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Multidimensional Tensor-Based Inductive
Thermography With Multiple Physical Fields
for Offshore Wind Turbine Gear Inspection

Bin Gao, Senior Member, IEEE, Yunze He, Member, IEEE, Wai Lok Woo, Senior Member, IEEE,
Gui Yun Tian, Senior Member, IEEE, Jia Liu, and Yihua Hu, Senior Member, IEEE

Abstract—Condition monitoring (CM), fault diagnosis
(FD), and nondestructive testing (NDT) are currently consid-
ered crucial means to increase the reliability and availability
of wind turbines. Many research works have focused on CM
and FD for different components of wind turbine. Gear is typ-
ically used in a wind turbine. There is insufficient space to
locate the sensors for long-term monitoring of fatigue state
of gear, thus, offline inspection using NDT in both manufac-
turing and maintenance processes are critically important.
This paper proposes an inductive thermography method for
gear inspection. The ability to track the properties variation
in gear such as electrical conductivity, magnetic permeabil-
ity, and thermal conductivity has promising potential for the
evaluation of material state undertaken by contact fatigue.
Conventional thermography characterization methods are
built based on single physical field analysis such as heat
conduction or in-plane eddy current field. This study de-
velops a physics-based multidimensional spatial-transient-
stage tensor model to describe the thermo optical flow pat-
tern for evaluating the contact fatigue damage. A helical
gear with different cycles of contact fatigue tests was in-
vestigated and the proposed method was verified. It indi-
cates that the proposed methods are effective tool for gear
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inspection and fatigue evaluation, which is important for
early warning and condition-based maintenance.

Index Terms—Fatigue, gears, imaging inspection, induc-
tive thermography, multidimensional tensor model, thermo
optical flow.

NOMENCLATURE

A capital boldfaced letter is used to denote a matrix. A small

boldfaced letter denotes a column vector, unless specified oth-

erwise. Some notational symbols are listed below.

Ā N1 × N2 × N2 tensor representation,

unless specified otherwise.

AT or aT Transpose of a real matrix or vector A

or a.

‖A‖ Frobenius norm of A.

d, ∂, ∇ Differential, partial differential, gradi-

ent, respectively.

×j (×1 ,×2 , . . . ,×j ) j-mode product of a tensor by matrix.

◦ Vector outer product.

NDT Nondestructive testing.

CM Condition monitoring.

FD Fault diagnosis.

SHM Structural health monitoring.

WT Wind turbines.

IT Inductive thermography.

ECPT Eddy current pulsed thermography.

OF Optical flow.

TOF Thermo optical flow.

µ, σ, λ Permeability, electric conductivity, ther-

mal conductivity, respectively.

I. INTRODUCTION

W
IND energy is one of the fastest growing renewable en-

ergy resources, and it is going to have remarkable share

in the energy market [1], [2]. As the sectors of wind energy grow,

business economics will demand increasingly careful manage-

ment of costs. The operations and maintenance (O&M) costs of

wind turbines (WTs) account for about 25–30% of the overall

energy generation cost or 75–90% of the investment costs [3].

In order to reduce the cost of wind energy, there is a pressing

need to reduce the O&M cost [4]. Aside from developing more

advanced machine designs to improve the availability, another

effective way to achieve this improvement would be to apply

reliable and cost-effective condition monitoring (CM), fault di-

agnosis (FD), nondestructive testing (NDT) [5], and structural

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 1. Configuration of wind turbines.

health monitoring [6], which is why this subject attracts both

industrial and academic attention.

WTs are the most important systems in field of wind energy,

and turbines that rotate around a horizontal axis are most com-

mon, as shown in Fig. 1. According to the location, WTs can

be categorized as onshore or offshore. Onshore systems suffer

fewer failures, whereas offshore turbines generate more electric-

ity due to their larger dimensions and the stronger winds present

in large open spaces without restrictions caused by the environ-

ment, noise limits and urban planning. However, the offshore

WT is more expensive compared to the onshore WT [7].

The key issue in WT systems is the inherent fluctuation of

winds. Variations in wind not only have a major effect on power

output but also lead to sharp changes in either mechanical or

electrical conditions, which are the primary causes of poor relia-

bility and high lifecycle costs. The maintenance costs are much

higher, especially for offshore turbines. Severe environments,

including variation in temperature at wind farms, lighting, rain,

storm, ice, etc., as well as the difficulty of access to offshore

turbines, also cause high failure rates, long downtimes and ex-

pensive repair costs [8], [9]. WT is a typical mechatronics sys-

tem [10], which consists of numerous mechanical and electrical

components, and each of which shows independent stochas-

tic deterioration process. Fig. 1 shows a typical structure of a

geared WT, which mainly consist of blade, yaw system, bearing,

gear, generator, converter, and transformer. Any component of

a WT could suffer damage. From the literature survey [11], a

failure map for WTs is summarized in Fig. 2, which illustrates

different major critical components of WT system as well as

the relevant failure causes, failure modes, and popular CM and

NDT methods.

