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Abstract

Magnetic particle imaging (MPI) is a promising new medical imaging tracer modality with

potential applications in human angiography, cancer imaging, in vivo cell tracking, and

inflammation imaging. Here we demonstrate both theoretically and experimentally that

multidimensional MPI is a linear shift-in-variant imaging system with an analytic point spread

function. We also introduce a fast image reconstruction method that obtains the intrinsic MPI

image with high signal-to-noise ratio via a simple gridding operation in x-space. We also

demonstrate a method to reconstruct large field-of-view (FOV) images using partial FOV

scanning, despite the loss of first harmonic image information due to direct feedthrough

contamination. We conclude with the first experimental test of multidimensional x-space MPI.
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I. Introduction

Magnetic particle imaging (MPI) is a new medical imaging tracer modality that holds

significant promise for high-contrast applications in human or small animal angiography,

cancer imaging, in vivo cell tracking, and inflammation imaging [1]. The technique exploits

the nonlinear magnetic characteristics of iron oxide nanoparticles to generate an image

whose resolution is defined by the magnetic properties of the nanoparticle and the

magnitude of the localizing magnetic field gradient. Like magnetic resonance imaging

(MRI), the spatial resolution of MPI is much finer than the wavelength of the

electromagnetic fields used to interrogate the magnetic nanoparticles. MPI uses no ionizing

radiation and has ideal tracer imaging contrast since there is no background signal from

tissue and because tissue is transparent to low frequency magnetic fields.
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Recent MPI developments include real-time MPI in a mouse [2]–[5], methods for single-

sided MPI using strongly nonlinear magnetic field gradients [6]–[9], and studies on optimal

MPI particle size [10].

A. MPI Signal Theory

Linearity and shift invariance (LSI) are important characteristics of most imaging systems

[11]. There has been significant work to understand MPI as an LSI system. Non-LSI

systems can be difficult to analyze using standard signal processing techniques such as

convolution. Prior papers in this area have relied on the temporal harmonic domain [1]–[4],

[6]–[9], [12], [13]. These papers analyze the harmonics of the received MPI signal.

Nonlinear magnetic nanoparticles respond to a sinusoidal magnetic waveform with

harmonic signals at multiples of the excitation frequency. These harmonics are suppressed

sufficiently far from the center, or field-free-point (FFP) of a field gradient, since the

gradient field leaves the particles in saturation despite the RF excitation. Hence, the gradient

field provides a method to localize harmonic response in 3-D space. The most complete

theoretical treatment of this approach is seen in Rahmer et al. [12], where it is shown that

the 1-D frequency-space signal can be described using Chebychev polynomials of the

second kind convolved with the magnetization density. The Chebychev polynomial model is

exact in one dimension, but extension to two and three dimensions is an approximation.

A fundamental assumption of all harmonic methods is that each pixel is interrogated over

several cycles of the RF excitation. This is not accurate for faster scanning methods, where a

single pixel is scanned instantaneously only once. We recently developed a signal model

that does not necessarily require a repeating excitation, describing the 1-D MPI imaging

process as an instantaneous scan through x-space rather than a sinusoidal steady-state

harmonic decomposition [14]. The key goal of this paper is to extend our 1-D x-space

formalism to 2-D and 3-D.

B. Reconstruction in MPI

Current reconstruction techniques in MPI [1], [3], [4], [8], [9], [12], [13] require a

precharacterization of the magnetic nanoparticles whose signal response is formulated into a

system matrix. The system matrix is comprised of Fourier components of the temporal signal

for every possible location of a point source. For example, for an image with Nx × Ny × Nz

possible points, the total number of elements in the system matrix will be N = NxNyNzNcNf

where Nc is the number of receive coils and Nf is the number of Fourier components desired

for the reconstruction. The system matrix can be measured physically using a nanoparticle

sample [2], or estimated using a model [9]. However, this means that the system matrix is

specific to the nanoparticle sample, and reconstruction will be less accurate if the

nanoparticle behaves differently in tissue, if the system drifts, or if the model is inaccurate.

