional terms arising in
the energy Eq. (B.3) for an accelerated frame of reference are of
order 1% and can also be neglected, as long as |at| < |v,| holds.

Within a typical time step Af of a supernova simulation (of
order 107¢s) the condition |aAf| < |v.| is satisfied, because the
maximum neutron star accelerations are of O(10% cm/s?), and
hence |aAt| = O(100 cm/s), which is much smaller than the rel-
evant velocities in the simulations, which are of O(10° cm/s).
Thus a solution of the inertial frame hydrodynamics equations
with the simple replacement ¢ — g’ = g — a should yield an ex-
cellent approximation to the solution of the hydrodynamic equa-
tions in the accelerated frame.

Unfortunately, in the present problem the neutron star accel-
eration, and hence the instantaneous acceleration of the frame,
a(t), is not known a priori, because it is coupled to the so-
lution of the hydrodynamic problem during a considered time
step. Therefore we need to make use of an operator-splitting ap-
proach, in which we first ignore the acceleration of the frame
of reference and simply solve the inertial frame hydrodynamics
equations (just using the gravitational acceleration g). We can
then compute the current value of a(f), which is assumed to be
constant over the time step, using momentum conservation: The
sum of the momenta of the neutron star core, Py, and the mat-
ter on the numerical grid, Pg;q, is conserved and initially zero,
so that AP.ore = —APgiq. We can then use the relation

Pyiia(1") = Pgria(t"™")
MCOre At

a(t") = — (B.8)

to determine the acceleration in this time step. Finally we take
the effects of the global acceleration of our frame into account
in a second step, by adding

—a(f) At = —AU!,

core

(B.9)

to the hydrodynamic velocity in each zone of the grid, in essence
performing a Galilei transformation to an instantaneous inertial
frame in which the neutron star is again at rest.

Appendix C: Explosion energy

The explosion energy of neutrino-driven supernovae consists of
two major contributions. The first is the recombination energy
of the matter in the gain layer at the onset of the explosion. This
matter consists of free nucleons and alpha particles at the time
the explosion starts. Almost all of this mass (except for some
fraction in the downflows, which is accreted onto the neutron
star) ends up in a dense shell behind the expanding shock. As
the shock propagates outward, the temperature in this expanding
shell decreases and the matter recombines to a-particles and later
to nuclei.

Figure C.1 displays the available recombination energy of
the matter in the gain layer at the time of the explosion,

ES (texp) = f €rec (7, Texp) AV (C.1)
gain layer

Here €. (1, t) denotes the density of recombination energy avail-
able when matter consists of nucleons, a-particles and some
mass fraction of heavy nuclei,

frec(r’ t) = Bh ”?ax(r» t) - (Ba na(r» t) + Bh f’lh(r, t)) > (CZ)
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Fig. C.1. Available recombination energy, E& , as a function of the
mass in the gain layer, AM,,, at the time of explosion for the mod-
els of Tables A.1-A.5. The slope of this approximately linear relation
corresponds to about 5 MeV per baryon (dotted line).

0.08

with By and B, being the binding energies of a representative
heavy nucleus (Zy, A, = Ny + Zy) from the iron group (as as-
sumed in our equation of state) and of a-particles, respectively,
and n"™™ = min( ng" /Zn, N /Ny ) and ny, are the maximum and
current number densities, respectively, of this heavy nucleus
when ng’t and n'®* are the total (bound+free) number densities

of protons and neutrons.

Figure C.1 shows that for all models of Tables A.1-A.5
Efe (fexp) & NE™(fexp) X 5 MeV, when NE*™" is the total number
of baryons in the gain layer. This means that due to the partial
assembly of free n and p in @-particles at the time of explosion,
about 5 MeV (instead of >8 MeV) remain available for being re-
leased by recombination during the subsequent expansion and
cooling.

This recombination is essentially complete when the shock
has reached a radius of 3000 km (recombination to a-particles
happens even much earlier). We denote this time by fp.
Figure C.2 demonstrates that the explosion energy at time f,
Eexp(tec), Toughly equals the available recombination energy,

Ef:én(texp), at the onset of the explosion. This means that neu-
trino heating essentially has the effect of lifting the total en-
ergy of mass elements in the gain layer close to zero (i.e.,
€ot = €kin + €nt + Eray ~ 0) and thus makes this matter un-
bound and enables its expansion in the gravitational potential
of the forming neutron star. The excess energy of this matter at
time frec, i.€. Eexp(frec), is provided by the recombination of nu-
cleons to a-particles and finally to iron-group nuclei. Only in
case of higher explosion energies, Eexp(frec) is clearly larger than

Eﬁfcm(texp) (Fig. C.2). In this case neutrino heating in the gain
layer is stronger and the heating time scale of the matter there
shorter than the expansion time scale when the shock begins to
accelerate outwards. Therefore neutrinos are able to deposit “ex-
cess energy”’ in the ejecta before this matter has moved out of the
region of strong heating.

The second contribution to the explosion energy comes from
the neutrino-driven baryonic wind which sets in after the sur-
roundings of the nascent neutron star have been cleaned from
the initially heated gas. Indeed this wind is an important en-
ergy source at “late” times. To demonstrate this, we compare
the time derivative of the explosion energy, dE..,/d¢t, with the
wind power, Lying, and the net energy loss/gain rate Lghock at the

0.8_ T T S
r X

T o6l W 3 .
s R
[ I + R
= 0.4 gA ’ -
g +A
< 0 4 i
|_._|° 0.2- ¢+$

0.00L . . .