Fig. 2 indicates that faults in blades, generator, gearbox, main

bearing, yaw system, and drive train have relatively long down-

times. Analytical mathematics methods, such as the Markov–

Monte Carlo simulation [12], are used for modeling operating

conditions and other factors. Failures are detected and charac-

terized using NDT techniques, and subsequently the health as

well as reliability of components or systems can be estimated

using these analytical models. In recent years, many works in

industrial electronics have been focused on CM and FD for dif-

ferent components of WTs [13], [14]. Mechanical faults account

for a large portion of all faults in WT generators. Gong et al.

Fig. 2. Failure causes, modes and relevant CM and NDT methods for
major components in wind turbine systems.

proposed a method consisting of appropriate current frequency

and amplitude demodulation algorithms for bearing faults di-

agnosis [15]. Vedreño-Santos et al. proposed a methodology to

improve the reliability of diagnosis of different types of faults in

wound-rotor induction generators based on the extraction of the

instantaneous frequency (IF) of the fault-related components of

stator and rotor currents during speed changes caused by nonsta-

tionary functioning [16]. Gong et al. presented a computation-

ally efficient high-resolution wideband synchronous sampling

algorithm for the mechanical fault detection of variable-speed

direct-drive WTs [17]. Chen et al. proposed an adaptive neuro-

fuzzy inference system for machine prognosis and both cracked

carrier plate and a faulty bearing are carried to validate [18].

Zhang et al. introduced a Bayesian estimation-based method to

detect a fault associated with critical components/subsystems

of an engineered system [19]. Kia et al. discussed the influence

of transmission error, eccentricities of pinion/wheel, and teeth

contact stiffness variation is demonstrated for a healthy gearbox

[20]. Soualhi et al. proposed artificial ant clustering-based signal

processing tool for detecting electrical and mechanical faults in

the induction motors [21]. He and Yang proposed eddy current

volume heating thermography and phase analysis for imaging

characterization of interface delamination in CFRP blade [22].

Gears, which are known as key elements in the offshore WTs,

have received significant attention in the field of CM and FD

for years. Kia et al. proposed a noninvasive technique for the

diagnosis of gear tooth surface damage faults based on the sta-

tor current space vector analysis [23]. Zaidi et al. proposed a

prognosis method for the gear faults in dc machines, which uses

the time–frequency features extracted from the motor current as

machine health indicators and predicts the future state of fault

severity using hidden Markov models [24]. Jae et al. proposed
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a new method using a single piezoelectric strain sensor for PGB

FD [25]. Du et al. described and analyzed a novel framework

based on convex optimization, for simultaneously identifying

multiple features from superimposed signals for WT gearbox

FD [26]. Zhang et al. used the resonance residual technique for

the first time to motor current signal analysis to detect plan-

etary gearbox faults [27]. There is insufficient space to locate

the sensors for long-term monitoring of fatigue state of gear,

whereas the offline inspection using NDT in both manufactory

and maintenance processes is critical important.

The motivation of this study mainly consists of several parts.

