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ABSTRACT 

 

Multidisciplinary design optimisation (MDO) can be used as an effective tool to improve 

the design of automotive structures. Large-scale MDO problems typically involve several 

groups who must work concurrently and autonomously in order to make the solution 

process efficient. In this article, the formulations of existing MDO methods are compared 

and their suitability is assessed in relation to the characteristics of automotive structural 

applications. Both multi-level and single-level optimisation methods are considered. 

Multi-level optimisation methods distribute the design process but are complex. When 

optimising automotive structures, metamodels are often required to relieve the 

computational burden of detailed simulation models. The metamodels can be created by 

individual groups prior to the optimisation process, and thus offer a way of distributing 

work. Therefore, it is concluded that a single-level method in combination with meta-

models is the most straightforward way of implementing MDO into the development of 

automotive structures. If the benefits of multi-level optimisation methods, in a special 

case, are considered to compensate for their drawbacks, analytical target cascading has a 

number of advantages over collaborative optimisation, but both methods are possible 

choices. 

 
Keywords: Multidisciplinary design optimisation, single-level optimisation methods, multi-

level optimisation methods, automotive structures 

 

INTRODUCTION 

 

Automotive companies are exposed to tough competition and continuously strive to 

improve their products in order to maintain their position in the market. The aim of 

multidisciplinary design optimisation (MDO) is to find the best possible design taking 

into account several disciplines simultaneously [1]. Introducing MDO can thus aid in the 

search for improved products. The challenge is to find MDO methods suitable for 

automotive development that fit company organisations and that can be effectively inte-

grated into product development processes [2]. 

Product development in the automotive industry is largely based on computer aided 

engineering (CAE). Simulation models are used to evaluate different aspects of the design 

proposals, and the number of hardware prototypes is kept to a minimum in order to reduce 

cost and development time. During the product development, several design groups work 

concurrently and autonomously on different aspects or parts of the car. The aspects or 

parts cannot be considered to be isolated entities as they mutually influence one another. 

Therefore, the groups must interact during the development. The term ‘group’ is used 

here to denote both the administrative unit and a team working with a specific task. 

Traditionally, the goal of the design process is to meet a certain number of requirements 
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by repeated parallel development phases with intermediate data synchronisations between 

the groups. Optimisation is occasionally used by individual groups. Using a traditional 

approach leads to a feasible design, but, in all probability, not to an optimal one. The goal 

of MDO is to find the optimal design taking into account two or more disciplines 

simultaneously using a formalised optimisation methodology. A discipline is an aspect of 

the product, and different disciplines are typically handled by different groups. 

Consequently, performing MDO generally involves several groups. Implementing MDO 

as a standard industrial activity requires problem decomposition so that individual groups 

can work on the problem concurrently and autonomously, which places restrictions on 

the choice of method. 

Multidisciplinary design optimisation evolved as a new engineering discipline in 

the area of structural optimisation, mainly within the aerospace industry [3]. Single-level 

optimisation methods, in which a central optimiser makes all the design decisions, were 

the first to be developed. Through distributing the analyses, i.e. the evaluations of the 

simulation models, computational resources could be used in parallel as shown in Figure 

1(a). In order to allow groups to work concurrently and be involved in the decision-

making process, the optimisation process as such was distributed, giving rise to the multi-

level optimisation methods which are illustrated in Figure 1(b). 

 

 

  
 

(a) 

 

(b) 

 

Figure 1. (a) Single-level optimisation method with distributed analyses and (b) Multi-

level optimisation method. 

 

Detailed simulation models used to evaluate automotive design proposals are often 

computationally expensive to run. A large number of evaluations are needed when 

performing optimisation studies. Direct optimisation, which implies evaluations of the 

detailed simulation models during the optimisation procedure, may require more com-

putational resources than are available. Metamodel-based design optimisation generally 

requires fewer evaluations of the detailed simulation models and can therefore be an 

efficient alternative. Metamodels, which are simplified models of the detailed simulation 

models, can be evaluated quickly and used as approximations of the detailed models 

during optimisation studies. They are developed based on a series of evaluations of the 

detailed models and many different types have been proposed, of which the most common 

are polynomial regression, Kriging, and different neural network models [4, 5]. Since 

metamodels are approximations of the detailed simulation models, an extra source of 

error is introduced and the challenge is to keep this error on a sufficiently low level for 

the problem at hand. 

Multidisciplinary design optimisation studies of automotive structures with full 

vehicle models are still rather rare. However, one type of such a study found in the 

literature involves minimising the mass of the vehicle body considering noise, vibration, 

and harshness (NVH) and crashworthiness. Examples are described by Craig et al. [6], 

Sobieszczanski-Sobieski et al. [7], and Kodiyalam et al. [8], which are all executed using 
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metamodels and single-level optimisation methods. There are automotive MDO studies 

that use direct optimisation  [9] but metamodel-based design optimisation is the most 

common approach when computationally expensive models are involved, as described in 

the recent article by Rakowska et al. [10] since it is more computationally efficient [11]. 

Multi-level optimisation methods are rarely used for automotive structural applications 

although some examples can be found [12, 13]. 

The aim of this article is to provide a systematic review of existing MDO methods 

suitable for automotive structural applications. Automotive examples found in the 

literature can often be comprehended by a single engineer, while the methods looked for 

in this article must be suitable for large-scale problems involving several groups within a 

company. The methods also need to fit into existing product development processes. 

