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Multidisciplinary Considerations in the Design of

Wings and Wing Tip Devices

S. Andrew Ning

⇤
and Ilan Kroo

†

Stanford University, Stanford, CA, 94305

Conceptual wing design analysis methods are combined with numerical optimization to

find minimum drag wings subject to constraints on lift, weight, pitching moment, and stall

speed. Tip extensions and winglets designed for minimum drag achieve similar perfor-

mance, with the optimal solution depending on the ratio of the maneuver lift coe�cient to

the cruise lift coe�cient. The results highlight the importance of accounting for the depth

of the wing structural box in the weight model, and including constraints on stall speed.

For tailless aircraft, C-wings show a slight performance advantage over wings with winglets

when longitudinal trim and stability constraints are considered. This performance advan-

tage is more significant for span-constrained or low sweep designs. Finally, to demonstrate

other possible applications of the method, planar wings with active load alleviation are

optimized, showing drag savings on the order of 15%.

Nomenclature

AR aspect ratio
b span
C

L

lift coe�cient
c

l

section lift coe�cient
C

m

ac

pitching moment coe�cient about the aerodynamic center
C

m

cg

pitching moment coe�cient about the center of gravity
c

r

root chord
c

t

tip chord
D drag
e span e�ciency
I

b

bending weight index
J objective
L lift
` length
M

b

bending moment
S wing area
s.m. static margin
t section thickness
t

s

skin thickness
V

s

stall speed
W weight

Subscripts

max maximum
mvr maneuver
ref reference

⇤Ph.D. Candidate, Department of Aeronautics and Astronautics, AIAA Student Member.
†Professor, Department of Aeronautics and Astronautics, AIAA Fellow.
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Symbols

⌘

c

spanwise location of lift centroid in units of semi-span
� local circulation
⇤ quarter chord sweep
� taper ratio
� dihedral angle
⇢ density
✓ local twist angle
⇠ coordinate tangent to wing

I. Introduction

High fuel costs and environmental concerns provide continuing motivation for research aimed at increasing
aircraft e�ciency. Vortex drag is a major contributor to aircraft drag, typically accounting for about 40% of
the drag in cruise and about 80-90% of the drag in second segment climb.1 Since wing tip geometry strongly
a↵ects vortex drag, wing tip optimization has received a great deal of attention. Improved wing tip design
can not only benefit new designs, but can also improve performance of existing wings through retrofits.

One of the early wing tip modifications was a simple end plate.2,3 These end plates were shown to
increase the e↵ective span of the wing, thus reducing the vortex drag. Richard Whitcomb at NASA achieved
greater gains in e�ciency through carefully designed high aspect ratio end plates which he termed winglets.
His experimental data published in 1976 showed that a winglet improved the lift to drag ratio by nearly a
factor of two as compared to a tip extension.4

Many studies since then, both computation and experimental, compare tip extensions with winglets.5–11

The conclusions di↵er depending on the structural constraint, whether or not viscous drag is included, and
the range of geometries explored. There are several reasons why a reexamination of the relative benefits of
tip extensions and winglets is warranted.

First, the structural constraint used in most of these studies is a fixed root bending moment. Root
bending moment does not account for the e↵ect of chordwise changes in the planform on the bending weight.
A fixed root bending moment can be especially inappropriate for nonplanar configurations, as large winglets
can be designed with zero or even negative changes in root bending moment. Also, most previous studies
apply the weight constraint at the cruise lift coe�cient (or at some other fixed lift coe�cient). However, the
results are sometimes significantly di↵erent as the critical structural lift coe�cient is varied for a given wing
design (corresponding to di↵erent critical structural altitudes).

Second, many of these studies compare only induced drag. Including viscous drag can be particularly
important when comparing tip extensions with winglets, as the designs often have very di↵erent wetted
areas. This is often addressed by keeping the wetted area of the entire wing constant. However, for nonplanar
wings, neither fixing the wetted area nor fixing the projected area allows for fair comparisons between designs
because of tradeo↵s with viscous drag and maximum lift capabilities.

Third, all of these studies analyze a small number of designs, or parametrically vary a few of the design
variables. Wings with tip devices introduce more planform variables than can be handled properly by simple
trade studies. In particular, many of the above mentioned studies use simple linearly extrapolated tip
extensions. Such a tip extension is an ine↵ective use of wetted area for the same reason why an end plate
is less e↵ective than a winglet. Optimization is employed in some of the previous studies, but is limited to
optimizing the lift distribution only.

This paper seeks to address these concerns, while still retaining simplicity in the analysis methods, as
appropriate for conceptual design studies. Certainly, the choice of a tip extension, winglet, or other tip device
depends upon many other considerations not addressed here such as the e↵ect on the aircraft stability and
control, aeroelastics, and even marketing. Our objective in this paper is not to design an airplane, rather we
seek to explore fundamental, but complex multidisciplinary considerations in the design of wings and wing
tip devices. We will not conclude whether winglets or tip extensions are “better”, as this would require a
specific and complete aircraft design study. Instead, the results show the importance of various assumptions
and design degrees of freedom.

First, tip extensions and winglets are compared using nonlinear optimization. C-wings are then investi-
gated to determine if there are significant performance advantages to C-wing designs as compared to wings
with winglets. Finally, as an example of the wider applicability of the method, a planar wing with active
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load alleviation is optimized.