First, the optical NDT technique such as borescope inspection is

more practical on gear surface evaluation. However, borescope

inspection has limitations since the inspection can only detect

surface flaws but not jerkwater flaws and material degradation

including stress/strain variation. In addition, it is unable to eval-

uate the depth of cracks [28], [29]. Therefore, it is difficult to

be directly used to measure the property variation in material

and identify damage prior to crack initiation while the stress

redistribution variation happens in both surface and subsurface

of the material in the beginning stages. Second, the scan-based

eddy current and Barkhausen noise [magnetic Barkhausen noise

(MBN)] are sensitive with electromagnetic property variation

in materials; however, single modality of capturing the specific

physics component cannot fully takes into account the complete

property variation. Notwithstanding above, the scan process is

slow and requires step-by-step of human intervention to con-

trol the complex geometric sample which results in the loss of

efficiency and introduced unwanted interference. Third, as an

emerging inspection technique, infrared (IR) thermography has

become a significant tool for industrial quality control and non-

destructive testing [30], [31]. Different from conventional active

thermography using irradiative optical excitation (such as lamps

or laser beam), inductive thermography (IT aka. eddy current

pulsed thermography, ECPT) adopts high-frequency induced

eddy current as an alternative thermal excitation [32], which is

based on induction heating, the process of heating an electrically

conducting object by electromagnetic (EM) induction and Joule

heating [33]–[35]. IT has an increasing span of applications

from metals to conductive composites [36]–[40]. Basic phys-

ical mechanism of IT involves Joule heating via eddy current

and heat diffusion [41], [42]. These two physical phenomena

are directly affected by properties variation in material, such

as electrical conductivity, magnetic permeability, and thermal

conductivity. In comparison with the surface heating thermog-

raphy, e.g., optical excitation, the heating efficiency of inductive

thermography is independence on surface condition. The heat

is not limited to the sample surface, rather it can reach a certain

depth, which governed by the skin depth of eddy current [43].

With conventional thermography, heating is the most commonly

generated by powerful incandescent lamps and IR radiation out-

putted by these lamps may saturate signals during the heating

time. On the contrary, little IR radiation is generated by the heat-

ing source during heating time due to the use of eddy current

heating in inductive thermography [44]. Furthermore, induc-

tive thermography focuses the heat on the defect due to fric-

tion or eddy current distortion, and subsequently increases the

Fig. 3. Inductive thermography diagram.

temperature contrast between the defective region and defect-

free areas. Characterizing and tracking the variation of these

properties are crucial as it has the potential to tackle the chal-

lenging issues such as detection and evaluation the degree of

fatigue and residual stress. However, current IT characteriza-

tion methods are built on the single physical field analysis. One

is based on the analysis of longitudinal heat conduction from

surface to subsurface in time domain [45] and frequency domain

[46]. The other is based on the analysis of in-plane eddy current

field perturbation [47].

In this study, inductive thermography and a physics-based

multidimensional tensor model are proposed to describe the

spatial-transient-stage pattern for evaluating the contact fatigue

damage of offshore WT gear under different stages. This method

enables information from the spatial, transient, and stage do-

mains to be fused with the aims of characterizing and tracking

the material’s EM and thermal properties variation as well as

evaluating the contact fatigue damage. The rest of the paper is

organized as follows. The physics principle of IT and the pro-

posed methods are introduced in Section II. Experimental setup

is introduced in Section III, which is followed by results and

analysis using inductive thermography and MBN in Section IV.

Finally, conclusion and future work are drawn in Section V.

II. METHODOLOGY

A. Inductive Thermography

Fig. 3 shows the diagram of inductive thermography system.

The excitation signal generated by the excitation module and

working head is a short period of high-frequency current. It is

driven to the coil on the conductive material with defect. Then,

the current in the coil will induce the eddy currents and generate

the resistive heat in the conductive material. The heat will diffuse

in time until that it reaches equilibrium in the material. If there

is a defect (e.g., crack) in the conductive material, eddy current

distribution or heat diffusion process will vary from that of sound

area. Consequently, the spatial distribution of temperature on

the surface of material and the temperature transient response

over time will show the variation, which is captured by an IR

camera [41], [42]. However, for nonapparent defect such as

fatigue, it is difficult to determine the abnormal features from

only the temperature spatial distribution and transient response.

Instead, it requires the fusion of the spatial, transient, and the
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information of fatigue stage in order to characterize and track

the weak property variation.

The IR camera records both spatial and transient responses

of temperature variation on the specimen. This can be rep-

resented as a spatial-transient tensor Ȳ which has dimen-

sion Nx × Ny
︸ ︷︷ ︸Spatial

× N
︸︷︷︸Transient

. The governing equation

describing the EM field in the ECPT system can be deduced

from Maxwell’s equations, for time-varying fields [18], namely,

σ
∂A

∂t
+ ∇×

(
1

µ
∇× A

)

− σv × (∇× A) = σ
Vloop

2πr
+ J

(1)

where µ is the permeability of the inspected specimen; Js =
σ(∂A/∂t) denotes the eddy current density Js ; J is the excita-

tion source current density; Vloop is the loop potential; r is the

loop radius; and v = (µε)−1/2 is the wave velocity in media.