Many of the MDO methods intended for large-scale problems are developed in 

conjunction with the aerospace industry, and the question is then whether these methods 

are also suitable for automotive applications. There are studies that review MDO methods 

for aerospace applications [14] and launch vehicle applications [15]. However, there do 

not appear to be any studies which focus on suitable MDO methods for automotive 

applications. Thus, this article intends to fill this gap. Martins and Lambe [16] provide a 

comprehensive overview of various MDO methods but do not make any specific 

evaluation related to automotive structural applications. The approach employed in this 

article is to compare the formulations of different MDO methods and assess their 

suitability in relation to the specific characteristics of automotive structural MDO 

problems. The article is thereby intended to give an introduction to methods suitable for 

MDO of automotive structures and provide engineers with guidance on the selection of 

methods. 

The article is organised as follows. First, an MDO problem is defined and the con-

sequences of problem decomposition are covered. The nature of automotive problems is 

discussed and compared with the nature of aerospace problems. Next, requirements that 

need to be fulfilled for a method to be of interest for automotive structural applications 

are defined and a number of MDO formulations are described. Finally, the various MDO 

methods are discussed in terms of automotive prerequisites and recommendations are 

presented. 

 

MATERIALS AND METHODS 

 

Multidisciplinary Design Optimisation Problems 

Multidisciplinary design optimisation is a formalised methodology used to perform 

optimisation of a product considering several disciplines simultaneously. Giesing and 

Barthelemy [1] provide the following definition of MDO: ‘A methodology for the design 

of complex engineering systems and subsystems that coherently exploits the synergism 

of mutually interacting phenomena.’ In general, a better design can be found when 

considering the interactions between different aspects of a product than when considering 

them as isolated entities; something which is taken advantage of when using MDO. 

 

Problem Formulation 

A general optimisation problem can be formulated as: 

 

 
min

𝐱
𝑓(𝐱)

subject to 𝐠(𝐱) ≤ 𝟎.
 (1) 

The goal is to find the values of the design variables x that minimise the objective function 
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f and fulfil the constraints g. The problem becomes multidisciplinary if the design 

variables, objective function, and constraints affect different aspects of the design. To 

solve an MDO problem, the objective and constraint functions must be evaluated for a 

number of design variable configurations by an analyser. For automotive structures, the 

analyser is typically a finite element (FE) model that is computationally costly and time-

consuming to evaluate. 

 

Problem Decomposition 

Using a single-level optimisation method, the MDO problem can be decomposed by 

distributing the analyses to subspace analysers. When a multi-level optimisation method 

is used, the optimisation process as such is distributed to subspace optimisers that com-

municate with a system optimiser. Even if the decomposition is different for single-level 

and multi-level optimisation methods, a unified terminology can be used. 

Regardless of whether the analyses or the optimisation process are distributed, the 

connections between the resulting subspaces need to be handled. Each subspace has a 

number of variables, indicated by the vector xj for subspace j. The union of the variables 

in all subspaces is the original set of design variables x. The variables in the different 

subspaces are in general not disjoint. Variables that are unique to a specific subspace are 

called local variables, denoted by the vector xlj for subspace j. There will also be a number 

of shared variables. xsj indicates the vector of shared variables in subspace j, where each 

component is present in at least one other subspace. The union of shared variables in all 

subspaces is denoted by xs. When a problem is decomposed, it is necessary to handle the 

couplings between the resulting subspaces. Coupling variables are defined as output from 

one subspace needed as input to another subspace. The notion of coupled subspaces 

indicates the presence of coupling variables. The vector yij consists of output from 

subspace j that is input into subspace i and the collection of all coupling variables is 

indicated by the vector y. Decomposition of a system into three subspaces is illustrated 

in Figure 2. The local, shared, and coupling variables are given as input to each subspace. 

The output from the subspaces is used by the optimiser or system optimiser to solve and 

coordinate the MDO problem. 

 

 
 

Figure 2. Decomposition of a system into three subspaces. 

 

The presence of coupling variables complicates the problem considerably. 

Consistency of coupling variables means that the input yij to subspace i is the same as the 

output yij from subspace j, and it is obtained using an iterative approach. This is referred 

to as multidisciplinary feasibility by Cramer et al. [17]. However, since feasibility in an 

optimisation context refers to a solution that fulfils the constraints, the term 

multidisciplinary consistency is used here. The optimisation problem in Eq. (1) will now 

be reformulated using the terminology introduced. The objective function is assumed to 

be computed from a combination of data from the different subspaces, where fj denotes 

the data from subspace j. Furthermore, the constraints are assumed to be separable, which 

means that each constraint belongs only to one subspace. These assumptions hold 
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throughout this article. The resulting optimisation formulation is then: 

 

 
min

𝐱
𝑓(𝑓1(𝐱𝑙1, 𝐱𝑠1, 𝐲1∗), 𝑓2(𝐱𝑙2, 𝐱𝑠2, 𝐲2∗), … , 𝑓𝑛(𝐱𝑙𝑛, 𝐱𝑠𝑛, 𝐲𝑛∗))

subject to 𝐠𝑗(𝐱𝑙𝑗, 𝐱𝑠𝑗 , 𝐲𝑗∗) ≤ 𝟎, 𝑗 = 1,2, … , 𝑛,
 (2) 

 

where yj* denotes all coupling variables input to subspace j. 
A system can be decomposed in different ways [18]. Aspect-based decomposition 

refers to dividing the system into different disciplines. The system will then naturally 

consist of two levels: one top level and one for all the disciplines. Object-based decom-

position simply means dividing the entire system into its constituent subsystems, which 

can, in turn, be divided into smaller subsystems or components. A system decomposed 

by object can have an arbitrary number of levels. Examples of aspect-based and object-

based decomposition for automotive problems will be given in the next section. 

