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ABSTRACT

A method for the optimal design of complex systems is developed by effectively combining multi-objective opti-

mization and analytical target cascading techniques. The complex systems with high dimensionality are partitioned

into manageable subsystems that can be optimized using dedicated algorithms. The multiple objective functions in

each subsystem are treated simultaneously and the interactions between subsystems are managed using linking and

shared variables. The analytical target cascading algorithm ensures convergence of the optimal solution that meets

the system level targets while complying with the subsystem level constraints. A design optimization of electric ve-

hicles with in-wheel motors is formulated as a two level hierarchical scheme where the top level consists of a model

representing the electric vehicle and the bottom level contains models of battery and suspension. The vehicle model

includes an electric motor model and a power electronics model. Pareto-optimal solutions are derived holistically.

The effectiveness of the proposed method for optimizing the complex systems is compared against the conventional

all-in-one optimization approach.

1 Introduction

A holistic approach for the design optimization vehicles considering all the relevant customer requirements on range,

driving performance, weight and cost can assist designers in the early concept development. Using multi-level optimization

technique, such a complex problem can be decomposed into multiple manageable subsystems and the interactions between

them are managed using coordination strategies such as analytical target cascading (ATC), collaborative optimization (CO),

network target coordination (NTC), and bi-level integrated system synthesis (BLISS). This paper employs ATC algorithm

to optimize IWM electric vehicles. The generic framework of the ATC method was structured by Kim et al. based on the

activities performed in the product development organization of automotive industry in [1]. The convergence of the method

was studied in [2] and proved that an optimum solution can be found by recursively solving the hierarchical problems.

Researchers have implemented the hierarchical approach in different interesting applications such as engine calibration [3],

combined product and process design [4], and marketing linked product development process [5]. Whenever there are

multiple objective functions in each subsystem, the designer can employ Multi-objective optimization (MOO) techniques to

obtain the Pareto-optimal solutions.

Several methods exist in the literature to solve the AiO multi-objective optimization problems. Scalarization methods

transform the MOO problem into a single objective problem either by weighting the normalized objective functions [6] or by

optimizing one of the objective functions while using the others as constraints [7]. The Pareto methods handle the objective

functions simultaneously. Pareto filtering method numerically filters the non-dominated solutions from the complete feasible

solution space [8]. Weighted sum and constraint Pareto methods are similar to the scalarization methods, yet the weights and

constraint values are varied, respectively, to get the complete Pareto optimal set. Multi-objective evolutionary algorithms rank

the population by nondomination and work iteratively to obtain the Pareto front [9]. The authors in [10, 11] have optimised

the electric motor geometry based on the conflicting design objectives at the vehicle level using Pareto filtering. Bingzhan

et al. applied multi-objective evolutionary algorithms for component sizing and the control strategy optimization of hybrid

electric powertrain in [12]. However, the model complexity that can be handled by the AiO multi-objective optimization is

limited. By combing the MOO techniques with ATC algorithm, the optimum solutions for complex systems can be derived

effectively.



In order to analytically model the in-wheel motors, an appropriate method should be selected from the possible electro-

magnetic models in the literature by analyzing their performance differences. The authors in [13] compared the electric motor

models such as Carter factor, relative permeance model [14], complex relative permeance model [15], Schwarz-Christoffel

Toolbox based semi-analytical conformal mapping (SC) [16], mode-matching (MM) [17], and harmonic model (HM) [18].

Based on the results discussed, the complex relative permeance model [19] is selected as it gives reasonable accuracy with

minimum computational effort.

As the increased unsprung mass of the IWM electric vehicles is one of the key concerns that the designers should address

in the early design optimization, the battery and suspension components are optimized together with the electric motor.

Vehicle discomfort, road holding, and working space are considered as the objective functions as in [20, 21]. Suspension

spring stiffness and damping ratio are taken as the design variables. A battery model is used to arrange the cells in a balanced

scheme to achieve uniform utilization. The number of cells in series and parallel are calculated from the voltage and current

requirements of the motor. It is important to ensure that the energy requirement of the vehicle over targeted range is satisfied

by the battery pack.

The paper is organized as follows: Section 2 presents the generic flowchart and mathematical formulation of ATC

approach. In Section 3, the electric vehicle optimization problem is analyzed in detail and the objective functions are

derived.Section 4 elaborates the optimization algorithms used for each subsystem. The coordination theory along with the

Pareto-optimal results are discussed in Section 5. A comparative analysis is presented in Section 6 between the proposed

method and the conventional AiO approach.

2 ATC formulation

A generic flowchart of analytical target cascading approach is shown in Fig.1. The optimised results from system model

are cascaded to the subsystems as targets and the responses from subsystem models are given back for further corrections.

This feedback based interactions are handled using linking variables. The design variables that are used in multiple subsystem

models are treated as shared design variables.