Reconstruction is achieved through regularization and matrix inversion techniques such as

singular value decomposition or algebraic reconstruction. Care must be taken when

regularizing the solution to achieve high resolution while not amplifying noise when

inverting the system matrix [4]. It is important that MPI be subjected to well-conditioned

image reconstruction [15] to avoid any loss of signal-to-noise ratio (SNR).
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To date, there have been two approaches other than x-space to understanding MPI without a

system matrix. In Goodwill et al. [16], we described and built a narrowband MPI system

that imaged multiple MPI harmonic mixing products and placed them on a grid in real-

space. However, we were having difficulty reconstructing the multiple images into a

composite image so that the reconstructed image is linear with the nanoparticle density

irrespective of the shape of the phantom. A second approach to understanding MPI without a

system matrix is seen in Schomberg [17], where the author also approaches the MPI process

using an adiabatic assumption. The author’s theoretical approach is general and finds that

the MPI signal is closely related to a convolution operator and has parallel goals to the

approach presented here. In this paper, we present a simple theoretical formalism for MPI

and validate it with simulation and experiment. We also present a fast reconstruction

algorithm that computes the MPI image without matrix inversion and without a model based

image reconstruction, extending the 1-D image reconstruction method published in [14] into

2-D and 3-D.

II. Hypotheses for Multidimensional X-Space Magnetic Particle Imaging

In our recent paper [14] we employed reciprocity and LSI imaging systems theory [18], [19]

to analyze the 1-D MPI signal imaging process. We assumed that the nanoparticle

magnetization instantaneously aligns with the applied local magnetic field. We showed that

the MPI signal in one dimension is linear and space invariant and can therefore be described

as a convolution. We found analytically and experimentally that the point spread function

(PSF) is the derivative of the magnetic nanoparticle’s Langevin function. This analysis

provided estimates for bandwidth requirements, which approach a megahertz for typical

imaging parameters. We also analyzed MPI’s SNR, and explored the limits as we scale MPI

to human sizes. We found that the limit to SNR will be patient heating, and the limit to the

(partial) field-of-view (FOV) will be magnetostimulation.

In this paper, we extend the 1-D x-space MPI theory into two and three dimensions. We

again hypothesize that the magnetic nanoparticles align instantaneously with the local

magnetic field and that the loss of first harmonic information due to direct feedthrough

contamination is recoverable. We need one additional hypothesis for multidimensional x-

space, namely that the linear 3-D gradient field can be written as Gx where G is an

invertible matrix so that the gradient field uniquely identifies the location x in three-space.

After proving that any real-world gradient field is invertible, we then prove that 3-D MPI is

a linear and shift invariant imaging process. We derive the analytic 3-D point spread

function of MPI. We introduce a fast image reconstruction algorithm that requires no

calibration measurements or matrix inversion, so it is both computationally efficient and

robust to noise. To apply the x-space formulation to real MPI systems, we discuss how the

loss of the fundamental frequency breaks the strict LSI properties. We hypothesize and

provide experimental evidence that the lost first harmonic information is fully recoverable

using robust and noise-free image processing methods. Finally, we conclude with

experimental 2-D demonstration of x-space MPI. These three hypotheses are justified in

detail below.
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A. Hypothesis 1: The Instantaneous FFP Is Uniquely Defined in Space

MPI relies on a 3-D linear gradient in the form [20]

where the vector  denotes position in real space, and the parameter α ∈ (0,

1). Note that the trace(G) = 0, which is consistent with Maxwell’s equations in a source-free

space (∇2B = 0) [21], [22]. For the very common case of a cylindrically symmetric Maxwell

z-gradient, used for all experiments herein (see Fig. 1), α = 1/2 [20] and the off-diagonal

elements are zero. So the gradient matrix G is diagonal

(1)

Typical small animal NdFeB Maxwell pair gradient strengths are µ0Gzz ~ 2500 [2] to 6000

mT/m [16]. MPI spatial resolution is anisotropic and twice as fine in z as in the x and y

direction due to this fundamentally anisotropic magnetic field gradient.

