
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1985

Multidimensional Timestamp Protocols for Concurrency Control Multidimensional Timestamp Protocols for Concurrency Control

Pei-Jyun Leu

Bharat Bhargava
Purdue University, bb@cs.purdue.edu

Report Number:
85-521

Leu, Pei-Jyun and Bhargava, Bharat, "Multidimensional Timestamp Protocols for Concurrency Control"
(1985). Department of Computer Science Technical Reports. Paper 441.
https://docs.lib.purdue.edu/cstech/441

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

MULTIDIMENSIONAL TIMESTAMP PROTOCOLS
FOR CONCURRENCY CONTROL

Pei-JyunLeu
Bharat Bhargava

CSD-TR-521
June 1985

Revised October 1986

MULTIDIMENSIONAL TIMESTAMP PROTOCOLS

FOR CONCURRENCY CONTROLl

Pei-Jyun Leu -- Bharat Bhargava

CSD-TR-521

June 1985

revised Oct. 1986

ARPA: leu@purdue.edu

bb@purdue.edu

t This work was supported by lhc David Ross fellowship and partially supported by Sperry Corporation

Abstract-We propose multidimensional timestamp protocols for concurrency control in database

systems where each transaction is assigned a timestamp vector containing multiple elements.

The timestamp vectors for two transactions can be equal if timestamp elements are assigned !:he

same values. The serializability order among the transactions is determined by a topological sort

of the corresponding timestamp vectors. The timestamp in our protocols is assigned dynamically

and is not just based on !:he starting/finishing time as in conservative and optimistic timestamp

methods. The concurrency control can be enforced based on more precise dependency informa

tion derived dynamically from the operations of the transactions. several classes of logs have

been identified based on Ihe degree of concurrency or the number of logs accepted by a con~

currency controller. The class recognized by our protocols is within D-serializable (DSR), and is

different from alI previously known classes such as two phase locking (2PL), strictly serializable

(SSR), timestamp ordering (TO), which have been defined in literature. The protocols have been

analyzed to study the complexity of recognition of logs. We briefly discuss the implementation

of the concurrency control algorithm for the new class, and give a timestamp vector processing

mechanism. The extension of the protocols for nested transaction and distributed database

models has also been mCIuded.

Index TemlS'-Database systems, transactions, logs. degree of concurrency. concurrency control

algorithms, serializability, k-dimensional timestamp ordering, parallel processing.

-2-

I. INTRODUCTION

There are two basic concurrency control approaches for transaction processing in database

systems. The first is based on locking. An example is the two phase locking protocol [9], which

requires that no two transactions hold conflicting locks at the same time. and that no transaction

obtain a lock after it has released one. The second approach is based on time stamps associated

with transactions or data items. In the conventional timestamp ordering, each transaction has a

unique timestamp which is the starting time of that transaction. All the conflicting operations are

required to occur in the timestamp order [2, 4, 21]. There are several variations of timestamp

ordering. Multiple versions of item values have been used to increase the degree of concurrency

[3, 18. 19]. The conventional timestamp ordering tends to prematurely determine the serializabil

ity order, which may not fit in with the subsequent operation sequence, forcing some operations

to abort In contrast, the optimistic approach [13] waits till the end of the transaction to make a

commit/abort decision. Thomas [20] describes the situation when some writes can 00 simply

ignored instead ofbeing aborted.

------In-this-paper;-we-present1he multidimensionattimesmm-p proTocols MI'(k), which proVIde

higher degree of concurrency than a single dimensional timestamp protocol. These protocols

allow a transaction to have a timestamp vector of up to k elements. The maximum value of k is

limited by twice the maximum number of operations in a single transaction. Each operation may

set up a new dependency relationship between two transactions. We encode the relationship by

making one vector less than the other. A single timestamp element is used to bear this infoInla

tion. Earlier assigned elements are more significant in the sense that subsequent dependency rela

tionships cannot conflict with the previously encoded relationships. In such a way, we can decide

to accept or abort an operation based on the dependency information derived from all the preced

ing operations. In other words, we use the approach of dynamic timestamp vector generation for

each transaction and dynamic validation of conflicting transactions to increase the degree of con

currency.

We start by giving an example that distinguishes our approach. section II contains the

notation and definitions. In Section m, we present the protocol MT(k). In this protocol, two

timestamp vectors are compared according to lexicographic order. We go through corresponding

-3-

elements in the two vectors from left to right until we reach two unequal or undefined elements.

If both clements are defined, their order determines whether to accept or abort an incoming opera

tion; otherwise we need to encode a newly discovered dependency relatioru;hip by making one

element less fuan the other and accept the operation. Next. the timestamp vcctor processing

mechanism is given. In Section IV. we present the composite protocol MTCk+> that recognizes

the union of the classes recognized by the protocols MT(I). MT(2)..... MT(k). The protocol

MT(k~ is guaranteed to allow higher concurrency as the vector size increases. In Section V. we

present the protocol MT(kI. ki) suitable for concurrency control of nested transactions [15]. TItis

protocol is a variation of MT(k). We partition the transactions or actions into groups which are

formed either based on transaction types as in SDD-l [4] or based on hierarchical levels as in

nested transactions [15]. Serializability is assured at two levels. The technique ofMT(k.) is used

at each level. We next design the decentralized concurrency control protocol DMT(k). In Sec

tion VI, a comparison between our approach and some related work [IJ is discussed. Next,

guidelines to choose an appropriate timestamp vector size are studied. Fmally, we investigate

two rollback approaches for timestamp protocols. Section VII gives the conclusions.

A. An Example to Illustrate Advantages ofthe Protocol MT(k):

Please see Section II for the definition of log. To simplify the example, we do not require a tran

saction to have each read followed by a write. We show that the degree of concurrency achieved

by our approach can be higher than if only one-dimensional timestamp is used. Let a log L have

the sequence of read/write operations of several transactions T 1, T2, T3 as follows.

Example 1: Suppose

where WI[XJ denotes a write operation ofT1on item x etc.

The dependency digraph for the log is shown in Fig. l(a). In the conventional timestamp order

ing (as in the protocol P4 in [4]), we observe that the dependency between T 2 and T3 will be

assumed to be T3 -4 T2 according to the starting timestamps, even though the two transactions

do not have any real dependency since R3[X J and R2[Y] do not conflict. The disadvantage of

-4-

creating this dependency at this stage in the log is that if we find that actually T J should depend

on T2 (i.e., T2 --i- T 3) due to some conflict in the future, we may have to abort and restart T 3' It is

preferable to assign equal time Slamps to T2 and T3 when only limited infoITIlation is available in

the log. If the timestamp of a transaction is a scalar (one-dimensional), we cannot have two tran

sactions with the same time stamp. However, if the time stamp is a vector (multidimensional),

then the current elements of the vectors for T 2 and T3 can be !he same 35 shown in Fig. 1(b). The

timestamp vectors for the transactions T I, T2. T3 at this stage of the log are:

T I: <I, *>. ok is an undefined element.

T 2: <2, ok>

T3: <2, *>

These vectors enforce precisely the partial order T1 --i- T2. T 1 --i- T3 depicted in Fig. 1(b). Let us

say the log at some later time is

Now. we know that T 3 depends on T 2 because R 2[y] precedes and conflicts with W 3fy]. We use

the 2nd dimension of timestamps to "encode" the dependency as shown in Fig. ICc). The result

ing timestamp vectors are:

T I: <1. *>. * is an undefined element.

Tz: <2,1>

T,: <2,2>

The serializability order for log L will be TITzT3 without a need to abort T 3. This example

shows more logs may be acceptable to the concurrency controller. But.we will further show in

Section III~C that some serializable logs are acceptable to the single-valued timestamp protocol

but not a multidimensional timestamp protocol.

timestamp

Oogica! clock)

I

2

3

1st element of the

timestamp vector

I

2

- 5 -

(a)

T,

(b)

timestamp

(rea! clock)

1:36

1:47

2:15

2nd element of the

timestamp vector

I

2

(c)

T,

T,

Figure 1. Dependency digraph for example I

-6-

As a second example, suppose

T.-: <2,1,"'>.

Tj : <2, *. *>.

To encode a dependency between Tj and Tj • we compare the two vectors. We find the 1st ele·

ment in both ttansaction timestamp vectors does not telllhe order between Tj and Tj . However,

we can set the 2nd element in lhc vector ofTj to either 2 (if Tj ~ Tj) or 0 (if Tj ~ Tj) such that

the order of the vectors is consistent willi either dependency order.