System model (j=1)
Objectives: System level targets 
Subject to local constraints 

Subsystem model (j=2) 
Objectives: sub-system level 
targets
Subject to local constraints

Linking variables
and shared
variables

Level (i=1)

Level (i=2)
Subsystem model (j=n) 
Objectives: sub-system 
level targets
Subject to local constraints. . .

rij rijtij tij

Top level

Bottom level

Fig. 1: General hierarchical partitioning structure.

The mathematical formulation ATC subproblem for the ith level and the jth element is given as:

min
xi j={xi j , ti j ,ri j}

fi j(xi j)+φi j(ci j,vi j,wi j) (1)

subject to hi j(xi j) = 0

gi j(xi j)≤ 0

where, φi j = vT
i j ci j + ||wi j ◦ ci j||22

ci j = ti j − r(i+1) j

where fi j is the objective functions vector of each sub-system, ti j is the target linking variables vector from jth element of

ith level, r(i+1) j is the response linking variables vector from jth element of (i+1)th level, φi j is the consistency constraints

vector which relaxes the equality constraints (ci j = 0) between targets and responses using augmented-lagrangian (AL)

function [22], hi j and gi j are the equality and inequality constraints vectors respectively, and xi j is the local design variables



Table 1: Optimization problem for the complete vehicle

Objective functions

Energy consumption (kWh) Ec (3)

Gradeability GL (27)

Discomfort (m/s2) σẍ2
(31)

Road holding (N) σFz (33)

Working space (m) σx2−x1
(32)

Design variables

Axial scaling ratio ka

Radial scaling ratio kr

Rated voltage (V) Vr

Maximum current of motor (A) Imax

Motor input power (kW) Pin

Number of motors NEM

Number battery cells in series Nsc

Number battery cells in parallel Npc

Spring stiffness (N/m) k2

Damping ratio (Ns/m) r2

Relaxation spring stiffness (N/m) k3

Inerter equivalent mass (kg) me

Constraints

Ec ≤ Battery capacity (kWh) Ec ≤ Ebatt

Pin ≤Battery output power (kW) Pin ≤
Pbatt

NEM

Minimum required σẍ2
σẍ2

≤ L1

Minimum required σx2−x1
σx2−x1

≤ L2

Minimum required σFz σFz ≤ L3

vector. The symbol ◦ is used to denote term-by-term multiplication of vectors. The Lagrangian multiplier (v) and penalty

weight (w) are updated linearly in the successive ATC iterations as in (2).

vy+1 = vy +2wy ◦wy ◦ cy

wy+1 = βwy (2)

where y represents the iteration number. The factor β should be 2 < β < 3 for fast convergence [22]. The convergence

criteria is set at the top-level as ||cy||< ε1 and ||cy − cy−1||< ε2. The values of ε1 and ε2 are predefined by the designers.

3 Optimization of in-wheel motor electric vehicles

The considered in-wheel motor electric vehicles have two outer rotor motors mounted in the rear wheels and a Li-ion

battery back. The conventional spring-damper suspension is used for the study. Table 1 gives the list of all the objective

functions, design variables, and constraints of the optimization problem.

The proposed method manages the complexity of the optimization problem by partitioning it into multiple subsystems

and arranging them in a hierarchical order. The design targets of the vehicle are either handled at the system level and

cascaded down to the subsystems or passed directly to the lower levels. For example, in the two-level electric vehicle model,

the targets on vehicle performance are handled at the top level, whereas the ride performance targets (L1−3) are given to the

suspension model at the bottom level as constraints.

3.1 System model: In-wheel motor electric vehicle

At the system level, the objective functions are the energy consumption of the vehicle in a given range target as per

NEDC (Ec) and driving performance. Gradeability limit (GL), which is directly related to acceleration and fun-to-drive, is



considered to quantify the driving performance. The design variables are axial and radial scaling ratios (ka and kr) of the

electric motor as in Fig. 2, the rated voltage (Vr), and the total number of battery cells (Nbc). The optimum value of Nbc

is cascaded to the battery model as a target. Similarly, the m1 and m2 are given to the suspension model. The motor input

power requirement Pin is treated as a shared variable. The constraints are defined on the energy content of the battery and the

maximum allowable motor power (Pin).

Fig. 2: Radial and axial scaling of motor.

The objective functions, design variables, and constraints of the top-level system model are listed in Table 2. The

considered vehicle parameters and requirements are given in Table 3.

Table 2: Optimization problem for the system model

Objective functions Ec , GL

Design variables ka , kr , Nbc , Vr

Linking variables Nbc , m2 , m1

Shared variable Pin

Constraints Ec ≤ Ebatt ; NEMPin ≤ Pbatt

Table 3: Vehicle parameters and requirements used in the optimization

Vehicle mass (mv), kg
mbody+mbatt+

mmotorNEM

Vehicle body mass (mbody), kg 800

Motor mass (mmotor), kg Depends on ka, kr

Battery mass (mbatt), kg Depends on Nbc

Battery cell mass (mcell), kg 0.787

Frontal Area (A), m2 2

Co-efficient of drag (Cd) 0.25

Number of motors (NEM) 2

Rolling resistance coefficient (Cr) 0.01

Wheel radius (Rw), m 0.32

Required range, km 250

L1, m/s2 0.8

L2, m 20e-3

L3, N 400



3.1.1 Energy consumption (Ec) calculation

The total energy consumption of the vehicle Ec is the summation of energy consumption in the electric motors (EEM)

and the power electronics (EPE ) within the targeted range (Rt ).