0.0 0.2 0.4 0.6 0.8

Efee (tep) [10% erq]

Fig. C.2. Explosion energy after the recombination of the ejecta,
Eqp(trec), as a function of the available recombination energy in the
gain layer at the onset of the explosion, Ef (fexp), for the models of
Tables A.1-A.5. For low explosion energies the two quantities agree
well.

shock (Fig. C.3). The curve for dEy,/dt in Fig. C.3 is calculated
as the numerical derivative of the energy integral

Eug®) = [ etrnav. (€3)
where the integration is performed over the volume V*, in which
the total energy € (7, ) is positive (see also Eq. (A.5)). For t >
tec this volume fills the region between an inner boundary at
r = 200 km and the shock (except for some parts of the accretion
downflows, where €,; may still be negative).

The explosion energy is subject to changes by $dV-work
performed at, and by energy fluxes through the boundaries of V*,
in particular by the wind, whose power is given by the surface
integral

L= P+ e + ) man(u, 0)dS. €4
=200km

This expression takes into account the total energy (€o; = perot
with ey defined by Eq. (A.6)) of the wind material streaming
through the inner boundary radius into V*, the energy that will
be set free at larger radii by recombination (Eq. (C.1)), as well as
the work performed by pressure forces. Here we have neglected
effects due to downflows by omitting contributions to the surface
integral from zones with negative radial velocity.

The change of the explosion energy due to energy flow
through the outer boundary of V* (i.e., the shock), is given by
the net energy loss/gain rate

Linock = §
r=Ry(0)*

[(eot + €ec + P vy + (€0t + Erec)Rs] ds. (C.5)

The integration has to be performed over a surface located
slightly upstream of the shock. Compared to Eq. (C.4) an ad-
ditional term arises here from the motion of the shock, which
propagates with a local velocity Rq(6).

Figure C.3 shows that these two terms explain the evolution
of dExp/dt for t > frec, i.e.

dEexp/dt ~ Lyind + Lshock (C.6)

holds at late times, and the thin and thick solid lines in Fig. C.3
almost coincide. Note also that Lying > |Lghock|- This is true for
all our models, and therefore the increase of the explosion energy
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Fig. C.3. Evolution of the time derivative of the explosion energy
(dEp /dt, thick solid) for model B18. Also shown are the wind power at
aradius of 200 km (Ly,g, dotted), the energy loss/gain rate at the shock
by PdV work and swept-up matter (Lgock, dashed), and the sum of the
latter two quantities (Lyind+shock, thin solid). Lyina+shock agrees well with
dEc, /dt for t > t. (right of the vertical line).
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Fig. C.4. Relation between the increase of the explosion energy between
t=0.5sandt = 1s, AEZ%5%, and the integrated wind power during this

exp

time interval, AE”05¢, for the models of Tables A.1-A.5.

after about 0.5 s post bounce is (almost exclusively) associated
with the time-integrated wind power (see Fig. C.4).

The relative importance of the two major constituents of the
explosion energy that we have discussed here, i.e., the nuclear
recombination energy of the matter in the gain layer and the in-
tegrated power of the neutrino-driven wind, varies with the ex-
plosion energy. In our “standard boundary contraction” models
the fraction of the explosion energy provided by recombination
drops from about 70% for the low-energy models to about 30%
for the model with Ecx,(1s) = 1.5% 10°! erg (Fig. C.5). This frac-
tion declines because the wind power is proportional to a higher
power of the luminosity (Lying & L with @ ~ 3; Thompson et al.
2001) and although the mass in the gain layer at the onset of the
explosion scales linearly with the boundary luminosity (Fig. 10).

For the “rapid boundary contraction” cases the wind con-
tribution is even more important, e.g. for model WI12F-c
Ef;in(texp)/Eexp(l s) = 0.2, i.e. about 80% of the explosion en-
ergy are generated by the neutrino-driven wind. For a fixed
boundary luminosity the wind power is higher in this case
than for the “standard boundary contraction”, because Lyng in-
creases with decreasing neutron star radius (see e.g. Thompson

et al. 2001). However, AMgin(fexp), and thus also Ergfci"(texp), are
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Fig. C.5. Ratio of the recombination contribution to the total explo-
sion energy 1s after core bounce, Ef" (fexp)/Eexp(1's), as a function
of Eeyp(1s) for the models of Tables A.1-A.5. For low-energy models
the recombination contribution dominates, whereas for higher explo-
sion energies the wind contribution becomes more important.
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Fig.C.6. Evolution of the explosion energy for models R18-c
and W18-c which are listed in Table 2. The rotating model R18-c at-
tains an explosion energy which is higher than in the non-rotating case
W18-c due to a larger gain layer mass at the time of explosion. Note
also that the explosion energy in both cases is still increasing at # = 1s.

similar for models with “standard” and “rapid” boundary con-
traction and the same L;,. This is so because two effects com-
pensate each other roughly: On the one hand the density at a
given radius r in the gain layer is lower for a faster contraction
(" (r, tgxp) < ;?S(r, fexp)> Where 1 and s denote the rapid and stan-
dard contraction cases, respectively), but on the other hand also
the gain radius is smaller and thus located in a region of higher
density, p"(R}, tgxp) > PU(RG, foxp)-