In addition to the 3-D field gradient, we can add an orthogonal set of homogeneous magnets

that produce static and time-varying fields to shift the FFP

These homogeneous magnets could be built using Golay coils or Helmholtz coils and these

are considered to be accurately modeled as homogeneous over the linear region of the

gradient field. Giving the gradient a convenient negative sign, the total field can be

described as

We can solve for the instantaneous location of the FFP, xs(t), such that H(t, x) = 0, provided

that the G matrix is nonsingular

In this paper we hypothesize that the G matrix is nonsingular. Here we prove that this is true

for virtually all realistic gradient coils. First, consider the Maxwell gradient pair, the design

of choice for virtually all experimental work in 3-D MPI. It is clear that the diagonal G
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matrix is always invertible; indeed the . For the more general case,

assuming cross terms Gxy = Gxz = Gyz = 0, the  is guaranteed to be

nonzero, except for trivial cases. Finally, if we assume only that Gxy = 0, then one can show

that . Since the coefficients α and 1 − α
are guaranteed to be positive, the det(G) is guaranteed positive. Hence, the G matrix is not

singular, and there always exists a unique FFP.

Of course, the uniqueness of the FFP could be lost if the region of interest includes regions

outside the linear region of the gradient coil. Artifacts could occur in such a case, akin to

“fold over” artifacts in MRI, where the body extends beyond the monotonic region of the

gradient field. Hence, to avoid this challenge we will assume that the entire FOV of the MPI

scan is within the linear region of the gradient field and also within the homogeneous region

of the shifting magnets.

Then, the magnetic field at an arbitrary point x is related to the instantaneous position of the

FFP

(2)

B. Hypothesis 2: Adiabatic Langevin Model

The MPI signal is due to the nonlinear response of a superparamagnetic iron oxide (SPIO)

nanoparticle to a changing magnetic field. At dc field strengths used in MPI of Bmax < 1 T,

tissue is largely unaffected by the magnetic field, but a SPIO particle undergoes a nonlinear

change in magnetization described by the Langevin theory of paramagnetism [23], [24]. For

a density of SPIO nanoparticles, ρ [particles/m3], the Langevin equation gives a

magnetization density

(3)

where m[Am2] is the magnetic moment of a single magnetic nanoparticle and L is the

Langevin function. The field required for saturation  [A/M] is given by the

magnetic moment, Boltzmann constant kB and temperature T. For a spherical particle, the

magnetic moment can be computed as m = Msat(π/6)d3, where µ0Msat ~ 0.6 T for magnetite

and d[m] is the particle diameter [23].

The vector direction assumes that the magnetic particles align adiabatically and

instantaneously with the applied magnetic field, which is strictly true only if the time

varying magnetic field is much slower than the particle relaxation time. Neel and Brownian

relaxation of the particles will reduce the magnetization and change the phase between the

applied magnetic field vector H and the measured magnetic moment M(H) [25]. We note

that typical Brownian time constants of most magnetic nanoparticles used in MPI are about

1–30 µs [25] whereas typical MPI scanning frequencies are below 25 kHz, so this appears

physically realistic. The adiabatic hypothesis is required for strict shift invariance; artifacts
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from relaxation appear to be mild. This model is discussed in the well-developed field of

ferrohydrodynamics, which aims to predict the behaviour of ferrofluids to time-varying

magnetic fields [23], [24]. This hypothesis is used extensively in prior approaches to MPI

theory [4], [12]. Here, we assume throughout that the data acquisition dwell time per pixel

exceeds the relaxation time constant. As shown in our experimental results in Section IV-B,

the x-space approach generate excellent images consistent with the adiabatic hypothesis. We

are continuing to study the limitations of this model.

C. Hypothesis 3: Loss of Low-Frequency Information Is Recoverable

In MPI, the RF transmit occurs during signal reception. This means that the received signal

is contaminated by direct feedthrough from the source RF coil coupling into the detector,

despite meticulous efforts at electronic and geometric decoupling. Hence, all current MPI

imaging methods must be reconstructed only from (uncontaminated) high frequency

information. Here we analyze the MPI signal equation as if the complete receive bandwidth

were available; later below we demonstrate that this lost low-frequency information

represents the low spatial frequencies (e.g., dc or baseline component) of the image.

Fortunately, with just a small amount of overlap in partial FOV scans, it is simple to

reconstruct a smooth and contiguous version of partial-FOV scans over the entire FOV using

robust image processing methods. This allows us to recover the lost baseline information

without adding a significant amount of noise. It is important to note that all current MPI

scanning methods suffer from this lost dc or baseline information so this challenge is in no

way unique to x-space MPI scanning.