Ec =
Rt

DDC

NEM(EEM +EPE)

3600x1000
(3)

where DDC is the distance travelled in a single driving cycle. The electric motor input power, which is the sum of tractive

power (PDC) and the motor losses such as copper losses (Pa), core losses (Pc), magnet losses (PPM), and mechanical losses

(Pmech), is integrated over the driving cycle to get EEM .

EEM =
∫ tDC

0
(PDC +Pc +Pmech +PPM +Pa)dt (4)

where PDC is defined as tractive torque at the wheel (TDC) times the angular speed (Ω). The tractive torque in a driving cycle

is calculated by multiplying the sum of aerodynamic resistance, gradient force, rolling resistance and inertial force with the

wheel radius (Rw) as in (5) [23].

TDC =

(

mva+mvgsinα+mvgCr cosα+
1

2
Cdρ0Av2

)

Rw (5)

In order to size the electric motor in the optimization, an analytical electromagnetic model based on conforming mapping

is employed [24]. The model derives the air-gap magnetic field solution from motor geometry and estimates the losses at

each time instant in the driving cycle. Though it is possible to optimize the motor parameters, such as number of poles,

number of slots, and slot opening, using the analytical model, a simplified approach by scaling a reference motor geometry

is adopted as in [25]. The motor dimensions are scaled in the radial and axial directions and used in the field distribution

calculation. The slotted air gap (Bs) field is derived by multiplying the complex conjugate of the complex relative permeance

(λ∗) and the canonical slotless air-gap flux density (Bk) [19].

Bsr + jBsθ = (Bkr + jBkθ)(λr + jλθ)
∗ (6)

The flux linkage of phase winding (ΨPM−ph) is obtained by integrating the radial flux density across one coil pitch and

multiplying it with the number of coils in series (Ns).

ΨPM−ph = NslaR

∫ + γc
2

− γc
2

Bsr(R,θ, t)dθ (7)

Flux linkage in the d axis (Ψd) is derived by performing Park transformation of the phase winding flux linkages due to

permanent magnets (ΨPM−d) and adding the contribution of the flux linkage from the d-axis current.

Ψd = ΨPM−d +LdId (8)

In SPM machines, the core loss is dominated by the permanent magnet flux variations in stator, so the effect of armature

flux variation and the losses in rotor are neglected. A generic expression for the core losses considering the effect of flux

density harmonics can be written in the form (9) [26].

Pc =

[

kh f Bah+bhBm
m + ke f 2 ∑

n

n2B2
n

]

ρcVc [W ] (9)

where kh is the hysteresis loss coefficient, ke is the eddy current loss coefficient, f is the electrical frequency, Bm is

the peak value of flux density waveform and Bn represents the Fourier coefficients of the flux density waveform. The



coefficients ah and bh are determined by curve fitting the steel lamination data provided by manufacturers [26]. The flux

density in the tooth and yoke regions are calculated by integrating the radial component of air-gap field solution across slot

pitch as explained in [26].

The mechanical loss is modeled as a sum of friction loss in the bearing and windage loss [27], which are functions of

rotor mass (mr), stack length (la), rotor outer diameter (Dr0), speed (nr), and an empirical coefficient (k f b).

Pmech = k f bmrnr10−3 +2D3
r0lan3

r 10−6 (10)

Eddy current loss in the magnet induced by variations in armature field is calculated based on the methodology in [26]. The

permanent magnet loss (Ppm) are defined as a function of dq axis currents.

The copper loss model considers only the DC losses in the armatures of all three phases and formulated as (11).

Pa = 3I2
s Ra (11)

where Ra is the armature resistance and Is =
(

=
√

I2
d + I2

q

)

is the stator current that satisfies the torque demand at the

wheel and motor losses. As per the maximum torque per ampere (MTPA) control strategy, the Id current is forced to zero in

the constant torque region of the motor and defined as (12) in the field weakening region [28].

Id =
ψ2

d +L2
s I2

max

2Lsψd

[(

ωA
s

ω

)

−1

]

(12)

where Imax is the maximum stator current and ω is the operating speed. The rated speed of the motor ωA
s is derived from

the rated voltage of the motor Vr.

wA
s =

Vr
√

(LsIq)2 +(ψpm +LsId)2
(13)

In order to calculate the Iq current, the motor output torque estimation model is modified as an optimization problem in (14)

and the MATLAB function fmincon is used with the constraints on maximum voltage (Vmax) and current (Imax).