Figure C.6 indicates that the explosion energy is still increas-
ing att = 1 s when we stopped most of our simulations. Yet, with
the subsequent drop of the core luminosity (we assume a ¢3/2
behaviouratr > t;, see Eq. (D.11)) also the wind power, which is
proportional to LY (see above), must decline strongly. Therefore
the explosion energy will grow only moderately. In case of the
long-time simulation B18-It it rose from 1.14x 103! ergatt = 1's
to 1.43 x 107! erg at t = 255, and reached 1.46 x 10! erg by the
end of the simulation at t = 3.6s.
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Appendix D: Neutrino transport
D.1. Transport equation

We start from the equation of radiation transport in spherical
symmetry

£21+ g
cor " Hor

(D.1)

where I = I(t,r, €, 1) is the specific intensity, S = S(t, 7, €, 1)
is the source function, € is the neutrino energy, u = cos 6 and
6 is the angle between radiation propagation and radial direc-
tion. Solid angle integration yields the zeroth angular moment
equation,

19
c ot

1o , 1 (!
+—=—"H)= (0)___f d
J P r(r )=S =3 ). u S

(D.2)
with {J, H}(t, r, €) = %ffll du (V11 r, €, p). Integration over
energy leads to

0 1o, , N _
atE - r? 6r(r P=0-0
with {E, F}(t,r) := 4n fow de {J/c, H}(t, r, €) being energy den-
sity and energy flux, respectively. The source term has been split
in an emission rate Q* and an absorption rate O~ = k,cE, which
is proportional to the energy density. The flux factor is defined
as the ratio of flux to energy density,

frt):=F(rt) [ cE(r1).

In neutrino transport simulations solving the full Boltzmann
equation (see e.g. Buras et al. 2003, 2006a,b) this quantity shows
only little short-time variability during most phases of the super-
nova evolution. Therefore df/dt = 0 is an acceptably good ap-
proximation. With L := 4n7*F = 4nr? fcE one can now rewrite
Eq. (D.3) as

(D.3)

(D.4)

%L + Cef’f%L =4n 1’ cer {Q" - O},
where an effective speed of neutrino propagation has been intro-
duced as ce := cf. Provided c.g were known, the solution of
Eq. (D.5) requires considerably less effort than the numerical in-
tegration of Eq. (D.1). For vanishing source terms Q* and Q™ the
neutrino energy or number density is just advected along char-
acteristics r(f) = ro + ce 1. Although c.q depends through f(r, 1)
on the solution of the transport problem (Eq. (D.4)), neutrino
transport calculations in the neutrino-decoupling layer of form-
ing neutron stars reveal that it can be well fitted by a r-dependent
function which depends on the steepness of the density profile
(see Janka 1990, 1991b). Assuming further that the (medium-
dependent) coefficients Q* and k¥ = k,/f = 4nr*Q~ /L are con-
stant between two points (r, t) and (r*, t*), which are connected
by a characteristic line, i.e.,

D.5)

r* =r—ce (t = 1), (D.6)
Eq. (D.5) can be integrated analytically to yield
L(r,1) = L(r*, %) e Reer =17

+4’;—3Q+ {[1 — e R L+ ('t - 1))

R (t — )28 + Ree (£ —17) — 2]}, (D.7)

N [ A[‘ —
t 1 I
A e At
tn 1 =':;: l
B
ri-l ri

Fig.D.1. The solution at (,#") is computed from the data at a
point (r*,¢*) located on the same characteristic line. Depending on the
grid spacing, Ar, the time step, At, and the effective speed of neutrino
propagation, c.g, either point A or point B must be used. The solution
there can be obtained by interpolation in time or space, respectively.

where L(r, t) and L(r*, *) are the luminosity values at both ends
of the characteristic line.

We use Eq.(D.7) to construct a numerical scheme to solve
Eq. (D.5) in the general case: We assume that the luminosity is
known at the cell interfaces of a one-dimensional radial grid for
a time "~', and that the cell-averaged values of the quantities
needed to compute the emission rate Q" and absorption coefi-
cient k are also known for that time. As a further simplification
we do not allow neutrinos to propagate in negative radial direc-
tion (actually this is granted by defining a non-negative func-
tion for the flux factor, see Sect. D.3). Then the luminosities at
" = "~ + At for each zone interface (starting at the innermost
zone) can be computed using Eq. (D.7). In doing so we have to
distinguish between two cases (see Fig. D.1): If c.gAt > Ar,
we can use point A as the starting point of the integration,
(r*,t*) = (ri_1, t4). The luminosity at this point is derived from a
linear interpolation between L(r;_;, #"~") and L(r;_y, ") (which is
already known, as we are integrating outwards). If c.gAt < Ar,
we use point B, the luminosity at this point being given by a
linear interpolation between L(r;_p, =Y and L(r;, 1" 1).

For time integration we use a predictor-corrector method:
The transport routine is called two times. In the first (predic-
tor) step the luminosities, emission rates and absorption coeffi-
cients of the last time step [L"', "1, k"] are used to compute
preliminary values (9", ¥") for the neutrino-medium coupling at
the next time level. In the second (corrector) step the final val-
ues [L", Q", k"] are calculated using (L1, %(Q"" +0M), %(K”" +
&")] as input.

