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Abstract

We study the relationship between rational herd behavior and asset prices.

We define herd behavior as occurring when an agent trades against his initial

assessment and instead follows the trend in previous trade. When traders have

an informational advantage on a single dimension (the new asset value), price

adjustments by a competitive market maker prevent any herd behavior. If the

market maker is additionally uncertain as to whether the underlying asset value

has changed, we show that herd behavior is possible. However, such herd be-

havior need not affect the asset price because the market correctly discounts

the informativeness of trades during periods of herding. When the market is

uncertain about both whether the asset value has changed and whether traders

are well or poorly informed on average about the new asset value, then herd

behavior can lead to significant, short-run price movements that do not reflect

the true asset value.
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1 Introduction

Walrasian models of general equilibrium rely on simultaneous execution of a large num-

ber of trades to produce optimal outcomes. In an Arrow-Debreu economy, all trades

take place at the instant the market opens, presuming that the Walrasian auctioneer

sets prices correctly. As a challenge to these results, an explosion of papers in the last

several years argue that imitative or herd-like behavior can impede the flow of infor-

mation in a closed economy when consumers act sequentially rather than concurrently.

(Bikhchandani, Hirschleifer and Welch (1992), Banerjee (1992), Bulow and Klemperer

(1994), Caplin and Leahy (1993, 1994), Chamley and Gale (1992)). With sequential

actions, the earliest decisions can have a disproportionate effect over long-run outcomes

in the economy. A slight preponderance of public information is sufficient to induce all

agents to follow the lead of the market, completely ignoring their private information.

Bikhchandani, Hirschleifer and Welch (BHW) describe that situation as an "informa-

tional cascade". In BHW and Banerjee's models, an informational cascade occurs in

finite time with probability 1. That is, social learning completely breaks down as all

consumers from some time forward make the same choice and reveal no new information.

Because that choice is wrong with strictly positive probability, the equilibrium of these

sequential market games is inefficient, even in the long-run.

The herding literature recalls a once prominent view of markets—especially financial

markets—as driven by "animal spirits," where investors behave like imitative lemmings.

While the rational actor approach has largely driven this view from mainstream research

in financial economics, it is far from gone. Both influential market participants and finan-

cial economists reportedly still believe that imitative behavior is widespread in financial

markets (Devenow and Welch, 1996). This has lead some researchers to assert that mar-

ket participants engage in non-rational herd behavior (e.g. Kirman, 1993, Shleifer and

Summers, 1990).

We investigate the relationship between rational herd behavior and asset prices. Past

work on rational herding is not well suited to address this relationship because, in almost

all cases, herding models fix the price for taking an action ex ante, retaining that price

inflexibly under all circumstances. 1 We address the following questions: Can there be

informational cascades in financial markets? Can herd behavior lead to the long-run

mispricing of assets? Does it produce bubbles and crashes? Might it offer an explanation

1 The only one of these models which allows explicit price changes is that of Bulow and Klemperer,

but their model still fixed the prices locally after each purchase for a sufficient period to produce herding.



for excess volatility? We begin our analysis with an example which motivates a final and

no less important question.

1.1 A Simple Example

Our model retains the basic features of BHW, with the notable addition of a price mech-

anism. It is useful to review the simplest version of the BHW model and to consider

what happens when prices are allowed to vary over time in response to trading. 2 In

BHW, agents face a choice of whether or not to adopt a new technology, and the cost of

adoption is fixed at c = 1/2. The value of the new technology, denoted V, is either 1 or

0. Each agent gets an independent, imperfect signal about V, denoted x E {0, 1}, where

P(x = V) = p > 1/2. Agents act sequentially and observe H t , the history of actions up.

until time t. Let rl = P(V = 1 IHt ). The choice made by an agent depends on whether

the expected value of adopting is greater than c. Consider the expected value of an agent

with bad news (the value for an agent with good news is similar):

V t (x = 0) = E[Vix = 0,
1 — p

— (1 — p)R1 p(1 — 71) 1

Assuming all prior agents have acted in accord with their signal, 71-1 increases with the

difference between the number of prior agents who adopted and those who did not.

Indeed, whenever there are two more adopters than non adopters, it is the case that

Vt (x = 1) > Vt (x = 0) > 1/2. Then agents at time t adopt regardless of their signal and

an informational cascade begins.

Now suppose that the agents are traders in a financial market and that their choice

is whether to buy or sell a unit of an asset where the true value of the asset is given by

V. Further, suppose that the financial market is informationally efficient in that the cost

of a unit of the asset reflects all publicly available information:

= E[V	P(V = 1IHt)

Retaining the'rest of the BHW assumptions leaves agent valuations unchanged. The key

2We use notation consistent with the rest of this paper.
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observation from this simple exercise is that

vi (x = 1) > c > vi (x = o).

The asset price adjusts precisely so that there is no herding and agents always trade

in accord with their signal! Reflecting on Adam Smith's invisible hand, it is not too

surprising that an arbitrary fixed price is important for the existence of herd behavior

and the persistence of inefficient decisions in an economy.

We conclude that whether or not herd behavior affects asset prices, asset prices can

certainly affect herd behavior. In this example, they completely' eliminate it. Given

the reported prevalence of herd behavior in financial markets, this raises the important

question of whether herd behavior is consistent with a market composed of rational

traders.

1.2 Overview of the Paper

In Section 2 we describe a general model and define terms. Of particular importance, we

define herd behavior as occurring when an informed agent trades with the trend in past

trades even though that trend is counter to his initial information about the new asset

value.

In Section 3, we show that there are limits to the distortions that can arise in a

financial market where traders are rational actors and prices incorporate all publicly

available information. We show that informational cascades are impossible: at any point

in time there is always the possibility that new information reaches the market. Consistent

with this steady flow of information, prices always converge to the true value. Hence, herd

behavior can cause no long-run mispricing of assets. We show that the ex ante expected

volatility in prices is determined by fundamentals, which means that herd behavior can

not be the source of excess volatility. Finally, we generalize the example in Section

1.1 to derive a general "monotonicity" condition for private signals such that herding is

impossible.

In Section 4 we exhibit a plausible information structure in which herding does occur,

adding event uncertainty to the information structure of Section 3. With event uncer-

tainty, the market is uncertain as to whether the value of the asset has changed from its

initial expected value, while informed traders know for sure whether or not the value has

changed. We show that any amount of event uncertainty produces the possibility of herd
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behavior. As event uncertainty grows large (i.e. the probability that the asset has not

changed value goes to 1), there is an arbitrarily long period of herd behavior when the

asset value does change. This herd behavior is similar to the informational cascade of

BHW in that the market does not learn about whether the asset value is high or low as

all informed traders either buy or sell. Surprisingly, this extreme herd behavior has little

effect on asset prices. We show that the movement in the asset price is bounded and

that this bound can be small. Finally, we argue that herd behavior is not even clearly at

odds with optimal social learning in our setting. Herd behavior arises in situations where

traders believe that the market price does not accurately reflect the implications of past

trade. As a result, herd behavior can actually aid in price convergence.

Given the above results, one might expect that we find no connection between herd

behavior and market crashes. However, this is not the case. In Section 5 we investigate

what happens when the market faces both event uncertainty and what we call composition

uncertainty, which means that there is uncertainty as to the average accuracy of traders'

information. We are then able to identify certain (highly unlikely) states of the world in

which herd behavior leads (almost surely) to a price bubble and crash. In these states,

market participants have a mistaken, but rational, belief that most traders possess very

accurate information even though everyone has actually received poorly informative sig-

nals. Then, market participants have trouble differentiating between a market composed

of well informed traders and one with poorly informed traders who are herding: in each

case, there is a preponderance of activity on one side of the market. The resulting confu-

sion allows uninformative herd behavior to have dramatic effects on prices. Our theory

of price bubbles resembles the explanation advanced by Grossman (1988) and Jacklin et

al. (1992) for the stock market crash of 1987: traders underestimated the prevalence of

non-informative computer-based insurance trading.

Based on these results, we conclude that despite the significant constraints imposed

by a rational financial market, herd behavior is robust to the operation of the price

mechanism. In particular, as the number of dimensions of uncertainty with which the

price mechanism must contend increase, herding becomes prevalent and extreme effects

based on herd behavior occur in identifiable (but unlikely) states of the world.

In Section 6 we consider the converse of herding, "contrarian behavior", where agents

ignore their private information about the asset value to trade against the trend in past

trades. We show that composition uncertainty can give rise to such behavior. In Section

7 we argue that the herd behavior in our model does not introduce the possibility of
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market manipulation by a long- lived, but uninformed, trader. Section 8 concludes.

2 The General Model

We begin by specifying a general model; we will add further assumptions in later sections.

The market is for a single asset with true value V, which is restricted to be in [0, 1].

Prices are set by a competitive market maker who interacts with an infinite sequence of

individuals chosen from a continuum of traders. Each trader is risk neutral and has the

option to buy or sell one unit of stock or to refrain from trading. We denote by Ht the

publicly observable history of trades up until time t.

There are two broad classes of traders. Informed traders receive private information

and maximize expected profit at the market maker's expense, while noise traders act for

exogenous motives and without regard for expected profit.' Let p < 1 be the probability

that an informed trader arrives in any given period; 1 — p is the probability that a noise

trader arrives. For convenience, we assume that noise traders buy, sell and don't trade

with equal probability 7 = (1 — ii)/3.

Informed traders receive private information xe E [0, 1], where xe is drawn from the

distribution fe(xe(V) and 0 is a trader's type.4 The probability that a trader of type 0

arrives is denoted pe > 0.

We assume that there is always a minimal amount of "useful" information in the

market. That is, as long as past trading does not identify the value perfectly, then there

is strictly positive probability that some trader has a assessed value that differs from

the market maker's (by a non-trivial amount). More precisely, we assume that if there

does not exist a v such that P(V = v(Ht) = 1, then there exists at least one 0 and

set of signal realizations R C [0,1] with P(xe E R(Iii) > 0 such that E[Vixe,Ild

E[VIHt] for xe E R; and moreover, if (E[VIHt] — VI = 8 > 0 then for some 45) > 0,

lE[Vixe,Hd— E[VINI > c(b).

The market maker allows for adverse selection by setting a (bid-ask) spread between

the prices at which he will sell and buy a unit of stock. Perfect competition among market

makers restricts the market maker to zero profits at both the bid and ask prices. That

3Without the presence of noise traders, the no trade theorem of Milgrom and Stokey (1982) applies

and the market breaks down.