F =

∣

∣

∣

∣

TDC −
(

Tem(Id , Iq)−
Pc +PPM(Id , Iq)+Pmech

Ω

)∣

∣

∣

∣

(14)

where the electromagnetic torque (Tem) of the motor is defined as [28]

Tem =
3

2
pψdIq (15)

For the Power electronics model, the most widely used space vector pulse width modulation (SVPWM) scheme is

adopted due its effective dc bus utilization and reduced harmonics [29]. The circuit model of a typical three-phase voltage

source inverter (VSI) is shown in Fig. 3. The three legs (A,B,and C) have six power switches (S1 to S6) which are composed

of insulated-gate bipolar transistors (IGBT) and diodes.

The relationship between the switching variable vector [m,n,o]t and the phase voltage vector [~Van
~Vbn

~Vcn]
t is given in

(16) [29].
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The switching variable vector has binary digits, e.g. 101, which indicate the switch state of inverter legs. The digits 1 and 0

imply the ON state of the upper and lower switches, respectively. The two switches of the same leg are not switched ON or
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Fig. 3: Circuit model of a typical three-phase voltage source inverter.

OFF simultaneously to avoid short-circuiting. The most significant bit of the switching variable vector represent the leg A,

the least significant bit is related to leg C and the middle is for leg B.

There are eight possible combinations (~V1−8) of switching patterns for the three upper switches. The phase vector

voltage corresponding to each switching pattern is defined in Table. 4.

Table 4: Phase voltage value for different switching states.

State
Switching

vector

Switches

ON
~Van

~Vbn
~Vcn

1 100 1,4,6
2

3
Vbatt −1

3
Vbatt −1

3
Vbatt

2 110 1,3,6
1

3
Vbatt

1

3
Vbatt −2

3
Vbatt

3 010 2,3,6 −1

3
Vbatt

2

3
Vbatt −1

3
Vbatt

4 011 2,3,5 −2

3
Vbatt

1

3
Vbatt

1

3
Vbatt

5 001 2,4,5 −1

3
Vbatt −1

3
Vbatt

2

3
Vbatt

6 101 1,4,5
1

3
Vbatt −2

3
Vbatt

1

3
Vbatt

7 111 1,3.5 0 0 0

8 000 2,4,6 0 0 0

It is possible to transform the three-phase voltage vectors to equivalent two-phase vector, because one of the phase

voltages is redundant from mathematical point of view [30]. The components of space vector in α−β plane are written as a

complex number.

~Vα + j~Vβ =Vbatt

2

3

(

~Va + ā~Vb + ā2~Vc

)

(17)

where ā = exp( j2π/3), ā2 = exp( j4π/3). The coefficient 2/3 is chosen to ensure the magnitude of the two-phase voltages

will be equal to that of the three-phase voltages after the transformation. The space vectors are represented in vector form in

(18) and their corresponding switching states are given in Table. 5.
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Table 5: Phase voltage space vector

State
Phase voltage space

vectors
Vα Vβ

1 (2/3)Vbatt (2/3)Vbatt 0

2 (2/3)Vbatt exp( jπ/3) (1/3)Vbatt (1/3)Vbatt

3 (2/3)Vbatt exp( j2π/3) −(1/3)Vbatt (1/3)Vbatt

4 (2/3)Vbatt exp( jπ) −(2/3)Vbatt 0

5 (2/3)Vbatt exp( j4π/3) −(1/3)Vbatt −(1/3)Vbatt

6 (2/3)Vbatt exp( j5π/3) (1/3)Vbatt −(1/3)Vbatt

7 0 0 0

8 0 0 0

The reference vector, Vre f in Fig.4, rotates in the α− β plane and occupies one of six sectors as the different sets of

switches are turned on or off. The magnitude of reference voltage vector is calculated from ~Vα and ~Vβ.

Vre f =
√

~V 2
α +~V 2

β
(19)



The angular displacement between ~Vre f and the α-axis is obtained by integrating the electrical frequency ω(t).

θ(t) =
∫ t

0
ω(t)dt +θ0 (20)

The maximum of reference voltage that corresponds to the radius of the largest possible circle that can be inscribed

within the hexagon, shown in Fig. 4, is defined in (21).

Vre f ,max =
2

3
Vbatt cos(π/6) =

1√
3

Vbatt (21)

Similarly, the maximum fundamental line-to-line rms voltage is calculated as,

VLL,max =

√
3Vre f ,max√

2
=

Vbatt√
2

= 0.707Vbatt . (22)

Modulation index is the ratio of the fundamental component amplitude of the line-to-line inverter output voltage (VLL)

to the available dc bus voltage (Vbatt). Thus,

M =
VLL

Vbatt

=

√
3Vre f

Vbatt

(23)

Thus, the maximum modulation index in the case of SVPWM is derived as 1.