Equation (D.5) is solved not only for the energy luminosity
L = L., but also for the number luminosity L, = 4nrF, =
4nr? fen (nis the particle density and £ is assumed to be the same
flux factor as for the energy transport). Furthermore the equation
has to be integrated for three neutrino types, Ve, Ve, and v, (the
latter denoting v, ¥, vr, and ¥, which are treated identically).
In the following we will use indices v € {v., V., v,} and « € {e, n}
to distinguish between these different cases.

In the 2D case the neutrino transport is assumed to proceed
only radially, i.e. lateral components of the neutrino flux are ig-
nored and Eq. (D.5) is integrated independently on different ra-
dial “rays”, i.e. in radial direction for every lateral zone of the
polar coordinate grid. Total luminosities of the star are obtained
by summing up the flux densities L/47x#? for all angular cells (at
a given radius r), appropriately weighting them with the corre-
sponding surface elements.
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Fig. D.2. Evolution after core bounce of the neutrino luminosities at
a Lagrangian mass shell of 1.1 M, from a supernova simulation with
Boltzmann neutrino transport (Buras et al. 2003). After an initial phase
of 50 ms duration, the sum of the v, and v, luminosities, as well as the
v /v: luminosities vary only slowly.

D.2. Boundary conditions

To integrate Eq. (D.7) outwards, time-dependent boundary con-
ditions are required for the luminosities L.,, and L,,,, where
Vi = Ve, Ve, Vy. We assume L. ,, to be constant for a time inter-
val 1 (typically 1 s), and to decay subsequently with a power-law
dependence in time:

Ley,(Rip, 1) = L K, h(), (D.8)
Les,(Rip, 1) = L'°° K5 h(?), (D.9)
Ley (R, ) = LY K, h(r), (D.10)
where

1.0 if <1,
o= {(zL/z)3/2 it o> -1

The constants K,, denote the fractional contributions of the indi-
vidual luminosities to the total neutrino luminosity. They fulfill
the requirement

K, + Ky, +4K, = 1. (D.12)

The functional form used in Eq. (D.11) can be motivated by the
Boltzmann transport calculations of Buras et al. (2003). These
show that after a transient phase of ~50 ms, which is short com-
pared to the explosion time scales of our simulations, the sum of
all luminosities is almost constant or varies only very weakly, at
least over the next ~250 ms, for which data from the Boltzmann
transport simulations are available (see Fig. D.2).

According to Egs. ((D.8)—(D.11)) we need to prescribe the
time scale 7, and the total initial luminosity L:,Ot’o. Howeyver, in-
stead of choosing these two quantities as basic parameters of our
models, we prefer to prescribe 7, and the gravitational binding
energy AES . that is released by the neutron star core asymp-
totically (i.e. for ¢+ — o0) via neutrino emission. Introducing the
energy that the core looses up to time ¢

s
AES (1) = f Lo ()t (D.13)
0

the following relations hold for the asymptotic energy loss

(t) =301, (D.14)

v,core v,core

AES e = f L h(r) dt = 3 AEY,
0

i.e. our ansatz of Eq. (D.11) implies that 1/3 of AE}, . is ra-
diated away within the chosen time interval #; in neutrinos and
antineutrinos of all flavours.

We also prescribe the mean energies of neutrinos entering
the computational grid at the inner boundary. The corresponding
values are chosen to be (eve)ib = 12MeV, (e;e)ib = 16 MeV,
and (€, ) = 20 MeV, and kept constant during our simulations.
Thereby also the number fluxes L,,, = L.,./{€,) at r = R;;, are
defined.

The total lepton number lost by the neutron star core until
time ¢, normalised to the total baryon number Ny, core Of the core,
is given by

i3
A ooone(D) = Ng f (L (R ) = Lg (R 1)) dr'. (D.15)
0
For t = 1 this yields

L;ol,O L (
Nb, core

AYe,core(l‘L) =

K, K
£ ) . (D.16)

@ (&)
We assume that the lepton number loss during time interval #
is proportional to the energy loss during this time. Therefore we
choose K,, = const, because (evi)‘b = const, and set K, = 0.2,

K5, = 0.215 for the calculations in this paper. K, follows
from Eq. (D.12).

D.3. Neutrino distribution function

To calculate the source terms in Egs. (D.5) or (D.7) we have
to make an assumption about the neutrino energy spectrum, i.e.
about the energy dependency of the specific intensity, which for
particle energy and particle number is linked with the particle
distribution function fp, in the following way:

{2,3}

Gop (D.17)

Ly jne)(t, 1, €, 1) = ( ) ¢ fou(t, 1, € ),
where the exponent of 2 applies for number transport and the ex-
ponent of 3 for energy transport, corresponding to the indices n
and e, respectively, of /,. We assume that fp, can be written as

product of a Fermi-Dirac distribution function,

1
nN=— D.18
Jeo(x, 1) 1 + exp(x—1) ( )
and an angle-dependent function g,
€
v »t7 s =9y 7t» T, oty »t ) D.19
Jou(rt, €, 1) = gy(r 1, 1) fFD( wron " (r. )) (D.19)

where in general the spectral temperature and degeneracy pa-
rameter, T, and 7, are different from the matter temperature and
equilibrium degeneracy parameter.