When an EM field is applied to a conductive material, the tem-

perature increases owing to resistive heating from the induced

electric current which is known as Joule heating. The sum of

the generated resistive heat Q is proportional to the square of

the magnitude of the electric current density. Current density, in

turn, is proportional to the electric field intensity vector E. The

following equation expresses this relationship:

Q =
1

σ
|Js |

2 =
1

σ
|σE|2 where σ =

σ0

1 + α (T − T0)
(2)

where electric conductivity σ is dependent on temperature and

σ0 is the conductivity at the reference temperature T0 and α is

the temperature coefficient of resistivity, which describes how

resistivity varies with temperature. In general, by taking account

of heat diffusion and Joule heating [19], the heat conduction

equation of a specimen can be expressed as:

∂T

∂t
=

λ

ρCp

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)

+
1

ρCp
q (x, y, z, t)

(3)

where T = T (x, y, z, t) is the temperature distribution, λ is the

thermal conductivity of the material (W/m·K), which is depen-

dent on temperature. ρ is the density (kg/m3), Cp is specific heat

(J/kg·K). q(x, y, z, t) is the internal heat generation function per

unit volume, which is the result of the eddy current excitation.

The variation of temporal temperature depends on the spatial

temperature variation for heat conduction. The heat diffusion

rate increases along with the increased temperature as differ-

ence between T (x, y, z, t) in (x, y, z) and all other locations

round about it (environment). In general, the thermal conduc-

tivity λ decreases as T (x, y, z, t) variation increases for pure

metal material and the eddy current generates Joule heating de-

noted as q(x, y, z, t) According to (1) and (3), heat conduction

is influenced by T (x, y, z, t),ξ, θ, σ, µ, and l. From the above

analysis, it is known that the variation of temperature spatial and

transient response recorded from IR camera directly reflects the

internal properties variation of material.

According to (2) and (3), the generated resistive heat Q has

a relationship with electric conductivity and permeability. In

addition, heat conduction has a relationship with thermal con-

ductivity, density and specific of material. From above analysis,

it is known that the variation of spatial and transient temperature

captured by IR camera contains information of internal property

variations [41], [42].

B. Thermal Optical Flow (TOF) Modeling

During early stage of the contact fatigue process, microde-

fect such as dislocations (point-defects in the crystal lattice)

and the organization of the dislocations in substructures (cells,

cell bundles, etc.) play an important role that directly influ-

ence the conductive material property. These properties varia-

tion directly affect both spatial and transient thermal patterns.

However, as they are nonapparent defects, traditional defect

evaluation methods such as pixel selection cannot obtain re-

liable solution. Optical flow (OF) is a powerful tool to es-

timate velocity fields and track small target object [48]. In

this study, OF is modeled as TOF to characterize the heating

flow between the adjacent thermography frames and to identify

and evaluate the region suffering from contact fatigue damage.

TOF is calculated to trace motion between two thermal im-

ages captured at times t and t + ∆t. The intensity is defined as

O(x, y, t) = O(x + ∆x, y + ∆y, t + ∆t), the image constraint

at O(x, y, t) with the Taylor series can be developed to

O (x + ∆x, y + ∆y, t + ∆t) = O (x, y, t) + . . .
∂O

∂x
∆x

+
∂O

∂y
∆y +

∂O

∂t
∆t + . . . o

(
∆x2 + ∆y2 + ∆t2

)
. (4)

Following the definition of intensity, (4) will lead to ∂O
∂x vx +

∂O
∂y vy + ∂O

∂t vt = 0 where vx and vy are the x and y components

of the velocity or optical flow of O(x, y, t) and ∂O/∂x, ∂O/∂y
and ∂O/∂t are the derivatives of the image at (x, y, t) in the cor-

responding directions. Since the intensity O(x, y, t) is captured

by the IR camera [49], the relationship between the intensity

O(x, y, t) and the temperature T is related as O(x, y, t) ∝ T .

The first derivative with respect to time t is given as ∂O
∂t ∝ ∂T

∂ t ,

therefore, (4) with x- and y-direction can be derived as follows:

−
∂T

∂t
∝

∂O

∂x
vx +

∂O

∂y
vy . (5)

Thus, (5) establishes relationship between TOF and the rate

of temperature change. The two key parameters vx and vy are

used to characterize the spatial and the transient of the thermal

flow, the formula (5) in which there are two unknowns and the

Horn–Schunck method is used for the estimation, where the

flow is formulated as a global energy functional which is solved

through minimization
−→
F = [vx ,vy ]T is the TOF vector, and

superscript “T” denotes the transpose

E =

∫∫
[(

∂O

∂x
vx +

∂O

∂y
vy +

∂O

∂t

)2

+α2
(

|∇vx |
2 + |∇vy |

2
)]

dxdy . (6)

In (6), the smoothness weight α > 0 serves as a regularization

parameter: Larger values for α result in a stronger penalization

of large flow gradients and lead to smoother flow fields. Due
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Fig. 4. Flow diagram of spatial-transient-stage tensor construction.

to the Horn–Schunck algorithm being an ill-posed problem,

the value of vx and vy is estimated and the specific steps are

summarized in [22].