4Thus, a trader potentially has two pieces of private information, the value of xe E [0, 1] and his type

0. Type constitutes private information if there is uncertainty about the composition of the market. See

Section 6 for details.
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is, the trader who arrives in period faces a bid, B t , and an ask, A t , which satisfy:

Bt = E[V1h4 S, Ht],

and

A t = E[V Pu b = Ht],

where h t is the action taken by the trader who arrives in period t, where h t = B indicates

a buy, Ht = S indicates a sell and hi = NT indicates no trade. The market maker's

expected value for the asset given public information, E[VIN, plays an important role

in the paper. We define V,1, = E[VIHt], which we shall sometimes refer to as the price.'

Finally, we define the market maker's assessed distribution for the possible values as

grit,  = P(V =	By Bayes' theorem, these priors respond to trade as follows:

P(ht IV = v)
Iry —
	

P(h) 

where P(ht) =	71-„t P(h t IV = v).

Our model is a special case of the model developed by Glosten and Milgrom (1985)

with the notable simplification that our noise traders have completely inelastic demand.

Because our noise traders are willing to absorb any amount of losses, the market never

breaks down due to adverse selection and zero profit equilibrium prices always exist.

Proposition 1 In each period t there exist unique bid, B t , and ask, At, prices which

satisfy Bt _< vrtn < At. Vmt and 7r.:, are martingales with respect to Ht.

Proof: See Appendix.

The market maker accounts for the information which is contained in buy and sell

orders in setting prices. Thus, the ask price (the price for a buy order) is above the

current assessment of the asset's value and the bid price is below the current assessment

of the asset's value. That is, At > 1/4 and Bt < V. V, and r,t are expectations based

on all of the information contained in the prior history of trade, Ht . Therefore, they

are martingales with respect to Ht ; if this were not the case, then the market maker's

assessment of littn and rt would be systematically mistaken in a manner which should be

predictable to him.

t+1_ t (1)

5We do this when we want to abstract from the existence of the bid-ask spread in interpreting our

results.



2.1 The Definition of Herd Behavior

We differentiate between an informational cascade and herd behavior. In the example

of section 1.1, herd behavior always implies an informational cascade. With the simple

information structure used there, no information reaches the market when traders with

bad signals (x = 0) imitate traders with good signals (x = 1). However, in a more

general model (e.g. with multiple types of traders), imitative behavior need not imply

an informational cascade.

Definition 1 An informational cascade occurs in period t when

P(htIV,Ht) = P (h t IHt ) VV, ht.

In an informational cascade, no new information reaches the market because the distri-

bution over the observable actions is independent of the state of the world. In particular,

this happens when the actions of all informed traders are independent of their private

information, such as when they are all buying.

Definition 2 A trader with private information xe engages in herd behavior at time

t if either he buys when E[Vjxe] < E[V] < E[Vilit] or he sells when E[Vixe] > E[V] >

E[VJHt]; and buying (or selling) is strictly preferred to other actions.

Herd behavior by a trader satisfies three properties, which we discuss for the case

of herd buying. First, it must be that initially (before the start of trade) a trader's

information leads him to be pessimistic about the value of the asset so that he is inclined

to sell: E[Vfxe] < E[V]. Second, the history of trading must be positive: E[V] <

E[VIN.6 Finally, the trader must want to buy given this positive history and his signal,

which implies thatE[Vixe, > A t > E[VIHt]. These three properties demonstrate

the extreme nature of herd behavior. Initially, the trader's signal constitutes negative

information, causing him to reduce his assessment of the asset's value. Yet, after observing

the trading history, the signal constitutes positive information, causing him to increase

his assessment of the asset's value from E[V (Ht].

In our definition, herd behavior occurs when agents imitate the prior actions (buying

or selling) of others. An alternative approach is to define herding as a socially inefficient

'We write EH for E•IHo].

7



reliance on public information (see Vives, 1995a). 7 In contrast, we start with a behavioral

definition of herding and then study the extent to which such behavior leads to distortions

and inefficiencies.

3 Bounds on the Effect of Herding

Asset prices have a profound effect on herd behavior. As suggested by the motivating

example, the price mechanism eliminates the possibility of informational cascades.

Proposition 2 An informational cascade never occurs in market equilibrium.8

Proof: Suppose there is an informational cascade in period t. In an informational

cascade, the market maker learns nothing from a trade and hence Bt	A t	.171

E[VIHt]. With noise trading, all histories occur with strictly positive probability in

all states of the world. Hence, there does not exists a v such that P(V = vIHt) = 1

and there is a non-trivial set of traders with useful information, (i.e. traders for whom

E[Vixo,Ht ]	E[V1.1-1d). With B t = A t = E[VIHt], these traders must be buying or

selling.

Suppose traders with signals :re E RB are buying and P(xe E RB IHt) > 0. Since this

is an informational cascade, P(xe E RB IV,Ht ) = P(xe E RBIHi ) V V, which implies that

E[Vixo E RB, Hi] = WIN. This contradicts all types xe E RB buying. Similarly, no

positive measure of informed traders can be selling. But this contradicts a non-trivial

set of traders having useful information. We conclude that an informational cascade is

impossible.	 q

Our assumption of minimal useful information implies that there is always private

information in the economy. As long as private information exists, some traders must

base their trading strategy on that information, but this assures that observed actions

are not independent of the state. Hence, an informational cascade is • impossible. Like

'In settings where agents learn from the actions of others, an informational externality naturally arises
in that future agents benefit when earlier agents take actions that reveal their private information. Hence
the connection between efficiency and herd behavior, which can obscure private information. There are
two drawbacks to using an efficiency based definition of herd behavior for studying financial markets.
First, it requires a welfare benchmark, which is generally lacking in asymmetric information models of
asset markets (see the discussion in Section 4.3). Second, traders can place a very high weight on public
information without exhibiting the sort of strongly imitative behavior studied here (see the work of Vives
(1995a,1995b)).

8We are very grateful to an anonymous referee for suggesting this result.
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several of our results, Proposition 2 relies on a basic intuition about our model: informed

trade is driven by information asymmetries between traders and the market maker.

Proposition 2 depends on there being limited frictions in the market. Otherwise,

trade and the flow of information can stop. In Ho Lee (1995) shows that informational

cascades arise if there are transaction costs. Over time, the expected profit of informed

traders declines to zero as the asset price becomes more accurate. If there are transaction

costs to trading, informed traders will (almost surely) stop trading at some point. Then,

no new information reaches the market. Similarly, in the original Glosten and Milgrom

paper, informational cascades arise if the market breaks down due to adverse selection.

Consider the following restriction on the private information in the economy.

Definition 3 A signal xe is monotonic if there exists a function v(xe) such that

E[Vixe, Hi] is always (weakly) between v(xe) and E[VIHi] for all trading histories Ht.

Monotonic signals are particularly well behaved. Given any public information, they

always move a trader's expected value towards some fixed valuation, v(xe). Monotonic

signals are pervasive in the literature on asymmetric information in financial markets.

For instance, the signals in the example of Section 1.1, which are often used in Glosten-

Milgrom style models, are monotonic because E[Vlx , Hi] E [x, EMHifi. In addition,

noisy rational expectations models (e.g. Grossman and Stiglitz, 1980) require monotonic

signals for tractability. We now show that it is the ubiquitous assumption of monotonic

signals that explains the absence of herd behavior in the received literature on the micro-

structure of financial markets.

Proposition 3 A trader with a monotonic signal never engages in herd behavior.

Proof: Suppose a trader with a monotonic signal xe engages in herd buying at time

t. Then E[Vixe, > At > EMHii. Since the signal is monotonic, this implies that

v(xe) > EMIli). But since E[VIIIi]> EM for herd buying, monotonicity also implies

that E[Vixe] > E[V] and the trader was not originally pessimistic, which is a contradic-

tion. Similarly, herd selling never occurs.

With monotonicity, a trader who wants to buy when the price has risen, must also

want to buy initially, which assures that any buying is not herding. 9 If we abstract from

9 Vives (1995b) develops a dynamic noisy rational expectations model which compliments our analysis.

Consistent with Proposition 3 and his use of monotonic signals, traders in Vives' model never engage in

herd behavior as defined here. They always buy if the value of their signal is above the price and sell if

it is below. The amount that they buy or sell does change over time as public information accumulates.



the existence of a bid-ask spread (as when is small), agents with monotonic signals

have particularly simple trading strategies. They buy if v(xe) is above the price, 1/4, and

sell if it is below. Then, traders need not concern themselves with the trading history

at all! This rules out herd behavior, since it leaves no room for the trend in the trading

history to influence trading. When traders have monotonic signals, we say that there is

only a single dimension of uncertainty in the market. Our motivation is that a scalar, 1/4,

can summarize for traders all that the information they need to extract from the trading

history. We label this single dimension of uncertainty as value uncertainty, as it relates

directly to the underlying value of the asset.'

In Section 4 we show that there exist plausible non-monotonic signals which produce

herd behavior. However, we now show that the effect of herd behavior on prices must

be limited. The impossibility of informational cascades implies that each period of trade

reveals some information even if there is herd behavior. Since there is a continual flow of

information, it is natural that the trading price must converge to the true asset value.

Proposition 4 The bid and ask prices converge almost surely to the true value V .

Proof: This result is a direct consequence of Proposition 4 of Glosten and Milgrom

(1985), which states that the beliefs of informed traders and the market maker converge

over time so long as trade on both sides of the market is bounded away from zero. Since

we assume a stationary probability that noise traders buy and sell in each period, there

is a positive probability for a buy order and a positive probability for a sell order in

each period. Therefore, the Glosten and Milgrom result applies and the expectations of

the market maker and of all the informed traders converge over time. If expectations

converge to the true value V, then the prices must do so as well.

Suppose that the market maker's expectation does not converge to V. Then for

some S > 0, there is strictly positive probability in each period that the market maker's

expectation differs from V by at least S. But then, there is a strictly positive probability

(in each period) that an informed trader's assessment differs from the market maker's

assessment by at least €(S) > 0. This contradicts the convergence of these assessments.

0

10 We do not make precise our notion of "dimensions" of uncertainty, but leave it as an intuitive

construct that we find useful for interpreting our results. We shall speak of the asset price as having a

single dimension in our model, even though technically there is both a bid and an ask price. We think of

multi-dimensional prices as arising when there are derivative securities (such as options) that are traded.
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From Glosten and Milgrom we already know that all private information becomes

public over time as long as the market does not break down. Convergence is then a direct

consequence of the assumption that a non trivial amount of useful private information

always exists (so long as the true value is not yet identified by the trading history). Then,

the only way for all private information to become public is for the price to converge.

While our convergence result is not new, it has significant implications for the applica-

bility of results from the recent herding literature to financial markets. Price convergence

directly rules out the sort of long-run inefficiencies found in earlier herding papers. Fur-

ther, when coupled with the martingale property of prices, convergence provides a bound

on the volatility of prices. We denote the change in the market maker's expectations

from one period to the next as AV,,,t = WIN — EIVIHt-11.