Mmax =

√
3Vre f ,max

Vbatt

=

√
3(Vbatt/

√
3)

Vbatt

= 1 (24)

In order to estimate the losses in the inverter, the conduction losses, switching losses and off-state blocking losses are

considered as in [31]. The analytical expression of the switching loss Pls in IGBT devices is given by

Pls =
6

π
fs(Eon,I +Eo f f ,I +Eo f f ,D)

Vbatt

Vr

IL

Ir

(25)

where fs is the switching frequency, Vbatt is the dc link voltage, IL is the peak value of the sinusoidal line current, Eon,I and

Eo f f ,I are the turn-on and turn-off energies of the IGBT, respectively, Eo f f ,D is the turn-off energy of the power diode due to

reverse recovery current. The properties of IGBT and diode are defined in Table. 6.

The conduction losses depend directly on the load current (IL) modulation index (M) and the displacement angle (φ)
between the fundamental of modulation function and the load current [31]. The conduction losses in the IGBT and the diode

are expressed as

Plc,I =
VCE,0IL

2π

(

1+
Mπcosφ

4

)

+
rCE,0I2

L

2π

(

π

4
+

2M cosφ

3

)

Plc,D=
VF,0IL

2π

(

1− Mπcosφ

4

)

+
rF,0I2

L

2π

(

π

4
−2M cosφ

3

)

(26)

The total inverter losses are summed over the driving to calculate the energy consumption in power electronics (EPE ).

In the optimization routine, when the reference motor geometry is scaled down, the current rating of the machine should

be increased accordingly to achieve the required output torque. The armature losses, magnet losses, and inverter losses

increase with the current rating of the machine. On the other hand, the core losses decrease when the machine size is

reduced. Since the NEDC is less demanding, the share of core loses is significant in the total losses. Hence, a careful

evaluation of motor candidates should be made in the optimization to achieve minimum overall energy consumption of the

vehicle.



Table 6: Parameters of semiconductor devices

State Parameters Values Parameters Values

IGBT Ire f ,A 400 Eo f f ,mJ ,A 7

Vre f ,V 300 VCE,0,V 1.6

Eon,mJ ,A 13

Diode rCE,0,mΩ 3.8 VF,0,V 1.55

rF,0,mΩ 3.9 Eo f f ,D,mJ 7

3.1.2 Gradeability limit

The gradability (GR) limit is defined as the grade (θ) at which the vehicle can start and climb for 20 s [32]. On a flat

road, it can represent the available tractive force at the given speed (v) for further acceleration. As the GR is more demanding

due to higher duration (up to 20 sec) of the peak torque Tpeak and thus the current requirement, it is preferred to quantify the

driving performance of the vehicle over acceleration.

GR =sin(θ) =
d −C2

r

√

1−d2 +C2
r

1+C2
r

(27)

d =

(

TpeakωB

v
− 1

2
Cdρ0Av2

)

1

mvg

This objective function is converted into a constraint. The gradability limit requirement is translated as an inequality

constraint ∆Tw ≤ 60 where ∆Tw is the winding temperature. This constraint enables the optimization algorithm to consider

only the motor candidates that can climb the targeted grade for 20s without violating the constraint on winding temperature.

A thermal model based on lumped parameter thermal networks using the distributed loss and capacitance (DLC) element

described in [33] is used here to estimate the winding temperature.

3.2 Subsystem model: Battery

In the battery model, the cells are arranged in a balanced scheme as shown Fig.5 to enable uniform utilization of the

cells. The number of cells in series (Nsc) and parallel (Npc) are taken as the design variables, and they are optimised for the

consistency constraints on the linking variable battery size (Nbc). The battery output power (Pbatt ) is considered as the shared

variables. The bounds of Nsc and Npc are defined in such a way that the maximum voltage and current ratings of the battery

are restricted.

Table 7: Optimization problem for the battery model

Design variables Nsc , Npc

Linking variables Nbc

Shared variable Pbatt

Constraints NEMPin ≤ Pbatt , Ec ≤ Ebatt

The battery size estimated by the battery model in (28) should be greater than or equal to the value of target linking

variable from the system model.

Nbc = NscNpc (28)

The expressions of battery voltage, current, power, and available energy are given in (29). The maximum discharge

pulse current rate of the Li-ion cell is taken as 3C, where C is the capacity of the cell in Ah. The available energy in the
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Fig. 5: Arrangement of battery cells

battery Ebatt is estimated considering 70% C as the useful capacity in each cell.

Vbatt =Nsc Vcell

Ibatt =Npc 3C (29)

Pbatt =Vbatt Ibatt (30)

Ebatt =0.7NscNpcC

3.3 Subsystem model: Suspension

A simplified quarter-car model, shown in Fig. 6, is used for describing the vertical motion of the suspension system

due to the road irregularity. The model contains unsprung mass (m1), sprung mass (m2), tire stiffness (k1), spring stiffness

(k2), and damper (r2). The variables x1 and x2 represent the vertical motions of the masses m1 and m2 respectively. The road

irregularity (r) is modelled as a single slope power spectral density [34,35]. In the suspension model, the objective functions

Fig. 6: Quarter car model.

