
Multidimensional Triangulation and

Interpolation for Reinforcement Learning

Scott Davies
scottd@cs.cmu.edu

Department of Computer Science, Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213

Abstract
Dynamic Programming, Q-Iearning and other discrete Markov Decision
Process solvers can be -applied to continuous d-dimensional state-spaces by
quantizing the state space into an array of boxes. This is often problematic
above two dimensions: a coarse quantization can lead to poor policies, and
fine quantization is too expensive. Possible solutions are variable-resolution
discretization, or function approximation by neural nets. A third option,
which has been little studied in the reinforcement learning literature, is
interpolation on a coarse grid. In this paper we study interpolation tech
niques that can result in vast improvements in the online behavior of the
resulting control systems: multilinear interpolation, and an interpolation
algorithm based on an interesting regular triangulation of d-dimensional
space. We adapt these interpolators under three reinforcement learning
paradigms: (i) offline value iteration with a known model, (ii) Q-Iearning,
and (iii) online value iteration with a previously unknown model learned
from data. We describe empirical results, and the resulting implications for
practical learning of continuous non-linear dynamic control.

1 GRID-BASED INTERPOLATION TECHNIQUES

Reinforcement learning algorithms generate functions that map states to "cost-t<r
go" values. When dealing with continuous state spaces these functions must be
approximated. The following approximators are frequently used:

• Fine grids may be used in one or two dimensions. Above two dimensions,
fine grids are too expensive. Value functions can be discontinuous, which
(as we will see) can lead to su boptimalities even with very fine discretization
in two dimensions .

• Neural nets have been used in conjunction with TD [Sutton, 1988] and
Q-Iearning [Watkins, 1989] in very high dimensional spaces [Tesauro, 1991,
Crites and Barto, 1996]. While promising, it is not always clear that they
produce the accurate value functions that might be needed for fine near
optimal control of dynamic systems, and the most commonly used methods
of applying value iteration or policy iteration with a neural-net value func
tion are often unstable. [Boyan and Moore, 1995].

1006 S. Davies

Interpolation over points on a coarse grid is another potentially useful approximator
for value functions that has been little studied for reinforcement learning. This

paper attempts to rectify this omission. Interpolation schemes may be particularly
attractive because they are local averagers, and convergence has been proven in
such cases for offline value iteration [Gordon, 1995].

All of the interpolation methods discussed here split the state space into a regular
grid of d-dimensional boxes; data points are associated with the centers or the

corners of the resulting boxes. The value at a given point in the continuous state

space is computed as a weighted average of neighboring data points.

1.1 MULTILINEAR INTERPOLATION

When using multilinear interpolation, data points are situated at the corners of

the grid's boxes. The interpolated value within a box is an appropriately weighted
average of the 2d datapoints on that box's corners. The weighting scheme assures
global continuity of the interpolated surface, and also guarantees that the interpo
lated value at any grid corner matches the given value of that corner.

In one-dimensional space, multilinear interpolation simply involves piecewise linear
interpolations between the data points. In a higher-dimensional space, a recursive
(though not terribly efficient) implementation can be described as follows:

• Pick an arbitrary axis. Project the query point along this axis to each of the two
opposite faces of the box containing the query point.

• Use two (d - 1)-dimensional multilinear interpolations over the 2d - 1 datapoints
on each of these two faces to calculate the values at both of these projected points.

• Linearly interpolate between the two values generated in the previous step.

Multilinear interpolation processes 2d data points for every query, which becomes

prohibitively expensive as d increases.

1.2 SIMPLEX-BASED INTERPOLATION

It is possible to interpolate over d + 1 of the data points for any given query in only
O(d log d) time and still achieve a continuous surface that fits the datapoints exactly.

Each box is broken into d! hyperdimensional triangles, or simplexes, according to
the Coxeter-Freudenthal-Kuhn triangulation [Moore, 1992].