II. Method

A. Fundamental Considerations

Wing design involves fundamental tradeo↵s between drag, weight, and stall speed. Fixing the area of the
wing is often done to simplify some of the interactions in simple trade studies, but even then the tradeo↵s
are not always clear. As a simple example, consider adding a winglet to a wing and increasing its height.
If the wetted area of the wing/winglet combination is fixed, then viscous drag and area-dependent weight
can be kept roughly constant while induced drag is reduced. However, the bending weight increases not
only due to the increased height of the winglet, but also due to the smaller chords in the main wing. In
addition, the projected area decreases resulting in decreased maximum lift capabilities and higher stalls
speeds. Alternatively, the projected area of the wing may be fixed. This will allow for the stall speed
performance to be roughly maintained while induced drag is decreased, but the viscous drag will increase as
will both the area-dependent and load-dependent weight of the wing.

These fundamental tradeo↵s can have complex interactions, especially as the wing design problem includes
additional degrees of freedom. Nonlinear optimization allows the relative benefits of wing designs to be
assessed more completely. In this paper we consider wings designed for minimum drag with fixed lift,
weight, and stall speed. The methods used for computing drag, weight, and stall speed are outlined below.
Validation of the methodology is done by comparing to a variety of analytic solutions,12 as well as to past
numerical studies.8,13 Parameters such as panel density are chosen to ensure that results are within a percent
or two of these known solutions. These results, along with further implementation details, can be found in
our previous paper.14

B. Drag Model

This study investigates only low speed wings. For these cases, only vortex drag and viscous drag need
to be considered. More realistic configurations would also need to include compressibility drag. Vortex drag
is calculated at the Tre↵tz plane by using a drag free wake leaving the trailing edge of the wing planform.
Viscous drag is calculated using strip theory by assuming a parabolic variation in viscous drag coe�cient
with section lift coe�cient. Changes in loading with twist and angle of attack are computed using a discrete
vortex Weissinger model.15 Fifty panels are equally spaced across the wing semi-span. The methodology is
similar to that used by Kroo.8

C. Weight Model

The wing weight is decomposed into a part due to the load, and a part due to the size of the wing. Area-
dependent variations in wing weight are particularly important to consider for nonplanar configurations.

W = W

load

+W

area

The load dependent weight is assumed to be proportional to the volume of material required to support a fully
stressed wing in bending (a good approximation for wings of moderate to high aspect ratios where di↵erences
in shear-dependent weight are negligible, and for wings with low to moderate sweep where di↵erences in
torsion-dependent weight are negligible), and that the area-dependent weight is proportional to the gross
area of the wing. The load dependent weight is given by

I

b

=

Z |M
b

|
t

ds

which is integrated along the main structural spar. Wing weight is then given by

W = k1Ib + k2S

where k1 and k2 are appropriately chosen constants. In this paper we are only interested in computing the
ratio of weight to the reference weight, which leaves only one undetermined coe�cient.

W

W

ref

=
k1Ib + k2S

k1Ib
ref

+ k2Sref

=
I

b

+ k

W

S

I

b

ref

+ k

W

S

ref
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where k
W

= k2/k1. The value of this constant was determined by correlating aircraft data with the bending
index used here (k

W

= 3.57⇥ 104).
It should be mentioned that the value for wing weight does not represent an actual dimensional wing

weight, but is intended to scale appropriately with changes in wing planform and aerodynamic loading in
order to compare the wing weight of di↵erent designs. A wing weight estimate of this form has been shown
to correlate well with the wing weight data from actual transport aircraft.a

One additional modification is made to the weight computation to account for the di↵erence in cruise
loading and critical structural loading. Here, we assume that the aircraft is maneuver critical rather than
gust critical. In this case the maximum load factor may be the same for many di↵erent aircraft, but the
critical structural altitude will vary. This means that the maneuver lift coe�cient (at which the bending
weight is computed) must be allowed to be di↵erent from the cruise lift coe�cient. For a given geometry, the
load dependent weight index can be shown to be a function only of the ratio of the maneuver lift coe�cient
to the cruise lift coe�cient.14

The ratio C

L

mvr

/C

L

relates the critical structural altitude to the cruise altitude. For wider applicability
of the results, cases are shown for C

L

mvr

/C

L

equal to 1 and 2.5. As a specific example, and that used in this
paper, assume a fixed load factor of 2.5 (many transport aircraft have their maximum maneuver load factor
set at 2.5 as per FAR Part 2516). Then, if the cruise altitude of the aircraft is 35,000 ft, C

L

mvr

/C

L

= 2.5
corresponds to a critical structural altitude of 35,000 ft, whereas C

L

mvr

/C

L

= 1 corresponds to a critical
structural altitude of 14,000 ft at fixed Mach number. Thus, the choice of these two values is meant to
capture di↵erences in designs over a wide range of critical structural altitudes.

While wing bending loads are clearly important, a more complete configuration study would also need to
consider other structural loading conditions such as those provided by inertial relief, taxi-bump, etc. Related
constraints such as fuel volume requirements, and ground strike deflection would also be important in the
structural design. Most of these considerations require detailed information about mass properties, fuel
distributions, and performance requirements appropriate for a specific aircraft design study. However, the
purpose of this paper is to emphasize the fundamental tradeo↵s between load distribution, weight, and drag.
The metric used here for wing weight is only intended to capture the dominant e↵ects of wing planform and
aerodynamic loading changes on wing weight.