III. Multidimensional Theory of MPI

Now consider a continuous distribution of magnetic nanoparticles with density ρ(x)

[particles/m3]. From (2) and (3), we note that we can write the magnetization density of ρ(x)

nanoparticles located at position x when the FFP is at xs(t)

(4)

and thus the total dipole moment is obtained by integrating the magnetization across the

imaging volume

This total dipole moment can be written as a spatial convolution interrogated at the

instantaneous FFP location
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For an imaging system using an inductive detector, we can use reciprocity to calculate the

received signal [26]. For simplicity, let us assume orthogonal receive coils aligned with the

x, y, and z axes of the instrument. Then, the sensitivity of the receive coils, −B1(x) [T/A],

would be a matrix of sensitivities. For the case for receive coils in each of the x, y, and z

axes, respectively, the sensitivity matrix would be .

From reciprocity, the received signal vector is

(5)

To evaluate this derivative, let us begin by building a set of tools to evaluate the MPI signal

equation. We begin by defining

(6)

We can decompose ṙ into a tangential component, ṙ‖, and a normal component, ṙ⊥ = (ṙ −

ṙ‖). Rewriting ṙ yields

The derivative of the quasi-static Langevin function with vector-valued, time varying

operand r

can be rewritten as a function of ṙ‖ and ṙ⊥

(7)

So, we see that the derivative of the Langevin curve has two components, each proportional

to the tangential component or normal component of the FFP velocity vector.

We now use these tools to calculate the derivative of the signal equation. From (4) and (5)

and definitions (6), we can rewrite the MPI signal as

and evaluate the derivative using (7)
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Substituting for r gives us a familiar convolution integral

which yields

This form is not yet a simple PSF, and so we factor out the FFP velocity magnitude ‖ẋs‖ and

the FFP velocity unit vector  using an outer product vector identity (a · b)b = bbTa. This

yields the

with PSF
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The signal equation indicates the inductively received signal is the matrix multiplication of a

matrix PSF with the FFP velocity vector, . The PSF does not change as a function of the

FFP velocity magnitude, ‖ẋs‖. If we only consider the radially-symmetric scalar components

of the PSF, we find the PSF envelopes

(9)

(10)

These important envelopes seen in Fig. 2 give us the maximum attainable resolution in MPI.

The higher resolution Tangential Envelope, ENVT, is the derivative of the Langevin

equation and is described in detail in Goodwill et al. [14]. ENVT defines the intrinsic

resolution and bandwidth requirements for MPI. The lower resolution envelope, ENVN, is

unique to generalized MPI and has a full-width at half-maximum (FWHM) that is wider. We

can solve for the FWHM of both envelopes analytically as a function of Hsat or,

alternatively, in terms of the particle diameter d

(11)

We note that ENVT in (9) was first derived in temporal frequency space in Rahmer et al.

[12], and is derived in x-space in our earlier work [14]. The second envelope in (10) is

unique to the generalized x-space formulation, and gives the resolution of the transverse

component of the point spread function perpendicular to the FFP velocity vector.

The cubic relationship between resolution and particle diameter is absolutely critical. This

relationship can be understood by looking at the origin of MPI’s signal. MPI’s resolution

relies on the nonlinear effect of a small applied magnetic field causing a SPIO nanoparticle

tracer to magnetically saturate. The Langevin equation tells us that the field required to

saturate a single magnetic nanoparticle decreases with the nanoparticle’s volume. As a

result, resolution improves with the cube of the magnetic nanoparticle diameter.

A. MPI 3-D Point Spread Function

The MPI process generates signals in multiple axes. While we typically will build inductive

receiver coils that are perpendicular to the physical axes (x, y, and z) of the instrument, the

instrument produces images on an internal reference frame formed by vectors collinear and

transverse to the FFP velocity vector, . The collinear and transverse images are distinct

from the tangential and normal components.

To understand the origin of the collinear and transverse components of the PSF, we will

examine the vector components of h(x). Supposing that the velocity vector is aligned with

the x unit vector, i.e., . Then, the collinear component is
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and the transverse components are

where we have arbitrarily picked two perpendicular unit axes corresponding to the y and z

axes, ê2 and ê3. The resulting components of the PSF are shown in Fig. 3. The collinear and

transverse components of the PSF form an excellent basis set for image reconstruction.