C. Integration of TOF and Tensor Modeling

Besides TOF, this study introduces another key pattern de-

noted as stage domain of fatigue. As fatigue loading cycles

increase, the degree of contact fatigue damage inevitably in-

creases. This information can be fused with TOF to construct the

spatial-transient-stage model. More specifically, let i = 1, . . . , I
denote ith stage. Take gear fatigue test as an example, in stage 1,

we perform ECPT on a completely new gear; after that, the new

gear will run a certain number of cycles (e.g., 8 × 106) and the

contact part of gear will be inevitably suffered from fatigue (the

material property electrical conductivity, magnetic permeabil-

ity, and thermal conductivity of the contact part will be different

from the completely new one), the ECPT will be conducted

on this gear and this is considered as stage 2. Notwithstanding

this, we continue running this gear for another 8 × 106 cycles

which will be denoted as stage 3, and so on. For each stage i,

TOF tensor is denoted as Ȳ′
(i)

and it corresponds to property

variation of θi = {σi , λi , µi}. TOF for each stage containing

velocity in both x- and y-direction is given by Ȳ′ = {vx ,vy}.

Supposing we totally have I stages, the specific steps of spatial-

transient-stage tensor can be constructed as shown in Figs. 4

and 5.

In Fig. 4, the ith stage TOF calculation of ECPT thermal

video Ȳ(i)% is denoted as Ȳ′
(i)

and it corresponds to prop-

erty variation of θi = {σi , λi , µi}, Ȳ′
(i)

can be transformed

Fig. 5. Illustration of matricizing operation of Ȳ ′
(i)

.

into a matrix Y′(i) which has dimension L × (N − 1), where

L = Nx × Ny , the specific procedure of transform is explained

in Fig. 5(a)–(e). The symbol vec[•] denotes vectorization op-

eration. Finally, once i = 1, . . . , I stages ECPT thermal videos

have been transformed, the spatial-transient-state tensor rep-

resentation X̄ = {[Y′(1) ], [Y′(2) ], . . . , [Y′(I ) ]} can be formed

straightforwardly. The richness of information obtained from

this construction enables the fusion of the all the ith material

properties θi whose variations are revealed in the spatial, tran-

sient, and stage domain. Subsequently, all domains are com-

bined to characterize and track the θi in order to improve the

robustness and remove ambiguities in any single domain. When

θi varies, based on (1) and (2), these variations will affect both

heat diffusion and flow velocity.

Therefore, under the assumption that the spatial, transient,

and stage features within the property variation regions are dif-

ferent from those which are not affected, the multidimensional

canonical decomposition [50] of spatial-transient-stage tensor

X̄ ∈ RL×NT ×I where NT = N − 1 will provide us with the

“basis patterns” that correspond to the spatial domain (to lo-

cate the region whose θi varies), transient domain (to determine

how the signal within these region propagate in time series),

and stage domain (to determine how much degree of θi change

within these regions at ith stage). This gives

X̄ = ḡ ×1 A ×2 B ×3 C =

P∑

p=1

Q
∑

q=1

R∑

r=1

gpqrap◦bq ◦ cr

(7)

where A ∈ ℜL×P , B ∈ ℜNT ×Q , and C ∈ ℜI×R are factor ba-

sis matrix of spatial, transient, and stage, respectively; aj ∈ ℜL ,

bj ∈ ℜNT , and cj ∈ ℜI are factor basis vector of spatial,

transient, and stage, respectively,. The symbol “◦” represents

the vector outer product and the steps of decomposition and

ḡ ∈ ℜP ×Q×R is the core tensor and its entries show the level of

interaction between the different components. Here P, Q, and

R are the number of components (i.e., columns) in the factor

matrices. “◦” represents the vector outer product. The estima-

tion of the factor basis and core tensor is given by the following
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Fig. 6. Flow diagram of the proposed method.

optimization problem:

min
Z̄

∥
∥X̄ − Z̄

∥
∥ with Z̄ =

P∑

p=1

Q
∑

q=1

R∑

r=1

gpqrap◦bq ◦ c′r

(8)

where ‖ • ‖ is the matrix Frobenius norm which is defined as

∥
∥X̄

∥
∥ =

√
∑I1

i1

∑I2

i2

· · ·
∑IN

iN

x2
i1 ,i2 ...,iN

.′ (9)

The specific update procedure to estimate factor basis and

core tensor can be found in [30], [31], and [34]. The flow dia-

gram of the proposed method is summarized in Fig. 6. It mainly

consists of 1) given the input stage ECPT video sequences Ȳ(i)

and calculate its corresponding TOF Ȳ′
(i)

for i = 1, . . . , I . 2)

Tensor construction of X̄ = {[Y′(1) ], [Y′(2) ], · · · , [Y′(I ) ]} and

basis factorization using canonical decomposition are carried

out. 3) The analysis of spatial, transient, and stage basis is

conducted.