D. Stall Speed Model

Stall speed is given by

V

s

=

s
2L

⇢SC

L

max

A constraint on stall speed is important when optimizing the planform geometry. Without this constraint,
optimization often leads to unrealistically small tip chords with high section lift coe�cients. All designs are
required to have a stall speed less than or equal to that of the reference wing. Since the lift is fixed, this
gives the inequality constraint C

L

max

S � (C
L

max

S )|
ref

.
C

L

max

is di�cult to predict and is really a three dimensional, unsteady, viscous phenomena. Consistent
with the simplicity of the aero/structural model, C

L

max

is estimated simply from critical section theory.
Essentially, this means that stall is predicted when any one section of the wing reaches a specified section
c

l

max

. Since no high-lift devices are modeled, the clean wing stall speed is constrained.
This constraint on stall speed is not directly imposed in the optimization problem. For a given wing area

the required C

L

max

can be found directly from the constraint C

L

max

S � (C
L

max

S )|
ref

. The constraint
imposed in the optimization problem is that at the required C

L

max

the c

l

distribution must be everywhere
less than or equal to a specified maximum section lift coe�cient ({c

l

} |
C

L

max

 {c
l

max

}.). In the results
shown in this paper the vector {c

l

max

} is constant across the wing for simplicity in discussing the results.

E. Optimization

There are three basic approaches to this optimization problem, each of increasing complexity over the
previous. The first is the method of restricted variations. This method allows for analytic solutions of
optimal normalwash distributions by considering small perturbations to the lift distribution. Consideration
for parasitic drag, section lift coe�cient constraints, and weight constraints can even be included. The

a
http://adg.stanford.edu/aa241/AircraftDesign.html (see Component Weights section)
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analytic solutions allow for good insight, but the method is restricted to simple geometries with simple
formulations for the objective and constraints.

The second option also optimizes the lift distribution, but can allow for more complex geometries and
constraints. Under the assumptions of the Prandtl-Glauert equation, the optimization can be posed as a
quadratic programming problem. If only equality constraints are included, like lift and weight, then optimal
loading is given directly by solving a linear system of equations. This approach has been used many times in
the past.8,11,17 This method is good for giving insight into the e↵ect of di↵erent weight models, comparing
results with and without viscous drag, and for performing trade studies with planform variations. The rapid
nature of the load optimization problem allows for trades studies with a fairly large number of wing designs.

The method may also be extended by including linear inequality constraints like stall speed. In these
cases the optimization problem is still a convex quadratic programming problem which is easily solved. This
approach has been pursued in some of our past studies.14

The third option, and the one used in this paper, is to also include all the planform parameters as
design variables. In this case, the objective and constraints are nonlinear functions of the design variables.
However, the functions are still smooth allowing for gradient based methods. Furthermore, the sensitivities
of the objective and constraints to the additional design variables are approximated quite well by piecewise
linear functions over a broad range of step sizes, allowing for robust and quick convergence using finite
di↵erences. The results shown in this paper are all solved using the sequential quadratic programming
method.

III. Nonlinear Planform Optimization

Four di↵erent optimization cases are presented: tip geometry for a retrofitted wing, tip geometry for an
optimized wing, C-wings with stability and trim constraints, and planar wings with active load alleviation.
We emphasize again that the results are intended to explore the e↵ect of multidisciplinary considerations in
wing design, they are not intended to represent complete configuration design studies.

A. Tip Extensions and Winglets - Retrofit

Whitcomb’s study on winglets4 is a classic paper showing significant performance benefits by retrofitting
a wing with a winglet as opposed to retrofitting with a tip extensions. It is of interest to re-compare the
relative performance of tip extensions and winglets using optimized tip devices. The baseline wing used in
this study is the same as that used by Whitcomb,4 representative of early transport wings (Figure 1). The
planform parameters are summarized in Table 1. Figure 1 also shows the tip extension tested by Whitcomb,
whereas Figure 2 shows the winglet tested by Whitcomb. These two figures are taken from Whitcomb’s
paper4 with some modification for clarity.

Figure 1. Geometry for baseline wing and tip extension used in Whitcomb study.

Table 1. Baseline wing

AR 7 ⇤ 35�

b 135 ft � 0.35
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Figure 2. Geometry for winglet used in Whitcomb study.

The objective of this investigation is to find the minimum drag trapezoidal tip device for this fixed
wing planform. Since only the tip geometry is optimized, the number of design variables is relatively small.
These include the length, root chord, tip chord, and quarter chord sweep of the tip geometry. Twist is also
optimized across the wing and tip. Twist is defined at three sections across the wing, and two across the
tip with a linear distribution of twist in between. The twist definition locations across the wing are at the
root, 30% semi-span, and tip, whereas the twist locations for the tip device are at its root and tip. The
dihedral angle of the tip device is fixed at discrete values to facilitate comparison between tip extensions and
winglets.

The optimization problem is subject to constraints on lift, weight, and stall speed. Rather than constrain
the wing to a particular weight, the target weight is varied in order to create a Pareto front of optimal
solutions trading o↵ drag and weight.