-7-

II. NOTATION AND DEFINITIONS

In the two-step transaction model, a transaction T j consists of a read operation Rj followed

by a write operation Wi. We choose this basic model mainly for analysis purposes. Our proto

cols, however, are not restricted to this model. The sequence of operations produced by a set of

transactions is capbJred by a log. A log is a quintuple L = <.D. T ,1:, S. 1t>, where D is the data

base item set, T is the transaction set, 1: is the atomic operation set, S is the at:cess function

which gives the set of items accessed by an atomic operation, and 1t is the pennutationfunction

which gives the sequence number of an operation. For example, if a log L is the sequence

apr· ..• then ?tea) = 1. n(j3) = 2, ... An atomic operation is represented by A j [x], where j is a

unique identification for a transaction, A is either R or W representing a read or a write opera

tion, and x is a single database item. S (R j) is the read set of transaction Tj • and S (Wj) the write

set. This model has also been used in [16].

Notation.

MT(k)

TO(k)

TS(i)

TS(i,m)

TRT(x)

T l+7(x)

TS(RT(x»

TS(WT(x»

k-dimensional timestamp protocol.

the set oflogs recognized by MT(k).

the timestamp vector of transaction Tjl TS(i) = <til t2•...•tm'tt>. tm is an

integer or undefined.

the m -th element of TS (i).

the most recent transaction that reads data item x where RT(x) is a transac

tion index.

the most recent ttansaction that writes data item x where WT(x) is a transac

tionindex.

the most recent read timestamp of a data item x.

the most recent write timestamp of a data item x.

The timestamp table is shown in Fig. 2. The columns represent timestamp order based on

operations. and I:he rows represent timestamp vectors. TS(RT(x» or TS(Wf(x» changes every

time x is read or written because of an operation on x. The protocol will derive these elements

from a logical clock (instead of a real clock) according to the dependency relationships among

- 8 -

the transactions.

1 2 k

T._1 1--+--1----1--
T.

Figure 2. Timeslamp table ofMf(k)

Definition 1. Two atomic operations OJ and OJ conflict if 1) they belong to different tran

sactions; 2) both access the same database item; 3) at least one of them is a write operation.

Definition 2. [16} A log L = <D. T. 1:, S, 1C> is D-serializable (DSR) iff there exist real

numbers SJ, ...• 8" for the n transactions T 1. T2•... , Tn such that

i) IfS(W,) n S(Rj) .. 'A i .. j and n(W,) < n(Rj). thens, < Sjo

ii) IfS (Rj) fl S(Wj) *" q), i ¢ j and 1t(Rj) < 1t(Wj), then Sj < Sj_

iii) IfSewi> (1 S(Wj) *" rn i "#- j and 1t{Wj) < 1t{Wj), then Sj < Sj.

We add one more condition to describe the class TO(k) as follows.

Definition 3. A k -dimensional timestamp ordering (TO(k» log has the following neces

sary condition for serializability: There exist real numbers 81•... , s" for the n transactions

T 1. T2•...• Tn such that

i)-iii) the same as in Definition 2.

iv) IfS(R,) n S(Rj) .. 'A i .. j and nCR,) < n(Rj), thens, < Sjo

Considering the two-step transaction model, we add restriction iv) so that the protocol MT(k) can

keep track of the latest transaction that reads a data item. and enforce correct dependencies due to

read-write conflicts. In the two-step transaction model, Rj is the first operation of Tj . Once Tj

issues Rj [x J after T j has issued R j [x J. TS U) becomes the most recent read timestamp of item x.

This implies the order Si < Sj. There can be several transactions that read x before it is written

by some other transaction Ti • Those read-write dependencies can be easily enforced by only

enforcing the order between the most recent read timestamp and TS(l). Considering the muIti-

-9-

step transaction mooel, a read may DOt be the first operation of a transaction. The most recent

read timestamp of item x is the timestamp of the transaction that reads x and also has the largest

timestamp value (derived from a logical clock rather than a real clock). We can see that TOCk) is

a proper subset of DSR because the conditions for TOCk) are more restrictive. Moreover, each

TOCk) class has a different restriction on the range ofSj. For example,

Definition 4. A log is I-dimensional timestamp ordering (TO(1» iff

i)-iv) the same as in Definition 3.

v) Sj = x(Ri).

For simplicity, we do not define the exact range of Sj for each class TO(k), k :2: 2. However, we

define a necessary condition for the range of Sj for all TO(k). k C: 2 as a comparison to Definition

4. Basically I for k ~ 2, Sj is restricted to a certain range after the first operation of T j occurs. As

more operations occurs, the range of Sj will be further restricted because more dependencies are

created. These dependencies imply a partial oIder ofSj 's.

Definition S. A necessary condition for a TO(k) log, k ~ 2, is that there exist real numbers

SI.···. Sf! forthen transactions T I • T2•••.• Till s_u-.e.bJhaltt _

i)-iv) the same as in Definition 3.

v) ti - I < Sj < tj, where tj is the first element of the timestamp vector ofT...

Note that if Ij = tjl i *-j, then the ranges of Sj and Sj overlap. Since timestamp elements arc

assigned integer values based on Algorithm I in Section TIl-A. the serializability numocr Sj is not

an integer based on our definitioIL The order of two timestamp vectors is defined as follows.

Definition 6.

TS(i) < TS(j) if there exists 1,; m ,; k such that TS(i, m) < TS(j, m), and

TS(i,h)=TS(j,h),l';h <m.

TS(i»TS(j) if there exists l';m';k such that TS(i,m»TS(j,m), and

TS(i, h) = TS(j, h),l ,; h < m.

TS(i) = TS(j) if there exists 1 ,; m ,; k such that both TS(i, m) and TS(j, m) are undefined,

and TS(i, h) = TS(j, h), 1 ,; h < m.

-10 -

TS (i) ? TS U) if there exists 1 S" m S k such that either TS (i • m) or TS U,m) is undefined

(but not both), and TS(i, h) = TSU, h), 1 oS h < m.

We assume that an undefined element is not equal to any integer.

-11-

m. THE PROTOCOL MT(k)

In this section, the algorithm. proof of correctness, the degree of concurrency, the complex

ity analysis. the optimized encoding of dependencies, and the implementation issues including

vector processing will be presented.

A. The Algorithm and the Example for the Pr%eol MT(k)

Now we describe the algorithm in detail. Our algorithm is applicable to the multi-step tran·

saction model. Let Tj attempt to issue an operation 0 on a data item x. Let j be either RT(x) or

WT(x) such that TSU) is the larger timestamp. j is used to locate the timestamp vector of the

latest transaction that accesses x. The design of this protocol is based on the idea that we com

pare TS U) with TS (i). The comparison is done by going through corresponding elements in the

two timestamp vectors from left to right until we reach two unequal or undefined elements. 1b.is

gives the two timestamp elements that detennine the order of Tj and Tj based on Definition 6.

Then if both elements are defined, their order detennines whether to accept or abort an incoming

operation; otherwise we need to "encode" a new dependency relationship by making one ele

ment less than the other and accept the operation. The symbol 'oIe' represents an undefined limes

tamp element Each vector has k elements. Two counters lcoum and ucount are used to set the

k -th elements to distinct values. lcount is the currenl lower bound of the k -th elements, and

ucount the current upper bound. Procedure SetU. i) is used to compare the vectors and encode

the dependency Tj --> T; by setting TSU) < TS(i).

- 12 -

Algorithm 1: (the algorithm for the protocol MT(k»

Initialization:
1. TS(i):= < * > for i > 0;
2. TS(O):= <0,*, ,*>;
3. RT(x) := WT(x) := 0 for any x;
4. lcount := 0; ucount := 1;

r counters for the k~th elements */

procedure Scheduler;
begin

integer j;

1* pick up the larger onc */
if TS(RT(x» < TS(WT(x» then

5. j := WT(x);
else

6. j := RT(x)
eodif;

case(O) {
read:

if SetU. i) then
7. RT(x):=i;

---8. d<rtIte-oper,''"wtilio'''nr.'---------------------------
9. elseif j = RT(x) and TS(WT(x» < TS(i) then
10. do the operation;

else
11. abort Tj

eodif;
write:

if SetU. i) then
12. WT(x):=i;
13. do the operation;

else
14. abort Tj

endif;
)

end Scheduler;

boolean procedure SetU. i); integer j. i;
I'set TSUl < TS(il '/
begin

integer m;

15. if j = i then
return (true)

-13 -

endif;

16. m:= eompare(TSU), TS(i);
/* based on Definilion 6 */

case(TSU) : TS(i») (
17. <: return (true);
18. >: return (false);

1* otherwise set TSU. m) < TS(i ,m) >Ie/
19. if m = k then

TSU, k) :~ ueount;
TS(i. k) := ucount + 1;
ucount := ucounl + 2;

else
TSU, m):= I;
TS(i, m) := 2

endif;
return (true);

20. ? if T.S'(i, m) = '>Ie' then
if m = k then

TS(i, k):= ucount;
ucount := ucount + 1;

else
--------~'f'S\t;7nJ:=-rstI=r't)"+-"tI------------------

endif;
else

ifm=kthen
TSU, k):= leount;
lcount := kount - 1;

else

TSU,m):=TS(i,m)-1
endif;

endif;
return (true);

}
end Set;

We think of To as a virtual transaction which reads and writes all the data items before any

other transactions. This is characterized by lines 2 and 3. As a result, there exists a dependency

T 0~ T j for any other transaction 1'.-, and TS (0) never changes afler initialization. The two

counters ucount and [count are used to set the k -th elements to distinct values. So any two

timestamp vectors, after all k elements are set, are always distinguishable. Otherwise. we cannot

enforce any further dependency between the two transactions. We give an example to show how

-14 -

the algorithm works:

Example 2: Let k = 2, and three transactions T to T2. T3. The log L is as follows:

{

T' .