 

Automotive Problems 

Automotive development is performed by several groups in a company. Some groups are 

responsible for designing different parts of the product, for example, the body, the 

interior, and the chassis system. In addition, other groups are responsible for different 

performance aspects, for example, safety, NVH, and aerodynamics. The natural way of 

decomposing the MDO problem is then both object-based and aspect-based as illustrated 

in Figure 3. A product development process typically contains parallel development 

phases with intermediate synchronisations between the groups. The synchronisations 

have traditionally been performed through interaction between the groups with the goal 

of fulfilling all requirements. When introducing MDO, the groups working with different 

parts or aspects of the product must retain their autonomy and be able to work in parallel 

in order to effectively use the resources available. Moreover, MDO must fit into the 

product development process, replacing the traditional interaction between groups with a 

formalised methodology in order to find the optimum design. 

 

 

 

(a) (b) 
 

Figure 3. Examples of (a) object-based decomposition and (b) aspect-based 

decomposition for automotive MDO problems. 

 

Simulation models are used to evaluate design proposals. In many cases, these 

models are detailed finite element models that are used to evaluate structural aspects, such 

as crashworthiness and stiffness, for the full vehicle or parts of the vehicle. The design of 

an automotive structure is to a large extent governed by crashworthiness requirements 

and these are therefore usually included in MDO studies. Crash scenarios are non-linear 

by nature and demand extensive computational resources. It is not unusual for a full 

vehicle crash model to consist of several million elements. Although computers have 

become much faster over the years, the level of detail of the models has also increased. A 
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crashworthiness simulation therefore still takes many hours to run, even on a high-

performance computing cluster. When performing optimisation studies, the values of the 

objective and constraint functions need to be evaluated for a large number of design 

variable settings. Metamodel-based design optimisation can be an efficient approach 

since it generally requires fewer evaluations of the detailed simulation models than direct 

optimisation. Using metamodels is an inexpensive way to eva-luate different design 

variable settings during the optimisation procedure. In addition to being computationally 

expensive, non-linear simulation models produce complex responses resulting in 

optimisation problems with several local optima. Moreover, gradient information may be 

unavailable or spurious. Stochastic optimisation algorithms, such as genetic algorithms 

and simulated annealing, are then suitable when searching for the global optimum. These 

algorithms do not use gradients but require many evaluations in order to find the optimum, 

and the need for metamodels therefore becomes even more obvious. A positive spin-off 

of using metamodels is that they can serve as a filter for the numerically noisy responses 

that are typical for crash scenarios. 

The automotive subspaces are typically linked by shared variables but there are not 

necessarily coupling variables to be taken into account. Agte et al. [3] state that 

automotive designs are created in a multi-attribute environment rather than in a truly 

multidisciplinary environment, and that aspects, such as NVH and crashworthiness, are 

coupled only by shared variables. This observation is confirmed by the weight 

optimisation studies mentioned in the introduction. There are examples of coupled auto-

motive disciplines but they do not govern the development of automotive structures. The 

absence of coupling variables simplifies the solution process of an MDO problem 

considerably. In addition, it is easier to incorporate metamodels in the optimisation pro-

cedure when coupling variables are not considered. 

 

Comparison Between Automotive and Aerospace Problems 

As mentioned before, MDO has its roots within the aerospace industry where several 

MDO methods have been developed for aerospace applications. In order to assess their 

suitability for automotive structural applications, this section contains a comparison 

between aerospace and automotive MDO problems. There are many similarities between 

the problem types. Both the automotive and aerospace industries design complex 

products, which require the joint effort of many skilled people with expert knowledge 

from many different areas of the organisation. The need for individual groups to work 

autonomously and concurrently is therefore obvious in both industries. However, there 

are also some key differences that become important when dealing with MDO. 

Most aeroplane structures are dimensioned for the loads applied during everyday 

use multiplied by a safety factor, and there is a strong focus on fatigue. Although there is 

considerable movement of the wings during flight, the stresses are maintained within the 

elastic region. The structural analyses are therefore linear and associated with relatively 

low computational costs. The aerodynamic properties are fundamental when developing 

aeroplanes. Aerodynamic analyses are non-linear and computationally costly. However, 

in general, the analyses consider stationary states and the responses are usually smooth. 

Usable gradients can therefore be obtained without difficulty. The use of gradient-based 

optimisation algorithms, which typically require fewer evaluations than the stochastic 

optimisation algorithms, is therefore a natural approach. Even though aerodynamic 

analyses are expensive, direct optimisation may be affordable when using gradient-based 

algorithms. The need for metamodel-based design optimisation is therefore not as obvious 

for aerospace applications as it is for automotive applications. 
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Another difference between automotive and aerospace problems is the connection 

between the disciplines. Aerospace problems are in general linked by both shared and 

coupling variables. An example of aerospace coupling variables can be found when 

considering the structural and aerodynamic disciplines. The slender shapes of aeroplane 

wings result in structural deformations induced by the aerodynamic forces. These defor-

mations in turn affect the aerodynamics of the structure and hence the aerodynamic 

forces. The structural and aerodynamic disciplines are thus coupled. Similar strong 

coupling is not present in the same automotive disciplines or in other disciplines typically 

involved when performing optimisation of automotive structures. It should be easier to 

incorporate MDO into automotive development than into aerospace development since 

less complex methods can be used when coupling variables are not present. 