The optimization problem is posed as follows:

min. J =
D

D

ref

w.r.t. wing : {✓1,2,3}, tip : {`, c
r

, c

t

,⇤, ✓4,5}

s.t. 1� L

L

ref

 0

W

W

target

� 1  0

{c
l

}|
C

L

max

� {c
l

max

}  0

0.01 <

`

b/2 < 0.65

0.01 <

c

r

c

t

wing

< 1

0.01 <

c

t

c

t

wing

< 1

0� < ⇤ < 40�

�20� < ✓1�5 < 20�

If sweep were allowed to vary freely, torsion-dependent weight and steady aeroelastics would need to be
included. These have been explored in some computations, but for the present purposes they only complicate
the problem formulation without providing much additional insight. Here, the tip sweep angle is not allowed
to exceed 40�. The section maximum lift coe�cient, c

l

max

, is set equal to that of the reference wing.
There is one subtlety in the optimization procedure. The winglet length is a continuous design variable,

but our analysis method uses a discrete vortex panel method. For numerical accuracy the panel size across
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the wing and tip is held constant. However, with a fixed panel size, the number of panels on the tip will
vary discontinuously. This is a problem for gradient based optimization, but is resolved by varying the tip
length parametrically.

Figures 3(a) and 3(b) show the Pareto fronts at a C

L

mvr

/C

L

of 1 and 2.5 respectively. Also shown on
these figures are a few of the optimized geometries to give a sense of relative size. The values shown in the
figures denote the length of the tip normalized by the wing semi-span (i.e. for a tip extension, a value of
0.14 corresponds to a 14% span increase).

1 1.1 1.2 1.3

0.88

0.9

0.92

0.94

0.96

0.98

W/W
ref

D
/D

re
f

 

 (Tip dihedral angle)

Winglets (75ο)

Winglets (90ο)

Tip Extensions (0ο)

0.14

0.19

0.21
0.33

(a) C
L

mvr

/C
L

= 1.0, tip extensions optimal

1 1.1 1.2 1.3

0.88

0.9

0.92

0.94

0.96

0.98

W/W
ref

D
/D

re
f

 

 (Tip dihedral angle)

Winglets (90ο)

                     Tip Extensions (0ο)

Winglets (75ο)

)

0.09

0.04

0.33

0.15

(b) C
L

mvr

/C
L

= 2.5, winglets optimal

Figure 3. Pareto front of optimal tip geometries with relative sizes also shown.

The figures show that for minimum drag the choice of tip extension versus winglet depends upon the
ratio C

L

mvr

/C

L

. For C
L

mvr

/C

L

= 1 tip extensions outperform winglets for any weight increase. For a 5%
weight increase the tip extension o↵ers about a 1% reduction in drag relative to the optimized 90� winglet
and about 0.5% relative to the 75� winglet.

However, for the case C

L

mvr

/C

L

= 2.5 winglets outperform tip extensions for all weights. A 90� winglet
is optimal for weight increase less than 10% and a 75� winglet is optimal for larger weight increases. For a
5% weight increase the 90� winglet o↵ers a 1% reduction in drag as compared to the tip extension.

Our computations are similar to the experimental results reported in Whitcomb’s paper4 if the same
criteria is used. For example, our methods predicts that the Whitcomb winglet o↵ers about a 7% increase
in L/D as compared to the reported 9%, and the Whitcomb tip extension o↵ers a 4% increase in L/D as
compared to the reported 4% (These values are obtained at the same reported increase in root bending
moment of 3.5%).

However, the results are quite di↵erent when using integrated bending moment over thickness rather
than root bending moment for weight, and when including stall constraints. The chords at the tip of the
Whitcomb winglet are smaller than those on the Whitcomb tip extension, leading to a small penalty at
C

L

max

. Figure 4 shows the same Pareto front, but include the calculations based on Whitcomb’s actual tip
extension/winglet geometry with optimized twist across the wing and tip. The Whitcomb winglet is still
a better design than the Whitcomb tip extension; however, as seen from the figure, its perhaps not a fair
comparison.

Although the analysis shows that for minimum drag the choice of tip extensions versus winglet depends on
the ratio C

L

mvr

/C

L

, the di↵erence in drag between the two optimal configurations is not very significant. The
choice of whether to use a tip extension or a winglet would more likely be determined by other considerations
such as stability and control, structural dynamics, or even marketing.

B. Tip Extensions and Winglets - New Wing Design

While the previous study held the planform fixed, as appropriate for a retrofit, this study includes the
planform in the optimization. The goal is to see if the conclusions for retrofitted wings are similar to those
for new wing designs. Rather than using a trapezoidal wing and a trapezoidal tip, we employ a more general
description of the geometry by using a larger number of trapezoidal sections. Five trapezoidal sections are
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1 1.1 1.2 1.3

0.88

0.9

0.92

0.94

0.96

0.98

W/Wref

D
/D

re
f

 

 Whitcomb
Tip Extension

Whitcomb
 Winglet

Optimized
 Winglets (75°)

Optimized 
Tip Extensions (0°)

Figure 4. Whitcomb winglet shown to be much closer to an optimal design than Whitcomb tip extension
(C

L

mvr

/C
L

= 1.0).

equally spaced across the wing semi-span, with the tip as one separate trapezoidal section. The following
design variables were used: wing span, tip length, chord length at the ends of each section, twist at the ends
of each section, and dihedral angle of the tip (Figure 5). As done before, the wing span and the length of the
tip are varied parametrically. Transonic drag rise and torsional weight are not included in the computation,
so the sweep of the wing is fixed at the value of the reference wing. Since the sensitivity of drag to the
tip dihedral angle is often very small,8,14 care must be taken to scale this variable properly in order to get
correct solutions.

φ1

θ1 θ2 θ3 θ4 θ5

θ6

θ7
θ8

c1
c2

c3
c4

c5
c6

c7
c8

L1
L2

Figure 5. Design variables used in the planform optimization.