Corollary 5 The variance of price paths is bounded as follows:"

t=T

E Var(AV,„t ) < Var(V).
t=i

Additionally, for a fixed t1

Var(V — V41 ) = Var(V) — V ar(V„,t1).

Proof: Since .174 is a martingale, E(L\Vmtl • Alimi2 ) = 0 for each t, t2 . That is,

Cov(AV„,i1 , AV42 ) = 0. Since Vvins =	+ Ertl* AV„,t , we can write the variance of V:, as

the sum of variances of AV,„t : Var(Vmt* ) = rift; Var(AVnit ). As t* —> oo, VX converges

almost surely to V, so Var(Vmt* ) converges to Var(V) and the first part of the proposition

follows.

For the second part, note that Var(Vnit2 — 1/7t.:	Ettftt21+1
Var(AVmt ) = Var(Vmt2 ) —

Var(Vmt1 ). The result follows by taking the limit as t 2 grows large.	 q

The first part of Corollary 5 states that the expected volatility is bounded by the

fundamental uncertainty over V. Hence, it is not possible to explain "excess" volatility

in our general model, whether or not there is herd behavior. In addition, as time passes,

the "remaining variance" in the price change process diminishes, so that Vm must be

more and more accurate over time, as implied by the second part of the corollary. That

"We are grateful to Paul Milgrom for suggesting this result.
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m
E[V IV > a, Ht] — E[V IV < Ht]•

Hence,
E[V1V a, Ht] — E[VIIN

is a natural property with an important implication: any set of volatile price paths must

either converge quickly to the true value or (as the next corollary emphasizes) they can

only occur with small probability.

Corollary 6 Consider some a < E[VI.Ht]. Then P(V < alHt) (1 — E[Villi])1(1— a).

Proof: Let m = P(V < alHi). Because V:, is a martingale converging to V,

E[VIHt] = mE[VIV < a, Hi] + (1 — m)E[VIV ^ a, He].

Since E[VIV > a, Ht] > E[VIN and .E[VIV < a, BA < a, an upper bound on m is given

by setting E[VIV > a, Ht] = 1 and E[VIV < a, Ht] = a.	 0

This result implies that high prices occur only rarely when asset values are low.

Consider a market where V E {0,1} as in BHW. Corollary 6 implies that P(V 0) =

1 — E[Vilit]. Hence, as the price (E[VIN) goes to one, the probability that V = 0 goes

to zero. This result limits the probability of a price bubble, which is a situation where

the asset value moves far away from its true value. In general, we note that there is an

inverse relationship between the magnitude of a price bubble and the probability with

which it occurs. In particular, extreme price bubbles (where the asset incorrectly attains

its maximum possible value) are zero probability events.

4 Event Uncertainty and Herd Behavior

4.1 Existence of Herd Behavior

Proposition 3 poses a puzzle. How do we reconcile the reported prevalence of herd

behavior with its absence in a rational financial market with monotonic signals? A closely

related puzzle is the existence of price "charting," where traders use detailed charts of

price histories in their trading strategies (Brown and Jennings, 1990). This is puzzling

because the trading history plays at most a limited role in a trader's strategy when he

has a monotonic signal. For any history, the set of potential buyers (traders who are

more optimistic then the market maker) is given by the condition v(xe) > At , while the

12



set of potential sellers is given by the condition v(xe) < Bt.12

While it is certainly not difficult to specify non-monotonic signals, the more interesting

question is whether such signals are likely to be common in financial markets. Consider

then, that many shocks to an asset's value are not publicly known, at least initially. For

example, a trader might learn from a contact who works at a company that there will

be a change in management, that a new product has been developed, or that a merger

is being considered—all before a public announcement. Then, the trader has private

information about two "dimensions" of uncertainty. In addition to information related

to value uncertainty—is it a good or a bad merger?—the trader has private information

that there has been a shock to the underlying value of the asset. We follow the finance

literature and refer to this second dimension as event uncertainty (Easley and O'Hara

(1992)). We offer the following formalization of event uncertainty.

Definition 4 There is event uncertainty when 1 > P(V E[V]) > 0, where E[V] is

the market maker's initial expected value for the asset.13

We now extend the simple BHW information structure used in the example of Section

1.1 to incorporate event uncertainty. Traders are informed if there is an information

event (i.e. V E[V]) and if there is, then traders have signals as in BHW. Formally,

Information structure I (IS I) is defined as follows. The true value of the asset is

V E {0, 2, 1} with initial priors satisfying r7 > 0 and r? = re > 0. Then, E[V] = 2 and
2

there is event uncertainty. There is a single type of informed trader with signal x, where

{1 if V =
P(x = 

1
1V) =

2	0 if V

P(x =11V) =	
ifV=1,

1—p ifV= 0,

P(x = 01V) =
1 — p

if V = 0,

if V = 1,

12 Hence, the only role of the trading history is in helping traders to asses whether their private

information in sufficiently strong to justify trading given the bid-ask spread. We do not find this weak

history dependence to be a satisfactory theory of price charting. We seek a rationalization based on

strong history dependence, where the trading history drives a trader from buying to selling, as occurs

under our definitions of herd and contarian behavior.

13The event uncertainty that we study below satisfies the additional property that informed traders

know whether or not an information event has occurred. That is, P(V = E(V)IxeD E {0, 1}.
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where 1 > p > I-. Note that if there were no event uncertainty (i.e. ir? = 0), then
2

signals are monotonic. The addition of event uncertainty in this way makes signals non-

monotonic and herd behavior possible."

Proposition 7 Under IS I, price paths with herd behavior occur with positive probability

for p < 1. They do not occur for p = 1. Herd behavior is misdirected with positive

probability.15

Proof: Suppose p = 1. Then E[17 Ix, Ht] = x and signals are monotonic. Hence there

is no herd behavior.	 •

Suppose that p < 1 and V Because of noise trading, any finite history occurs

with positive probability. Suppose that there is probability 0 of herding in the first N

trades for each finite N. Fix E > 0. Without herding in the first N trades, each buy

order increases the expected value of the asset (with an upper limit of 1). Choose n such

that an informed trader who observes n — 1 buy orders and a signal x = 0 has expected

value for the asset greater than .12- e. Consider a history of length t=m-Fn<N

which consists of m no trades followed by n buy orders, where m is sufficiently large that

rin+n+1 > 1 — e. Under these conditions A m+n < -I- e and an informed trader with
2

2

x = 0 will buy at time m n. Further, this history occurs with positive probability,

contradicting the assumption that there was no herding at time m n < N. A similar

argument establishes that herd selling also occurs with positive probability. Therefore,

herding is in the wrong direction occurs with positive probability.	0

In BHW, a preponderance of one action chosen by earlier agents leads others to believe

that the action is a good one, regardless of their own private information. Similarly, a

sufficient excess of buys over sells in our model leads a trader to believe that the value

of the asset is more likely to have gone up rather than down, regardless of his signal.

However, with informationally efficient prices, rational individuals only act based on

information asymmetries between themselves and the market maker. The history of

14It is possible to have event uncertainty while preserving the monotonicity of signals. For example, if
V E {0,4,1), P(z=V)=p,P(z= 11V = 4) = P(x = 01V = 4) = (1 —p)/2, P(x = 41V = 1) = P(x =

1 (V = 0) = q and p > q > (1 — p)/2, then z is monotonic. Note that such a signal precludes informed
traders from knowing for sure whether or not an information event has occurred, which we find to be a
natural feature of event uncertainty.

''Easley and O'Hara (1992) study IS I for the special case where p = 1. Their focus is on how the
market maker learns that an information event has occurred. There is one minor difference with their
paper. They assume that informed traders are only active in the market if there is an information event.
We assume that informed traders do trade if there is no information event and the bid-ask spread does
not contain their expected value of 4.
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trades can only be the source of asymmetric information if it is interpreted differently by

the market maker and the informed traders. With only value uncertainty, there is only a

single interpretation of the history of trade and hence herd behavior is impossible. The

addition of event uncertainty causes informed traders to differ from the market maker in

their interpretation of the trading history and hence herd behavior becomes possible.

Informed traders know that an information event has occurred, while the market

maker does not. This information asymmetry gives the traders an advantage in inter-

preting the history of trades. They are quicker to adjust their valuation to the trend in

past trades than the market maker, who must consider the possibility that there has been

no change in the underlying value of the asset and the imbalance is due to noise traders.

Thus, event uncertainty dulls price adjustment in the short run. Given the results of the

literature on herd behavior with fixed prices, it is not surprising that sufficiently dulled

price adjustment leads to herd behavior.

The final step to understanding Proposition 7 is to see why for any amount of event

uncertainty (i.e. for any 77 > 0), price adjustment can become sufficiently dulled to

create herding. If informed agents are only expected to buy or sell when there has been

an information event (as happens at the outset of trade), then a long period of no trade

reduces the market maker's assessed probability of an information event. A sufficiently

long period without trade drives ir ti towards one. Then, the bid and ask prices tend
7

towards 12- for any given imbalance in trading since the market maker is heavily discounting

the possibility of an information event.

Proposition 8 Consider IS I and some trading history Hi that results in priors T ut =

P(V = vIHt ). For iri = pro, there is no herd behavior. For 71-1 4 there exists a

critical value for the precision of traders signals p(it, 7r(t) , 7r1) such that traders engage in

herd behavior in period t zff p < p. This 15 decreases with and increases with r ti (holding
2

r1/74, constant). If 7T-1 > rt) , then any herd behavior involves buying and /5 increases with

71/4 (holding rti constant). If 71-1. < irt) then any herd behavior involves selling and 13
2

increases with fro/ (holding r ti constant).
2

Proof: There is herd buying if E[Vix = 0, Ht] > At , which is equivalent to

(1 — p)rt	1'77i + 74(7 + PP)
2 

(1 P)ri + PrO	7 + riPIL 4(1 12)/i•
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The above condition is equivalent to

(p) = rti (1 + ro
t it

	6ia7rti rot
 —

—
 tom 0. + rot — Sri) rot(1 + rit — moo) 12/or it r0t ) .

> 0.

We have 0(1) < 0 and A(2) = (r1(1 — 74) — 4(1 irt))(1 — IL), which is positive iff

rt > 4 Hence, when 71 > 4, there exists a unique j5 E 1) such that 0(/5) = 0. Since

0Alap < 0, there is herd buying for p < 15(1,4 71), where /5 is yet to be determined.

Solving 0(j5) = 0 yields a closed form expression for	It is then straight forward to

show that aivap < 0. To show that ii is increasing in 'xi , take the expression for p" and
2

set rt, = afro, 7-1 = air and ri = 1 — a(rt -I- i4) and then note that aii/arx < 0. Finally,
2

to show that j5 is increasing in 74/7-L, set r tt) = k — 7r1 and note that aivarl› 0.