L = T,:

T3 :

R,[x] W,CY] W,[,]

R,cy]
R,[,]

-----------------> real time

The corresponding dependency digraph for log L is shown in Fig. 3. The dependencies are esta

blished in the sequence a. b. c • d. e. Edge d is created due to the connicting operations R 2[Y J

and WI[y]' Edge e is created due to the conflicting operations R3[z] and W1[z]. Table I shows

how each dependency edge is encoded in the associated vectors. For example, edge a is

represented by the relationship TS(O) < TS(l). The second row records the initial value of each

vector. A blank entry in the table means that the vector remains unchanged from the entry just

above it

e

Figure 3. Dependency digraph for example 2

-15 -

TS(O) TS(I) TS(2) TS(3)

initialization <D, *> <*.*> <of<. "'> <*.*>

a :To~Tl <I, *>

b : To --i'T2 <1, *>

c :To~T3 <I, *>

d :T2~TI <1,2> <1,1>

e :T3~Tl <1,0>

resulting

vectors <0.*> <1,2> <1,1> <1,0>

__________-'T"a"'b"le'---I~.~R~ec=ord=ingof timestamp vectors for example 2

The edge e is represented by the relationship <I, 0> < <1,2> where the 2nd element of T8(3)

has been set to 0 rather than 1 because we need to distinguish TS (2) and TS (3). Otherwise we

cannot enforce any further dependency between T2. and T3 because we run out of timestamp ele

ments. The log L is equivalent to the serial log T3T2T1or T2T3T I.

B. Correctness Proofofthe Protocol

Lemma 1. The relation < is transitive. That is. if TS(i) < TSO) and TS(j) < TS(l).

Lben TS(i) < TS(I).

Proof"

Suppose TSU) < TSU) and TSU) < TS(I).

By Definition 6, there exist 1 :; ml S k. and 1 S; mz S k such that

D

- 16 -

i) TS(i, h) = TSU, h), 1 ,; h < m"
il) TS(i, ml) < TSU, ml),

iii) TSU,h)=TS(I,h),I';h <m2'

Iv) TSU, mi) < TS(I, mi).

Then. we have eitherml < m2 or m2 < ml ormt = m2.

lfm} < m2. then

TS(i,h)=TSU,h)=TS(I,h),I';h <ml byl)andili),

TS(i,ml)<TSU,ml) byti),

TSU, ml) = TS(I, ml) bytii).

Thus there exists 1 ::; m1 S k such !.hat

TS(i, h) = TS(I, h), 1 ,; h < ml,

TS(i, ml) < TSO, ml)'

That is, TS (i) < TS (I).

___~SSjiinmiiiIlaardly.IS1/!_<JX(L)~<-mt<lr-mt="'2,~.----------------,D~-------

Lemma 2. The relation < is irrefiexive. That is, there exists no Tj such that

TS(i) < TS(i).

Proo!' By Definition 6, TS(i) = TS(i). Also there exists no Tj such Ibat TS(i) < TSU) and

TS U) < TS (i), and thus TS (i) < TS (i) by transitivity.

Definition 7. Transactions Tj and Tj are dependent (denoted by Tj ~ Tj) in a log if

i) Some operation OJ of Tj precedes and conflicts with some operation OJ of Tj • i*j; or

ii) there exists T1 such that Tj ~ Tf and T1 --) Tj .

o

o

-17 -

Theorem 1. A log is D-serializable (DSR) iff its dependency relation (--7) defines a partial

order'.

This result has been discussed in [2, 5. 16]. To get a total order, we do a topological sort on the

partial order.

Theorem 2. MT(k) assures serializability.

Proof' From lhe algorithm, we observe that if Tj ---+ Tj then TS (i) < TS U), and that once

TS (i) < TS U) is determined, the relationship will not change afterwards. Also from Lemma 1

and Lemma 2, we know that < defines a partial order. The relation --7 must also be a partial

order. Then, by Theorem I, it implies serializability.

C. Degree o!Concurrency

Papadimitriou [16] defines the degree of concurrency provided by a scheduler as the

number of serializable logs accepted by me scheduler. If a scheduler allows more serializable

logs, it will spend less time in rearranging the execution order of operations. The hierarchy of

lIle degree of concurrency for the classes 2PL, SSR, DSR, and SR can be found in [5, 16].

Also the hierarchy of the degree of concurrency for the classes 2PL, TO(l), SSR, and SR for

distributed databases has been given in [11]. Based on the two-step transaction model, we add

TO(k) where k ~ 3 and form the extended hierarchy depicted in Fig. 4. TO(k) is the class of

logs recognized by the protocol MT(k).

We observe that TO(3) and TO(l) are distinct classes. But for k > 3, we have TO(k) =

TO(3). We will show further in Theorem 3 that for the q-step transaction model, we have

TO(2q - I) = TO(k) for all k "' 2q - I. 10 Fig. 4, we have q = 2. Generally, when 2 " k "

2q - I, TO(k - I) is not a subset of TO(k) because, excluding undefined elements, column

k - I of the timestamp table of the protocol MT(k - 1) contains only distinct elements but

column k - 1 of the table of the protocol MT(k) may contain equal clements. Thus values in

1. A reilltion ais a partial order ifais Iransitive (a ab, b ae implies fl ae), and irreflexive (Va,Il -a a).

- 18 -

the timestamp table of MT(k - 1) is not the same as the values in the prefix of the table of

MT(k). That is. the dependency information stored in the table of MT(k - 1) is DOL fully

covered by that in the table of MT(k).

SR

DSR

r--------------,
, TO(k) k=3,4, ... ', ,, ,,, SSR ~,, ,

.12 .11
,

.8 .7 .6
, TO(I .10, ,, ,,, , .5, .2 .1 ,, ,

L ___ - - --- ___ .J

.4

2PL .3
.9

Figure 4. Classes of serializable logs for
the two-step transaction model

The graph is partitioned into 12 regions. .i denotes region i in the graph. TO(k) is

placed inside DSR because any TO(k) is a subset of DSR as mentioned in Definition 3 in Sec

tion n. Further, log Lj implies the existence of the region i in the hierarchy graph. Each sim

ple log, not a concatenation of several logs, is equivalent to the serial log TIT2T3.

L, ~ R,[xlW,[xlR,[xlW,[xjR,[xjW,[xl

L, = R,[yjR,[zjR,[zlW,[xjW,[xjW,[yj

L, = R,~lR,~lR,~jW,[YlW,[yjW,~j

L, ~ R,[xlW,[YlR,[xlR,[zlW,[xlW,[xl

Ls = L 4 ' L6 (. means concatenation of two logs [16])

L. = R,[zjR,[Y1R,[YlW,[YlW,[xlW,[xl

L 7 = L 2 · L 6

- !9 -

L, = R,IY1R,IY1W,IYjR,[z]W,[xjW,[xj

L9 = L4 · L7

L IO = R,IY1R,IYjW,[z]R,[zlW,[zjW,[zl

L II = L8 ' L9

L 12 = L 10 . L lI

The membersttip of each composite log is a little tricky to understand. We clarify this by

showing

i) L7 = L2 . L6 E region 7.

ii) L9 = L4 . L7 E region 9.

Proof'

i)

Suppose L2 E region 2 and L6 E region 6.

Then,

L, E TO(3) n SSR.

------t.L."EE'I'e'fO~)~SR'",-------------------------

L,"" TO(!), and

L."" 2PL.

Thus,

L, . L. E TO(3) n SSR - TO(!) - 2PL = region 7.

ii)

SupposeL4 e region 4 andL, e region 7.

Then,

L, E DSR n SSR,

L, E DSR n SSR,

L, "" TO(3), and

L, "" 2PL u TO(!).