Furthermore we assume that 5, is just a function of the opti-
cal depth 7,:

(7)) = Teqy (L —€7™) + 10,877, (D.20)

where 74, is the equilibrium degeneracy parameter and 770,, is a
chosen value as typically found in detailed transport calculations
for 7, — 0. The values for the different neutrino types are (cf.
Janka 1991b; Janka & Hillebrandt 1989; Myra & Burrows 1990;
Keil et al. 2003):

Neq,ve = (e + Mp — n)/ksT, noy. = 3,
Neq.ve = ~Meq,ve» noy, =2, (D.21)
Neq,v, = 0, noy, = 0.
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With 7, defined, T\, can now be calculated from the local average
neutrino energy, which is computed from L, and L, , as

(g) = Le,v/Ln,v =E,(r,0)/n,(r,1)
00 1

b de [ du Ley(rt €, 0)
00 1

by de [ du Iyt 6,0)

= kT, F3(ny)/F2(11,) (D.22)
with the Fermi integrals defined by
Fam = [ e fenten. (0.23)
0

Thus the energy-dependent part of fp, is fully defined. The
angle-dependent part is related to the flux factor by

+1 +1
[ dundy [ dupgy ()
"

[laun, [ dug

To solve Eq. (D.5) only f, is needed, not the angle-dependent
function g, (). Far outside of the neutrinosphere, f, is approach-
ing the vacuum solution. The latter can be derived under the as-
sumption that neutrinos are emitted isotropically from the sharp
surface of a sphere with radius R,, which is located at a distance r
from the observer. In this case the flux factor is

frsae = H[14 NT=®RIPE |

Jvvac approaches 1 for r — oo (free streaming limit) and f,vac =
1/2 at the neutrinosphere. In a more realistic situation the neutri-
nosphere is not a sharp surface but a layer with finite thickness
in which neutrinos gradually decouple from the stellar medium.
In detailed transport calculations f,(R,) is therefore found to be
about 1/4. (see e.g. Janka & Hillebrandt 1989; Janka 1990). How
fast f, approaches f, y,c (with declining optical depth) depends
on the steepness of the density gradient at the neutrinosphere
(Janka 1990). Inside the neutrinosphere detailed transport calcu-
lations show that the flux factor behaves roughly like f, o« I
with m < 0.

Taking all this into account, the following function consti-
tutes a good approximation for the flux factors from detailed
transport calculations (Janka 1991b, 1990):

fv = FV/CEV = = <luv> (D24’)

(D.25)

M+ D

2 'f 4 < V,ls
£ = { 1+ +D)1-phyrnz B =T pog)
1/4 (7, /7)™, if 7,>71,;.

Here D = +/1 — (R,/r)?, the neutrinosphere radius is defined by
7,(R,) = 7, and we adopt 7,,; = 1.1. The power-law index m
is chosen such that f,(10) = 1/25, and n is defined by a local
power-law fit of the density profile around the neutrinosphere,
p(r) o< r~". A higher value of n therefore means a steeper density
gradient.

D.4. Neutrino reactions

For calculating the neutrino-matter interaction rates the follow-
ing reactions are taken into account: charged-current processes
with neutrons (n) and protons (p),

(D.27)
(D.28)

Vetn=p+e,
Ve+p =n+e",

thermal electron-positron (e*) pair creation and annihilation,

ef+e =2V, +v; (i=eu1), (D.29)
and neutrino scattering off nuclei (A), nucleons, and electrons

and positrons,

Vit A= v+ A, (D.30)

UER R S (D.31)
p p

Vi + et = Vi + e*. (D.32)

D.5. Optical depth

Knowledge of the optical depth is necessary to evaluate
Egs. (D.20) and (D.26). For this purpose it is sufficient to com-
pute 7, approximately by considering only the most relevant
neutrino processes and assuming that the neutrino spectrum is
given by the spectrum for local thermodynamic equilibrium.
This means that instead of Eq. (D.19) we use

fl;?v(e"’ r) = frp ( > Ueq,v(r)) (D.33)

&
kgT(r)
with 77¢q,, and T instead of 73, and T,

The “transport optical depth” is defined as the integral

Ty (r) = f ) dr’ (ke )(r') (D.34)

of the energy-averaged “transport opacity” (i.e. the opacity
which is relevant for momentum transfer), (x,)(r) (see, e.g.,
Straumann 1989; Burrows & Thompson 2004). In the follow-
ing, all neutrino interactions included in evaluating the opacity
are calculated without final-state lepton blocking, unless other-
wise stated.

The most important opacity-producing reactions are scatter-
ing off nucleons (n,p) and nuclei (Z;,A;), where j = 1,2,...
denotes the considered nuclear species, and absorption by neu-
trons and protons in case of v, and V., respectively. Thus one can
write

W) =)+ Y (k).

i€{n,p.A;}

(D.35)

Here the (neutrino-flavour independent) scattering opacities are
to lowest order in neutrino energy over nucleon rest mass (i.e.,
without effects of nucleon recoil, thermal motions, and weak-
magnetism corrections):

Ky = é Baz +(Cy — 1)2] (m(:co2)2 (€) np, (D.36)
(k) = Sa; : 1 (mj—cOZ)z (€) n, (D.37)
&) = éAi[CA ~1+ %(2 —Ca-Cy)P?