The results extend to herd selling by symmetry.	q

Proposition 8 identifies the forces that produce herding. In general, herd behavior

results when the weight of information in the history of trade overwhelms an individual's

private information about value uncertainty. A reduction in p reduces the information

contained in a private signal about value uncertainty, while an increase in 174 — 74,) in-

creases the amount of information contained in the history. Either change makes it easier

for trading history to overwhelm the information about value uncertainty in private sig-

nals and thus makes it easier for herding to arise. Herding becomes more prevalent when

prices become less responsive to trading history. As the probability of an information

event decreases (i.e. 1, increases), prices respond less to the trading history and thus
2

more of the information in the trading history is private. 16 Finally, the effect of an in-

crease in the proportion /L of informed traders operates through the bid-ask spread. An

increase in it causes the market maker to set a wider bid-ask spread because he is losing

more to informed trading. That increase in the bid-ask spread opposes herding since

traders are then less inclined to trade.

4.2 Existence of Pronounced Herd Behavior

Proposition 7 shows that herding is possible for any p < 1 and r > 0. We now show that

as event uncertainty becomes extreme, herd behavior becomes pronounced, resembling

16 Note that the information gleaned by informed traders from observing trading history is fixed re-

gardless of the value of 7r i, because they know whether or not an information event has occurred.
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the cascades of BHW.

Proposition 9 Consider IS I with p < 1 and suppose that an information event occurs.

In the limit as the probability of an information event becomes arbitrarily small (i.e.

—+ 1), the probability that there is some herd behavior goes to 1. Moreover, the trading
2

history almost surely takes the following form:

A finite, initial period of trading during which herd behavior does not occur,

An arbitrarily long period of herd behavior of one type (i.e. always buy or always sell).

Herd behavior is in the wrong direction with a strictly positive probability,

(1 — p)2
A E [p2 ( 1 p)2 1

In the limit as 1.2	0, the probability of herd behavior in the wrong direction goes to 1 —p.

Proof: See Appendix.

When an information event is very surprising (i.e. r close to 1), the market maker
2

discounts almost completely the informativeness of trading. The price remains fixed at

the initial expected asset value of 1-2- for an arbitrarily long period of time. With a fixed

price, our model almost recreates the BHW model and hence it is not surprising that

cascade-like behavior arises. The only difference with BHW is the existence of noise

traders .17

There is an important distinction between the herding of Proposition 9 and informa-

tional cascades, which cannot occur in equilibrium. In an informational cascade, no new

information reaches the market, as when all traders take the same action regardless of

their information. Under the conditions of Proposition 9, behavior resembles a cascade

when there has been an information event. For a very long period, all informed traders

act as buyers (or sellers). However, new information still reaches the market during the

period of herding because the consensus among the informed traders is itself informative.

Had there been no information event., the volume of trade and the percentage of buy

17The main effect of noise traders is to increase somewhat the probability of herding in the wrong

direction. In BHW it takes two more adopters than non adopters to start an informational cascade. Here

the imbalance between buys and sells necessary to start herd behavior depends on the probability of a

noise trader. The greater the probability of noise traders, the greater the imbalance required. However,

the key statistic for a cascade—the probability that it is in the wrong direction—is very similar. In

BHW, the probability of a wrong direction cascade is the probability that two agents with the same

signal have the wrong signal (1— p) 2 /(p2 + (1 — p)) 2 . Here A is between the probability that two traders

with the same signal have the wrong signal and the probability that just one trader has the wrong signal.
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orders would have been much less. Hence, the market maker is learning that there was

an information event. After a sufficient period of time, the market maker learns enough

about value uncertainty that prices adjust, which ends herding.

Adding a second dimension of uncertainty makes herd behavior possible and even

extreme. However, this herd behavior does not distort the asset price.

Corollary 10 During the entire period of herding identified in Proposition 9, the move-

ment in the asset price from 2 is less than

A = 
3/4 — 

2+ µ

The maximum possible price rise is thus p —1 and in the limit as either it —* 0 or p

= 0.

Proof: See Appendix.

No one is fooled by herd behavior in IS I. Herding keeps information about the new

asset value from entering the market and rational actors (including the market maker)

account for this. With extreme event uncertainty, herding starts when the value of

an informed trader crosses 2, which occurs as soon as the history of trades conveys

information about value uncertainty equivalent to just one signal. Then, the valuations

of traders are fixed for the entire period of herding. Therefore, herding cannot move

the price away from 2 by more than the information contained in one trade. In some

circumstances, the change is small. In particular, for a small probability of an informed

trader arriving or for low precision signals, each trade conveys little information and has

a small effect on valuations.

In conclusion, any price rise during periods with herding in IS I results only from

information about the new value which was contained in trading prior to herding. All

that is learned during herding is that an information event has occurred.

4.3 Efficiency and Herd Behavior

Vives (1995a) studies the relationship between efficiency and imitative behavior in a

setting with fixed prices. He considers an economy where a sequence of agents make

the same, irreversible decision and have monotonic private signals about the optimal

decision. Vives proposes as a welfare benchmark a team solution which assigns agents

decision rules that minimize the mean decision error. He finds that in the decentralized
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economy, agents put too much weight on the decisions of others relative to the welfare

benchmark. Agents do not internalize the negative externality on later agents caused by

their imitative behavior, which obscures their private information.

Vives' approach does not transfer well to financial markets. In an asset market, the

natural team solution would be to maximize the profits of the informed traders. However,

trading profits based on asymmetric information have no clear link to social welfare. What

would seem more important is the information revealed in the trading history—especially

the information reflected in the asset price. It is such information which is likely to affect

decision making in the real economy.

With event uncertainty, there are potentially two pieces of information to be revealed.

First, whether an information event has occurred, and then if it has, whether it is a

positive or negative event. If it is very important to learn whether or not an information

event has occurred, then herding is actually the socially preferred trading strategy. 18

Proposition 11 Consider IS I and suppose that the social objective is to maximize, with

each trade, awareness of information events. That is, the objective is to make E[rti+11V
2

,Ht] as small as possible.'9 Then, herding is always more socially efficient than having

agents trade according to their information about value uncertainty.

Proof: We work with the dual objective of maximizing E[r ti+1 I V = He]. With herd

buying, all informed traders buy when x 2 and either sell or refrain from trading when

x = 1 . Then, using Equation (1) we have
2

1	7
2

+ + 
(7 + 102 

Oh = Ek ti+1 I V = Hi] =
2	2( + L( 1 —	7 +

2	2

The expression for herd selling is identical. When traders trade with their information

about value uncertainty, they buy when x = 1, sell when x = 0 and refrain from trading

when x = Then,

5 (7 + 11 (Pri + (1 P)74)) 
+

+ tt (PrO + (1 P)71)	+ 1171) •
Ov = + 

+ 11)2 

18The resolution of event uncertainty is of primary importance when decision makers in the real

economy have access to a technology which enables them to learn about what is going on inside a firm

once they are alerted to the existence of an information event.

19 Since irti is a martingale, this is equivalent to making E[T- ti+1 11/ =	as large as possible.

2
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The difference between these two quantities takes the following form

-	= (a) f (0)] — If (b) + f (c)1,

where f(x) = (ri 72 )/(7 x), a = p(1 — ) and b c = a. The result that herding is
2	 2

preferred (i.e. Oh, > Ov) follows from the convexity of f.	 q

While herding is costly in that it obscures information about value uncertainty, it has

a benefit. It is more effective (than trading based on information about value uncertainty)

at revealing the existence of an information event. By focusing the trade of the informed

on a single action when there is an event, herding reduces the effect of noise trading. For

example, with herd buying, a sell order must come from a noise trader and a buy order

becomes a strong signal that there has been an information event.

The social objective in Proposition 11 is extreme in two ways. First, it puts no

weight on learning about whether an information event is positive or negative. Second,

it assumes that the decision maker in the real economy has access to the whole trading

history in addition to the current asset price. As Corollary 10 shows, herding can have

little effect on the price—even as it reveals that an information even has occurred. An

objective that might better capture the interests of more decision makers is one which

leads prices to reflect the nature of any information event. Such an objective is relevant

to an individual who is going to relocate his family to join one of several firms. What

such an individual wants to know is whether there has been a good or bad shock to the

fortunes of one of his perspective employers. Surprisingly, such an individual may be

quite happy with the functioning of a decentralized market.

Proposition 12 Consider IS I and suppose that the social objective is to maximize, with

each trade, the movement of the price towards any new value of the asset, where the

importance of moving to some new value V is weighted by 4. That is, the social planner

seeks to make 7r1 E[1 —	= 1] + rtlE[V4+1 — OIV = 0] as small as possible. Then, as

--> 0 herding is preferred by the social planner to having agents trade with their signals

about value uncertainty precisely when they do so in the decentralized econorny.2°

Proof: Let oh be the value of the social objective, ritE[1 — vint+i i v = 1] + irLE[vmt+i _

01V = 0], when traders herd and 0„ be the value when traders trade based on their

20The result does not hold for general Numerical analysis suggests that in general there is too little

herding for > 0 in the decentralized economy. Note that the objective is myopic. An investigation of

a dynamic notion of efficiency, while desirable, is beyond the scope of this paper. Nor does the objective

negatively weight movements in the asset price from 1/2 when there is no information event.



information about value uncertainty. WLOG, suppose that herding involves buying. We

can reduce Oh and (k„ to expressions in P(ht IV = v) and r!, using Equation (1) for r:71(lit)

and the following equations

E[Vt+1 1V = v, Hi] E[ r1+11 irti+1 i v = v, Hi],
2 I

E[rvt+i .=
V = v, Hi] =	P(h t IV = v,Ht)r„i+1(ht).

ht

When traders engage in herd buying, P(ht = SIV) = P(h t NT IV	= P(h t =

B iv = -12-) = P( hi = B I V	P(ht = NTIV = = 7 -I- When traders trade

with their information about value uncertainty, P(ht = SIV = P(ht = BIV = =

P(h t = NTIv 2) = P(h t = NTIV = = 7 + P(h t = BIV = 1) = P(ht = SIV =

0) = + pp, and P(ht = SIV = 1) = P(ht = BIV = 0) = + p(1 — p). Hence, Oh - O t, is

a function of the exogenous parameters, IL and p, and the current priors. In particular,

one can show that 0„ - Oh takes the form avg.+ a3 /.L3 a4p4 , where

a2 = ( 1 + rot rit 1 p) + rot ( 1 + 71.1 -gyro),

and a3 and a4 are also independent of p. Hence, as IL goes to zero, the sign of q - Oh is

given by a2 . As 0, .6.(p) a2 , where A(p) is as defined in the proof of Proposition

8. Hence, for IL sufficiently small, traders in the decentralized economy herd precisely

when a social planner prefers herding.	 0

The decentralized economy can come arbitrarily close to maximizing the movement of

the asset price towards its new value. We conclude that the incentives of self-interested

traders with private informaiton do not diverge from social interests as much as the fixed-

price herding literature suggests. We now reconsider the incentives for informed traders to

herd (as identified in Proposition 8) to see why they might be socially desirable. Ceteris

paribus traders herd when they have low precision signals, but that is when the social

cost to herd behavior (lost information about the new asset value) is small. They do

not herd when rt = 4, but this is when information that an event has occurred has no

impact on prices. Conversely, traders herd when there is already good information about

the new asset value (i.e. — ir (t) I large), but this is when the social benefit to informed

trading (more information about the new asset value) is small. They herd when there is

little awareness of an information event (ri large), but then trading on information about

value uncertainty is not desirable because price responds only sluggishly to information
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about the new asset value.