Thus,

o

- 20-

£, . £7 e DSR,., SSR - TO(3) - 2PL - TO(l) = region 9.
o

D. Analysis ofthe Protocol MT(k)

We now present several observations. theorems. the timestamp complexity of the proto

col, optimized encoding roles. and briefly the implementation issues.

1. Observations

Suppose transaction Tj has q operations. Based on Algoritlun I, we have:

i) SetU. i) may set at most two elements TSU. m) and TS(i, m). Only one element

may be set for Tj •

ii) Set U, i) will be called exactly q times for different j '5. Once for each operation

of Tj • As a result, 1'8 (i) can be the most recent read or write timestamp of at most

q different items.

iii) Ser(i I I) may be called and return a true value at most q times for different /'s

while TS (i) is used as the most recent read or write timestarnR with respect to ttaDlc- _

saelion TI . If Set(i, l) returns bue, 1'8(1) will take over from TS(i) the most

recent read or write timestamp of some item to be accessed by T/.

iv) At most 2q elements in TS (0 may be set either by SetU, i) or by Sel(i, l) for

some j, I. To obtain 2q, we apply i) to ii) and iii) and count the total elements that

may be set in TS (i).

2. Theorems

Lemma 3. TO(2q) = TO(k) for all k ;;:: 2q, where q is the maximum number of opera

tions in a single transaction, and k is the vector size.

Proof" By Observation iv), the (14 + I)-th to the k-th elements of each vector will remain

undefined throughout the log. So, MT(k.) will still recognize the same set of logs as MT(2q)

whenk ~ 2q + 1.

o

- 21 -

The result can be refined one step further.

Lemma 4. If k = 2q and a single transaction has at most q operations, TS (i, 2q) will

not be set by MT(k}for any transaction Tj in the log.

Proof' We assume the contrary. That is, the 2q-th element of some timestamp vector is set

Then there exists TS (i • 2q) that is set by executing SetU. i) for some j. T j will issue q - 1

operations before TS (i • 2q) is set.

By Observation i), an element of TS(i) can be set either a) by executing SetU. i) for

some j I or b) by executing Set(i, I) for some t. We next count how many times cases a) and

b) can occur before TS(i, 2q) is set

By Observation ii), case a) can occur q - 1 times before TS (i I 2q) is set Further. TS (i)

can be the most recent read or write timestamp of at most q - 1 data items before TS(i, 2q) is

set. So, case b) can occur at most q - 1 times before TS (i I 2q) is set Since cases a) and b) as

a whole can occur at most 2q - 2 times. we have 2q - 2 elements to the left of TS (i • 2q) can

be set But there must be 2q - 1 assigned elements to the left of TS (i, 2q) in the vector

____~Wi1.-lhus.....ourassumption...does...nolLthboaJI<td --,O, _

Theorem 3. TO(2q -1) = TO(k.) for all k:2: 2q -I, where q is the maximum number of

operations in a single transaction.

lbis is obtained by Lemma 3 and Lemma 4. Considering the extreme case" when q = I, we

have TOO) = TO(k.) for all k ~ 1. Note that at line 9 Algorithm 1 we may change the condi

tion TS (WT(x» < TS(i) to Sel(WT(x), i) to allow higher concurrency. In this case, Observa

tions ii)~iv) will not hold.

3. Time Complexity

We consider the complexity of an on-line algorithm2 where serializability is validated

once an operation is generated. We find MT(k) can recognize a TO(k.) log of n transactions in

2. This is differenl from on off-liM algorithm where scrializability can be validated after the succeeding operations in
a log have also been generated.

-22-

O(nqk) time, since a log has OCnq) operations and it takes OCk) time to schedule an operation.

The major cost to schedule one operation comes from the comparison of two vectors of size k.

The time complexity is comparable to other schedulers since O(n 2q) is currently known [16]

to recognize either a DSR log or a 2PL log. Actually, our scheduler favors smaller transactions

in the sense that ttansactions with fewer operations tend to get faster response time.

4. The Starvation Case

A transaction may be repeatedly aborted by the protocol MT(k) without being committed as

illustrated by the following log as an example.

The dependency digraph for log L is shown in Fig. 5. The dependencies are established in the

sequence a. b. C I d. T3 will be aborted once it issues W 3[X] because TS (2) > TS (3) and thus

the dependency edge d is not allowed. Even if T 3 restarts, the same situation repeats. This slar

vatio" problem can be solved as follows. Suppose T j is aborted due to the order TS (i) < TS U),

we flush out 1S\l). set 1~tol~1)+ 1. and only lhen abort Tjo Thus, we can ensure

TSU) < TS(i) when Tj restarts in the future ifTj is not aborted before Tj restarts. So, in lhe

above example, just before T 3 is aborted. T.S (3) is set to <3. "'•...>. When T3 restarts, it is

allowed to proceed to its end. Note that we are not dealing with "cascading" aborts of several

transactions. which may repeatedly occur and may not be solved easily.

<0, *> To
a c

<I, "'>

<2.*>

d
.'

.'

<I, *>

Figure 5. Dependency digraph for the starvation case

- 23-

5. Optimized Encoding ofDependencies

We note that the protocol MT(k:) does not necessarily generate a total order but a partial

order among the transactions. [t yields more freedom in detennining the order based on subse

quent dependency relationships. We can increase the degree of partial order by increasing k. A

larger k provides higher degree ofconcurrency up to a certain limit based on Theorem 3.

In this section, we sbJdy a variation of the dependency encoding rules presented in the pro

cedure Set in Algorithm 1 in order to increase the degree of concurrency. We observe that if a

data item is frequently accessed, the original encoding rules are more likely to generate a total

order as shown in the following example:

Example 3: Suppose

Table II focuses on the middle operating of the log, and shows how each dependency is encoded

in the associated vectors.

T.S(O) TS(I) T.S (2) TS(3) TS(4) ..

vectors just before

the middle operating <0.*> <*. *> <*. "'> <*. *> <1,4>

To~ T1 <I, "'>

T 1 ~ T2 <2,"'>

.
T2 --)T3 <3.">

i,
resulting ,

vectors <0,"'> <I, "'> <2....> <3, "'> <1,4>

Table II. Recording of timeslamp vectors for example 3

x is a frequently accessed data item. Table II shows that the order between T2 and T4 (or T3 and

T4) has also been enforced. That is. accesses of the item x tend to create a total order among the

-24 -

vectors. This may limit some potential concurrency in the future. We can relax this ordering a

little by the following approach. Suppose we have the vectors

T t : <1.3.*,*>.

T2~ <*.*.*.*>.

To encode the dependency T1 -+ T2. the nOIma! way is to set the 1st element of TS(2) to 2. Sup

pose lhe dependency is created due to an access of a frequently accessed item. We can instead

encode the dependency in the elements closer to the right end of the vectors. One possible way is

to copy the prefix of TS (l) to TS(2), and encode the dependency using the 3rd elements:

T 1: <I, 3, 1.... >.

Tz : <1.3,2, *>.

instead of the encoding

T1 : <1,3.*.*>.

T2 : <2,*.*.*>.

Then for any other vectors with the value <1, "'. "'. '" > or <I, 3. "', '" >. we will not create any

total order with T2 at lhis instance. Thus, higher concurrency among them can be allowed in the

future. However, if a dependency is created due to an access of a less often accessed item. we

still encode the dependency in the normal position.

This approach is based on the following observation. Setting an element near the left end of

a vector can better distinguish the vector from other vectom than setting an element near the right

end of the vector. If an item is frequently accessed. the encoding of the created dependency in

the normal position may distinguish the vectors faster. So, we can encode this kind of depen

dency near the right end of the vector to allow higher concurrency. This observation is further

discussed in Section VI-A.

To apply this approach, we need to know the access rate of each item, which is either static

information or dynamic data measured during the scheduling. We also need to decide how close

to the right end of the vector a dependency should be encoded as opposed to the nOIllla! encoding

position. This can be an adaptable decision as the access rate is dynamically changed.

- 25-

6. Implementation Issues

Some implementation issues are of practical interest. We now highlight the general ideas

and avoid the details.

a) Based on the multiprogramming level analyzed in [6], normally there are 8 to 10 transac

tions which are currently active in the system. So. the size of the timestamp table can normally

fit in main memory. b) Storage for a timestamp vector can be reclaimed as soon as the transac

tion is committed and it will not be used for the most recent read or write timestamp of a data

iLem. c) Thomas [20] describes the situation when some writes can be simply ignored iru>tead of

being aboned. This can be easily incorporated into our protocols by not aborting Tj but ignoring

the write operation if the condition TS (RT(x» < TS (i) < TS(l¥T(x» is Lrue at line 14 in Algo

rithm 1. d) Reed [19] proposed a multiple version concurrency conlIol mechanism using single

valued timestamps. The idea can be extended to timestamp vectors. e) Last but not least. we can

use vector processors [12J to speed up the comparison of two timestamp vectors, and we can also

store the timestamp table in cache memory to get faster access time. The vector processing

mechanism is briefly discussed in next subsection.