 

Multidisciplinary Design Optimisation Methods 

The aim of this section is to define a number of requirements that must be fulfilled for an 

MDO method to be useful for automotive structures, and to describe a number of MDO 

formulations found in the literature. The focus will be on methods that fulfil the 

requirements defined, but a couple of other methods will also be covered briefly. 

 

Requirements for Automotive Applications 

The characteristics of automotive MDO problems have been discussed in a previous 

section and a list of requirements imposed on an MDO method for automotive structural 

applications will now be given. First of all, performing large-scale MDO of automotive 

structures involves several groups within a company. To solve the problem efficiently, 

the MDO method must allow individual groups to work on the problem concurrently and 

autonomously. Concurrency means that human and computational resources can be used 

in parallel, and autonomy means that groups can make design decisions and govern 

methods and tools. Another issue, also related to efficiency, is the handling of the 

computationally expensive simulation models that are frequently included in automotive 

MDO studies. In order to reduce the required computational effort, the MDO method 

must be able to integrate the use of metamodels. Furthermore, coupling variables are 

seldom present in MDO of automotive structures. This fact simplifies the solution process 

considerably and should be taken advantage of. The requirements imposed on an MDO 

method for automotive structural applications can hence be summarised as follows: 

 

i) It should allow groups to work on the problem concurrently and autonomously. 

ii) It should allow the use of metamodels. 

iii) It does not need to handle coupled disciplines, i.e. coupling variables. 

 

Some of the more well-known MDO formulations will now be assessed in relation to 

these defined requirements in order to find the methods best suited for MDO of auto-

motive structures. 

 

Single-Level Optimisation Methods 

Single-level optimisation methods has a central optimiser that makes all design decisions. 

If the analyses are distributed, computer resources can be used in parallel, and individual 

groups can govern methods and tools for performing the analyses. The most common and 

basic single-level approach is the multidisciplinary feasible (MDF) formulation [17]. In 

the MDF formulation, the optimiser requests the values of the objective and constraint 

functions for different sets of design variables from a system analyser. The system 
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analyser enforces multidisciplinary consistency from the subspace analysers, i.e. finds a 

consistent set of coupling variables for each set of design variables. This is typically done 

iteratively using fixed-point iteration or Newton’s method [19]. 

The individual discipline feasible (IDF) formulation is an alternative single-level 

approach proposed by Cramer et al. [17], where multidisciplinary consistency is only 

enforced at optimum. There are two copies of each coupling variable; one that is cont-

rolled by the optimiser and treated as a design variable, and one that is computed as output 

from the relevant subspace analyser. The optimiser sends the design variables, including 

coupling variables, to the subspace analysers. The subspace analysers return updated 

coupling variables and contributions to the global objective and constraint functions to 

the optimiser. An additional constraint is introduced for each coupling variable to drive 

the optimisation process towards multidisciplinary consistency at optimum. In this 

approach, the subspace analysers are decoupled and the iterative process needed to find a 

multidisciplinary consistent design at each call from the optimiser is avoided. 

The MDF and the IDF methods differ in the handling of coupling variables, i.e. 

how multidisciplinary consistency is enforced. However, the two formulations coincide 

for MDO problems lacking coupling variables. Since one of the requirements imposed on 

an MDO method for automotive structural applications defined in the previous section 

was that it need not consider coupling variables, the resulting simplified formulation will 

be illustrated here. In Figure 4, the optimiser sends the values of the local and shared 

variables to the subspace analysers. The subspace analysers return contributions to the 

global objective function and values for the constraint functions to the optimiser. The 

resulting optimisation problem can thus be formulated as: 

 

 
min

𝐱
𝑓(𝑓1(𝐱𝑙1, 𝐱𝑠1), 𝑓2(𝐱𝑙2, 𝐱𝑠2), … , 𝑓𝑛(𝐱𝑙𝑛, 𝐱𝑠𝑛))

subject to 𝐠𝑗(𝐱𝑙𝑗, 𝐱𝑠𝑗) ≤ 𝟎, 𝑗 = 1,2, … , 𝑛.
 (3) 

 

This can be compared to the optimisation formulation in Eq. (2). Solving an MDO prob-

lem without coupling variables is straightforward when using this approach, and it can be 

done using any preferred optimisation algorithm. 

 

 
 

Figure 4. Illustration of a single-level MDO method without coupling variables. 

 

When single-level optimisation methods are used in combination with metamodels, 

the groups can work in parallel to create the metamodels before the optimisation starts. 

The previously defined requirements for an MDO method are then fulfilled, with the 

exception that autonomy is only partly achieved for the groups. The groups can govern 

methods and tools used to perform the analyses but they have no direct control over the 

design decisions. It will later be discussed how this drawback can be relieved. 

Multi-level Optimisation Methods 

Single-level optimisation methods have a central optimiser making all design decisions. 