Assume that the box is the unit hypercube, with one corner at (Xl, X2, . .. , Xd) =
(0,0, ... ,0), and the diagonally opposite corner at (1,1, ... ,1). Then, each simplex
in the Kuhn triangulation corresponds to one possible permutation p of (1,2, ... , d),
and occupies the set of points satisfying the equation

o ~ Xp(l) ~ Xp(2) ~ ... ~ Xp(d) ~ 1.

Triangulating each box into d! simplexes in this manner generates a conformal mesh:

any two elements with a (d - 1)-dimensional surface in common have entire faces in
common, which ensures continuity across element boundaries when interpolating.

We use the Kuhn triangulation for interpolation as follows:

• Translate and scale to a coordinate system in which the box containing the
query point is the unit hypercube. Let the new coordinate of the query point
be (x~, ... ,x~).

• Use a sorting algorithm to rank x~ through x~. This tells us the simplex of the
Kuhn triangulation in which the query point lies.

Triangulation and Interpolation for Reinforcement Learning]007

• Express (x~, . .. , x~) as a convex combination of the coordinates of the relevant
simplex's (d + 1) corners .

• Use the coefficients determined in the previous step as the weights for a weighted

sum of the data values stored at the corresponding corners.

At no point do we explicitly represent the d! different simplexes. All of the above
steps can be performed in Oed) time except the second, which can be done in
O(d log d) time using conventional sorting routines.

2 PROBLEM DOMAINS

CAR ON HILL: In the Hillcar domain, the goal is to park a car near the top of
a one-dimensional hill. The hill is steep enough that the driver needs to back up in
order to gather enough speed to get to the goal. The state space is two-dimensional
(position, velocity). See [Moore and Atkeson, 1995] for further details, but note
that our formulation is harder than the usual formulation in that the goal region
is restricted to a narrow range of velocities around 0, and trials start at random
states. The task is specified by a reward of -1 for any action taken outside the goal
region, and 0 inside the goal. No discounting is used, and two actions are available:
maximum thrust backwards, and maximum thrust forwards.

ACROBOT: The Acrobot is a two-link planar robot acting in the vertical plane
under gravity with a weak actuator at its elbow joint joint. The shoulder is un
actuated. The goal is to raise the hand to at least one link's height above the
unactuated pivot [Sutton, 1996]. The state space is four-dimensional: two angular
positions and two angular velocities. Trials always start from a stationary position
hanging straight down. This task is formulated in the same way as the car-on-the
hill. The only actions allowed are the two extreme elbow torques.

3 APPLYING INTERPOLATION: THREE CASES

3.1 CASE I: OFFLINE VALUE ITERATION WITH A KNOWN
MODEL

First, we precalculate the effect of taking each possible action from each state cor
responding to a datapoint in the grid . Then, as suggested in [Gordon, 1995], we use
these calculations to derive a completely discrete MDP. Taking any action from any
state in this MDP results in c possible successor states, where c is the number of
datapoints used per interpolation. Without interpolation, c is 1; with multilinear
interpolation, 2d; with simplex-based interpolation, d + 1.

We calculate the optimal policy for this derived MDP offline using value itera

tion [Ross, 1983]; because the value iteration can be performed on a completely
discrete MDP, the calculations are much less computationally expensive than they
would have been with many other kinds of function approximators. The value it
eration gives us values for the datapoints of our grid, which we may then use to
interpolate the values at other states during online control.

3.1.1 Hillcar Results: value iteration with known model
We tested the two interpolation methods on a variety of quantization levels by
first performing value iteration offline, and then starting the car from 1000 random
states and averaging the number of steps taken to the goal from those states. We
also recorded the number of backups required before convergence, as well as the
execution time required for the entire value iteration on a 85 MHz Sparc 5. See
Figure 1 for the results. All steps-to-goal values are means with an expected error
of 2 steps.