Proposition 12 is a fitting end to Sections 3 and 4, which sing the praises of informa-

tionaly efficient financial markets populated by rational traders.

5 Herd Behavior and Price Bubbles

Herd behavior in a financial market is of particular interest because of the possibility that

it might offer an explanation for price bubbles and excess volatility. Because price is a

martingale that converges to the true value, it is not possible to have excess volatility in

our general model (Corollary 5), nor can price bubbles be both likely to occur and extreme

(Corollary 6). However, it still may be possible to identify (unlikely) circumstances

which consistently produce highly volatile price paths. Here we investigate whether herd

behavior can produce an unsustainable run up in price that results in a crash. In the

previous section, we saw that herd behavior need not distort prices at all. In IS I, herding

produces an imbalance in trading, but market participants understand that this is due to

herd behavior and hence prices and valuations do not respond. We now consider whether

herding is always likely to be so transparent.

5.1 Uncertainty about the Precision of Aggregate Information

When a trader learns of an information event, his assessment of its impact on the asset

value is sometimes precise and sometimes imprecise. For example, a trader may or may

not be confident in his ability to predict the effect on profits of a change in a firm's

product mix or of a merger decision, depending on whether he has complementary pieces

of information. For example, without detailed information about a merger partner it may

be difficult to estimate the synergies. For the market as a whole, some information events

will have a high proportion of well informed traders, while others will have only a few.

If the market is uncertain ex ante about the proportion of different types of traders, we

have a third dimension of uncertainty.

Definition 5 There is composition uncertainty when the probability of traders of

different types, fie, is not common knowledge.

Composition uncertainty complicates learning for market participants, especially in

the presence of herd behavior. Note that trading patterns in a market with many poorly

informed traders and herding mimic the trading patterns in a market with well informed
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traders. In a poorly informed market, a sequence of buy orders is natural because of

herding. In a well informed market, a sequence of buy orders is also natural because the

agents tend to have the same (very informative) private signal. Without knowledge of the

composition of the market, it can then become difficult to distinguish whether a sequence

of buy orders reveals a large amount of information about value uncertainty—because the

market is well informed— or almost none at all—because the market is poorly informed

with herding. We specify a new information structure in order to show that this confusion

can lead to extreme short-run price effects due to herding.

Information structure II (IS II) adds composition uncertainty to IS I. The true

value of the asset is still V E {0, 1}. The signals of informed traders take the same

form, but now there are two types of trader with 0 E {H, L}. The difference between the

two types of traders is the precision of their information when there is an information

event. In particular,

P(xe = 11V) = Pe	
ifV = 1,

1 — pe if V = 0,

P(xe = 01V) = {Pe	
ifV = 0,

1 — pe if V 1.

and pH = 1 while 1 > pL > Hence H types are perfectly informed (i.e. E[171xH] = V),

while L types have noisy signals when the asset value changes.

The level of information in the market is indexed by I E { W, P}. The difference

between a well informed market (I = W) and a poorly informed market (I = P) is in the

proportions of each type of informed trader. Let ILI be the probability of a type 0 trader

in a type I market. For example, pr.; is the probability of a high precision trader in a

well informed market. We assume that there is a fixed probability of an informed trader

+	p) and that there are more H types in a well informed market than in a

poorly informed market > /4). The state of the world is given by the combination

of the asset's underlying value and the amount of information available: (V, I). The

market maker's assessed probabilities conditional on the trading history prior to time t

are then rIg.

5.2 An Example of a Price Bubble

We consider the effect of adding composition uncertainty to the extreme event uncertainty

studied in Section 4.2. As with IS I, prices remain close to -I initially, and traders with
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imprecise signals (the L types) may engage in herd behavior. We now develop an example

to demonstrate how composition uncertainty serves to link herd behavior to potentially

extreme price movements.

We simulate a price bubble in IS II using the following parameters: pi, = .51, y = .25,

= .125, Ar: = .125, pri = 0, and gr = .25. 21 The initial priors are r? = .9999,
rvo,w irvo,p = 99. The true state is (V, I) = (0, P). These prior probabilities strongly

suggest that the market is well informed and that an information event is unlikely, but

we assume that a negative information event occurs (V = 0) and that the market is poorly

informed. With our choice of parameters a poorly informed economy has no well informed

traders (,u = 0) and hence there is very little information about value uncertainty in any

trade (since Pi, = .51). Figure 1 shows a typical simulated price path.22 Figure 2 shows

the 20 period moving average of the probability of a buy and of no trade (the probability

of a sell is the residual).

1.00 —

0.90 —

0.80 —

C)

0.70
C.

0.60 —

0 .50 ---•.■-■dij

0.40 	

0

Time

Figure 1: Example of a Price Bubble

'The analysis of price paths is a non trivial exercise. The stochastic process that generates prices is
especially complex with herding. In any period the history takes one of three possible value and depending
on the history up until that period there can be any one of six different distributions over those values.
This is why we resort to simulations and in Proposition 13 to the study of extreme parameters.

22 It is typical in that most price paths take on extreme values and then return to prices of around 1.
It is approximately equally likely that. the extreme value is 0 or 1.
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Figure 2: Trading Activity (moving average)

With extreme event uncertainty, the price is quite stable for the first 25-30 periods.

During this initial interval, however, Figure 2 shows a large build-up of buy orders, which

is due to herding. Three of the first five traders buy and this is enough to prompt L

types to engage in herd buying. Herd buying lasts from period 5 to period 56. As in the

case of event uncertainty alone, the market maker continually increases his assessment of

the likelihood of an informational event as buy orders continue to arrive at a high rate.

However, unlike the case of event uncertainty alone, the price moves dramatically as the

market maker concludes that there has been an information event.

Since it is impossible to distinguish between well and poorly informed economies

during the period of herding, both individual traders and the market maker must rely

on their initial assessments. Because the initial assessments are that a well informed

economy is relatively more likely than a poorly informed one, the market maker increases

the price and L types increase their valuations throughout the period of herding as if the

market were well informed.

Eventually, the market maker ends herding and breaks the partial informational cas-

cade by increasing the price beyond the valuation of L types (i.e. to 0.94 in period 57).

Figure 2 shows the effect of the end of herding. There is a fall in buying and a rise in no

trade as the bid/ask spread forces L types out of the market. This drop in trading volume
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signals (over time) that previous actions were due to herding rather than to trading by

H types. Note the similarity in the two flat spots in the price path. In periods 1-40, the

market maker takes time to learn that there has been a change in fundamentals, while in

periods 55-100, he takes time to learn that the market is poorly informed. In each case,

the market maker is slow to respond because he has extreme beliefs.

Once it becomes apparent that the market is poorly informed, the price naturally has

to drop, for there simply is not as much information in previous trading as had been

assumed. This brings us back to the case of event uncertainty alone: the price should

only have adjusted according to the information content of one poorly informed signal

rather than to that of many well informed trades. As a result, the price falls to near

before any further informed trading takes place. Around period 220, the probability of

no trade declines as L types reenter the market—this time trading on their information

about the new asset value. It is only after the market learns that there has been an

information event and that the market is poorly informed, that information about the

new asset value begins to arrive.

5.3 A Formal Result

To formalize the above example, we make several strong assumptions to show that a

bubble can occur with probability near 1 when it is very likely that the market is well

informed and very unlikely that an information event has occurred, but an event occurs

about which the market is poorly informed.

• (A1) Type L traders receive a signal of precision -12- + E where f is assumed to be

small.

• (A2) An information event is very unlikely: ir(i) —* 1.
5

• (A3) It is very likely that the market is well informed: 7„°,vv/7„°,p	1 for V

• (A4) All informed traders are of type L in a poorly informed market:	= 0;	=

A. Almost all informed traders are of type H in a well informed market: p.F1T	 0.

• (A5) A trader of type L continues to place great weight on the likelihood of a well

informed market:

w o	Po	1•
7r,,,w 7- it L7v,P

The main effect of the above assumptions is as follows. (Al) assures that L types have

such a weak signal that they will herd based on a single imbalance in the trading. (A2)

assures that the price is fixed for a long period of time, so that a substantial amount of

w o
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herd behavior occurs. (A3) assures that at first the market maker completely discounts

the possibility that the market is poorly informed and that the substantial imbalance in

trade is due to herding. (A4) assures that the market maker learns nothing about the

composition of the market during herding. Under (A4) a poorly informed market with

herd behavior behaves exactly like a well informed market. (A5) assures that L types

also believe initially that the market is well informed. (As discussed in the Section 6, L

types update their priors on I based on receiving a low precision signal.) Hence, L types

continue to engage in herd behavior even as the price deviates significantly from These

effects combine to create highly volatile prices when the market is poorly informed about

an information event.

Proposition 13 Consider IS II when (Al) - (A5) hold and there is an information event

(V 0 about which the market is poorly informed (I = ). Herd behavior by L types

drives the asset price arbitrarily close to 0 or 1, where the probability that the price moves

towards 1 — V is 2 — e.

Proof: See Appendix.

Except for one initial informative trade which triggers herding, there is no information

revealed about value uncertainty during the dramatic price movement as the L types are

herding. Hence, the price movement is not sustainable.

Corollary 14 Consider IS II when (A1) - (A5) hold and there is an information event

about which the market is poorly informed. The price returns to (2 — e), + e) with

probability 1 after it takes on an extreme value arbitrarily close to 0 or 1.

Hence, assumptions (Al) to (A5) lead to a true price bubble. The price tends arbi-

trarily close to an extreme value, then returns to It does not matter whether herding

drives the price in the right or the wrong direction, for the price must returns to 1- in

either case. In effect, the market is only learning about one dimension of uncertainty at a

time. At first, the market learns that an information event has occurred. Then it learns

that the market is poorly informed. Only when these first two dimension are sufficiently

resolved, does the market begin to aggregate information about value uncertainty. The

price bubble arises because the market mistakenly thinks that it is learning about both

event and value uncertainty.

Others have shown that markets do not function well when surprising events occur.