However, if the FFP velocity vector is not oriented with one of the cardinal directions of the

instrument, the received images change with the orientation of the velocity vector . To

illustrate how the reference frame is oriented with an arbitrary FFP path, we see the collinear

and transverse components of the PSF oriented with the velocity vector in Fig. 4.

While the equations presented here are general, it is interesting to look at the point spread

function in an algebraic equation. If we fix the excitation vector ê1 along the z axis and

assume a diagonal gradient matrix G = diag(Gxx, Gyy, Gzz), then we can write the collinear

PSF

and one of the transverse PSFs on the receive axis aligned with the x axis

where . The PSFs for these equations are shown

in Fig. 3.

The collinear component is similar to the real part of a Lorentzian function seen in NMR,

and is an even function. The collinear component is desirable and forms the bulk of the

resolution and signal of the MPI imaging process. The collinear component is a vector sum

of both the tangential and normal envelopes, ENVT and ENVN, with the sharper envelope

aligned with the velocity vector.

The transverse component is similar to the dispersion or odd-valued spectral component in

NMR and is an odd function. The transverse component is a vector difference of the two

point spread function envelopes. Across the diagonal (see Fig. 3), the signal received is

precisely PSF⊥ = ±(1/2)(ℒ̂(H/Hsat) − ℒ(H/Hsat)/‖H/Hsat‖). As a result, the transverse

component is significantly smaller in magnitude than the collinear component.
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IV. Methods

In this section we begin by discussing two methods crucial to x-space MPI, gridding, and

fundamental recovery. We use gridding use to transform the received signal from the time

domain to the image domain. We then introduce the technique of a partial FOV, which we

use to estimate the low frequency content that is lost when we filter out the fundamental

frequency. These x-space reconstruction techniques do not require regularization,

optimization techniques, or prior knowledge of the magnetic response of the tracer. We

conclude by describing the construction of a small-scale MPI imager to test the x-space

theory presented in this paper.

A. Reconstruction Methods: Gridding

Gridding in MPI is simply the process of sampling the received signal s(t) onto a grid in real

space, or x-space, that corresponds to the instantaneous location of the FFP. In our

formulation, we grid the collinear and transverse components separately. To do this, we first

separate the image into collinear and transverse signals

We have chosen an arbitrary unit vector ê1 to cross with the velocity unit vector  to build a

perpendicular basis set of transverse vectors. Choice of this arbitrary vector assumes that ê1

and  are not collinear, i.e., .

If we design our pulse sequence so that the velocity unit vector  is constant, e.g., with fast

movement only in one direction, we are able to simplify gridding of the collinear and

transverse signals. Ignoring the receiver coil sensitivity and choosing arbitrary unit vectors

ê1 and ê2 not collinear with the FFP velocity  gives us the

where we normalize to the magnitude of the FFP velocity [14]. Similar gridding can be done

for the remaining transverse images. This image equation is akin to the k-space analysis of

MRI [18], [19], [27], but here the scanning occurs in x-space rather than in k-space, so no

Fourier transform is required.

B. Reconstruction Methods: Fundamental Recovery

As mentioned above, a great challenge in MPI is the loss of the fundamental frequency. MPI

interrogates magnetic nanoparticles by subjecting the sample to a rapidly varying magnetic

field. This applied magnetic field contaminates the received signal as the applied field

induces a signal in the receive coil that is many orders of magnitude larger than the signal

Goodwill and Conolly Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 April 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



generated by the magnetic nanoparticles. This applied field is typically a sinusoid [1], [14],

[16], whose frequency we term the “fundamental frequency” [7], [14].

Partial FOV—To overcome the problems associated with the loss of the fundamental

frequency, we first introduce the concept of a partial FOV. This concept is similar to the

focus field described by Weizenecker et al. [2]. MPI systems can use a large gradient field

to increase resolution at the expense of reducing the FOV of a scan. For example, the

scanner described in this paper generates a 30 mTpeak−peak excitation amplitude on top of a 6

T/m gradient, giving a total FOV of about half a centimeter. This excitation amplitude

already exceeds the limits of magnetostimulation for a chest scanner and is nearing the

magnetostimulation limit for an extremity scanner [14]. However, we can take partial FOV

images that we stitch together for the full FOV by slowly moving the average position of the

FFP mechanically or with an electromagnet.