III. EXPERIMENTAL SETUP

ECPT experiment platform was built as shown in Fig. 7(a).

A SC7500 IR camera was used for capturing the temperature

field, which is a Stirling cooled camera with a 320 × 256 array

of 1.5–5 µm InSb detectors and has a sensitivity of <20 mK and

a maximum full frame rate of 383 Hz. A rectangular coil was

constructed to apply directional excitation, which is made of

6.35-mm high conductivity hollow copper tubing. The radiation

of the object was sampled using the commercial thermography

software Altair and the unit of radiation is digital level (DL).

A nonlinear transfer function after calibration can convert the

Fig. 7. (a) ECPT experimental system, (b) explanation of gear teeth
and the coil placement, and (c) fatigue test gear with inductor coil.

radiation (unit: DL) into temperature (unit: K), which requires

an operator setting several parameters (emissivity, background

temperature, transmission, etc.). We used DL as the unit of

temperature in experimental studies. As shown in Fig. 7(b) and

(c), the 6-mm module helical test gear with a 44-mm face width

was tested which manufactured from 18CrNiMo7 steel bar. The

gears were tested on a 160-mm center distance back-to-back

contact fatigue test rig at 3000 r/min (pinion) with BAG oil at

90 °C. A stepwise micropitting test involves running gears at

incrementally increasing contact stress levels with each stage

running for up to 8 × 106 cycles and totally has seven stages

[51]. This is shown in Fig. 8. 8 × 106 cycles take the running

for 44.44 h, which takes approximately 160 × 103 s.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Inductive Thermography and Tensor

In IT experiments, 2 s video were recorded by camera which

includes 400-ms heating time followed by 1600 ms cooling time.

The spatial patterns of gear with 40 × 106 cycles (stage 5) at

0.2 s are shown in Fig. 9(a). Micropitting and wear occurred on

contact surface during fatigue running, which can cause a varia-

tion in spatial and transient of temperature [52]. Fig. 9(b) shows

TOF results of gear with 40 × 106 cycles. The size and direction

of arrows indicate the value and direction of TOF, respectively.

During the transformation of retained austenite into martensite

and fatigue softening, permeability increases as the number of

cycles increase. After a certain number of cycles, dislocations

accumulation will manifest which lead to a decrease in thermal

conductivity and electrical conductivity [52]. The variation in

material properties is very weak and fatigue is not manifested by
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Fig. 8. (a) 160 mm center distance back-to-back contact fatigue test
rig facility at Design Unit, Newcastle University, (b) procedure of the
stepwise fatigue test (8 × 106 cycles takes the running for 44.44 h).

Fig. 9. (a) Raw thermal image at 0.2 s. (b) Thermo optical flow (room
in region).

one or several impact points but it directly affects a certain area.

Thus, it is extremely difficult to obtain temperature variation in-

formation from Fig. 9(a). By deriving TOF, it is clear to see TOF

have uniform distribution and order direction at the noncontact

tooth flank since the microstructure does not vary. Specifically,

due to the property variation during the fatigue process, singular

patterns of TOF appear at fatigue contact tooth flank and TOF

converge on the fatigue affective areas. This is reflected by size

and direction of arrows. However, TOF only considers spatial

and transient information but ignores stage information.

The proposed TOF-stage tensor and decomposition will

tackle on all seven stages of IT data. The jointly estimated factor

basis {aj , bj , cj} is more precise as they are optimized under

a more complete dataset rather than individual dataset from

different stages. Fig. 10 validates the decomposition method

which shows the potential to characterize and track the varia-

tion of gear fatigue evolution. In Fig. 10(a), the spatial basis

captures the singular regions at the fatigue contact teeth. The

tensor model enables a more accurate and consistent inference

due to the influenced factors rather than the individual process.