E. The Timestamp Vector Processing Mechanism

As mention earlier, it takes O(k) time to compare two vectors of size k. In this subsection,

we show how vector processors can be used so that the comparison can be done in O(logk) time

using the technique proposed in [12]. We illustrate the algorithm in Fig. 6. We have four rows of

processors labeled a, b, c, d. aj denotes the ith processor that holds the ith element of a veclOr.

Similarly for hj , Cj, and dj • The input is two timestamp vectors. The output is the order between

the two vectors. There are five processing phases. In Fig. 6, the third elements in the input vec

tors are the first pair of elements that are not equal. The parallel processing mechanism is

designed to find this pair of elements faster.

- 26-

input: TS (I): <I, 3, 2, 2>

TS(2): <1,3,5,2>

output: the order ofTS(I) and TS(2)

Phases:

1. Load in the vector elements.

(Each box stands for a processor.)

2. Subtraction.

(Cj denotes the i th processor from the left.)

a: ITEIJ
b:ITEIJ

c:~

ifaj =b j

ifaj *-hi

3. Partial OR.

(x (!)y = 0 ifx = y = 0, and 1 otherwise.) d:ffiEJ

4. dj checks the value in di _1 for all i ~ 1 (assuming do holds 0). Only one processor will

find that it holds the value 1 but its left neighbor holds the value O. d3 is the only processor

for which this condition holds. This condition indicates that the 3rd elements in TS(l) and

TS (2) are the first two corresponding elements that are not equal.

5. The order of TS (1) and TS (2) is detennined by Ute order ofQ3 and b 3•

Figure 6. Example for the vector comparison algorithm

PI3 PI'

- 27-

P"

/ \

PI2=Pn (!)cz

P34 = C3 (!) C4

PI3 =P12 me3

P14 =P12 (!}P34

~ indicates the data flow

Figure 7. Layout of vector processors

Phases 1. 2. 4, 5 can all be done in parallel in constant time. We now show that phase 3

can be done in parallel in OOog k) time where k is the vector size. Let P 11 denote C I' The pro

cessor layout to compute the values of C I&:z(!)· .. mcj • i S 4 is shown in Fig. 7. At the end of

phase 3. P Ii holds the value c 1mcz(!)' .. (!Xi' Without loss of generality, for timestamp vectors

of size k. we can build up this kind of tree of height O(logk). The parallel processing time

mainly depends on the height of the tree. Thus the time comQlexity iLOll.Qgkl_Also---.each..node; _

of the tree need not correspond to a distinct processor. One processor can perform the function of

two nodes if they have disjoint processing time. For example. P14 and P 11 can be the same pro-

cessor since their processing time do not overlap. In this algoritlun, we have ignored the case

when a vector may contain undefined elements. However, the algorithm can be easily refined

without affecting the time complexity order ifundefined elements are also considered. This leads

to the following theorem.

Theorem 4. MT(k) can recognize a TO(k) log in O(nq logk) time using O(k) processors.

where n is the number of transactions in the log, q is the maximum number of operations in a

single transaction, and k is the vector size. o

-28 -

IV. THE COMPOSITE PROTOCOL MT(k+)

Recall that in Fig. 4 TO(3) and TO(l) do Dot include each other. In general. the protocol

MT(k) may not allow more concurrency than MT(h) for h < k. In this section, we construct the

protocol MT(k+> that recognizes the class

TO(k') =TO(l) U TO(2) ... U TO(k) for k;> 1

Obviously, the inclusivity property holds. That is

TO(l) = TO(l') c TO(2+) c ... c TO(k')

Thus MT(k') is guaranteed to allow higher concum:ncy than MT(h') for h < k.

We first examine the simple case. We construct a combination of MT(kI) and MT(ki)

such that the composite protocol recognizes the union of the classes TO(kt) and TO(ki). The

simplest way is to run MT(kI) and MT(ki) independently using separate timestamp tables and

data structures. Each operation is processed through both MT(kl) and MT(k:i) before the next

operation can be processed. Each scheduler updates its own timestamp table independently. If

the operation is accepted by at least one of the schedulers. we can process lhe next operation.

Olherwise we abort the transaction and rollback. If the operation is rejected by only onc of the

schedulers, say MT(kI), we stop MT(kI)' The succeeding operations will be only processed

through MT(k:z}. The reason is that the log will not be in the class TO(kI) once an operation of

l:hc log is rejected by MT(kI)' So. there is no need to use MT(kl) to process the succeeding

operations.

The above mel:hod can be more efficiently done. In practice, MT(kI) and MT(ki) can

share the prefix. part of each vector. We will show that [he prefix part of [he corresponding vec

tors generated by both schedulers are equal if the log is a member of both TO(kl) and TO(ki).

So, we need only one table to store the prefix part of each vector, and build one shared module

that updates the prefix part for both MT(kl) and MT(ki). We use the following additional nota

tion for Fig. 8 and the discussion in rest of this section.

- 29-

Notation.

MT(k,)

MT(k,)

a(i)

a(i, h)

aU,[iD

the protocol Mr using timestamp vectors of kl elements.

lhe protocol MT using timestamp vectors of k2 elements.

the timestamp vector of transaction Tj maintained by MT(k.l)'

the h-tlI element of a(i).

the prefix ofa(i) ""ntaining a(i, I) to aU, I).

Set I the procedure Set used in lhe protocol MT(kl).

b (i), b(i, h), b (i, [iD, and Sel2 :similar notation for MT(k,).

a(i, [iD=b(i, [iD denotes a(i,h)~bU,h) for I ~h ~l. Note that two elements are

said to be equal if they are either both undefined or both integers of the

same value.

Set I is the same procedure as Set in Algorilhm I in Section III-A except that each vector

has k1 element. Each of the protocols MT(k) and MT(k2) has its....QMlJimestamp.JabIHle"aaInlCduduawta'- _

structures. Theorem 5 shows that the prefix part of each two corresponding vectors will be

always equal after any single operation is processed by both MT(kl) and MT(ki).

aU)

I

bU)

I k,

aU)

(a)

b(i)
I-+-----!-"""

(b)

Figure 8. (a) Timestamp table ofMT(k,)

(b) Timestamp table of MT(k,)

- 30-

Lemma 5. Suppose 1 < k1 ::; k2• and for any j. i

(5.1) aU, [iD = bU. [iD, and

(5.2) a(l, [iD= bO. [iD, wherel =k,-1.

Then executing both Set lU. i) and Set2U. i) preserves equalities (5.1) and (5.2).

Proof' Set 1 and Sel2 update the corresponding two tables independently. Let m 1 and m2 be

the returned values at line 16 of Algorithm 1 for Sell and Sel2 respectively. Based on the algo

rithm. Set 1 may only change the m I-th element in a vector while Sel2 may only change the mr

til element. There are two cases:

i) ml=mZS[

Setl and Sel2 will either set no elements or set the corresponding elements to the same

values according to the encoding rules. Thus equalities (5.1) and (5.2) in Lemma 5 are

preserved.

ii) ml=kl,andm2:::kl

Setl and Set2 will not change any elements in the prefix parts aU, [iD, a(l, riD,

b u, r:D, and b(i, [iDwhere I = k, - 1. Thus equalities (5. I) and (5.2) are preserved. 0

Before we proceed to the next theorem, we assume that lines 9 and 10 are crossed out from Algo

rithm 1 in Section ill-A to simplify our proof of the theorem. However, the theorem is not res

tricted to this assumption.

Theorem 5. If a log can be accepted by both MT(kl) and MT(ki) and 1 < k1 :s;; k2• then

the equality

(5.3) a(i.[iD=b(i,[iDwherel=k,-1

holds for any transaction Tj in lhe log after an operation is processed by both MT(kt) and

MT(k,).

Proof" (by induction on the number of operations)

o

i)

ii)

iii)

- 31-

Basis: (5.3) is hUe because vectors are all initialized to undefined values. Also RT(x) and

WT(x) are all initialized to zero for any data item x by observing Algorithm. 1.

Induction hypothesis: Suppose (5.3) holds after a number of operations are accepted by

both MT(kl) and MT(k,).