Loss and Recovery of the Fundamental Signal—When scanning an image with

overlapping partial FOVs, it is possible to recover the lost fundamental signal, which is

important to shift invariance. We approach the problem of the lost fundamental signal by

considering high-pass filtering of the time-domain signal as a loss of low-spatial frequency

information. For the loss of temporal frequencies near the fundamental frequency, we can

approximate this spatial-signal loss as a dc offset. Surprisingly, this means that if we acquire

multiple overlapping partial FOVs, we can sequentially find the overlap between signals that

minimizes their overlap error. Since only a constant dc offset was lost and assuming

boundary conditions at the endpoints of the scan, the resulting reassembled image will be an

excellent approximation of the original spatial convolution. A full derivation of the dc offset

shift and noise properties of various reconstruction results are beyond the scope of this

paper.

C. Experimental Methods

To test the principles described in this paper, we built a 3-D MPI scanner as shown in Fig. 5.

The system is constructed with permanent magnet gradient (6 T/m down the bore and 3 T/m

transverse to the bore) and an excitation coil collinear to the bore. The FFP is rapidly

scanned using the resonant transmit coil and the signal produced is received with a receive

coil wound collinear to the transmit coil. The receive coil receives the collinear component

of the vector PSF. We note that the transmit and receive coils are collinear with the larger

gradient along the bore, which is twice the magnitude of the gradient transverse to the bore.

The collinearity of the coils was chosen for ease of construction but results in an intrinsic

resolution in the transverse direction that is approximately four times worse than in the

collinear direction [see (11)].

The resonant excitation coil generates 30 mT peak-to-peak at 20 kHz and is driven by an

audio amplifier (AE Techron LVC5050, Elkhart, IN) with ~5 kW of instantaneous power at

a pulsed 2% duty cycle. The signal from the receive coil is filtered by a passive notch filter,

amplified by a battery powered preamplifier (SR560, Stanford Research Systems,

Sunnyvale, CA), and high-pass filtered at 35 kHz (SIM965, Stanford Research Systems,

Sunnyvale, CA). Following the analog signal chain, the signal is digitized by a 16-bit data
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acquisition system with a 1.25 MSPS sampling rate (National Instruments USB-6259,

Austin, TX), phase corrected, and low-pass filtered at 400 kHz. The system is controlled by

custom software written in MATLAB (Mathworks MATLAB, Natick, MA).

The 30 mT peak-to-peak excitation enables a partial FOV of approximately 0.5 cm along the

z axis. The signal for the received partial FOV is gridded to the instantaneous location of the

FFP and assigned to a physical location on the phantom. The phantom is stepped in 1 mm

steps along the z axis for 4 cm, acquiring a partial FOV line scan at each step. The line scans

are reassembled as described in Section IV-B by estimating the missing fundamental to

generate an assembled full FOV of 4.5 cm along the z axis. A total of 20 line scans are taken

by moving in 1 mm steps transverse to the bore, for a full FOV of 2 cm in the y axis.

Phantoms are constructed using 400 µm ID tubing filled with undiluted SPIO tracer

(Resovist, Bayer-Schering, Berlin, Germany).

V. Results

In Fig. 6 we see experimental data showing the 1-D scan of a point source before and after

fundamental recovery. We recover the fundamental by estimating the dc offset of each

segment so that we find a maximally smooth image.

In Figs. 7 and 9 we see images measured with the x-space MPI imager. As seen in the

images of the PSF in Fig. 7 and line scans in Fig. 8, the FWHM in the normal axis is 4.6

times wider than the FWHM along the axis of the imager. The lower resolution in the

normal axis agrees with the theoretical prediction in (11).We attribute the measured FWHM

being wider than the theoretical prediction to the nanoparticle behaving differently than in

our model, and the phantom being a line source rather than a point source. Our future

scanners will orient the magnetic fields differently so as to optimize the shape of the PSF.

We believe the “CAL” phantom image shown in Fig. 9(b) is the first native MPI image

without any sharpening or deconvolution and with full recovery of the fundamental

frequency, which is crucial for maintaining the LSI properties of the system. As seen in the

figure, the received image for the “CAL” phantom faithfully represents the phantom.