1008 S. Davies

Grid size

Interpolation Method l1:l 21:l 51:l 301:l

None
Steps to Goal : 237 131 133 120

Backups: 2.42K 15.4K 156K 14.3M
Time (sec) : 0.4 1.0 4 .1 192

MultlLm
Steps to Goal : 134 116 lOS 107

Backups: 4.S4K 18.1K 205K 17.8M

Time _Lsec) : 0 .6 1.3 7 .1 405

Simplex

Steps to Goal : 134 118 109 107
Backups: 6 .17K 18.1K 195K 17.9M

Time (sec) : 0.5 1 .2 5 .7 328

Figure 1: Hillcar: value iteration with known model

Grid size

Interpolation Method 84 94 104 11" 124 13" 14'1 15"

None

Steps to Goal : - - 44089 - 26952 - > 100000 -
Backups: - - 280K - 622K - 1.42M -

Time (sec) : - - 15 - 30 - 53 -
MultlLm

Steps to Goal : 3340 2006 1136 3209 1300 1820 1518 1802
Backups: 233K 1.01M 730K 2.01M 2.03M 3.74M 4.45M 6.78M

Time (sec): 17 43 42 83 99 164 197 284

Simplex

Steps to Goal : 4700 8007 2953 3209 4663 2733 1742 9613
Backups: 196K 1.16M 590K 2.28M 1.62M 4.03M 3 .65M 6 .73M

Time(sec): 9 24 22 47 47 86 93 142

Figure 2: Acrobot: value iteration with known model

The interpolated functions require more backUps for convergence, but this is amply

compensated by dramatic improvement in the policy. Surprisingly, both interpola
tion methods provide improvements even at extremely high grid resolutions - the
noninterpolated grid with 301 datapoints along each axis fared no better than the

interpolated grids with only 21 datapoints along each axis(!) .

3.1.2 Acrobot Results: value iteration with known model

We used the same value iteration algorithm in the acrobot domain. In this case our

test trials always began from the same start state, but we ran tests for a larger set

of grid sizes (Figure 2).

Grids with different resolutions place grid cell boundaries at different locations, and

these boundary locations appear to be important in this problem - the perfor
mance varies unpredictably as the grid resolution changes. However, in all cases,

interpolation was necessary to arrive at a satisfactory solution; without interpo

lation, the value iteration often failed to converge at all. With relatively coarse
grids it may be that any trajectory to the goal passes through some grid box more
than once, which would immediately spell disaster for any algorithm associating a
constant value over that entire grid box.

Controllers using multilinear interpolation consistently fared better than those em

ploying the simplex-based interpolation; the smoother value function provided by
multilinear interpolation seems to help. However, value iteration with the simplex
based interpolation was about twice as fast as that with multilinear interpolation.

In higher dimensions this speed ratio will increase.

Triangulation and Interpolation for Reinforcement Learning 1009

3.2 CASE II: Q-LEARNING

Under a second reinforcement learning paradigm, we do not use any model.
Rather, we learn a Q-function that directly maps state-action pairs to long-term
rewards [Watkins, 1989]. Does interpolation help here too?

In this implementation we encourage exploration by optimistically initializing the
Q-function to zero everywhere. After travelling a sufficient distance from our last
decision point, we perform a single backup by changing the grid point values ac
cording to a perceptron-like update rule, and then we greedily select the action for
which the interpolated Q-function is highest at the current state.

3.2.1 Hillcar Results: Q-Learning
We used Q-Learning with a grid size of 112. Figure 3 shows learning curves for
three learners using the three different interpolation techniques.

Both interpolation methods provided a significant improvement in both initial and
final online performance. The learner without interpolation achieved a final aver
age performance of about 175 steps to the goal; with multilinear interpolation, 119;
with simplex-based interpolation, 122. Note that these are all significant improve
ments over the corresponding results for offline value iteration with a known model.
Inaccuracies in the interpolated functions often cause controllers to enter cycles; be
cause the Q-Iearning backups are being performed online, however, the Q-Iearning
controller can escape from these control cycles by depressing the Q-values in the
vicinities of such cycles.