Induction step: After any operation is accepted by both MT(kI) and MT(kv in ii), the

indices (say RT(x) and WT(x» to keep track of the most recent read timestamp and write

timestamp in both MT(kI) and MT(kv are still equal for any data item (say x) by observing

lines 7 and 12 of Algorithm 1 in Section III~A. Thus when MT(k:l) and MT(k::z) schedule

the next operation, procedures Setl and Set2 will be given equal actual parameters. Then,

by Lemma 5. equalities (5.l) and (5.2) are preserved. The theorem follows.

By the theorem, a(i. [fD and b(i. [in where I = k1 - 1 are always equal. So. we need

only onc table to store the prefix. The revised composite protocol to recognize the class TOCkI)

U TO(ki) is as follows.

The timestamp tables for MTQW and MT~) wi.Ih--Sb.ate..d..prefix are sbown in Fi~---A>111L- _

the colwnns of M 0 and the one column of M 1 compose the timestamp table for MT(kl). All the

columns ofM 0 and M 2 compose the timestamp table for MT(k:z).

-32-

I

k,

..... ..
........

........
1-f------+---1....

TS (i) I-+-----t---{:,
". "'.. .

'------J-c:-:----'---' ::: .

M o 1--+---+---j

M,

Figure 9. Timestamp tables of MT(k,) and MT(k,) with sbared prefix

Since M 0 is shared by roth MT(kI) and MT(k:z). we need one module to update the prefix

part for both MT(kI) and MT(ki). However, we need two tables to store the suffix part of each

vector. Each column of M 0 can have many equal-valued timestamp elements. The elements in

the last columns ofM 1and M 2 should be assigned distinct values to distinguish the two vectors.

MT(kt) and MT(ki) use separate counters for the last columns. For each operation, ifit creates a

new dependency conflicting with the dependencies already encoded in M 0, we need to abort the

associated transaction and rollback. For a newly-crealed dependency, if the prefix pan of the two

associated timestamp vectors are already set to equal. we use their suffix part stored in M I and

M 2 to encode the dependency under the subprorocols MT(kl} and MT(k:z) respectively. If the

new dependency conflicts willI lhe dependencies already encoded in M I or M 2. we stop MT(kl)

or MT(k,) respectively for socceeding operations. If both MT(k,) and MT(k,) are Slopped, we

abort alllhe active transactions and rollback.

We can now construct lhe composite protocol MT(k~ as follows. The timestamp tables

PREFIX and LASTCOL are shown in Fig. 10. PREFIX(h) denotes column h of PREFIX, and

LASTCOL(h) denotes column h of LASTCOL. PREFIX (1) to PREFIX(h - I) and LASTCOL (h)

- 33-

compose the timestllmp table of MT(h). PREFIX (h) is shared by MT(h + I)..... MT(k).

LASTCOLQ.1) serves as the last column of the timestamp table of MT(h). Each column of PRE

FIX can have many equal-valued elements. But lhe elements in each column of lASTCOL need

to be assigned distinct values by using separate counters.

TSU)

I k-I

TS (i) f--+-----+----i

PREFIX
I

TSU) . .

TS(n .

LASTCOL

k

Figure 10. Timestamp tables of MT(k+)

For a newly-created dependency TSU) ~ 1S(i). the composite protocol runs through

PREFIX (h) and lASTCOL(h) (staning with h := I). and encodes the dependency by setting

TS U • h) < TS (i. h) in the column lASTCOL (h) for the subprolocol MT(h). and in the column

PREFIX (h) for the subprotocols MT(h+I). MT(h+2), ...• MT(k). If the two timestllmp elements

are already set to equal values in PREFlX(h), MT(k~ continues to check the next column

PREFIX (h+I). IfTSU. h) > TS(i, h) in the column PREFIX (h). we stop MT(h+I). MT(h+2),

...• MT(k). If TS U • h) > TS (i. h) in the column lASTCOL (h), we stop MT(h). If all the sub

protocols are stopped, we abort alllhe active operations. and rollback. The scheduler can accept

the current operation as long as the newly-created dependency can be encoded under at least one

of lhe subprotocols. The algorithm is sketched as follows. The arrow "=>" indicates the actions

-34-

to be performed when the conesJX)nding case condition is true.

Algorithm 2: (the algorithm for the protocol Mf(k"'))

O. stall all the subprolOcols MT(i). I S; i S; k;

initialize data structures.

I. h:= I;

wait for the operation to arrive.

2. (Commeot: Check the column LASTCOL (h) for the subprotocol MT(h).)

cases:

I) The subprotocol MT(h) has been stopped.

=> go to 3.

ii) The new dependency conflicts with the dependencies already encoded in LASTCOL(h).

=> stop MT(h);

go to 3.

iii) The new dependency can be (or has been) encoded in LASrCOL(h).

=> encode the dependency by using the counters of MT(h) (or do nothing);

go to 3.

3. (Comment: Check the column PREFIX (h) for the subprolOcols MT(h+I). MT(h+2)•...•

MT(k).)

cases:

i) h=k.

=> go to 4.

Ii) All the subprolOcols MT(h + I). MT(h + 2)•...• MT(k) have been stopped.

=> go to 4.

iii) The new dependency conflicts with the dependencies already encoded in PREFIX (11).

(Comment: The prefix table for the subpmtocols MT(i), h < i :5 k, is invalid.)

=> stop MT(h + I). MT(h + 2)•....• MT(k);

go to 4.

- 35-

iv) The new depcndencycan be (or has been) encoded inPREFlXQI).

=> encode the dependency under the subprotocols MT(i), h < i ~ k (or do nothing);

go to 4.

v) The corresponding two elements in PREFIX (h) are already set to equal.

=> h :=h+ 1;

go to 2.

4. cases:

i) All the subprotocols MT(I). MT(2)•...• MT(k) have been stopped.

=> abort all the active transactions and rollback;

restart all the aborted transactions;

go to O.

ii) Otherwise.

=> accept the current operation;

go to 1.

The time complexity of the worst case is the time taken to recognize a log in the intersec-

tion of TO(I), TO(2)..... and TO(k). In that case. if we run MT(l). MT(2).... , MT(k) indepen

h=k
dently I the total complexity will be L O(nqh) = O(nqk2), where n is the number of transactions

11=1

in the log, and q is the maximum number of operations in a single transaction. However, by

using the composite protocol MT(k:~ we eliminate some duplications in the processes of the sub

protocols. The composite protocol will run through OCk) elements to schedule each operation.

The complexity is still O(nqk), the same as that ofMT(k). By using a similar timestamp vector

processing mechanism described in Section III·E, the complexity can further reduce to

O(nqlogk).

We have found that the timestamp vector is a useful tool for switching between classes of

concurrency algorithms such as MT(k:l) and MT(k:i). This work is being used for the design of

adaptable concurrency control mechanisms [8].

- 36-

V. PROTOCOLS FOR NESTED TRANSACTION AND

DISTRmUTED DATABASE MODELS

A. The Protocol MT(k" k2)!or Nested Transactions

In the nested transaction model [15], a parent transaction may have a set ofsubtransaclions

which can be concurrently executed. The protocol MT(kt. ki) is suitable for this kind of model.

The transactions are partitioned into mutually disjoint groups G I. Gz• ...• Gm based on some

partition rules. For example, a group may correspond to a level of parents. grandparents, or elill

dren of a nested transaction. The timestamp tables are shown in Fig. 11. The columns in the first

table represent transaction limestamp order. The columns in the second table represent group

timestamp order.

The serializability is assured at two levels. First, we enforce scrializability among the

groups based on the same algorithm of MT(k) except that groups instead of transactions are

involved. Second, we enforce serializability among the transactions inside each group. Transac

tion indices RT(x) or 'WT(x) will be used to locate timestamps of a transaction as well as its

associated group. The group timestamps will be involved if and only if two immediately depen

dent transactions are in two different groups. In such a case, we will use only the group times~

tamps to determine whether to accept or abort an operation.

To

I
WO"p

k1 mdex
I 2

Go

Figure II. Timestamp tables of MT(k" k21

- 37-

Example 4: SupposeG, = {T" T2 },G2 = {T, },k, =k2 = 2, and

Ga···············:

:b
a

G~ ~

· .· .: c :
~ T 1 T2 ~· .· .

d
Gz······· :· .· .· .· .

Figure 12. Dependency digraph for example 4.