For example, Ait-Sahalia (1994) shows that the current pricing of options for very low
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probability events is inaccurate. Our results show that this property of financial markets

can link herd behavior and price bubbles.

We relied on extreme assumptions to produce a price bubble with probability one in

Proposition 13. The result is consistent with a more general intuition. The combination

of event and composition uncertainty leads herd behavior to distort asset prices. So long

as the market maker can not completely distinguish between a well informed market and

a poorly informed market during periods of herding, the herd behavior that arises from

event uncertainty will distort prices. The more the market maker is surprised that the

market is poorly informed, the more prices will respond to the herd behavior.

5.4 Connection to Prior Work

Our conclusion that rational herding can explain price bubbles and crashes contrasts

with several papers which argue implicitly that herding and crashes, specifically the stock

market crash of 1987, cannot be explained in models of rational trading (Shiller (1989)

gives a collection of papers to this effect; Kleidon (1992) summarizes and criticizes this

line of thought.) For example, several papers explain the failure of markets to produce

effective prices as the result of unsophisticated strategies and suboptimal behavior by

market participants (e.g. Genotte and Leland (1990), Shleifer and Summers (1990)).

Of prior work, Romer (1993) and Jacklin et al. (1992) come closest to providing a

rational actor theory of price bubbles. Both papers have two dimensions of uncertainty—

value uncertainty and composition uncertainty. We believe that our use of three dimen-

sions of uncertainty (value, event and composition uncertainty) provides a more complete

explanation of price bubbles. Romer studies a noisy rational expectations model with a

form of composition uncertainty very much like that in IS II. Traders vary in the preci-

sion of their signals and the proportion of traders with different signals is uncertain. His

theory has two shortcomings. First, because he uses a rational expectations model and

non-monotonic signals, he is unable to derive analytic results. More fundamentally, his

theory only explains how price corrections can occur without contemporaneous changes

in fundamentals. The sources of the mispricing are essentially exogenous. 23 In contrast,

"In Romer's model, mispricing is driven by noise trading and an assumption that traders receive

signals which are inaccurate even when perfectly aggregated. In Ho Lee (1995) develops an explanation

of sudden market movements based on his observation that transaction costs produce informational

cascades. If new information arrives that breaks the cascade, then the previously blocked information

can suddenly flow into the market. Then, a mispriced asset may suddenly be corrected. Like Romer, his

theory does not explore the mechanisms by which asset prices become mispriced, beyond noise trading

or the arrival of many misinformed traders.
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mispricing in our model arises endogenously through the interaction of herd behavior and

composition uncertainty.24

Jacklin et al. consider a market with a class of insurance traders who buy stock

when the price rises and sell when it declines. They show that such insurance trading

creates a positive feedback loop which can produce bubbles and crashes when the market

is surprised by the extent of insurance trading. While such insurance trading has some

desirable properties when investors hold a diverse portfolio of stock, Jacklin et al. take

the use of these strategies as exogenously given. In contrast, the herding strategy that

produces our bubble is endogenous.

6 Contrarian Behavior

In Section 4.1 we began to address the puzzle of price charting. We show there that an

agent's trading strategy can be strongly based on the history of past trades. In particular,

we show that with event uncertainty a trader may ignore his private information about

value uncertainty in order to trade with the trend in past trades. However, such herd

behavior is only one of two possible types of strongly history dependent behavior. The

other possibility is trade which opposes the trend in past trades at the expense of private

information about value uncertainty. We start with a formal definition of such contrarian

behavior.

Definition 6 A trader with private information xe engages in contrarian behavior at

time t if either he buys when E[V (xe] < E[V] and U(xe) > E[VIH t] > E[V] or he sells

when E[Vixe] > E[V] and 13(xe) < E[VIHt] < EM, where i.5(xe) is defined as follows:

v(xe) = lim E[V in random variables drawn from fe(•lV) all have the value xe].
n--►oo

The definition of contrarian behavior is the analogue of herd behavior with the ad-

ditional requirement that the trend in past trades does not overshoot the "limit value"

0(x9 ) of the signal. To see why such an addition is necessary to assure that the trade is

not based on information about value uncertainty alone, consider a trader who knows for

24There is a further limitation to Romer's theory. Our results in Section 6 below suggest that in a

sequential trading model, there is a countervailing force that opposes price bubbles due to composition

uncertainty alone. We show that with composition uncertainty, poorly informed traders have an incentive

to engage in contrarian behavior, where they trade against the trend in prices, which should work against

the formation of price bubbles in poorly informed markets.

29



sure that V = 3/4 and who trades in a market where E[V] = 1/2. Initially, the trader

wants to buy. If the trend in past trades pushes the price above 3/4, he will sell. This is

not history dependent behavior. The trading strategy depends only on the price and the

signal value (e.g. buy if ask is less than 3/4). In defining contrarian behavior, we seek

to exclude situations where the trader reverses his behavior simply because the trend in

past trades has become more positive (or negative) than the trader's information about

value uncertainty.

Proposition 15 A trader with a monotonic signal never engages in contrarian behavior.

Proof: Suppose a trader with monotonic signal xe engages in contrarian buying at time

t. Then E[Vixe,Ht] > A t > E[V IN. Since the signal is monotonic, this implies that

v(x 9)> E[V `Ht]. But since f)(xe) = v(xe), this contradicts contrarian buying. Similarly,

	

contrarian selling never occurs.	 0

Monotonicity is sufficient to rule out contrarian behavior. Thus, Propositions 3 and 15

demonstrate that an assumption of monotonic signals is inconsistent with strongly history

dependent behavior of both the herd and contrarian variety. While event uncertainty can

produce herd behavior, we now show that composition uncertainty can produce contrarian

behavior.

Proposition 16 Consider IS II without event uncertainty (i.e. r? = 0). A sufficient
2

condition for L types to engage in contrarian behavior with positive probability is

	

i	(	  	7 + 

WILL > 1 — PL	+ 1.44;

Proof: See Appendix.

When there is composition uncertainty (and no event uncertainty), traders of type L

place less weight on previous trades than does the market maker. Why? By definition, an

informed trader is more likely to get a low precision signal in a poorly informed market

than in a well informed market (i.e. /Liz > ,4) . Hence, an L type trader assigns a higher

probability to I = P than does the market maker: "If this is such a well-informed market,

why did I receive such poor information?" In a poorly informed market, a given imbalance

between buys and sells is less informative than in well informed market. Hence, with
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composition uncertainty, the market maker adjusts his expected value more in response

to past trading than than does a trader of type L.25

The sufficient condition in Proposition 16 has three parts. The LHS term is a measures

of the amount of information L types have about the composition of the market. The

term ALAI—ft) is a measure of the amount of information they have about the new asset

value. The second RHS term results from the existence of the bid-ask spread.' Hence,

herding due to composition uncertainty is shown to be possible when the information of

L's about the composition of the market is large relative to their information about value

uncertainty and relative to the bid-ask spread. This mirrors the results for herd behavior

in Proposition 8.

With event uncertainty, herd behavior is possible for any imperfect signal (see Propo-

sition 7), but here contrarian behavior only arises if signals are sufficiently imprecise. The

difference arises because with event uncertainty, informed traders know that some states

are impossible (i.e. V 2) while with composition uncertainty, L's only believe that some

states are less likely than the market maker. Note that with 4' 0, L types know for

sure that the market is poorly informed and the sufficient condition is satisfied for Pi, < 1,

which again parallels the result for event uncertainty and herd behabior. We draw the

following general conclusion. The existence of history dependent behavior (in either its

herd or contrarian form) requires 1) that there exist multiple dimensions of uncertainty

and 2) that traders' asymmetric information about value uncertainty be sufficiently poor

relative to their information about one of the other dimensions of uncertainty.

Thus, multi-dimensional uncertainty (and the resulting non-monotonic signals) pro-

vides a justification for the phenomena of price charting (Easley and O'Hara (1992),

Blume, Easley and O'Hara (1994) reach similar conclusions). A trader who wants to

make optimal use of all dimensions of his information needs to know more about the

trading history than just the price. He needs to compute his current expected value of

the asset, which requires closely tracking the history of trade in order to update his priors

on all states of the world.27

25 We suspect that composition uncertainty can also create herd behavior. Note that H types believe

the market is more likely well informed than does the market maker. Hence, they put higher weight on

the history of trade than does the market maker. Because we assume H types have a perfect signal, the

signal always drives their trading. However, if their signal were imperfect then their private information

about market composition might lead them to engage in herd behavior.

26 Note that for II --0 0, the bid-ask spread goes to zero and (7 + p)1(7 + p )	1.

27Adding simple aggregates such as such as trading volume and the imbalance of the market maker's

sales need not produce a sufficient statistic for the complete history. The meaning of a buy or sell at

time t depends on the extent of herd and contrarian behavior at that time.
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7 Manipulation and Herding

The existence of substantial price effects due to herding raises the question of whether

the market is robust to efforts to manipulate price changes. Our results suggest that in

certain instances there may be a huge trend in short-run prices which is unanticipated

by the market maker. A far-seeing investor with the opportunity to trade on multiple

occasions could then have an incentive to make trades which will trigger such a trend.

Allen and Gale (1992) and Benabou and Laroque (1992) demonstrate profitable ma-

nipulation in settings where the manipulator takes a conspicuous action in period 0 and

then may attempt to profit on any mispricing which results in period 1. Allen and Gale's

manipulator threatens a takeover, while Benabou and Laroque's manipulator makes a

prediction about the future course of the market. In each case, the conspicuous action

may reveal a large amount of private information, or it may be deceptive. A manipulation

strategy has a similar motivation in our model, but it is much less likely to be profitable

because the manipulator is unable to take a particularly conspicuous action.

The success of a manipulative trade in inducing a herd depends critically on its timing.

Our earlier results demonstrate that a single trade can trigger a period of herding, but

only under very specialized circumstances. In this section we assume that a manipulator

arrives at exactly the right moment, t1 , to induce herding. We assume that the manip-

ulator has no more information than the market maker, and is simply trying to profit

from his ability to deceive the market maker (and the other traders) with a calculated

action which does not actually reflect information. Since the manipulator has only the

same information as the market maker, his trade only induces herding in some states of

the world. We assume that the market maker and other traders are completely unaware

of the possibility of manipulation, leaving the pricing and trading rules unchanged from

our previous analysis.

We require the manipulator to liquidate his trade, but allow him to choose to do so

at any time during the period of herding. In other words, we allow the manipulator to

"jump the line" to become the agent who trades with the market maker at any time, t2,

prior to the end of herding. Once the period of herding ends, we require the manipulator

to liquidate immediately by submitting a sell order.28

Proposition 17 Suppose that there is a manipulative buy order in period t 1 and then

28We define the end of the period of herding as the first period, t; when there is no herding for any

state of the world.
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herding proceeds in each period between t 1 and t;. In IS I, V,f, is a supermartingale in

each period in the interval (t 1 , t2*). In IS 11,1/4 is a supermartingale in each period in the

interval (t1 , t2) such that Bt > 1/2.