(m(:—cOZ)z (6)na, (D.38)

for scattering off protons, neutrons, and nuclei with number den-
sities np, n,, and n4;s respectively (see, e.g., Freedman et al.
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1977; Straumann 1989; Burrows & Thompson 2004). The ab-
sorption opacities for v, and v, are

p 1 o (o))
) = g B+ DG

x ((en) +2M¢6,) + A?) O((e,)), (D.39)

1 2 (o)
W) = 76 + 1)(%62)2 n,

X ()% +2M¢e)* + AXED)*). (D.40)
(see Tubbs & Schramm 1975; Bruenn 1985). Here oy =
4G§m§h2 /mc? = 1.76 x 107** cm? (with the Fermi coupling con-
stant Gg), A = 1.2935MeV is the rest mass difference of neu-
trons and protons, @ = 1.254, C4 = % Cy = % + 2 sin? 6w, and
sin? Gy = 0.23.

In deriving Egs. (D.36)—(D.40) (as well as for all rates and
source terms given below) the electron and positron rest masses
are ignored (m.c> < ¢,) and nucleons and nuclei are assumed to
have infinite rest masses (my,p A,.cz > ¢,) and to be nondegener-
ate. For electrons, phase space blocking is included in Eq. (D.40)
by the factor

Y A
o6 =1 - fin (ﬁn)

D.41
kT (D.41)

which accounts for the fact that a significant fraction of the pos-
sible final electron states may be occupied. Phase space blocking
can be neglected in «% (Eq. (D.40)), because the positrons are
non-degenerate. ’

The neutrino energy moments are (generalising Eq. (D.22))
given by

7—-2+n(77v)
Fa(y)

7_-2+n(77v - A/kB Tv)
Fa(ny) '

and for evaluating Egs. (D.36)-(D.40) to compute 7,
(Eq. (D.34)) for use in Eq. (D.26), we take i, = 1eqy and T, = T

In contrast, Eq. (D.20) is evaluated with the “effective optical
depth for equilibration”,

(/) = (kgT))" (D.42)

()" = (ksT,)" (D.43)

T(r) = f dr’ (ke )(r'), (D.44)
where the effective opacity is defined as
(Kefry) = f(K) XK + K7 )- (D.45)

Here the spectrally averaged absorption opacity, (%), is taken
to include neutrino-pair annihilation to e*-pairs (Eq. (D.29)),
which is assumed to be the most important reaction for produc-
ing v, v, pairs. Both (kj) and («; +«; ) are evaluated for the “true”
(not the local equilibrium) neutrino spectrum (i.e. for the spec-
tral temperature 7, and the spectral degeneracy n, instead of T
and 7¢q,,) by employing the source terms from the neutrino trans-
port solution of the last time step.

D.6. Source terms

Solving Eq. (D.7) requires the knowledge of the emission rates,
5;» and absorption coefficients, &, = &/f,, which appear in

this equation. Since Eq. (D.7) is used to determine the num-
ber fluxes, L, ,, and luminosities, L., of all neutrinos and an-
tineutrinos v € {ve, Ve, vy}, the source terms need to be calculated
for the neutrino number, as well as energy. In the following, all
these neutrino source terms are derived without taking into ac-
count final-state lepton blocking, unless otherwise stated. As in
Eq. (D.45), &% is defined to include the contributions from the
B-processes, Egs. (D.27) and (D.28) for v, and v, as well as
those of e*e™ pair annihilation (Eq. (D.29)). The absorption co-
efficient 3 can be computed from the corresponding neutrino
absorption rate by

Ki = Q;47Tr2fv/Lv = (Q3 + Qi‘;n) 47Tr2fv/Lv'

For the number transport the neutrino absorption and emission
rates (in units of number per cm® per second) by charged-current
B-reactions between leptons and nucleons can be written with
our approximations for the neutrino distribution function and the
appropriate statistical weights for the leptons as follows:

Loy nn (€2)+2M(6,) + A

(D.46)

Ry = O(er,)), D.47

ve C47Tr2cfve (&) (&) ( )
Loy, np (€)% +2M&)* + AXep )*

R = i ¢ e , D.48

* 0-647”’20](95 (€,) D43)
1

R = 30¢npne [(e2 )y +2M¢6 Y + A% )], (D.49)
e _ 1 2 2

R = 30°C Mo Ne [(ee+) + 2A{€+) + A ] , (D.50)

where o = i(3a2 + D)oo/ (mec?)?

number density is
8r

and the electron (positron)

3
e = 3 (k) F2(&ne-) - (D.51)
The electron and positron energy moments are given by
F24n(17e)
€) = (kgT)' ————=, D.52
(€) = (kgT) Fore) (D.52)
. w Foen(e — AJkgT
(@Y = Ty 12 (n /ksT) (D.53)
F2(ne)

The annihilation and production rates of neutrino number in
e*e” pair reactions are given by (adapted from Schinder et al.
1987; see also Janka 1991a and Janka 1991b, and references
therein):

ann __ aoc
Y (dnrke)? (e X&)

LI’I,VLTIJ_/ %CD(fV»XV) C?\V + C%/V<€ ><€7>
9 fvf\'/ o

(meCZ)Z

11 _fvfw'/ 2 2
+—= (2Cy, — Cx)) (s (D.54)
6 fvfm'/ M A
rod 1 ogc
RIS = Emne-nv {(Ciy +Cy, )€ YEer)
+%(mecz)2(2C%,v - civ)}. (D.55)

These rates hold for neutrinos v or antineutrinos v of all flavours.
In Eq. (D.46), RS and R5™ have to be used instead of Q% and Q5™
for computing the absorption coefficient for the number trans-
port. In Eq. (D.54), ®(f,, v,) is a geometrical factor,

3 1
O(froxv) = [1 = 2hfr +xxe + (=) —Xv)], (D.56)
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where we express the variable Eddington factor y, in terms of the
flux factor f, (Eq. (D.4)) using a statistical form, which was de-
rived by Minerbo (1978) on grounds of maximum entropy con-
siderations (for photons or nondegenerate neutrinos, as assumed
here):

1 0.01932 £, + 0.2694 f2
=) =3 s
T3 1-0.5953 f, +0.02625 f?