The dependency digraph is drawn in Fig. 12. Each doned-lined box denotes a group. To is the

virtual transaction and becomes a group by itself. The dependencies are established in the

sequence a. b. c. d. MT(k.l, k~ will encode each dependency edge by setting the associated

timestamp vecton; as shown in table III. A blank entry in the table means that the vector remains

unchanged from the entry just above it

- 38-

GS (i): group timestamp

TS (i): transaction timestamp

GS(O) TS(O) GS(I) TS(I) TS(2) GS(2) TS(3)

initialization <0, *> <0, *> <"'.*> <*. *> <*••> <*. *> <*.*>

a : GO----+G 1 <I, *>

b : Go -7 G 1

c:TI -7Tz <1, ole> <2, *>

d : O} --7 G2 <2,*>

resulting

vectors <0.*> <0. *> <I, "'> <I, >10> <2, *> <2."'> <*. *>

Table m. Recording of timestamp vectors for example 4

The edges a. b or d connects two different groups. Group timestamps are used to encode every

group dependency. For example, the dependency Go --7 G 1 is represented by the order

08(0) < 08(1). The group dependency a implies the group dependency b. So, we need not set

any vectors for b. Edge c connects two transaction nodes within the same group. So, transaction

timestamps are used to encode the transaction dependency. Based on MT(kt. k:z}. group depen

dency will be assured to be antisymmelric. 1bat is. G I --7 02 and 02 --7 G 1 cannot be both true.

If in the future a new dependency T3 --7 T2 is created due to some conflict, it is disallowed since

it also implies the dependency Gz ~ G1• It can be seen that G I• G 2•... , Gm can be further

grouped into supergroups. and the same idea applies. We can generalize MT(k:lo k:z) to MT(k:\.

kz•...• k l) for a hierarchy of groups with / levels. Each level then has an associated timestamp

table.

- 39-

If we let each group contain exactly one transaction or alllhe transactions belong to a sin

gle group, then MT(k" k,) reduces to MT(k). Secondly, the group membership in MT(k" k,) is

static in the sense that a transaction may not migrate to another group during execution unless it

restarts.

To partition transactions in the same group, they must share some common properties. We

will give two examples to illustrate this. Each example gives a partition rule.

Example 5: Transactions initiated at the same site belong to the group associated with the

site.

Example 6: Two groups Gland G2 could be defined based on their read/write sets as

shown in Table IV.

x y z w

G, R W R,W

G. W R ow

Table IV. Read/write set of groups G 1 and G2

The rcad/write set of G I and G2is formally defined as follows:

G, = (Ti I read_set(Ti) = {x,z}, write_set(Ti)= {y,z}}

G, = { Ti I read_set(T,) = {y ,w}, write_set(Ti) = {x ,w} }

The protocol assures the dependency relationship between Gland G2 to be antisymmetric. This

is not only for serializability but sometimes semantically required, especially when there exists a

hierarchical relationship between the two groups.

B. The Decentralized Concurrency Controller: DMT(k)

In a distributed system, we can run MT(k:) on each sire. The timestamp vector of a transac

tion is stored on a single sire. A local scheduler may need to access or update a vector on a

remote site. To enforce serializability, local schedulers coordinate as follows.

- 40-

1) Assigning a globally unique value on the k-th element of a timestamp vector. Recall

that in Algorithm 1 in Section III-A two counters ucount and leGum are used lo set the k-th ele

ments to distinct values. Since each local scheduler has its own counters, two vectors may be

assigned by different schedulers the same value on the k -th elements. To distinguish the two

vectors, we concatenate the k-th clement with the site number of the local scheduler that sets the

k -th element. Note that this site should not be confused with the one where the vector is stored.

The policy is fair to all the sites, if a) the site number is concatenated as low order bits. and b) the

local counters ucount and leoum used for high order bits are synchronized periodically among all

the local schedulers. This is necessary when the local schedulers have unbalanced input load.

Then one local counter may increase faster than albers. It is profitable that we let ucount equal

the current value of a local real clock, and lcount be the negated value of the real clock. Then, as

long as those local real clocks have been synchronized once they need not be synchronized fre

quently for the SUcceeding operations. Fmally, we must point out that many disttibuted con

currency algorithms based on time stamps require the clocks to be synchronized. Thus this over

head is common to all those algorithms for performance purposes.

2) Locking on timestamp veCllJrs. Each operation of a transaction implies a lock on its

timestamp vector. To decide whether to accept the current operation, the associated local

scheduler has to access the read timestamp or the write timestamp of a data item, and also lock

that timestamp vector. When the operation is done, these locks are released. Because the two

vecLors and the data item may each reside on a different site, those sites need to exchange mes

sages. Because deadlock may occur in this approach, we incorporate an efficient scheme to

prevent deadlock. We require that locks be requested in a predefined linear order [lOJ on the

objects. Once a scheduler locks an object, it can only lock another object that is later in the ord

ering. There are two significant advantages using this approach: a) There is no need to synchron

ize those lock requests to prevent deadlock. Thus the message overhead tends to be proportionate

to the size of the vector. b) A local scheduler may lock at most three or four objects at a time to

schedule each operation. Thus the availability of those objects is not restricted.

For either 1) or 2), we have proposed a melhod without inlroducing large message over

head, which is desirable in a distributed system. Further, there is an optimization for the protocol

DMT(k). That is, if two adjacent operations in a log request locks on different objects, a

- 41-

scheduler can schedule the next operation while waiting for the messages back from other sites

for the earlier operation. On the other hand. if some objects are the same, a scheduler may retain

the same lock for the next operation. and only the combined resulting value for the locked object

is written back to its home site. In such a way, we save unnecessary messages, overlap the

scheduling, and thus reduce the average response time.

-42-

VI. DISCUSSION

A. Comparison to Related Work

A concept similar to multidimensional-timestamps is the work of Bayer et al. [1] which

uses dynamic timestamp allocation and validation. Each transaction starts with a large time inter

val which is shrunk dynamically and explicitly as a dependency is found. The order of two dis

joint intervals represents the dependency order of the two transactions. We present arguments to

claim that our approach has more concrete and complete results.

1) A timestamp vector can also be thought of as a timestamp interval which is shrunk

implicitly in our protocols. For example, the vector <3, 2, *, *> represents the interval [3200

44,3255]. (For simplicity, we assume that a timestamp element is restricted within the range - 4

to 5.) Note that the left boundary is 3200 - 44 = 3156 instead of 3200. since an element can be

negative. Ifwe set a new element, say <3. 2, I, *>. it represents the interval [3210 -4,3215]. It

can be seen that this interval shrinks from "both ends". This implicit shrinking behavior .is

significantly different from that in [I] where a time intelY'al shrinks from only "one end" at all

limes. Another implicit shrinking property is that if two intervals need to be separated to

represent a dependency, the larger inteIVal (i.e., the vector with fewer assigned elements) will be

chosen to shrink (Le, one element will be set). and the smaller one (i.e., the vector wilh more

assigned elements) is left intact. That is, the shrinking process in our protocols is performed in a

fair, balanced way, which tends to have predictable, positive impact on the performance. Further,

the vector representation allows a transaction to have an "inteIVal', containing more intermedillte

points (from the hardware point of view) than the word pair representation of an interval in [I].

Thus. as the vector size increases, our protocols can allow an inteIVal to shrink in many more pos

sible ways than [I]. That implies higher degree of concurrency.

2) In [1], a dependency is assumed to have been found, and then one can apply the shrink

ing scheme for time inteIVals. The technique to find the dependencies was not addressed in the

paper. However, in our protocols. two indices RT(x) and WT(x) are associated with a data item

x. So, it is easy to locate the most recent read or write timestamp vectors and record the depen

dencies due to conflicting operations.

- 43-

3) To represent a dependency in [1]. we may have to choose a number c strictly within

the overlapping region of two overlapping intervals. and shrink the two intervals. (For example,

to make the interval [2, 61] precede another interval [I, 60], the two intervals are shrunk to [2. c)

and [c I 60J respectively. where c is chosen from the overlapping region [2, 60].) It is evident that

the choice of c is critical to the performance. However, the criteria to choose the number c was

not given in [1]. We should expect that an interval after shrinking should still overlap with as

many other intervals as possible. lbig can allow more dependency relationships in the future. In

many cases, intelValS may shrink exponentially in terms of the number of operations, and there

lend to be fragmentation of intervals as more and more operations occur or restart. This restricts

the degree of concurrency. In Section m-D-5, we have presented the rules to optimally represent

dependencies in timestamp vectors.

4) If an abotted transaction always restarts with a fixed interval range as in [1], the starva

tion case identified in Section III-D-4 with a slight modification may also happen That is, a tran

saction may be repeatedly aborted without being committed.

In fact, a timestamp vector, though it can be viewed as a kind of "interval", bears useful

algebraic properties. It makes the implicit shrinking process simple, and allows more con

currency. The concurrency is allowed in a controllable way. That is, more dimensions implies

more concurrency.

B. Guidelines to Choose the Timestamp Vector Size

We assume that the composite protocol MT(k"') is used. The maximum vector size is deter

mined based on two conditions: a) To recognize the largest class TO(k:+>, based on Theorem 3,

vector size (denoted by k) of2q - 1 is sufficient where q is the maximum number of operations in

a single transaction. b) For efficient parallel processing, the timestamp vector size is limited by

the number of vector processors available on the machine.