3.2.2 Acrobot Results: Q-Learning
We used the same algorithms on the acrobot domain with a grid size of 154 ; results
are shown in Figure 3.

...,.,.,. .

-,eoooo

-,eoooo

~

J -1.,..07

15

1
~
- -'5&+07

l

-_._--

·200000 -2 ... 01 L---_'-----'_---'_--'_---'-_~_~ _ __'
o !iO 100 150 200 2iO 3DO 360 400 450 500 0 !iO 100 150 200 250 300 !fiO 400

~ofl,.. ~otT!U

Figure 3: Left: Cumulative performance of Q-Iearning hillcar on an 112 grid. (Multilinear

interpolation comes out on top; no interpolation on the bottom.) Right: Q-Iearning

acrobot on a. 154 grid. (The two interpolations come out on top with nearly identical

performance.) For each learner, the y-axis shows the sum of rewards for all trials to date.

The better the average performance, the shallower the gradient. Gradients are always

negative because each state transition before reaching the goal results in a reward of -1.

Both Q-Iearners using interpolation improved rapidly, and eventually reached the
goal in a relatively small number of steps per trial. The learner using multilinear
interpolation eventually achieved an average of 1,529 steps to the goal per trial;
the learner using simplex-based interpolation achieved 1,727 steps per trial. On
the other hand, the learner not using any interpolation fared much worse, taking

1010 s. Davies

an average of more than 27,000 steps per trial. (A controller that chooses actions
randomly typically takes about the same number of steps to reach the goal.)

Simplex-based interpolation provided on-line performance very close to that pro
vided by multilinear interpolation, but at roughly half the computational cost.

3.3 CASE III: VALUE ITERATION WITH MODEL LEARNING

Here , we use a model of the system, but we do not assume that we have one to start

with. Instead , we learn a model of the system as we interact with it; we assume this

model is adequate and calculate a value function via the same algorithms we would

use if we knew the true model. This approach may be particularly beneficial for
tasks in which data is expensive and computation is cheap. Here, models are learned
using very simple grid-based function approximators without interpolation for both
the reward and transition functions of the model. The same grid resolution is used
for the value function grid and the model approximator. We strongly encourage

exploration by initializing the model so that every state is initially assumed to be

an absorbing state with zero reward.

While making transitions through the state space, we update the model and use

prioritized sweeping [Moore and Atkeson, 1993] to concentrate backups on relevant
parts of the state space. We also occasionally stop to recalculate the effects of
all actions under the updated model and then run value iteration to convergence.
As this is fairly time-consuming, it is done rather rarely; we rely on the updates

performed by prioritized sweeping to guide the system in the meantime .

. ,00000 .",.". ~_'------'_~_-.L_--'-_--'-_--'-_~
o 50 100 150 200 2!10 !OO 350 -400 4SO 500 0 50 100 150 200 250 ~oo .:ISO 400

~o1 T n'" ~o1 T "'1I

Figure 4: Left: Cumulative performance, model-learning on hillcar with a 112 grid.

Right: Acrobot with a 154 grid. In both cases, multilinear interpolation comes out on

top, while no interpolation winds up on the bottom.

3.3.1 Hillcar Results: value iteration with learned model

We used the algorithm described above with an ll-by-ll grid. An average of about
two prioritized sweeping backups were performed per transition; the complete re
calculations were performed every 1000 steps throughout the first two trials and

every 5000 steps thereafter. Figure 4 shows the results for the first 500 trials.

Over the first 500 trials, the learner using simplex-based interpolation didn't fare
much better than the learner using no interpolation. However, its performance

on trials 1500-2500 (not shown) was close to that of the learner using multilinear

interpolation, taking an average of 151 steps to the goal per trial while the learner
using multilinear interpolation took 147. The learner using no interpolation did
significantly worse than the others in these later trials, taking 175 steps per trial.