VI. Discussion

The x-space technique that we describe in this paper is a new look at the MPI imaging

process. We started from three hypotheses, that the gradient creates a single FFP, the

adiabatic Langevin model, and that the loss of the low frequencies recoverable. These three

hypotheses give us a powerful framework to analyze the MPI imaging process. The

adiabatic Langevin model has become standard in the MPI world, and this is certainly valid

for smaller particles at reasonable scanning speeds. We proved the uniqueness of the FFP.

And we presented experimental evidence to show that lost low frequency information is

recoverable. And, again, bear in mind that the loss of first harmonic information is a

universal MPI challenge and not unique to x-space scanning.

Unlike the approach in Rahmer et al. [12], x-space theory does not require a repeating

sinusoidal excitation or specific Lissajous pulse sequence. The x-space formulation also

motivates image reconstruction technique that is robust, scalable, and significantly faster
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than inversion of the system matrix and it does not require precharacterization of the

magnetic nanoparticles or system [8]. Numerical inversion of the system matrix may take

significant time for larger system matrices such as a 128 × 128 × 128 image since matrix

inversion does not scale linearly. The computation required for x-space reconstruction,

however, requires only a scaling and gridding. For example, our current reconstruction code

reconstructs the received signal faster than our analog-to-digital converter is able to digitize

data.

The intrinsic FWHM resolution predicted by our first work on space analysis [14] agrees

with the nondeconvolved resolution limit predicted by Rahmer et al. [12]. However, the 2-D

and 3-D analysis presented in this paper extends these initial analyses to show that the

intrinsic resolution changes with the orientation the FFP movement sequence. In Rahmer et

al. [12] the author states for their realtime mouse imager [2] with a 5.5 T/m gradient and

Resovist tracer that “the observed resolution was not better than Δx ≈ 1.5 mm.” Their

gradient strength was smaller than the gradient described in this paper, their tracer is

identical, and their achieved resolution approximately the same our result. Rahmer et al.

[12] attribute the discrepancy from their expected 500 µm resolution given their previous

deconvolved results [1], [3] due to “the wide distribution of particle sizes and the

regularization applied in reconstruction to mitigate limited SNR.” We believe x-space theory

shows that their system admirably reached the physical resolution limit of their imager given

a physiologically relevant SNR. Indeed, our experimental results are in perfect alignment

with Rahmer’s (18) that gives the undeconvolved system resolution.

One of the advantages of the x-space approach is that it allows the separation of

reconstruction from deconvolution. Not only is this modular, but it allows for both fast

reconstruction and fast deconvolution using the wealth of standard deconvolution methods

[28], including fast Fourier transform filters and Wiener deconvolution. For example, while

not shown in this paper, in practice we lightly apply Wiener deconvolution to the intrinsic x-

space MPI image in order to visually improve image contrast and apparent resolution. This

is especially relevant for images with high SNR as deconvolution can increase the image

resolution at the expense of SNR. Unfortunately, more aggressive deconvolution results in

significant noise amplification [15] and often in image artifacts [28].

An important counter-example to aggressive deconvolution is the example of clinical PET

imaging, whose resolution is worse than 4 mm resolution in a modern scanner [29]. Clearly

this would be a prime candidate for standard deconvolution methods. However, physicians

have been reluctant to use deconvolution with PET clinically, presumably for reasons of

robustness and SNR loss.

Fortunately, we believe that deconvolution may be considered unnecessary in the future,

given the strong dependence of intrinsic resolution on nanoparticle diameter. Our results

here demonstrate the accuracy of the x-space resolution (11). Consequently, we believe it is

reasonable to assume that resolution could improve with the cube of the particle diameter so

long as the nano-particles remain superparamagnetic and continue to satisfy the assumptions

necessary for x-space MPI. It is clear that increasing the apparent diameter of the SPIO
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magnetic core to 25 or even 30 nm and dealing with relaxation effects will be crucial to

improving the intrinsic resolution of the image.

We believe that our work proves that MPI can be approximated as LSI when we recover the

low-frequency information. We note that most imaging modalities are not strictly LSI, but

require a minor approximation to simplify. For example, all computed-tomography imaging

scanners reconstruct in Hounsfield units, which are the natural log of the received signal.