To deteImine the optinuJl vector size in lhe average case is lheoretically difficult because

lhe problem space is fairly large and the interaction of feature parameters is extremely compli

cated. However, one may choose an appropriate vector size for a specific application case based

on the following guidelines: a) If the amount of conflict among transactions is large, most of the

-44-

vector elements tend to be set Then a larger vector size is useful to record/enforce the large

amount of dependencies for higher degree of concurrency. b) For efficient storage usage.lhe vec

tor size is 2q - 1 where q should be the expecled number but possibly not the maximum number

of operations in a single transaction. c) If most transactions are long-lived transactions in an

application, it is desirable to use a larger vector size at the expense of vector processing time.

This eliminates the disadvantage in most two-phase-type locking schemes where the availability

of data items is resmcted if they are locked by long-lived transactions. Also since larger vector

size is used, the abort Tate of transactions will be smaller.

c. Rollback Schemes

The protocol MT(k.~ provides a higher degree of concurrency than the protocol MT(k),

but it is possible that more transactions may abort. We propose the following two approaches to

reduce the rollback overhead:

1) Partial rollback. A tnmsaction may be rollback to an earlier operation where serializa-

billt)' of the log is assured. The timestamp---.tah1.esJn~soreset to---.Some....sl:ate-sooJlnhaJatuoOJoOJI_yyJt:obee _

dependency infoInlation at the restart point of the transaction is represented. In this way, the

computation results up to the restart point of the transaction are preserved.

2) Two-phase commit for each write operation. In the first phase of a transaction, each

write produces a temporary copy invisible to all the other transactions. In the commit phase, each

write operation is validated by checking/setting the order of timestamp vectors. If all the writes

of a transaction still preserve the serializability property. updated values are all written to the

database. Otherwise, the transaction is aborted. For each read operation, validation of serializa

billty is the same as described in Algorithm 1 in Section ill-A. This approach has the following

advantages. a) Since no temporary copy is visible to other transactions, the abort of a not-yet

committed transaction does not affect other transactions. b) Once a transaction is committed, it

will never be aborted. c) Timestamp vector of an aborted transaction can be pruned from the

timestamp table without affecting the other part of the table.

The optimistic concurrency control [13] also uses two-phase commit scheme for the write

operations. Our approach in 2) is different from [13] in the follOWing sense. a) Validation for a

-45 -

read operation is perforrned at the same time when the read is requested. b) The timestamp of a

transaction is dynamically created and partial order oriented. Thus validation of serializability

tends to be less restricted.

VII. CONCLUSIONS
•

We have identified a hierarchy of a new family of concurrency protocols using multidimen

sional timestamp ordering within the known class DSR. The timestamp vector elements are

assigned as the operations of the transaction become clear. Based on our mechanism, depen

dency information is more precisely represented by a timestamp vector than a single-valued

timestamp. A new class TO(k~ has higher degree of concurrency than any other class TO(h~

where h < k. However, when h < k :5 2q - 1 and q is the maximum number of operations in a

single transaction, TO(h) is not a subset ofTO(k) because, excluding undefined elements, column

h of the timestamp table of MT(h) contains only distinct elements but column h of the table of

MT(k) may contain equal elements. Thus dependency infonnation in lhe table of MT(h) is not

fully covered by that in the table ofMT(k).

------TIRq)IUt(fco1S are generauzed for concurrency control m cenfraJ01ze<I systems, decentralized

systems, and lhe nested transaction model. For efficient implementation, parallel processing

mechanism on timestamp vectors, guidelines to choose an appropriate vector size. efficient roll

back techniques are also presented.

ACKNOWLEDGMENTS

We thank Professor Henri Triri of liniv. of Helsinki. Finland. who. after reading an earlier

version of the paper, pointed out some related work based on time-intervals [1]. We thank the

anonymous referees for their thorough reading and helpful criticism. Due to referees' comments,

we study three additional important issues in the final version: 1) the parallel processing mechan

ism for the timestamp vectors; 2) the construction of composite protocols that allow higher

degree of concurrency as the vector size increases; and 3) guidelines to choose an appropriate

timestamp vector size. Suggestions by John T. Riedl greatly improved our presentation.

-46 -

REFERENCES

[1] R. Bayer, K. Elhardt, J. Heigert, A. Reiser, "Dynamic timestamp allocation for transac

tions in database systems, II in Distributed Databases. H. J. Schneider, ed.• North-Holland.

1982.

[2] P. A. Berstein and N. Goodman, "Concurrency conlIOl in distributed database systems,"

ACM Computing Surveys 13, 2(June 1981), 185-22I.

[3] P. A. Bcrstein and N. Goodman. "Multiversion concurrency control-theory and algo

rilhms," ACM Trans. DatiJbase Syst. 8, 4(Dec. 1983),465-483.

[4] P. A. Berstein, J. B. Rothnie. N. Goodman, and C. H. Papadimitriou, "The concurrency

control mechanism of SDD-l: a system for distributed databases (the fully redundant

case)," IEEE Trans. Softw. Eng. SE-4, 3(May 1978), 154-168.

[5] P. A. Bcrstein, D. W. Shipman. and W. S. Wong, •'Formal aspects of scrializability in data

base collcurrcncy control," IEEE Trans. Softw. Eng. SE-5, 3(May 1979), 203-216.

[6] B. Bhargava, "Performance evaluation of the optimistic concurrency control approach to

------clSIlib""""l1ICOoa1aOase systems and Its companson to lockirig," in Proc. 3'~rCldCj/"E"E"ECjJc;;nt'.7C"o;::nf'.--------

Distributed Computing Syst., Miami, FL, Oct. 1982.

[7] B. Bhargava and P. J. Leu, "Multidimensional timestamp processing," in Proc. 10th IEEE

COMPSAC, Chicago, IL, Oct. 1986.

[8] B. Bhargava and J. Riedl, "A model for an adaptable concurrency control," CSD-TR-609,

Dept. of Computer Sciences, Purdue University, West Lafayene, IN, June. 1986.

[9] K. P. Eswaran, J. N. Gray, R. A. Lorie, and 1. L. Traiger, "The notions of consistence and

predicate locks in a database system," Commun. ACM 19, II(Nov. 1976), 624-633.

[10] 1. W. Havcnder, "Avoiding deadlock in mUltitasking systems," IBM Systems Journal 7,

2(1968),74-84.

[11] C. Hua and B. Bhargava, "Classes of serializable histories and synchronization algoritluns

in distributed database systems," in Proc. 3rd IEEE Int. Con! Distributed Computing

Syst., Miami, FL, Oct. 1982.

-47 -

[12] C. P. Kruskal. L. Rudolph. and M. Snir, "The power of parallel prefix," in Proc. 10th

IEEE Int. Con! on Parallel Processing, St. Charles. IL, Aug. 1985.

[13J H. T. Kung and J. T. Robinson, "On optimistic melhods for concurrency control," ACM

Trans. Database Syst. 6, 2(June 1981), 213-226.

[14J P. J. Leu and B. Bhargava, "Multidimensional timestamp protocols for concurrency con

trol," inProc. 2nd IEEE Int. Con! Dala Engineering, Los Angeles, CA, Feb. 1986.

[15] 1. E. Moss, "Nested transactions and reliable distributed computing," in Proc. 2nd IEEE

Symposium on Reliability in Distributed Software and Database Systems, Pittsburgh, PA,

July 1982.

[16] C. H. Papadimitriou, "The serializability of concurrent database updates," J. ACM 26.

4(Oc' 1979), 631-653.

[17] C. H. Papadimitriou. P. A. Berstein, and 1. B. Rotlmic, "Computational problems related to

database concurrency control," in Proc. Conf Theoretical Computer Science, Waterloo,

Ont, Canada, Aug. 1971.

----r[1-S-]-C:-H:-PapailI.mnriou and P. C. KaneUakis, "On concurrency conLroI by multiple versions,"

ACM Trans. Database Syst. 9, l(March 1984), 89-99.

[19] D. P. Reed, "Naming and synchronization in a decentralized computer system," Ph.D.

thesis, Dept Elee. Eng. Comput. ScL. MIT, Sept. 1978.

[20] R. H. Thomas. "A majority consensus approach to concurrency control," ACM Trans.

Database Syst. 4, 2(June 1979), 180-209.

[21] 1. D. Ullman, Principles of Database SysteTTl$, Computer Science Press, Rockville, MD,

1982.

	Multidimensional Timestamp Protocols for Concurrency Control
	Report Number:
	

	tmp.1307986960.pdf.TB2FG