Table 8: Optimization problem for the suspension model

Objective functions σẍ2
, σx2−x1

, σFz

Design variables k2 , r2

Linking variables Ms , Mu

Constraints σẍ2
≤ c1 ; σx2−x1

≤ c2 ; σFz ≤ c3

are discomfort (σẍ2
), road holding (σFz), and working space (σx2−x1

). The variables spring stiffness (k2) and damping ratio

(r2) are optimized, where the remaining variables are fixed as given in Table 9. The constraints are user defined limiting

values for the objective functions based on the vehicle characteristics. The sprung and unsprung masses of the quarter-car



model are considered as the linking variables in the ATC formulation, as they get updated based on the battery size and motor

dimensions.

Table 9: Data of quarter-car model, velocity, and road roughness

Parameter Unit Value

k1 N/m 120000

v m/s 20

Ab m 1.4e-5

The analytical expression of the discomfort, which is derived as the standard deviation of vertical acceleration (ẍ2) of

m2, is given as [34].

σẍ2
=

√

Abv

2m2
2

(

(m1 +m2)k
2
2

r2
+ k1r2

)

(31)

where Ab accounts for the road profile and v is the vehicle velocity. Similarly, the analytical expression for the working space

(σx2−x1
) is given as the standard deviation of the relative motion of m2 with respect to m1 [34].

σx2−x1
=

√

Abv

2

(

(m1 +m2)

r2

)

(32)

The standard deviation of the force between tire and the ground defines the road holding (σFz ) [34].

σFz =

√

Abv

2
(m1 +m2)2P (33)

where

P =

(

(m1+m2)k
2
2

m2
2r2

+
2k1k2m1

m2r2(m1+m2)
+

k2
1m1

r2(m1+m2)2
+

k1r2

m2
2

)

Weighted sum scalarization method, where the normalized objective functions are added together after multiplying with

the weights (λ) as in (34), is used for solving the MOO problem. As the problem is convex, proper optimal solutions can

be found. The weights are varied based on the desired characteristics of the vehicle, for example a sport car can have more

weight for road holding than discomfort.

min
x

λ1 σẍ2
+λ2 σFz +λ3 σx2−x1

(34)

where

0 ≤ λi ≤ 1 ;

no f

∑
i=1

λi = 1

4 Subsystem optimization

In the vehicle model, the Nbc is an integer valued design variable, and the calculations of Ec and ∆Tw are computationally

expensive. Hence, an optimization algorithm that can handle integer design variables and requires a minimum number of

functional evaluations for the convergence is suitable. Genetic algorithm and a modified simplex algorithm (MSA) are



considered as potential candidates. In the MSA, similar to the conventional simplex method, (n+1) points are selected in the

simplex of an n design variable problem as shown in Fig.7 and ranked based on the values of the objective function calculated

at each point. After performing reflection, expansion, and contraction operations on the design candidates, the position of the

new point (R) is updated to the closest integer value (R′) of the required design variable. Figure 8 compares the convergence

performance of the MSA and GA in terms of the final value and the required number of functional evaluations. Though the

GA works reasonably well for this problem, it is observed to be slower than the MSA. Hence, the MSA is chosen as the

appropriate method to solve the system level optimization problem.

The MATLAB implementation of f minsearch employs the conventional simplex method, which is an unbounded and

unconstrained optimization algorithm. In order to include the bounds, the design variables are updated as per the expression

given in (35) [36] in each iteration of f minsearch. Then the required design variables are updated to the closest integer value

using round function in MATLAB.

x = LB+(UB−LB)∗ (sin(z)+1)/2 (35)

x(∗) = round(x(∗)) (36)

where LB and UB correspond to the lower bounds and upper bounds of the design variables, z is the fully unconstrained

design variables vector, and x is the design variables vector within the bounds. The symbol * denotes the position of the

integer-valued design variable. The inequality constraints (g) are converted into penalty functions (exterior) as in (37) and

added to the objective function (Ec). Thus, the problem is transformed into an unconstrained optimization problem, which

can be solved using f minsearch.

PF =
1

2

m

∑
i=1

(max0,g)2 (37)

In the battery model, both the Nsc and Npc are integer valued design variables. Especially, the Npc has only a few design

possibilities within the bounds, so the MSA does not work well as it gets locked in the initial values of Npc. The genetic

algorithm can be a good alternative as the battery model is computationally simple. A population size of 100 with 20

generations has given consistent results for the optimum layout of battery cells. The standard stochastic transition rules such

as mutation and crossover are employed for getting the genetically improved populations in the successive generations. The

individual with maximum fitness value at the final generation is considered to be the optimum solution. On the other hand,

the objective functions and constraints in the suspension model are continuously differentiable with respect to the continuous

design variables, so the MATLAB implementation of sequential quadratic programming ( f mincon) is utilized effectively for

the accurate and computationally efficient results.