(D.57)

The weak coupling constants in Egs. (D.54) and (D.55) are
given by

1 —_
+5 for v € {ve,Ve},
Cay = { _g for v € {vy, Vu, Ve, Vo) (D.58)
1 .2 )
_l T + 2 sin” Oy for v € {ve, Vel
Cvy { -3+ 2sin® Gy for v € (v, Vu, Vi, V). (D.59)

The source term which describes the rate of change per unit of
volume in the evolution equation of the electron lepton number
of the stellar medium is

On =Y. ny = (R, =R = (R}, = R;). (D.60)
The source terms which account for the absorption and emis-
sion of energy through v, and v. are computed in analogy to
Egs. (D.47)—(D.50) as

Ley.nn (6 +2Me ) + A¥e,)

s 0((e,)),  (D.61
o5 0'c4ﬂ_rchye @ (&) ( )
A — g Le,\'/e p
ve 4nricfs,
(€ Y +3AME2 Y + 30 e, ) + AV
X . = (D.62)
(&e)
e gc 3 \x 2 \x 2 *
= e () +2ME ) + Ae )] (D.63)
0 = O;C Ny e+ [(ee+) +3M(€L) + 30 &) + A3]. (D.64)

The annihilation or production of energy in neutrinos (v)
by e*e™ pair reactions is given as (Janka 1991a)

ann __
Qv -

ooc  LeyLes |2 0(f.x0) Cay +
@rric) (eXe) |9 [ (me

11— vJv
Lz - Civ)<e3>},

+8 fvfw'/
x{[<e§_><ee+> + (€2 X&) (Ch, + C3,)

Z)JW & )e)

(2cs, (D.65)
1 ogc
prod _ * C0C B
o, 36 (meCZ)Z Ne-HNe

+§<mec2>2[<ee-> (e 20y, - civ)}. (D.66)

For annihilation of antineutrino (¥) energy, <62) has to be re-
placed by (e_) and (€,) has to be exchanged with (e) in
Eq. (D.65), while the production of v and ¥ was assumed to be
symmetric and both rates are given by Eq. (D.66).

Also in scattering processes energy can be exchanged be-
tween neutrinos and the stellar medium. For scattering off e~

Table D.1. Weak coupling constants for v and ¥ scattering off e* or e~
(cf. Eq. (D.67)). C; stands for C; = (Ca — 1)* — (Cy — 12, Cy = %,
Cy = 1 +2sin’ 6y, and v, can be v, or v,.

Cl C2 C3
vee” (Cy +Ca)’ (Cy=Ca? C3-Cy
vee" (Cy = Ca)? (Cy+Ca?  Ci-Cy
Vet~ (Cy = Ca)? (Cy+Ca?  Ci-Cy
vee™ (Cy +Ca)’ (Cy=Ca? C3-Cy
viem | (Cy+Ca=2  (Cy—Ca) (65
vie? (Cy=Ca)*  (Cy+Cp—-2) G
vieT (Cy=Ca)*  (Cy+Cp-2) G
Vet | (Cv+Ca=2P (Cy=Ca) G

or e*, using the rates of Tubbs & Schramm (1975), and ignoring
electron phase space blocking in the final reaction channels, the
following spectrally averaged expression for the energy transfer
rate per unit of volume can be derived (see Janka 1991b):

1 1 oocC Lev
—(Cy +~C ’
ot ) e ™ e f ey

Qve = 12

3
{[<e§>(<ee> # Zmec?) — ()|

3 Cs 2
—(me %) [(a)— &) } (D.67)

8C1 + Cz (€)

where e can be e or e” and v stands for neutrinos or antineutri-
nos of all flavours and the constants Cy, C», C3 for the different
combinations are listed in Table D.1. The term 3m.c?/4 in the
bracket results from a merge of the rate expressions for the lim-
its of relativistic and non-relativistic electrons. In the latter case
the neutrino-electron scattering cross section is proportional to
€,/(mec?) for €, > mec? (cf. Sehgal 1974).

Every transfer by neutrino-nucleon scattering, which is only
“nearly conservative”, is taken into account following Tubbs
(1979). The corresponding rate is (see Janka 1991Db):

1 oypc nN

O = 755 Onén——5 [(g)) — 6T(&)))

4 (mec?)

Les (D.68)
47rrchv(ev) '

with

~ 2 [(CV -1+ §a2] for N=p,
Cnén=1 | 2

s(1+5a%) for N =n.