Distribution of the decision-making process is enabled using multi-level optimisation 

methods, where a system optimiser communicates with a number of subspace optimisers. 

Optimiser

Subspace Analyser 2Subspace Analyser 1 Subspace Analyser 3

xl1, xs1 f1, g1 xl2, xs 2 f2, g2 xl3, xs 3 f3, g3
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Individual groups can then work on the MDO problem concurrently and govern methods 

and tools for their analyses and their part of the optimisation process. Several multi-level 

optimisation formulations have been presented in the literature, and some of the most 

well-known ones are investigated here. Two of the methods fulfil the requirements 

defined previously and will be discussed in more detail, while two other methods will 

only be covered briefly. The focus is on the formulations and not on how to solve the 

resulting optimisation problems. 

 

Collaborative optimisation 

Collaborative optimisation (CO) is a bi-level method developed at Stanford University. 

An early description of CO was published by Kroo et al. [20] and further refined by Braun 

[21]. The method can handle coupling variables, but a simplified variant without coupling 

variables is presented here. 

In CO, the system optimiser is in charge of target values of the shared variables. 

The subspaces have the freedom to change the local variables and local copies of the 

shared variables during the optimisation process. The target values of the shared variables 

are called xs
+ and the local copies are denoted xs. The variables corresponding to subspace 

j are called xsj
+ and xsj, respectively. A consistent design is enforced at optimum, i.e. the 

local copies converge towards the target values. An overview of the formulation is 

illustrated in Figure 5. The system optimiser minimises the global objective function 

subject to constraints that ensure a consistent design. The subspace optimisers minimise 

the deviation from consistency subject to local constraints. 

 

 
 

Figure 5. Overview of the collaborative optimisation formulation. 

 

The system optimisation problem is formulated as: 

 

 

min
𝐱𝑠

+
𝑓(𝐱𝑠

+)

subject to 𝐽𝑗 = ‖𝐱𝑠𝑗
+ − 𝐱𝑠𝑗‖

2

2
= 0, 𝑗 = 1,2, … , 𝑛,

 (4) 

 

where n is the number of subspaces. The system optimiser minimises the global objective 

function f with respect to the target values of the shared variables xs
+. There is one 

constraint for each subspace, ensuring that the local copies xsj match the target values 

xsj
+. The j th subspace optimisation problem is formulated as: 

 

System Optimiser

min global objective

subject to consistency constraints

Subspace Optimiser 2

min deviation from consistency

subject to local constraints

Subspace Optimiser 1

min deviation from consistency

subject to local constraints

Subspace Optimiser 3

min deviation from consistency

subject to local constraints

Subspace Analyser 2 Subspace Analyser 3Subspace Analyser 1

xs1
+ xs2

+ xs3
+xs1 xs2 xs3
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min

𝐱𝑙𝑗,𝐱𝑠𝑗

𝐽𝑗 = ‖𝐱𝑠𝑗
+ − 𝐱𝑠𝑗‖

2

2

subject to 𝐠𝑗(𝐱𝑙𝑗, 𝐱𝑠𝑗) ≤ 𝟎.
 (5) 

 

The subspace optimisers minimise the deviations between the local copies xsj and the 

corresponding target values xsj
+ subject to local constraints. The optimisation is 

performed with respect to local variables and to local copies of the shared variables. In 

this formulation, there are no local variables in the system objective function. However, 

the system optimisation problem can include local variables by also making copies of 

these and enforce consistency by including them in Jj. 

There are a number of numerical problems associated with CO when used in 

combination with gradient-based algorithms, mainly related to the formulation of the 

system constraint functions and the subspace objective functions [22, 23]. These issues 

hinder convergence proofs and have an unfavourable effect on the convergence rate, 

leading to difficulties for conventional non-linear programming algorithms. A number of 

attempts to modify the CO formulation in order to overcome these problems are 

documented in the literature. Braun et al. [24] suggested that the system constraints should 

be stated as inequalities, i.e. Jj ≤ 0 for all j. This adjustment can improve convergence 

when a gradient-based solution algorithm that linearises constraints is used. Sobieski and 

Kroo [25] introduce the use of polynomial surrogate models to represent the subspace 

objective functions, which are also the system constraints. In modified collaborative 

optimisation (MCO), presented by DeMiguel and Murray [22], the L1-norm is indirectly 

used instead of the square of the L2-norm in the subspace objective functions, and the 

system problem is made unconstrained by adding these as penalty terms to the system 

objective function. Both collaborative optimisation with surrogate models and MCO 

solve some, but not all, of the numerical issues associated with the original formulation. 

However, these specific numerical problems only arise when gradient-based optimisation 

algorithms are used and, genetic algorithms have successfully been applied to solve the 

system problem of CO [26]. 

Enhanced collaborative optimisation (ECO) was developed by Rooth [27]. The 

formulation is influenced by CO, MCO, and analytical target cascading that will be 

described in the next section. An overview of ECO can be found in Figure 6. The goal of 

the system optimiser is to find a consistent design. There are no constraints on the system 

level, which makes the system optimisation problem straightforward to solve. The 

objective functions of the subspaces contain the global objective in addition to terms for 

the deviation from consistency. It is intuitively more appealing for the subspaces to work 

towards minimising a global objective, rather than to minimise a deviation from 

consistency as is done in the original CO formulation. The subspaces are subject to local 

constraints as well as to linearised versions of the constraints in the other subspaces. The 

inclusion of the latter constraints provides a direct understanding of the preferences of the 

other subspaces, unlike CO, where this knowledge is only obtained indirectly from the 

system optimiser. All the numerical problems that are associated with CO in combination 

with gradient-based algorithms are resolved using ECO. However, the complexity of 

ECO is a major drawback. 