That is to say, without taking the natural log, CT is not strictly an LSI system. Existing

works [12], [17] aim to analyze the MPI process in mathematical terms, but they do not

endeavour to prove linearity or shift invariance. In this paper, we believe we have proved

that MPI is indeed a LSI system with our three hypotheses, and that our experimental results

show that the recovery of the first harmonic enables experimental MPI systems to be

accurately modeled as LSI. Once it is shown that x-space can produce images comparable in

quality to those reconstructed using system matrices, x-space analysis could be accepted as a

powerful analytical tool.

VII. Conclusion

We have presented and tested a theory for the magnetic particle imaging process in x-space.

We see that MPI can be described as a LSI system with a well behaved point spread

function. Our primary theoretical conclusions are seen in (8) and (12) which give the MPI

signal and MPI image equation. We then built a scanner that we successfully used to acquire

a 2-D intrinsic MPI image and an image of a point spread function. Only a few hypotheses

are required for x-space theory to accurately predict the experimental PSF in 2-D. All three

of these hypotheses are either well accepted (adiabatic alignment) or were proved

mathematically (unique FFP location) or experimentally (loss of first harmonic information

is recoverable). This new analysis of MPI scanning provides powerful insights for

optimizing MPI scanner and scanning sequences. It has also prompted a significant advance

in image reconstruction computation time.
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Fig. 1.

Two opposing ring magnets with radial symmetry about the z axis produce a 3-D gradient

field with a FFP at the isometric center. This gradient can be remarkably strong. Our current

imager produces a gradient of 6 T/m in the z axis, and 3 T/m in the x and y axes across a

8.89 cm free bore through the z axis with excellent linearity.
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Fig. 2.

The tangential and normal point spread function envelopes, ENVT and ENVN shown for

‖kH‖ ≤ 20. ENVT is the limit to MPI resolution, and defines MPI bandwidth [14]. ENVN has

approximately half the intrinsic resolution with FWHMT = 4.2 and FWHMN = 9.5. The

value kH is unitless.

Goodwill and Conolly Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 April 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3.

Collinear and transverse components of the matrix point spread function. The received

images rotate with vector  (see Fig. 4). The collinear PSF component peak amplitude is

370% the tangential PSF component peak amplitude. The area of the box drawn in the

collinear PSF is experimentally measured in Fig. 7.
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Fig. 4.

MPI images are acquired on a reference frame formed by vectors collinear and transverse to

the velocity vector .
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Fig. 5.

X-space MPI imager. (a) Tomographic MPI scanner with 2 cm × 2 cm × 4 cm FOV. The

excitation transmit coil generates a 30 mT peak-to-peak oscillating magnetic field at 20 kHz.

The NdFeB magnet gradient generates a gradient of 6 T/m down the imaging bore, and 3.25

T/m transverse to the imaging bore. (b) Photograph of x-space MPI scanner. The free bore

before addition of the transmit and receive coils is 8.4 cm.
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Fig. 6.

[Top] Experimental data showing 40 overlapping partial FOV line-scans for a 400 µm point

source phantom. The baseline component for each partial FOV is lost in the scanning

process due to the contamination of first harmonic imaging data by direct feedthrough.

[Bottom] Using standard image processing methods, we can reconstruct a smooth version of

the data segments, obtaining the maximally continuous image.
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Fig. 7.

(a) Measured two-dimensional collinear PSF showing excellent correspondence to Fig. 3.

The measured FWHM is 1.6 mm along the imager bore and 7.4 mm transverse to the imager

bore. The PSF phantom is a 400 µm tubing oriented perpendicular to the bore. (b)

Theoretical PSF assuming SPIO nanoparticle of lognormal size distribution with d = 17 ±

3.4 nm.
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Fig. 8.

Profiles across the point spread function shown in Fig. 7(a), (b) show good agreement

between theoretical and measured values. [TOP] Line scan down the bore. [BOTTOM] Line

scan perpendicular to the imager bore.
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Fig. 9.

(a) “CAL” Phantom built using 400 µm ID tubing filled with undiluted tracer and

encapsulated. (b) Intrinsic MPI image of the CAL phantom showing excellent

correspondence to the phantom image. FOV: 4 cm × 2 cm, Pixel size: 200 µm × 1 mm. Total

imaging time of 28 s not including robot movement.
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