Proof: See Appendix.

The apparent advantage of the buy order from the manipulator's standpoint is that

it may help to trigger herd buying. However, it also distorts the market maker's assessed

probabilities for the actions of future traders, including the market maker's assessment

of the probability of herd buying. We distinguish the manipulator's information at time

t 1 and beyond, Zt from the market maker's information, which is simply Ht . In contrast

to the original model, the market maker's assessed value, 174, is then not a martingale

with respect to Zt after the manipulative buy order.

The manipulator's action influences the market maker's assessment in two ways: first,

the market maker overweights the probability that an information event has occurred,

and second, the market maker overweights the probability of a positive information event

relative to the probability of a negative one. In most instances, this divergence will work

against the manipulator rather than in her favor.

Intuitively, the manipulative buy order causes the market maker to be overly opti-

mistic in expecting more buy orders in the future. If the market maker's assessments

were correct, then V:, would be a martingale. Instead, the "overly optimistic" beliefs

induced by the manipulative order cause 1/4 to become a supermartingale with respect

to Zi throughout the period of herding in IS I. In IS II, there are a wider variety of traders

and it is only possible to assure that is a supermartingale with respect to Zt after a

manipulative buy order when informed traders are sellers if there is no information event

(i.e. when Bt > 1/2).

Corollary 18 Manipulation is not profitable for any trading rule for the manipulator in

IS I nor is it profitable in IS II under the conditions of Proposition 13.

Proof: See Appendix.

Even when we allow the manipulator to observe the series of orders and then to choose

to transact at any time between t i and t; in these cases, the optimal stopping rule for

supermartingales implies that he cannot make money. In essence, the argument observes

that the market maker's assessments start at the manipulator's trading price in period

t 1 + 1 and then drift (on average) back towards the original expected value, prior to the

manipulative order.
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8 Conclusion

We re-examined the role of the price mechanism in the aggregation of dispersed private

information in an economy when trade is sequential rather than simultaneous. In our

general model, the price mechanism assures that long-run choices are efficient and with

simple information structures it assures that herd behavior is impossible. However, we

show that more complex information structures can lead to herd behavior and that a

sufficiently complex information structure makes price bubbles possible. Price is a single

dimensional instrument and it only assures that the economy learns about a single di-

mension of uncertainty at one time. As a result, multiple dimensions of uncertainty can

"overwhelm" the price mechanism during some stretches of trading. Then, interesting

short run behavior—such as herding, price bubbles and contrarian behavior—become

possible.

Our results are consistent with the literature on trading and common knowledge.

Repeated communication leads all agents to agree in their assessments of the true value:

they cannot 'agree to disagree' (Geanokoplos and Polemarchikis, 1982). In the simplest

examples discussed by Geanokoplos (1992), a single round of communication causes agents

to unite in their beliefs; a richer set of possible outcomes necessitates further rounds of

communication before the agents agree in their assessments. Adding a new dimension

of uncertainty in our model is analogous to enriching the set of outcomes in a common

knowledge game. Our results show that communication need not happen uniformly in a

financial market. The market may only be learning about one dimension of uncertainty

at a time and with a sufficient number of dimensions, this can lead to highly volatile price

paths.

We close with some ideas for future work. First, we hypothesize that herding and

bubbles are less pronounced when prices have multiple dimensions. A natural source

of multi-dimensional prices is derivative securities such as options. Second, while ex-

cess volatility can not be explained in our general model, our results demonstrate that

volatility concentrates in certain identifiable situations. Our identification of conditions

under which price bubbles arise is only a first step in investigating the pooling of vari-

ance. Third, we have not fully explored the topic of multi-dimensional uncertainty. For

example, we look at a market where there was either one or no information events. In an

economy in which information events arrive stochastically, there might be more than one

information event unfolding at the same time. Empirically, it would be useful to know

more about how traders use price history in their trading strategies.



9 Appendix

Proof of Proposition 1: We prove existence and uniqueness of an equilibrium ask price. The proof

is similar for bid prices.

Let the event C denote a buy order at time t. An equilibrium ask price satisfies E(VIHt , A t , C)—A t =

0. The conditional expected value given a buy order is the weighted average of two terms: the expected

value for an informed buyer whose assessment satisfies Ve (xe) > At , and the assessment of a noise trader

Vint .

At At = E(V 111i , A t ,C) > A t . As A t increases from V,,, E(V IH t , A t , C) changes only when

A t outstrips the assessment of some informed traders (e.g. VL (1, I I t )), at which point those traders

drop out of the buying market. Consequently, E(Vilit , A t ,C) is weakly increasing in A t whenever

A t < E(VIHt , A t ,C), and weakly decreasing in A t whenever A t > E (V , A t ,C).

The implication is that E(VI(Ht , , C) — A t ) is strictly decreasing once it reaches zero. If there is an

equilibrium price, it is unique. E(VI(Ht , A t ,C)— A t ) is continuous in A t except at finitely many points,

where these discontinuities never change the sign of E(V ((Ht , A t , C) — A t ). In addition, E(V((Ht , A t , C)—

A t ) is nonpositive at At = Vint„ where the market maker gains nothing from noise traders, and nonnegative

at At = 1, where the market maker loses nothing to informed traders. Therefore, a zero profit price must

exist, and we know from above that it is unique and that A t >

The market maker's expected value for the asset and priors are martingales with respect to H t since

Ht contains all of the market maker's information.	 0

Proof of Proposition 9:

Suppose that there have been t periods of informative trading (no herding) with b buy orders and s

sell orders, where (WLOG) b > s. In these t periods, informed traders with positive signals submitted

buy orders and those with negative signals submitted sell orders. At time t 1, the assessment of an

informed trader with signal 0 is

(1 PL)(11PL + 7)b-3 v1+1 (0\ =

(1 Patin +7) +PL(11 ( 1 — PL) 7))6-3

For given values of pL and (and thus for 7 =	p)/3 as well), V2(0) is simply a function G(b — s), and

further, G(b — s) > 2 whenever (b— s) is equal to or greater than a critical value h. Define 01 = G(n) — 4,

and 02 = a-	— 1). Generically, 02 > 0 as well.

Let 0* = xnin(0 i , 02). Assessments of informed traders always differ from a by at least 9* when there

is an imbalance in prior (informative) trades. So long as prices remain in the range (-1— 0*, 0*), they

have no effect on the trading decisions of an informed trader.

We now observe that as ari —+ 1, both the bid and ask prices remain in this range (4 — 0*, 2 + 9*)

for an arbitrarily long time. In effect, the prices will be fixed for a long period after the outset of trade.

If there is no herding through period t, then the market maker's assessed probability of an information

event is bounded above by his assessment after a history with t consecutive trades.

I/ 

it (7) t	( 1	71) ( 1 + -r) t •
1	2

t+1
7r



For 7r1 sufficiently close to 1, this implies that r t+1 > 1 – 20*. As a result, the bid and ask prices
.11

must be in the range (-} – 0*,	0*) in each period prior to t. Define t* as the last period such that any

trading history produces bid and ask prices in the range (4 – 0*, z + 01 for each period through t*. As

7f°1 ---4 1,2 *	co.

Prior to time t*, informed traders follow their own signals so long as the absolute difference in buy

and sell orders is less than If the imbalance reaches ñ in period t < t*, any informed trader will

discard his signal (again supposing WLOG that there is herd buying rather than herd selling). But then

there is an informational cascade in this period. Any sell order must be from a noise trader, while a buy

order provides no further information. Once herding starts, it continues until the market maker adjusts

the price to break the herd. But, by definition, pricing cannot break the herd until after period t* .

The imbalance between buy and sell orders is a random walk with drift ±2pp L prior to time t* . As

t* grows large (i.e. 711 approaches 1), the law of large numbers implies that the probability that the

absolute imbalance reaches n prior to time t* increases to 1. Therefore, herding arises with probability

1 as 7r7 –+ 1.

The probability of herding in the wrong direction is

+ P( 1 – PL))4 

+ P(1 – Pan + (7 + PPL)n
1

1 	-PP I,  in

Because G(ii – 1) < a < G(n), it must be that

Hence,

Pr, 

PL– 1 2 [

7 + PPL 

11 +	— PL)1

[

(1- PL)2	pd.
+ (1 – pL)2

As p --+ 0, ft gets arbitrarily large, G(n)	and A	(1 – PLY

Proof of Corollary 10: WLOG consider herd buying that starts with an imbalance between buys

and sells of IL Because the valuations of informed traders do not change during periods of herding, an

upper bound on the movement of prices is given by G(71) – 4. We can write

G(n) = 	
1–

1 – + nan

where a = (p(1 –pL) + 7)1(pn + 7).

Because there is no herding with an imbalance of fi – 1,

1	1 –	_ an_i.
– 1) <	pi_	<

A E

0
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Setting a' to its lowest possible value yields an upper bound on the movement in prices:

A = G(ii) an—i =
1

2
PL.

1 — a

2(1 + a)

2 + p

0

Proof of Proposition 13: Similar arguments to those in the proof of Proposition 9 imply that the

bid and ask prices have no effect on trading up to any time t* so long as rl is sufficiently close to 1.

Consider then the path of trading prior to t* for a fixed price of -1. in a poorly informed market. In

a well informed market, all informed traders know the true value of V, buying if V = 1 and selling if

V = 0. In a poorly informed market, type L traders follow their signal if the number of previous buy

and sell orders are equal. If there is any imbalance, type L traders then discard their signal and follow

that imbalance.

Trading then follows a Markov chain in either type of market. In a well informed market, the

probabilities are fixed: p+ 7 of a trade in the correct direction (e.g. a buy when V = 1), -y of a trade in

the wrong direction, and 7 of no trade.29 In a poorly informed market, the probabilities adjust to favor

any prior imbalance: p + 7 in the direction of any prior imbalance, 7 of opposing that imbalance, and 7

of no trade.3°

Either of these Markov chains drifts away from zero with probability one in finite time, meaning that

a permanent imbalance of trade orders arises with probability one. The law of large numbers implies

that the long run imbalance tends to a total of pN orders over a period of N periods where N is very

large.

Suppose WLOG that the imbalance is in favor of buy orders and that the imbalance arose at time

z. Then trading subsequent to time z produced identical trading probabilities in each period for each

of the three cases (V = 1,W),(V = 0, L),(V = 1, W): p + 7 of a buy order and 7 each for no trade

and a sell order. That large imbalance does enable traders to place arbitrarily small weight on the case

(V = 0, W), since that would imply a trend of trading strongly in favor of sell rather than buy orders.