Collaborative optimisation has mainly been used for aerospace applications, for 

example, aircraft preliminary design [20] and launch vehicles [28]. However, in a recent 

article, Xue et al. [13] use CO for weight reduction of a car. The variants of CO presented 

in this section fulfil the requirements imposed on an MDO method for automotive 

applications defined previously. 
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Figure 6. Overview of the enhanced collaborative optimisation formulation. 

 

Analytical target cascading 

Analytical target cascading (ATC) was developed for automotive applications at the 

University of Michigan [29-31]. It was originally intended as an early product develop-

ment tool for propagating targets on an entire system to targets on smaller parts of the 

system. The system was therefore decomposed by object into a hierarchical structure. The 

term subspace has previously been used to designate the second level in a bi-level method. 

Here, subspace will instead be used as the general term for an element in the hierarchical 

ATC structure. Each subspace models a part of the system using an analyser and can be 

connected to subspaces above and below. The objective of each subspace is to meet 

targets set by the subspace above as closely as possible in addition to striving for a 

consistent design. The ATC process uses simplified models of the subspaces. After 

having propagated the targets, the subspaces can be designed independently using 

detailed models to meet the specified targets. 

Analytical target cascading can be used as a multi-level optimisation method if the 

targets are unattainable. The formulation presented here is adapted from Tosserams et al. 

[32], which fits better into a general MDO framework than the original formulation. It 

will only be described for two levels without considering coupling variables. The top 

subspace optimiser is called system optimiser and the bottom subspace optimisers are 

denoted subsystem optimisers. In this variant of ATC, the global objective function is 

assumed to be additively separable and distributed to the subspace optimisers. The 

objective function of each subspace optimiser consists of two terms; one that is a part of 

the global objective function and one that ensures consistency. Each subspace has local 

variables and local constraints. Shared variables are handled in a fashion similar to CO; 

the system optimiser has target values of the shared variables and the subsystem 

optimisers have local copies of the shared variables. An illustration of the method can be 

found in Figure 7. 

The system optimisation problem is formulated as: 

 

 
min

𝐱𝑙0,𝐱𝑠
+

𝑓0(𝐱𝑙0, 𝐱𝑠
+) + ∑ ‖𝐰𝑗 ∘ (𝐱𝑠𝑗

+ − 𝐱𝑠𝑗)‖
2

2𝑛
𝑗=1

subject to 𝐠0(𝐱𝑙0, 𝐱𝑠
+) ≤ 𝟎,

 (6) 

 

where xl0 is the vector of local variables, g0 is the vector of local constraints, 𝐰 =
[𝐰1 , 𝐰2 , … , 𝐰𝑛 ] is a vector of penalty weights, and the symbol ◦ denotes a term-by-term 
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min deviation from consistency

subject to no constraints

Subspace Optimiser 2

min global objective and 

deviation from consistency

subject to local and approxi-

mations of others’ constraints

Subspace Optimiser 1

min global objective and 

deviation from consistency

subject to local and approxi-

mations of others’ constraints

Subspace Optimiser 3

min global objective and 

deviation from consistency

subject to local and approxi-

mations of others’ constraints

Subspace Analyser 2 Subspace Analyser 3Subspace Analyser 1
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multiplication of vectors. The j th subsystem optimisation problem is formulated as: 

 

 
min

𝐱𝑙𝑗,𝐱𝑠𝑗

𝑓𝑗(𝐱𝑙𝑗 , 𝐱𝑠𝑗) + ‖𝐰𝑗 ∘ (𝐱𝑠𝑗
+ − 𝐱𝑠𝑗)‖

2

2

subject to 𝐠𝑗(𝐱𝑙𝑗, 𝐱𝑠𝑗) ≤ 𝟎,
 (7) 

 

where the notation has been previously defined. Consistency is obtained by including the 

square of the L2-norm of the deviation from consistency multiplied by penalty weights in 

the subspace objective functions. 

 

 
 

Figure 7. Overview of the analytical target cascading formulation. 

 

A convergence proof for solving the original ATC problem is provided by 

Michelena et al. [33]. They show that the solution of the ATC problem is identical to the 

solution of the original undecomposed problem. This is also valid for the variant of ATC 

presented here if fj is convex in all subspaces. It is important to set the penalty weights 

appropriately if the targets are unattainable, since too small weights can yield solutions 

far from the solution of the original problem while too large weights can cause numerical 

problems [34]. Quadratic penalty functions are used to ensure consistency in the original 

formulation and in the formulation presented here. Other types of penalty functions can 

be found in the literature, see for example Tosserams et al. [32] who use an augmented 

Lagrangian penalty function. 

Analytical target cascading has been used for automotive applications, for example 

to propagate targets in a chassis design of a sport-utility vehicle [35], to redesign a U.S. 

class VI truck [36], and more recently, to optimise a hybrid electrical fuel cell vehicle 

[37] and two commercial vehicle systems [13]. The method has also been used for 

aerospace applications. Tosserams et al. [38] use ATC to minimise the weight of a 

supersonic business jet. Analytical target cascading can be used in combination with 

metamodels for solving an MDO problem without coupling variables, and it fulfils the 

requirements imposed on an MDO method for automotive structural applications 

presented previously. 