The constraints include minimum lift, maximum weight, and minimum stall speed. In addition the lift
distribution at the maneuver load is constrained to be positive at every section. A negative maneuver loading
can produce negative bending moments at some sections which may lead to negative weight calculations if
not handled properly. For this problem negative loading is almost never optimal, but if not constrained can
be exploited by the optimizer. This will be explored in more detail later for cases where negative loading
may be optimal.

The optimization problem is given as:

min. J =
D

D

ref

w.r.t. L1, L2, {c}, {✓},�tip

s.t. 1� L

L

ref

 0
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W

W

ref

� 1  0

{c
l

}|
C

L

max

� {c
l

max

}  0

{�
mvr

}
�

ref

� 0

0.5 <

L1
b

ref

< 2

0.01 <

L2
b

ref

< 0.5

0.01 <

c

c

ref

< 5

�20� < ✓ < 20�

0�

1000 <

�

tip

1000 <

120�

1000

The reference wing used in this computation (and in the next few sections) is a more modern wing
shape than used in the Whitcomb study. The definitions for aspect ratio, taper ratio, and root chord used
in Figure 6 are based upon the trapezoidal reference area only. The span of the reference wing is 200 ft.
Reference conditions are computed at a lift coe�cient of 0.4.

AR = 9
Λ = 32°

λ = 0.2

0.3 cr

2
b_0.3 

Figure 6. Reference wing geometry used in this and subsequent cases.

The optimized planform shape is shown for a C

L

mvr

/C

L

= 1 and 2.5 in Figures 7(a) and 7(b) respectively.
The optimal tip designs depend on C

L

mvr

/C

L

in a similar manner to the tip geometries from the last section.
For a C

L

mvr

/C

L

= 1 the optimal design uses a tip extension and achieves a drag reduction of about 6%
relative to the baseline wing. The span has increased by 6% of the reference wing span. At C

L

mvr

/C

L

= 2.5
the optimal design uses a 85� dihedral winglet and achieves a drag reduction of about 4%. The wing span
is 94% of the reference wing span, and the winglet length is 20% of the wing semi-span. However, in this
case as well, the di↵erence in lift to drag ratio between optimized winglet designs and tip extension designs
is not large.
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Reference Wing

Optimized 
Wing

(a) C
L

mvr

/C
L

= 1.0, tip extension optimal, D/D
ref

= 0.94 (b) C
L

mvr

/C
L

= 2.5, winglet optimal, D/D
ref

= 0.96

Figure 7. Optimized wing and tip geometries.

C. C-Wings for Tailless Aircraft

A logical extension to adding a winglet at the end of a wing would be to add another lifting surface at
the end of the winglet. Past studies have indeed suggested that C-wings (so named because the shape of
the tip resembles a ‘C’) may be advantageous for certain designs. Von Karman and Burgers showed that for
a fixed height and span, the box wing has minimum vortex drag.18 A C-wing of the same span and height
will have very nearly the same inviscid span e�ciency,1 but when viscous drag is considered the C-wing will
certainly have less total drag than the box wing. A study on very large subsonic transports by McMasters
et al. discusses other potential benefits for the C-wing configuration besides the high span e�ciency.19 The
nonplanar C-wing is well suited to very large transports due to span constraints. Also, by sweeping the wing
or the winglets, the C-wing element can be used for longitudinal control and stability much like a horizontal
tail. While these potential benefits are understood, it is not clear what the tradeo↵s in performance are
once constraints on stability, weight, and stall are imposed. C-wings were examined in the previous cases
presented in this paper, but no significant performance advantage was found. For a tailless aircraft however,
a C-wing could be beneficial for its e↵ect on the pitching moment about the aerodynamic center.

The pitching moment about an aircraft’s center of gravity can be expressed as

C

m

cg

= C

m

ac

� s.m.C

L

which should equal zero to trim at the desired lift coe�cient. A statically stable aircraft has a positive
static margin (aerodynamic center aft of the center of gravity). This means that a stable and trimmed
aircraft requires a positive pitching moment about its aerodynamic center. For tailless aircraft, this pitching
moment must be provided by the wing. This is often di�cult to achieve at reasonable static margins, because
conventional airfoil sections have negative section pitching moments. This is one area where a C-wing may
provide an advantage compared to a planar flying wing. For an optimally span-loaded C-wing, its C-wing
element lifts down. As mentioned, this allows the C-wing element on a swept C-wing to act like a horizontal
tail. In this study, trim is enforced by constraining the pitching moment about the aerodynamic center of
the wing to be positive. This study also examines zero and negative pitching moments to see the e↵ect this
constraint has on the design. Negative pitching moments are generally of limited interest, as these trimmed
designs would either be statically unstable or require sections with significant negative camber.

1. Additional Constraints

A few modifications must be made to the constraints to properly handle C-wings. The first change is
that the local circulation must be allowed to be either positive or negative. In previous cases the loading was
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always constrained to be positive across the wing at the maneuver load. Allowing the loading to be negative
introduces several modifications to the constraints.

Negative loading means that the bending moment may be negative at some sections of the wing. This
must not lead to negative weight, since the volume of material used to resist bending actually depends
on the absolute value of the bending moment. Since we are using a gradient based optimization method,
using absolute value is problematic as it leads to discontinuous gradients. This can be avoided, but leads
to additional constraints. The number of necessary constraints is reduced by using the observation that
negative bending moments will typically only occur near the tip of the wing. Thus, the computation of the
bending weight is split into a part due to the inner sections of the wing, and a part due to the outer panels.
Since the sign of the bending moment on the outer panels is not known a priori, all possible combinations
must be considered. These combinations are put in a vector where the actual bending weight contribution
from the outer panels will be the maximum entry in the vector.