5 Hierarchical multi-objective optimization

Optimising the subsystems separately and combining them together does not give the overall optimum solution. The

synergistic solution can be achieved only when the interactions between the subsystems are maintained. The ATC algorithm

manages the interactions using consistency constraints of the linking variables (ti j = r(i+1) j). It is important to relax these

RR'

B

W

NB

Fig. 7: Modified simplex algorithm.
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Fig. 8: Comparison of convergence performance of modified simplex algorithm (MSA) and genetic algorithm (GA).

consistency constraints in order to ensure convergence of the problem [22]. Augmented-Lagrangian penalty function (φ) is

used on the difference of linking variables as defined in (1).

The number of battery cells (Nbc) required from the vehicle model is cascaded down to the battery model as a target.

Similarly, the sprung mass (m1) and unsprung mass (m2) of the vehicle which are calculated from the optimised design

variables ka, kr, and Nbc as in (38) are passed to the suspension model.

m1 = k2
r kammotor,re f +m f ixed (38)

m2 = (mbody +Nbsmcell kpc)/4

where mmotor,re f is the mass of the reference motor, m f ixed is the mass of wheel end that is not influenced by scaling, mbody

is the vehicle body mass, and mcell is the battery cell mass. The battery pack to cell weight ratio (kpc) is obtained through

bench-marking the existing vehicle data and its value for Li-ion battery is ≈ 1.8. The shared variable Pin is formulated using

the rated voltage (Vr) and the maximum current (Imax) of the motor.

Pin =
√

3VrImax

The subsystem level models verify if the targets from system model can be achieved without violating the local con-

straints. When the targets are not met, feedback is sent back by updating the linking variables, and the vehicle model is

optimised again. When the consistency deviation between the target and response linking variables is within a predefined

variable, the optimization process is completed as presented in Table. 10. The hierarchical flowchart of the in-wheel motor

electric vehicle model is given in Fig.9.

Table 10: Evolution of consistency deviation considering gradeability limit of 30%. Stopping criteria: ε1 = ε2 = 0.01

Iteration ||cn
s || ||cn

s − cn−1
s ||

1 inf 0.3873

2 0.3653 0.0253

3 0.0244 0.0031

4 0.0066 0.0058

In the proposed hierarchical multi-objective optimization model, Pareto-optimal front between the objective functions

in the vehicle model is generated using the constraint method (39) [8, 37].

min
x∈F

Ec +φ11

Ec ≤ Ebatt NEMPin ≤Pbatt ∆T ≤ 60 SPL ≤ 15 (39)
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Fig. 9: Hierarchical partitioning structure for in-wheel motor electric vehicle.
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Fig. 10: Pareto-optimal set between energy consumption and the inverse of gradeability limit.

The results are plotted in Fig.10 between energy consumption and the inverse of gradability limit (GL), which converts

GL to a minimization function. Equivalent acceleration is also shown in the second x-axis. Similarly, the Pareto-optimal

front of the suspension system, which is obtained by varying the weights (λi) in (34), is given between discomfort, road

holding, and working space in Fig.11 for specific values of m1 and m2. Optimum values of design variables that correspond

to two example vehicles, namely A and B as shown in the figures, are presented in Table. 11 along with the reference vehicle

parameters. The vehicle A has the gradability limit of 55% and high weight for the discomfort. On the other hand, the vehicle

B has 30% GL and high weight for the road holding. Thus the analytical target cascading together with MOO techniques

can be used effectively to optimise the in-wheel motor electric vehicle.

6 Comparison with All-in-one optimization

The performance of proposed ATC based methodology is compared with the All-in-one (AiO) or single level optimiza-

tion model in terms of its accuracy and calculation time. Two different AiO models are considered in this study. In the first

model, the vehicle mass is fixed at the beginning of optimization. In other words, the vehicle mass does not change with

motor and battery sizes (the design variables). In the second model, the motor and battery sizes are used to estimate the

vehicle mass while considering fixed values for the body and front axle masses. In order to generalize the models between

the different approaches, a simplified multi-level optimization model is built considering only the vehicle and battery models
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Fig. 11: Pareto-optimal set of the suspension architecture S5 in the objective functions domain where

m2 = 310kg and m1 = 45kg.