 

Other methods 

Other proposed methods for aerospace applications are concurrent subspace optimisation 
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(CSSO) and bi-level integrated system synthesis (BLISS). These methods will be covered 

only briefly, as neither of them is suitable for the type of automotive MDO problems 

considered in this article. 

Concurrent subspace optimisation was introduced by Sobieszczanski-Sobieski [39], 

but it has diverged into fundamentally different variants. The version presented here was 

developed by Renaud and Gabriele [40-42] in a series of articles. Many subsequent 

approaches are based on their work. The main idea is to distribute each shared variable to 

the subspace for which it influences the objective and constraint functions the most. Each 

subspace is then optimised with respect to its local variables and a subset of its shared 

variables, while all other variables are held constant. Thereafter, optimisation of an 

approximation of the global problem is performed around the combination of optimised 

variables from the different subspaces. All variables are consequently dealt with at the 

system level. One of the main motivations for using a multi-level method is to give the 

individual groups freedom to make their own design decisions. When using the variant 

of CSSO presented here, the groups will not have this freedom, and the increased 

complexity from introducing a multi-level method is not motivated. 

Bi-level integrated system synthesis was introduced by Sobieszczanski-Sobieski 

et al. [43]. A reformulation referred to in the literature as BLISS 2000, or simply BLISS, 

was presented by Sobieszczanski-Sobieski et al. [44]. In this approach, the subspace 

optimisers control the local variables and the system optimiser the shared variables. The 

key concept in BLISS 2000 is the use of surrogate models to represent optimised 

subsystems. To create these surrogate models, a design of experiment is created and a 

number of subspace optimisation problems are solved with respect to the local variables. 

In each subspace optimisation problem, the sum of the coupling variables output from 

that specific subspace multiplied by weighting coefficients is minimised subject to local 

constraints. The surrogate models represent the coupling variables output from each 

subspace as functions of the shared variables, the coupling variables input to that 

subspace, and the weighting coefficients. Polynomial surrogate models are used in the 

original version of BLISS 2000 but Kriging surrogate models have also been used [45]. 

In principle, each subspace could be given the freedom to choose their own surrogate 

model. The system optimiser uses the surrogate models to minimise the global objective 

subject to consistency constraints. The original implementation of BLISS 2000 concerns 

four coupled subspaces of a supersonic business jet: structures, aerodynamics, propulsion, 

and performance. Few other applications have been found in the literature. The method 

has been developed to handle coupled disciplines and is not relevant for problems lacking 

coupling variables since the subspace objective functions then vanish. 

 

RESULTS AND DISCUSSION 

 

In this section, the choice between single-level and multi-level optimisation methods will 

first be assessed in relation to the characteristics of automotive and aerospace MDO 

problems described previously. When solving large-scale automotive and aerospace 

MDO problems, it is important that the groups involved can work concurrently and 

autonomously. For automotive structural applications, this can partly be achieved by the 

use of metamodels. Having the possibility to incorporate metamodels is essential and is 

mainly motivated by the high computational cost of many of the detailed simulations. 

When performing metamodel-based design optimisation, the groups can run the simu-

lations needed, build the metamodels, and check the accuracy of the metamodels before 

the optimisation process starts, using their preferred methods and tools. The need for 



 

Bäckryd et al. / International Journal of Automotive and Mechanical Engineering 14(1) 2017 4050-4067 

4063 

metamodels is not as obvious for aerospace applications. Multi-level optimisation 

methods are therefore required in order to allow individual groups to work concurrently 

and autonomously. 

The benefits and drawbacks of using single-level and multi-level optimisation 

methods in combination with metamodels for automotive structural applications will now 

be assessed. The most straightforward and simple approach to perform MDO of 

automotive structures is to use a single-level optimisation method in combination with 

metamodels, as described by Ryberg et al. [46]. Each design group can then be respon-

sible for its own metamodels. The metamodels are sent to a central optimiser that finds 

the optimum design. All design decisions will be taken on a central level and the groups 

are therefore not autonomous in this sense. However, this drawback can be relieved by 

involving the different groups in the setup of the optimisation problem and in the 

assessment of the results. Another disadvantage of using a single-level optimisation 

method is that individual groups do not govern optimisation methods and tools. Further-

more, groups that have inexpensive simulations either have to create metamodels, which 

introduce an unnecessary source of error, or let the central optimiser call their analysers 

directly, and give up even more of their autonomy. When it comes to the choice of single-

level optimisation method, the multidisciplinary feasible and individual discipline 

feasible methods coincide when there are no coupling variables. 

One of the main motivations for using a multi-level optimisation method is to 

involve the different groups directly in the decision-making process. A multi-level 

method also allows the groups to govern their own optimisation procedure, including the 

choice of optimisation methods and tools. The groups can then work concurrently and 

more autonomously than when using a single-level optimisation method. Metamodels can 

be used, but groups who use inexpensive simulation models have the option to use direct 

optimisation instead. The main drawback of multi-level optimisation methods is their 

complexity. The methods are often complicated to implement and can also be complex to 

use. The multi-level formulation can become less transparent than the corresponding 

single-level formulation. One example of this is when the local objective functions do not 

mirror the global one, which makes it difficult for the individual groups to grasp what 

they are aiming for during the optimisation process. A comparison of benefits and 

drawbacks using single-level and multi-level optimisation methods in combination with 

metamodels is summarised in Table 1. 