W

b

= I

b

inner

+max{I
b

}
outer

Including area dependent weight, the weight constraint is now

I

b

inner

+ {I
b

}
outer

+ k

W

S  W

ref

A skin thickness constraint is necessary because the optimizer would like to unload the winglet, and
drive the winglet to very small chords to reduce drag and weight. But to structurally support the C-wing
element this would require very large skin thicknesses in the winglet. The structural model assumes that the
skin thickness is much smaller than the airfoil thickness. The skin thickness of the structural box must be
constrained to prevent unreasonable designs. The skin thickness is restricted to less than 10% of the local
section thickness.

{t
s

}  0.1{t}

Both skin thickness and section lift coe�cients depend on the absolute value of the bending moment. These
constraints are broken up into two parts to avoid the use of absolute value.

The final modification used for optimizing C-wing designs is related to the maneuver lift coe�cient.
Instead of specifying one critical maneuver lift coe�cient at a time, as done in the previous cases, the weight
is computed at two di↵erent maneuver lift coe�cients and the weight is taken to be the maximum of the
two. More details on the implementation of the constraints are available in an earlier version of this paper.14

2. Weight-Constrained Designs

For the optimization problem the wing is divided into five trapezoidal sections, one vertical winglet, and
one horizontal C-wing element. The design variables include the wing span, the chord lengths at the ends of
each section, and the twist at the ends of each section. Since the length of each lifting surface must be varied
parametrically, as explained previously, the number of design combinations can become very large. Rather
than exhaustively explore this design space, we specify a fixed winglet height and fixed C-wing element
length, both 16% of the wing semi-span. This is a typical height for many modern winglets. The sweep of
the main wing is fixed at 32� and the sweep of the winglet and C-wing element are both fixed at 20�. The
optimization problem is given as follows:

min. J =
D

D

ref

w.r.t. b, {c}, {✓}

s.t. 1� L

L

ref

 0

(I
b

inner

+ {I
b

}
outer

+ k
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W

ref

� 1  0
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b
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+ {I
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}
outer

+ k

W

S)
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� 1  0

{c
l

}|
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l
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}  0
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= 0
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c
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ref
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Three di↵erent constraints on pitching moment about the aircraft aerodynamic center are explored:
C

m

ac

target

= +0.1, 0,�0.1. As mentioned, typically a positive C

m

ac

is desirable. A C

m

ac

of +0.1, for
example, would allow a flying wing with symmetric sections and a total lift coe�cient of 1 to trim with a
static margin of 10%, or a cambered section flying wing with section pitching moments of -0.1 to trim with
zero static margin. This analysis assumes symmetric sections for simplicity.

For each target C
m

ac

, the optimal C-wing is compared to an optimized wing with winglet and an opti-
mized wing subject to the same constraints. The minimum drag solution for each configuration is shown in
Table 2 normalized by the drag of the reference wing. Table 3 lists the optimized span of each configuration
normalized by the span of the reference wing. The reference wing in these cases is the same as in the previous
section (Figure 6).

Table 2. Relative drag (D/D
ref

) of optimized configurations - weight constrained, trimmed

C

m

ac

Wing Wing + Winglet C-wing

+0.1 1.091 1.095 1.081

0 0.978 0.964 0.971

-0.1 1.345 1.316 1.321

Table 3. Relative spans (b/b
ref

) of optimized configurations - weight constrained, trimmed

C

m

ac

Wing Wing + Winglet C-wing

+0.1 1.078 1.076 0.977

0 1.00 0.956 0.947

-0.1 0.959 0.907 0.902

Table 2 shows that trimming a tailless aircraft has a profound e↵ect on the drag. This can be seen
quite easily from a simple analysis relating the lift centroid to the minimum induced drag of the wing. An
elliptically loaded wing has a lift centroid at 42.4% semi-span. For a swept back wing, shifting the lift
centroid inboard would provide a greater pitching moment about the aerodynamic center. The new location
of the lift centroid relative to the elliptic wing would be

⌘

c

= 0.424� �y

b/2

= 0.424� 2�x

b tan⇤

Then relating the change in streamwise shift in lift centroid to the change in pitching moment about the
aerodynamic center (�C

m

ac

= �x

c

C

L

)

⌘

c

= 0.424� �C

m

ac

C

L

2c

b tan⇤
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= 0.424� �C

m

ac

C

L

2

AR tan⇤

If we let �C

m

ac

= 0.1, C
L

= 0.4, AR = 9, and ⇤ = 32� the lift centroid is now ⌘

c

= 0.335.
The minimum induced drag for a given lift and location of the lift centroid is given by12

e

inviscid

=


9

2
⇡

2
⌘

2
c

� 12⇡⌘
c

+ 9

��1

which for the present example gives e
inviscid

= 0.74. This corresponds to a 35% increase in induced drag or
roughly a 17% increase in total drag, just due to trimming the aircraft.