Fig. 10(b) shows the transient basis where it directly displays the

Fig. 10. The decomposition results for gear fatigue test: (a) Spatial
basis, (b) transient basis, and (c) stage basis.

characteristic of heat conduction. It also shows that it has the po-

tential being a classifier for multidefects recognition. Fig. 10(c)

shows the factorized stage basis and it is directly used to pre-

dict the degree of fatigue during the different stages. The stage

basis implies that the material property varies more obviously

with the increase of number of fatigue circles and derives the

correlation results [52]. Specifically, the estimated stage basis

retains a consistent ratio in the first three stages, but fluctuates in

stages four and five which resulted as accumulation of multifac-

tor and, then, sharply increases at the six stage. During the early

cyclic deformation, only a few grains are plastically deformed

and the deformation degrees are different. With the increase of

fatigue cycle, both number and degrees of deformed grains also

increase. Once these reach a certain level, the property varies

sharply. This explains the sudden increase of stage basis at the

stages 6 and 7. These have been validated using Barkhausen

noise (MBN) in next section.

In order to reflect the changes of TOC in specific spatial

domain, the mean of TOC is extracted. This has been done by

using a sliding window to analyzing the mean of TOC within

a small region for both contact and noncontact fatigue tooth

where the size of the window is 22 by 30 pixel and step size is

1 pixel along the Y-coordinate.. This is shown in Fig. 11. The

size of the sliding window exactly coincides with the size of the

measured gear teeth. The mean value indicates the degree of the

TOC which directly associates with the level of fatigue.

From Fig. 11(a), the mean of TOC became obviously differ-

ent for the two teeth. The value (blue dash line) in overall is

greater on the fatigue contact tooth flank. As the heat distribu-

tion is uniform at fatigue noncontact tooth flank, the degree of

TOF is lower. At the fatigue contact tooth flank, the heat con-

verges at the places where the singular values of TOF appeared

because of the changing microstructure on the fatigue contact

tooth flank surface. As the TOF value is quite different between
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Fig. 11. (a) Mean of TOF stage basis by using sliding window;
(b) validation experiments which fatigue contact tooth flank on the left
side.

Fig. 12. 2-D pseudocolor images of TOC at different stages: (a) at
stage 7; (b) at stage 5; and (c) at stage 3.

the area where the heat converges and the adjacent area, the de-

gree is higher. To validate this finding, we have done the repeat

experiment which put the fatigue contact tooth on the left side

and do the ECPT for all stages, Fig. 11(b) shows the mean of

TOF stage basis by using sliding window where it (red dot line)

confirm the results. Notwithstanding above, it is found that the

black-box marked region has prominent characteristic.

Fig. 12 shows the TOF of stage 7, stage 5, and stage 3, re-

spectively. There exist singular values of TOF at M and N areas

(black box marked region in Fig. 11). During the early cyclic

deformation, only some of the grains are plastically deformed

and the plastic deformation degrees of the grains are different.

With increasing fatigue cycles, the extent of plastic deforma-

tion of the grains increases and the number of grains which are

plastically deformed is also increased. This explains that fatigue

damage of the material structure suddenly increases in M and

N areas. The areas M and N can be considered as an incubation

area of a fatigue crack, where physical characteristics are signif-

icantly changed in these areas. Furthermore, the fatigue damage

is diffused from M and N areas to the surroundings and fatigue

damage appears across the whole area of the fatigue contact

tooth flank.

B. Validation Study by Using Barkhausen Noise

In a ferromagnetic material, Barkhausen noise is generated by

the discontinuous movement of irreversible domain walls. This

noise can be detected in the form of voltage pulses which are

induced in a coil placed near the surface of the material, called

MBN. MBN is expected as a useful way of detecting nonappar-

Fig. 13. (a) MBN experiment and (b) results in a specific location.

ent defects such as fatigue or residual stress. Govindaraju et al.

used the MBN for identifying the fatigue softening, saturation,

crack propagation stages during low-cycle fatigue in medium

strength steel. Moorthy et al. investigated evaluation of con-

tact fatigue damage and bending fatigue on gears using MBN

[53]–[55]. The high-frequency MBE measurements have been

made using the commercially available u-Scan/Rollscan 500-2

system supplied by Stress technology, Finland. A standard flat-

surface probe with a ferrite-cored electromagnet with a pole gap

distance of 3 mm and a ferrite-cored MBE pickup fixed at the

center of the pole gap has been used. They have shown that both

MBN peak and profile can be used to assess the various stages

of deformation and fracture during the fatigue propagation. Ac-

cording to these works, Fig. 13 (Moorthy’s work) indicates that

root mean square (RMS) variation of MBN is faint at the initial

stage because of small variation in gear material (first stage).