The symbol v stands again for neutrinos and antineutrinos of all
flavours. Also scattering contributions are included in the energy
generation rate Q* and absorption coefficient k used in Eq. (D.7).
Considering scattering as an absorption process followed imme-
diately by an emission process, we add the net energy exchange
rates Qye-, Over, Oyp and Q,, to Q) (used for computing &, in
Eq. (D.7)) when the rates are positive (i.e. in case of energy
transfer from neutrinos to the stellar gas), and the absolute values
of Qye-, Qyer, Qyp and O,y to QF otherwise. The total neutrino
energy source term to be used in the gas energy equation includ-
ing the contributions from v, and ¥, absorption and emission, vv
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pair production, and all scattering reactions is

D, @+ > (ow-or)

v E{Ve,Ve} V€ Ve,V V)

+ Z (foe+ + Qie‘ + Q:/p + Q:/n) ’

VE Ve, ViV Ve, Vs Ve}

(D.69)

where Q%" = Q¥ 4 Q¥ and QP! = QP! 4 QP

In practise, however, the lepton number source term Oy as
well as the energy source term for the hydrodynamics part of
the code is not computed from Egs. (D.60) and (D.69), respec-
tively, but from the luminosity change between points (', ") and
(r*, t*) (cf. Fig. D.1). The source terms Q‘ and QE for a grid cell
i at time level #* are then given by

Q”“ _ Lgiff(ri’ tn) _ Lgiff(l"*, l*)

- , D.70
N AV, (D.70)
< LLO[(ri, t") _ LLO[(V*, t* (D 71)
B AV; ’ '
where AV; = & (r —r*?)is the part of the cell volume crossed by

the characterlstlc line between (#, ") and (r*, *), L is the sum
of the luminosities of neutrinos and antineutrinos of all flavours,
and LY is the difference between the v. and 7. number fluxes,
L,,, — Ly, ,. Equations (D.70) and (D.71) work well as a de-
scription of the neutrino sources in the gas equations only, if the
neutrino fluxes do not exhibit a large degree of variability on
the radial and temporal scales of the r—¢ cells. This, however, is
reasonably well fulfilled in the context considered in this paper.

Finally, the outgoing neutrino fluxes transfer also momentum
to the stellar fluid. To account for this, we include a momentum
source term Qy which enters the Euler equation of the hydrody-
namics solver. It is sufficient to include only the most important
reactions, by which neutrinos transfer momentum, i.e. v, and v,
absorption on n and p, respectively, and the scattering processes
of v and v of all flavours off nucleons and nuclei (pair pro-
cesses and electron/positron scattering can be safely ignored).
For a neutrino or antineutrino v, the corresponding rate (in units
of erg/cm?) is

) Le, [(5e)
QM = [ +

4nric| (e,)

2,

ie{p,n,A;}

e ] , (D.72)

(&)

where the first term in the sum is relevant only for v, and ¥,. The
energy averages of the scattering transport opacities, ;),, and of
the absorption opacities, &3, all weighted by the neutrino energy,
are given by

115 2 2 go 3
(Kre) = 3 [Za +(Cv—-1) ] (mec2)2<€y>np’ (D.73)
502 +1 oo 3
Ky e) = TW(%)M, (D.74)
Whey = 142 [C 1+ 0-ci-c )]
y &) = A—1+—=2-Cs-Cy
t, 6 J AJ
90 3
o0\ s D.75
(me2)? (€ny, (D.75)
. 1 2 (o))
(6. = 73a" + 1) TWSE (D.76)

x ((6)) + 2A(e2) + A%(&,)) O((er, ),

(K &) = —(3a +1) (D.77)

(mec 2)2
X ()% + 3 )" +3A%(e,)* + AXED)*).

The energy moments (€!) and (e)* are given in Egs. (D.42)
and (D.43). They are calculated using the nonequilibrium neu-
trino spectral parameters 7, and 7,. The momentum source term
in the equation of gas motion then reads
ou= D, QO (D.78)

V€ Ve VusVr Ve Vs V)

It was not included in the simulations presented in this paper, but
will be taken into account in future calculations.

The implementation of the source terms Oy, Og, and Qy; into
the framework of our PPM hydrodynamics code was discussed
in detail by Rampp & Janka (2002) and Buras et al. (2006a).

We finish by pointing out that the approximative neutrino
transport scheme developed here employs two basic assump-
tions, which are radical simplifications of the true situation:

1. In deriving Eq. (D.7) from the transport equation we as-
sumed that the flux factor f(r,f) is a known function, al-
though it is actually dependent on the solution of the trans-
port problem (see Eq. (D.4)). Equation (D.7) certainly has
the advantage of analytic simplicity, but also has a severe
disadvantage: The source terms can be very large and the
numerical use requires a very fine grid zoning at high optical
depths. The cell size should fulfill the constraint that the opti-
cal depth of the cell stays around unity or less. Moreover, the
implementation of the source terms in (D.7) and the medium
sources (Egs. (D.70), (D.71)) is not symmetric and the nu-
merical scheme does not strictly conserve the total lepton
number and total energy of neutrinos plus gas.

2. For treating the spectral dependence, we made the assump-
tion that the neutrino phase space distribution function can
be factorised into a product of an angle-dependent func-
tion g, and an energy-dependent term, which we assume to
be of Fermi-Dirac shape. This certainly constrains the spec-
tral shape, but the factorisation also implies that the flux-
factor is assumed not to be an energy-dependent quantity.
This in turn means that the mean energy of the neutrinos flux,
(€)ux = Ley(r,1)/L,,(r, 1) is identical with the mean en-
ergy of the local neutrino density, {€,)iocal = E\ (7, 1)/n,(7, 1).
This is certainly a problematic simplification in view of the
fact that the neutrino interactions with the stellar medium are
strongly energy-dependent.

Nevertheless, the described neutrino transport treatment repre-
sents a practical approximation which is able to reproduce basic
features of more detailed transport solutions and yields agree-
ment with those even beyond the purely qualitative level.