This rough estimate is consistent with the large drag di↵erence between trimming at C

m

ac

= 0, and
trimming at C

m

ac

= 0.1. For the later case, however the C-wing provides a small drag advantage. It has
about 1% less drag, and a 9% smaller span relative to the optimized wing. The geometry for the optimized
C-wing is shown in Figure 8(a). The winglet and C-wing element however, have small chords which require
additional assessment of the structural dynamics. The lift distributions for this design is shown in Figure 8(b).
The coordinate ⇠ traverses the wing tangentially, and the sign convention for positive section c

l

is defined
by having positive circulation point in the same direction everywhere on the wing. As expected, the C-wing
element is lifting downward (positive section c

l

) The pitching moment constraint is met by shifting the load
far inboard, although the C-wing element does provide some nose-up pitching moment.

(a) Wing geometry

0 0.2 0.4 0.6

0

0.5

1

1.5

ξ / b

c

l

c

c̄

 

 

C−wing
element

winglet

CL

2.5 CL

elliptic

(b) Lift distribution at cruise lift coe�cient and at 2.5 times
cruise lift coe�cient.

Figure 8. Optimized wing for tailless aircraft (C-wing) with positive pitching moment about the aerodynamic
center constraint (C

m

ac

= +0.1).

For the constraint C
m

ac

= 0 the optimal design is a wing with a winglet. The optimal wing with winglet
reduces the drag by about 1.5% and has a 5% smaller span relative to the optimized wing. The optimal
wing with winglet is seen in Figure 9(a). The lift distribution for this configurations is seen in Figure 9(b).
The lift distribution is nearly elliptic.

For C

m

ac

= �0.1 the optimal design is also a wing with a winglet. The optimal geometry is seen in
Figures 10(a). The wing with winglet design achieves a drag reduction of 2%, and has a 5% smaller span
relative to the optimized wing. The lift distribution for the configuration is seen in Figure 10(b). The lift
distribution is heavily shifted outboard to satisfy the pitching moment constraint. The wing has rather large
chords inboard to carry the bending weight. The large changes in chord makes some of our assumptions
suspect. Three-dimensional viscous drag e↵ects make the section viscous drag buildup method less accurate.
Also the large chord variation makes the assumption of a constant t/c a poor approximation. Further
analyses would be required for these designs to more completely assess their relative benefits.

In all three cases, however, the di↵erence in drag between the wing, wing with winglet, and C-wing never
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(a) Wing geometry
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(b) Lift distribution at cruise lift coe�cient and at 2.5 times
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Figure 9. Optimized wing for tailless aircraft (wing with winglet) with zero pitching moment about the
aerodynamic center constraint (C

m

ac

= 0).

(a) Wing geometry
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(b) Lift distribution at cruise lift coe�cient and at 2.5 times
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Figure 10. Optimized wing for tailless aircraft (wing with winglet) with negative pitching moment about the
aerodynamic center constraint (C

m

ac

= �0.1).
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di↵ers by more than a percent or two. The configuration choice would likely be dictated by something other
than drag such as span, structural dynamics, or radar cross section.

3. Span-Constrained Designs

The previous figures show that the variation in drag is small between the di↵erent configurations at a
given pitching moment constraint, however the variation in span is much larger. Constraining the span,
rather than the weight, may lead to di↵erent conclusions for optimal designs. Winglets can be used to
improve performance for designs with span constraints,1 but it is not clear if C-wings add any additional
benefit for span-constrained wings. We compare optimized wings, wings with winglets, and C-wings, all
constrained to have a span less than or equal to that of the reference wing. Rather than fix the weight at
a particular value, the results are presented as a Pareto front. As mentioned before, the winglet height and
C-wing element length are fixed at 16% of the wing semi-span.

Without span constraints, a C-wing with a pitching moment constraint of C

m

ac

= +0.1 provides a
small performance benefit relative to wings with winglets. For span-constrained designs, the analysis shows
that the performance advantage of the C-wing is a bit larger (Figure 11). At a fixed span and weight, the
optimized C-wings have from 1% to 3% less drag than the optimized wings with winglets at weights ranging
from 0% to 50% greater than that of the reference wing. For the cases of C

m

ac

equal to 0 and -0.1 (not
shown here), there is still no aerodynamic benefit to C-wings as compared to wings with winglets.

1 1.1 1.2 1.3 1.4 1.5

0.95

1

1.05
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W/Wref

D
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re
f

 

 

Wings

C−wings

Wings with Winglets

Figure 11. Pareto front for span-constrained tailless aircraft. For a fixed span and weight C-wings show more
significant performance benefits once trim and stability constraints are imposed (C

m

ac

= 0.1).

4. E↵ect of Sweep on C-wing Designs

The results discussed so far have been for a relatively highly swept wing (32� quarter chord sweep) to
account for transonic e↵ects. However, low sweep wings may be used even in transonic conditions through
careful shape optimization. This may be preferable for some configurations in order to promote natural
laminar flow or to increase the structural e�ciency.

At low sweep angles, flying wing designs must employ even greater washout to provide nose up pitching
moment while C-wing designs can increase the loading on the C-wing element to provide nose up pitching
moments without the need for as much washout. Thus, we expect the benefits of C-wings may be greater
for low sweep designs. Preliminary analysis suggests that this is the case, but the e↵ects of sweep and
large changes in chord are not captured in su�cient fidelity in the present model to quantify the results
accurately. With a fixed quarter chord sweep, and the winglet aligned with the trailing edge of the wing tip,
the optimizer would like to increase the tip chord so as to move the winglet and C-wing element further aft.
This allows a greater moment arm for the pitching moment. The decrease in necessary washout more than
compensates for the decrease in span due to larger tip chords.
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D. Maneuver Load Alleviation

The same set of tools described here can be used to analyze a much broader range of conceptual wing
design problems than the tip design cases presented so far. Many wing design problems have the same
important objectives and constraints relating to drag, lift, weight, stability and trim, and stall speed. As
one example, the methodology is applied to planar wings designed with active load alleviation.