After a certain number of cycles, the RMS value increases as the

cycles increase, which is attributed to the combined effects of

deformation induced transformation of retained austenite into

martensite and fatigue softening. However, when number of cy-

cles reaches 45 million (seven stages), this results in 1) plastic

deformation induced formation of more compressive residual

stresses and cyclic hardening of the microstructure; 2) the trans-

formation of retained austenite to martensite would be com-

pleted; and 3) additional dislocations would be generated which

cause decrease in the displacement length of magnetic domain

walls. These have contributed to the decrease in the MBN level

from maximum [53]–[55]. Further clarification including mea-

surement location supervised by the proposed method TOF will

be considered.

Three scan line with five measurement points are measured

tooth surface, including addendum, root of tooth, and middle

line tooth. The experiment is shown in Fig. 13(a) and takes the

median value of the all tested points. Fig. 13(b) shows the MBN

results for all seven stages. Analyzing the results, there exist

highly correlation between MBN results with tensor decompo-

sition stage basis in Fig. 10(c) and the correlation coefficient

is 70% while both results display the similar trend of variation

level with progressive number of cycles. However, the MBN

technique requires scan process step by step and humanly con-

trolling for complex geometric sample. This will result less effi-

ciency and unwanted interference. The ECPT can overcome this

because the heat of ECPT is not limited to the sample surface

and can image a large area within short time.
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C. Advantages and Limits

Inductive thermography is a NDT method that combines eddy

current testing (ECT), magnetic testing and thermography. Its

advantages include speed of processing, providing noncontact,

noninteraction, real-time measurements over a large detection

area with long range, and exploiting the EC characteristic that is

sensitive to surface small defects. The advantages of inductive

thermography over conventional thermography with optical ex-

citation have been discussed in Section I. In comparison with

ECT and MBN, it does not require the step-by-step scanning

process and human intervention for controlling the complex ge-

ometric sample which will result substantial loss of efficiency

and introduced unwanted interference.

Several signal processing methods have been investigated

in inductive thermography, such as thermal transient selection,

thermographic signal reconstruction based on logarithm domain

transform [56], phase analysis in frequency domain [22], gra-

dient analysis based on lateral heat conduction [57], princi-

pal component analysis, and independence component analysis

[41]. These methods have shown great potentials on finding

the defects. However, if the hidden defects exist (e.g., fatigue)

where sample is under property variation, it is difficult to find

the abnormal features from the temperature spatial distribution

only but require the fusion of different domain information in

order to characterize and track the property variation. The pro-

posed method fuses three domain types, i.e., spatial, transient,

and stage. It also bridges the physics and mathematical model

to tackle the weak variation of thermal characteristic of hidden

defects and validate its efficiency.

The limitation of the proposed method is that the advantages

gained by the proposed methods are augmented by high cost

of instrumentation platform and the increase of computational

power and higher data storage requirements of the processors.

In our implementation, a high-specification computer with a PC

server with of Core i7 64-GB RAM is required to implement

the data and algorithm.

V. CONCLUSION

In this paper, a physics-based multidimensional tensor model

with the help of inductive thermography has been proposed.

The model describes the spatial-transient-stage pattern for sub-

sequent evaluation of the contact fatigue damage in WT gear.

The model has been verified by experimental studies where real

gears with different cycles of contact fatigue are tested. First,

through TOF, material property variation has been linked to

multiple physical fields involving Joule heating and heat diffu-

sion. The spatial-transient-stage tensor construction model and

multidimensional decomposition algorithm are then proposed

for characterizing and tracking the property variation from mul-

tiple stages. From obtained results, conclusion can be drawn as

follows: 1) The estimated spatial basis emphasizes the property

variation which can be further used for detecting the affected

region; 2) the stage basis directly reflects the variation of each

property and can be used to track the degree of variation during

the fatigue procedure. Future study will be conducted to mini-

mize several affective factors during the ECPT experiment such

as emissivity, liftoff, geometric shape, and environment. The

proposed methods can be exploited for emerging in-situ appli-

cations such as high-speed railway and nuclear plants for fast

imaging, localization, visualization, and evaluation. In addition,

the gear fatigue damage at lower than 1 Hz rotating speed is

much more valuable than 50 Hz. As this is the initial research

work, the first step is to evaluate how the property variation and

look for insight of what exactly material property varies dur-

ing the fatigue process. Further study will carry out the fatigue

evaluation at 1 Hz rotating speed.
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