Table 11: Optimum values of the design parameters for vehicles A and B

Parameters Symbol Reference Optimum-A Optimum-B

Pole number 2p 40 40 40

Slot number Qs 120 120 120

Magnet arc, % αp 0.75 0.75 0.75

Air gap length, mm g 1.2 1.4 1.1

Inner rotor radius, mm Rr 144.8 167.2 129.9

Inner magnet radius, mm Rm 148.8 171.9 133.5

Outer stator radius, mm Rs 150 173.3 134.6

Core length, mm lstk 66 79.2 69.8

Slot opening, mm b0 3.6 4.2 3.2

Slot depth, mm ds 13 15.0 11.7

Number of conductors in a slot Ns 6 6 6

Maximum current, A Imax 297.9 313.7 217.2

Rated voltage, V Vr 200 153 153

Number battery cells Nbc 200 444 312

Suspension spring stiffness, N/m k2 10000 14810 20000

Suspension damping ratio, Ns/m r2 1000 1230 1727

as in Fig. 12. The suspension model and the acoustic performance evaluation, discussed in Section 5, are not included as it

is difficult to manage five objective functions together in the AiO formulation.

This multi-level optimization problem is solved using the ATC approach as discussed in Section 5 and the Pareto optimal

solutions between the energy consumption and inverse of gradability are given in Fig. 15.

6.1 All-in-one model with fixed vehicle mass

In the AiO approach, the electric vehicle and battery models are combined and optimised using a single solver. The

objective functions are the energy consumption (EC) and the inverse of gradability. The considered design variables are the

axial and radial scaling ratios, maximum current, and rated voltage of the motor. The battery size is calculated from the

optimised energy consumption and the rated voltage in post processing stage. The Pareto-optimal solutions between the

energy consumption and inverse of gradeability are computed using constrained method. The gradeability requirement is

transformed into a constraint and the sequential quadratic programming (SQP) algorithm is used to solve the problem.

6.2 All-in-one model considering the variations of vehicle mass

The variations of the vehicle mass can be captured in the optimization process by modelling it as a function of motor

scaling ratios and number of battery cells as given in (38). Similar to the fixed vehicle mass model, the energy consumption

and inverse of gradability are taken as the objective functions. The design variables are radial and axial scaling ratios (ka and
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Fig. 12: A simplified two level electric vehicle model

Electric vehicle All-in one model

Subject to:

Solver: Sequential quadratic programming

Fig. 13: Problem formulation with fixed vehicle mass

kr), maximum current (Imax), number of battery cells in series (Nsc) and parallel (Npc).

As discussed in Section 4, the design variables Nsc and Npc are integer valued functions which mandate the use of

evolutionary algorithms to solve this non-linear optimization problem. Genetic algorithm is used to solve this mathematical

programming problem.

Electric vehicle All-in one model

Subject to:

Solver: Genetic algorithm 

Fig. 14: All-in one problem formulation considering the variations of vehicle mass

6.3 Comparative analysis

The Pareto optimal sets from the proposed hierarchical method and AiO approaches are compared in Fig. 15 where

the benefit of modelling the vehicle mass as a function of the motor and battery sizes is evident. When the gradability or

acceleration demand is high, the motor size should be scaled up in order to achieve the required torque. This results in

increased vehicle mass and energy consumption. Conversely, when the gradability or acceleration requirement is low, the

actual energy consumption will be lower than the estimation of the fixed vehicle mass model.

The AiO approach with fixed vehicle mass does not capture this effect and estimates lower energy consumption as

shown in Fig. 15. On the other hand, the AiO approach considering the vehicle mass variation gives similar results with

respect to proposed ATC based method. However, the computational time of the evolutionary algorithms required to solve

this problem is unacceptable. Table 12 compares the calculation time of all the three formulations estimated with a standard

laptop (Intel i7-4700MQ CPU @ 2.4 GHz, 16GB RAM).

From the shown results, it can be suggested that the proposed ATC based optimization algorithm is quite useful in the

pre-design stage of complex systems such as in-wheel motor electric vehicles in achieving accurate solutions with reasonable
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Fig. 15: Comparison of Pareto optimal sets obtained from AiO optimization models and proposed methodology

Table 12: Calculation time of the optimization methods.

optimization model Calculation time, s

Proposed optimization method 440

AiO with fixed vehicle mass 111

AiO with vehicle mass variation 4601

calculation time.

7 Conclusion

In this application-oriented paper, an in-wheel motor electric vehicle optimization problem with high dimensionality of

has been solved using the analytical target cascading approach together with MOO techniques. The complex model is divided

into subsystems such as vehicle, battery, and suspension, which are arranged in a hierarchical order. The linking variables

(number of battery cells, sprung, and unsprung masses) and shared variables (rated power of the motor and battery power)

confirm the interactions between subsystems. Multi-physics analytical models are presented for all the subsystems and used

in the ATC structure. A modified simplex algorithm is proposed to solve the vehicle model with integer valued design

variables, which works faster than the evolutionary algorithms. The battery and suspension models are solved using genetic

algorithm and sequential quadratic programming respectively. The Pareto-optimal solution for the vehicle and suspension

models are obtained by solving synergistically the complete vehicle problem. The optimum design parameters, including

the electric motor geometry, for two different vehicle types are presented in detail. The comparative analysis shows that the

proposed ATC based method works significantly better than the conventional AiO approach for complex design optimization

problems.
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