Many of the previous results have shown how the conditions at the maneuver load a↵ect the optimal
design. In particular, for a C

L

mvr

/C

L

other than 1, it is clear that the additional lift distribution is tailored
to balance an e�cient cruise load with an inboard loaded maneuver load. If we are also able to change the
basic lift distribution (i.e. dynamically twist the wing), then the di↵erence between an ideal cruise load
distribution and an ideal structural limit load distribution can be exploited even further. Here, it is assumed
that the aircraft can provide gust load alleviation in a similar manner, but that the structure is critical at
maneuver.

For simplicity, this analysis is for a planar wing with five trapezoidal sections and no tip devices. The
design variables include span, chord distribution, and twist distribution. In addition, the twist distribution at
the maneuver load must be included. The cruise load distribution and structural limit load distribution are
then only coupled through the planform geometry, and not through the twist distribution. The objective is to
minimize drag at cruise subject to constraints on cruise lift, maneuver lift, maneuver weight, and stall speed.
Additionally, the maneuver lift distribution must not stall. Since the wing is planar, the weight calculation
can be simplified by fixing the wetted area so that only load dependent weight need be considered. The
optimization problem is given as:

min. J =
D

D

ref
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Since the twist distribution at maneuver is independent of the twist distribution at cruise, the parameter
C

L

mvr

/C

L

is no longer important. Instead the parameter c
l

max

/C

L

mvr

governs the design. This parameter
is like c

l

max

/C

L

max

, since stall becomes critical at maneuver as well as at C
L

max

, and reflects the degree to
which the maneuver lift distribution is constrained by stall. This ratio approaches one (flatter c

l

distribution)
as the critical structural altitude is increased, or as the cruise lift coe�cient is increased at fixed altitudes.

The reduction in drag from using maneuver load alleviation (MLA) is shown in Figure 12. As c
l

max

/C

L

mvr

is increased even greater drag reductions are possible. However, designs with active load alleviation tend
toward very large aspect ratios. In those cases, flutter becomes an important consideration not accounted
for here. Thus, in this paper, we limit our attention to cases where c

l

max

/C

L

mvr

is close to one. This may
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be excessive for realistic designs, but illustrates the trend. For these cases, using maneuver load alleviation
o↵ers about 15-20% drag savings.
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cl max / CL mvr

D
/D

re
f
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with MLA

Figure 12. Drag reduction as a function of c
l

max

/C
L

mvr

(wings constrained not to stall at cruise or maneuver
load). MLA shows drag savings on the order of 15-20%.

As an example, the case c

l

max

/C

L

mvr

= 1.05 is presented. The optimal planform with and without
maneuver load alleviation is shown in Figure 13(a). Stall constraints really limit the wing designed without
maneuver load alleviation at this condition, forcing a span smaller than the reference wing. However, the
wing designed with maneuver load alleviation is able to increase the span out to an aspect ratio of 13.5
(based on the trapezoidal area of the reference wing). The large increase in span is achieved by shifting the
lift inboard with maneuver load alleviation as seen in Figure 13(b).

with MLA
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(a) Planform shape
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Figure 13. Optimized planar wing with and without MLA (c
l

max

/C
L

mvr

= 1.05).

IV. Conclusion

The results demonstrate several important considerations in conceptual wing design including the im-
portance of accounting for the wing structural box, viscous drag, section c

l

constraints, di↵erences in cruise
loading and maneuver loading, wing skin thickness, and the benefit of using multidisciplinary optimization
in the conceptual design phase. Some of the most significant results presented here include:

• At fixed lift, weight, and stall speed, the minimum drag trapezoidal tip device depends on the ratio
of the maneuver lift coe�cient to the cruise lift coe�cient. For C

L

mvr

/C

L

= 1 tip extensions show a
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slight advantage compared with winglets, while for C
L

mvr

/C

L

= 2.5 winglets are slightly better than
tip extensions. These trends apply both for wing retrofits and for new wing designs.

• C-wings for tailless aircraft have slightly lower drag compared with wings and wings with winglets
when stability and trim constraints are imposed. This may be especially true for designs with span
constraints or low sweep.

• Maneuver Load Alleviation (and Gust Load Alleviation) can o↵er significant reductions in drag (on
the order of 15% for the designs evaluated here); however, an analysis of the structural dynamics is
necessary for the resulting high aspect ratio designs.

These conclusions represent fundamental multidisciplinary considerations in wing design. Design deci-
sions, however, would need to be made in the context of specific and complete design studies. For example,
as pointed out by Heyson et al., it is not clear that an increase in wing weight will lead to an increase in total
aircraft weight. It may be that the increase in wing weight is o↵set by the decrease in fuel weight due to the
reduction in drag. Many more complex trade-o↵s exist as entire configurations and missions are optimized.
Although this paper is meant to explore results of a more general nature, the methodology can be applied in
specific conceptual design studies as the methods allows for e�cient exploration of large areas of the design
space.

A few extensions to the method are currently being pursued. Transonic drag rise, airfoil section de-
sign, variation in material properties (especially in winglets), torsion-dependent weight (may be particularly
important for raked tips), and steady aeroelastics are a few areas that may yield additional insights.
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