Triangulation and Interpolation for Reinforcement Learning 1011

The model-learners' performance improved more quickly than the Q-Iearners' over
the first few trials; on the other hand, their final performance was significantly worse
that the Q-Iearners'.

3.3.2 Acrobot Results: value iteration with learned model
We used the same algorithm with a 154 grid on the acrobot domain, this time
performing the complete recalculations every 10000 steps through the first two trials
and every 50000 thereafter. Figure 4 shows the results. In this case, the learner
using no interpolation took so much time per trial that the experiment was aborted
early; after 100 trials, it was still taking an average of more than 45,000 steps
to reach the goal. The learners using interpolation, however, fared much better.
The learner using multilinear interpolation converged to a solution taking 938 steps
per trial; the learner using simplex-based interpolation averaged about 2450 steps.
Again, as the graphs show, these three learners initially improve significantly faster
than did the Q-Learners using similar grid sizes.

4 CONCLUSIONS

We have shown how two interpolation schemes- one based on a weighted average of
the 2d points in a square cell, the other on a d- dimensional triangulation-may be
used in three reinforcement learning paradigms: Optimal policy computation with
a known model, Q-Iearning, and online value iteration while learning a model. In
each case our empirical studies demonstrate interpolation resoundingly decreasing
the quantization level necessary for a satisfactory solution. Future extensions of
this research will explore the use of variable resolution grids and triangulations,
multiple low-dimensional interpolations in place of one high-dimension interpolation
in a manner reminiscent ofCMAC [Albus, 1981], memory-based approximators, and
more intelligent exploration.

This research was funded in part by a National Science Foundation Graduate Fellowship to Scott Davies,

and a Research Initiation Award to Andrew Moore.

References

[Albus, 1981] J. S. Albus. Brains, BehaVIour and Robottcs. BYTE Books, McGraw-Hili , 1981.

[Boyan and Moore, 1995] J. A . Boyan and A. W. Moore . Generalization in Reinforcement Learning:
Safely Approximating the Value Function. In Neural Information Processing Systems 7, 1995 .

[Crites and Barto, 1996] R. H. Crites and A. G. Barto. Improving Elevator Performance using Rein
forcement Learning. In D. Touretzky, M. Mozer, and M. Hasselmo, editors, Neural Information
Processing Systems 8, 1996.

[Gordon, 1995] G. Gordon. Stable Function Approximation in Dynamic Programming. In Proceedmgs
of the 12th International Conference on Machme Learning. Morgan Kaufmann, June 1995 .

[Moore and Atkeson, 1993] A. W. Moore and C . G. Atkeson . Prioritized Sweeping: Reinforcement
Learning with Less Data and Less Real Time. Machme Learning, 13, 1993.

[Moore and Atkeson, 1995] A . W. Moore and C. G. Atkeson. The Parti-game Algorithm for Variable
Resolution Reinforcement Learning in Multidimensional State-spaces. Machine Learning, 21, 1995.

[Moore, 1992] D. W . Moore. Simplical Mesh Generation with Applications. PhD. Thesis. Report no.
92-1322, Cornell University, 1992 .

[Ross, 1983] S. Ross. Introduction to Stochastic Dynamic Programming. Academic Press, New York,
1983.

[Sutton, 1988] R. S. Sutton. Learning to Predict by the Methods of Temporal Differences. Machine
Learning, 3:9-44, 1988.

[Sutton, 1996] R. S. Sutton. Generalization in Reinforcement Learning: Successful Examples Using
Sparse Coarse Coding. In D . Touretzky, M . Mozer, and M . Hasselmo, editors, Neural Information
Processing Systems 8, 1996.

[Tesauro, 1991] G. J. Tesauro. Practical Issues in Temporal Difference Learning. RC 17223 (76307),
IBM T. J . Watson Research Center, NY, 1991.

[Watkins, 1989] C. J . C . H . Watkins . Learning from Delayed Rewards . PhD . Thesis, King's College,
University of Cambridge, May 1989.