Therefore, the market is only able to learn about the relative probabilities of the three remaining

cases in the early period of trading before the permanent imbalance of orders. Suppose that there were

x buy and z sell orders prior to that permanent imbalance, and that trading balanced (previous buy

orders = previous sell orders) in y < z periods. In a poorly informed market, then trading was in favor

of an imbalance in x — y periods and against it in z periods. Neglecting periods without trade,

= 0, L I HZ) =	= 1, LIH.) =	± e)p)Y (ti + 7)z—Y(7)s.

29We neglect the infinitesimal probability that a type L trader arrives in a well informed market.

Though this is crucial to the beliefs of type L traders, it has no effect on trading probabilities in a well

informed market.
301f there is no imbalance, then the probabilities are pm of a trade in the correct direction, p(1 — pL)

of a trade in the wrong direction, 7 of no trade at all.
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In contrast,

	

.C(V = 1, WA) =	7)x (7)x >	= 1, LII-1,).

In summary, the market learns nothing about the relative likelihoods of (V = 1, W), (V = 1, W), (V =

0, L) during the period where the imbalance of buy orders grows permanently from 0. Any trading prior

to that period only increases the presumption in favor of (V = 1, W). We conclude that there is an

informational cascade until the ask price outstrips the assessment of type L traders with a poor signal.

By (A5), type L traders weight the probability of a well informed market as large relative to a poorly

informed market (even after they observe the precision of their signal. In a well informed market, the

imbalance of trades suggests a value of 1. Therefore, type L traders assess the value to be at least

ri,w/(71,w + 71,/, +	which is arbitrarily close to 1.

To break the informational cascade, the market maker must adjust the ask price to be arbitrarily

close to 1.	 0

Proof of Proposition 16: The proof shows the possibility of contrarian selling, the result for con-

trarian buying follows from symmetry. Note that V(XL )= xL , so that if a trader with xL = 1 sells when

E[VIHt] > E[V], then there is contrarian selling. The proof proceeds in three steps. The first shows that

given condition (1), a sufficiently long period of buys implies that all L types stop buying. Step 2 shows

that a sufficiently long period of buying and condition (1) implies that L types all sell given a condition

on the priors when the buying started. Step 3 shows that an initial history of trading exists such that

this condition on the priors is satisfied. The result for contrarian buying follows from symmetry.

STEP 1: A sufficiently long sequence of buys leads L types with xL = 1 to stop buying given

condition (1).

If stL (B, 1) = 1 and sl(B, 0) = 0, then the ask at time t is

A t = [(7 + µw lti PL)71,w + 7 + + Arn)iri,pi /

[(7 + 4 + prPL)71,w + (7 + /IX + 1lrPL)71,P+

(7 + Ili (1 -pL)7rt,w -F(7-Fpr(1- PL))7rO,P1

L types with a signal xL = 1 do not buy at time t if At > V1(1), which is equivalent to

70,P p

	

	w	o , w
(1 PL)(7 + PH -M) - U	

w
7

,w
LL )+ --- tPL (1 PL)(7 + PH) 7PLAL

71,P	 71,P

"0,P p	n 0,W

t (PLO -PL)(7 + PH) - 7PLAL)- -7-ktiL ( 1 - PL)(7 +	714,14r) > 0.	(2)
r1,W

In each period where h t = B, s iL (B, 1) = 1 and 4(B, 0) = 0, the market maker's priors are updated

as follows

Iro,P (7 + po_ PL)) 70;	
i-i

=	
w0 P

wi,P	(7 + Pr! + prpL ) 7rt
1
-
P
i - al 

7l ,p,

	

= (7 + ply (1 - PL)) 7 o5,11	

1,P

7ro,w	
t-i

r
t p	

70 W

1 ,	(7 + /4 + 
pr,L),rt..-7-= a2 irti 1

	

1,P	1,P
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-1-- (11L (171,P

"0,W
t VAL

PL)(7 - PLIIE (7+

PL)(7 ,47)- ti)) >

1-1 t-1

irt-1
"1,P
t-1rn w

,rt-1
"1,P
t-1
0,P

u2 7t-i
1,W

7t-1
o,w

'12 rt-i
1,w

"0 P, =
rt

1,P

w, =
rt1,P

0,P

71,W

70,W

71,W

(7-1-4+4,PL

7 43 w

(7+4; +prin,)

7 
,W

7 
(7+4; +	;4-4 =1,W

70,P(7 -1- ,,r ( i_pL)) 7t05;

71,W -	+	+ PL) 7151,

= (7 + PL ( 1 - PL)) 7o,1,17

1,W	(7 + Pr; +	L) rtiTslr

t-1
70,P

= a3=.
71,w
t-1

7o,w
= a4 t-1

71,w

Note that ai E [0,1] and a l > max{a2 , as, a4}.

Suppose ht = B, s tL (B, 1) = 1 and sl, (B , 0) = 0 for S < t < S + T. Condition (1) for period S + T

can be written as

alai ,T TON	7o,p T 70,W A

3.3	.4	> v,

	

71,P	71,P	71,w	71,w

	where a = Gir(1-m)(7+ ply ) -	a2 = (ply  (1- pL)(7 +	WEPT), etc. Hence condition

(1) is satisfied for T sufficiently large if a 1 > 0. Solving a l > 0 for (1 - pr,)/(n) gives

1 PL > (or)	w)
PL ILL	7 +

which is implied by condition (1).

STEP 2: Show that a sufficiently long sequence of buys starting in period S leads to herd selling if

rgjv is sufficiently smaller than rgp.

Suppose L types sell regardless of their signal at some time t. Then the bid at time t is

Bt = 	(7 + 

(7-Fiir)71,,,v+ (7 + Pr)71,p + (7 + P)(7(),W 71),P

All L types sell at time t if fit > Vit, (1), which is equivalent to

(3)

W
-1--UA L ( 1 - PL)(7+ IL L

W 
) - MILL (7+ IL)

ri,P
t70,P - p	P

--T-tiLL(1 -PL)(7 + PL) - PLIII,
P

(7 + II)
71,W

0.	(4)

In each period where ht = B and that no L types are buying, the market maker's priors are updated as

follows

Note that bi E [0,1] and b i > 62.

Suppose ht = B,s1(B, 1) = 1 and si(B, 0) = 0 for S<t<S+T+U, where T takes on the smallest
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value such that condition (1) is satisfied. Then condition (8) for period S + T + U can be written as

7s

	

T , 7n p	r, 7n wa	a Lu	+ 133ar Lu 70,p a T Lu 0,w 0,
P1"1 vl	/-'2"2 vl s	v2 S + P4a4 v2 s

	

r1,P	71,P	3 71,W	r1,w

where /31 = pr(1 — PL)(7 + µL) — p ply + P), (32 = (1 — pL )(7 + — p (7 + p), etc. The

condition is therefore satisfied for U sufficiently large if i3 > 0 and 7g w sufficiently small relative to

711p . Solving )31 > 0 for (1 — pL )I(pL ) gives condition (1).

STEP 3: A trading history Hs exists such that 7rgwhrg p is arbitrarily close to zero.

Consider some t < S. If stL (NT,1) = stL (NT, 0) = 1 and ht = NT, then the market maker updated

priors satisfy

Consider some t < S. If stL (B, 1) = si(S, 0) = sti-1 (B, 1) = 4-1 (S, 0) = 1, ht = B and hi_ 1 = S then

the market maker's updated priors satisfy

t-2
W

t
, = (7 + PT/ + P L)(7	(1 — 	P

irt
0,P	(7 + of; + pfn)(7+ 4(1 -	717; 

< 1.

Hence, one can construct an initial series of trades which make 7gw/Irgp is arbitrarily close to zero.

In the case where 70
,
w /70 ,p is sufficiently close to zero or in the case where irg whrgp can be made

sufficiently close to zero with only no trades, then herd buying (selling) occurs in a history without any

prior buying (selling).	 q

Proof of Proposition 17: There was no herding in period t i . Therefore, a manipulative buy order

in period t i increases the market maker's assessment of P(V = 1) and reduces the market maker's

assessment of P(I = 1/2). The market maker's assessment of P(V = 0) may increase or decrease as the

result of the manipulative buy, though this is not critical to our proof. Let the true trading probabilities

at later periods t (for t 1 < t < 2 2 ) be designated by the distribution Pt and let the market maker's

assessed trading probabilities be designated by the distribution Pmt .

During the period of herding of IS II with B t > 1/2, the action "no trade" can always be attributed

to a noise trader, so that the market maker and the manipulator assess the same probability for "no

trade". The market maker has a higher assessed probability for a buy order than does the manipulator

and a lower assesssed probabilty for a sell order than does the manipulator, where these assessments

differ by the same absolute value. Since a buy order produces a higher expected value than does a sell

order, it must be that E(V„,t.÷11Zt.) < E(Vmt.+11Hi.)=11:

In IS I when there has been an information event (i.e. V = 1 or V = 0) informed traders are all

buyers during the period of herding by the definition of herding. If there has not been an information

event, informed traders are either sellers (if Bt > 1/2) or they do not trade (if Bt < 1/2). If Bt > 1/2,

then the same argument holds as in IS II with B t > 1/2. If B t < 1/2, then a sell order can be attributed

to a noise trader. Then the market maker has a higher assessed probability for a buy order and a lower

assessed probability for a sell order than the manipulator. Once again, since these assessments differ by

the same absolute value, Vn.t is a supermartingale with respect to Z i by the same logic as above.	q

J2
	w, t-1
 (7 + PL 1 WO P

'1	< 1.
0,

—7rt =
P	

(7 + Ise .-1
L)I "1,P
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Proof of Corollary 18: In IS I, V,
1
(t) is a supermartingale in each period between t 1 and t';'. In

IS II, V,n (t) is a supermartingale in each period between t1 and t; such that Bt > 1/2. But under the

conditions of Proposition 13, B t begins arbitrarily close to 1/2 and then only increases during the period

of herding if there has been an information event. Under these conditions, any nontrivial decline in Bt

breaks the period of herding; therefore, V„, (t) is a supermartingale in all periods of herding once prices

have moved at all from their initial values.

The manipulator initiates a buy order at the price A t ' , which is given by the market maker's expected

value conditional on the trading history and the current trade. That is, the manipulator transacts at

the price Vrnt i+1 , where V,.tnI+1 is an expectation which includes the current buy order (as though it were

an ordinary buy order and not a manipulative one). The manipulator then hopes to sell that unit of the

asset profitably at the bid price at time t2 , B12 , where t 2 is chosen at the manipulator's option prior to

the end of herding. Since B12 < 1122 by definition, a necessary condition for manipulation to be profitable

is E(V,nt2 IZti ) > 11: +1 . But this is impossible when	is a supermartingale with respect to Zt between

periods t 1 and t2 .	 0
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