 

Table 1. Comparison of benefits and drawbacks using single- and multi-level optimi-

sation methods in combination with metamodels for automotive structural applications. 

 

 Single-Level Methods Multi-Level Methods 

Bene-

fits 

Simple Autonomy to make some design decisions 

 Autonomy to govern methods and tools 

for optimisation 

Draw-

backs 

No autonomy to make design decisions Complex 

No autonomy to govern methods and 

tools for optimisation 

 

 

Collaborative optimization and analytical target cascading are two multi-level 

formulations that fulfil the requirements imposed on an MDO method for automotive 

structural purposes defined in this article. A disadvantage of CO is the lack of 

transparency for the groups. The purpose of the subspace optimisation problems is to 
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minimise the deviation from a consistent design, and it is only implicitly through the 

system optimiser that the global objective is minimised. This can be compared to ATC, 

where each subspace is given a part of the global objective function and therefore has an 

understanding of the global goal. Furthermore, CO suffers from a number of numerical 

problems when used in combination with gradient-based optimisation algorithms, while 

ATC does not have these shortcomings. Several improvements to CO have been presented 

in the literature. Enhanced collaborative optimisation resolves the numerical issues and 

also gives the groups insight into the global objective, but it has the drawback of being 

complicated. The numerical problems associated with CO will not appear when stochastic 

optimisation algorithms, which are suitable when performing metamodel-based MDO of 

automotive structures are used. Another difference between the two formulations 

concerns the role of the system optimiser. It only coordinates the solution process in CO, 

while it is also responsible for a part of the MDO problem and has an analyser to evaluate 

different design variable settings in ATC. Finally, ATC can be used to solve an MDO 

problem with multiple levels, while CO is restricted to two levels. Both CO and ATC are 

possible choices of MDO methods for the automotive structural purposes even though 

ATC has some advantages. However, the performances of the two methods in 

combination with stochastic optimisation algorithms need to be further investigated. 

 

CONCLUSIONS 

 

In this article, a systematic review of existing MDO methods for automotive structural 

applications has been presented and guidance on the selection of suitable methods has 

been provided. Large-scale MDO problems within the automotive industry involve 

several groups which must work concurrently and autonomously. Furthermore, primarily 

due to the expense of many of the simulation models used in automotive development, it 

must be possible to incorporate metamodels. Single-level optimisation methods use a 

central optimiser to solve the MDO problem. Multi-level optimisation methods are 

introduced to distribute the decision-making process and the control over optimisation 

methods and tools. They are more complex than single-level methods, and if they are to 

be justified, the benefits of using them must compensate for their complexity. Single-

level optimisation methods become more attractive in combination with metamodels, as 

individual groups can work concurrently and autonomously to create the metamodels 

before the optimisation process starts. In addition, the issue of not participating in design 

decisions can partly be compensated by involving the different groups in the setup of the 

optimisation problem and in the assessment of the results. Therefore, it is concluded that 

a single-level method in combination with the use of metamodels is often the most 

convenient way of solving non-coupled MDO problems for automotive structural 

applications involving computationally expensive simulations. If the benefits of multi-

level optimisation methods are considered to compensate for their drawbacks, analytical 

target cascading has a number of advantages over collaborative optimisation, although 

both methods are possible choices. Further studies comparing the discussed methods on 

large-scale industrial problems with different characteristics will reveal more details on 

the efficiency and suitability of the different MDO methods in relation to automotive 

structural applications.  

ACKNOWLEDGEMENTS 

 

The work presented in this article has been carried out with financial support from the 

Swedish Foundation for Strategic Research through the ProViking project ‘ProOpt’ 



 

Bäckryd et al. / International Journal of Automotive and Mechanical Engineering 14(1) 2017 4050-4067 

4065 

(PV09-0006) and Sweden’s Innovation Agency Vinnova through the FFI project ‘Robust 

and multidisciplinary optimization of automotive structures’ (2009-00314). 

 

REFERENCES 

 

[1]  Giesing JP, Barthelemy J-FM. A summary of industry MDO applications and 

needs. 7th  AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary 

Analysis and Optimization; 1998. 

[2]  Belie R. Non-technical barriers to multidisciplinary optimization in the aerospace 

industry.  9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and 

Optimization; 2002. 

[3]  Agte J, de Weck O, Sobieszczanski-Sobieski J, Arendsen P, Morris A, Spieck M. 

MDO: assessment and direction for advancement—an opinion of one 

international group. Structural and Multidisciplinary Optimization. 2010;40:17-

33. 

[4]  Simpson TW, Peplinski J, Koch PN, Allen JK. Metamodels for computer-based 

engineering design: survey and recommendations. Engineering with Computers. 

2001;17:129-50. 

[5]  Ryberg A-B, Bäckryd RD, Nilsson L. Metamodel-based multidisciplinary design 

optimization for automotive applications: Linköping University; 2012. 

[6]  Craig KJ, Stander N, Dooge D, Varadappa S. MDO of automotive vehicle for 

crashworthiness and NVH using response surface methods, AIAA paper  2002-

5607. 9th  AIAA/ISSMO Symposium on Multidisciplinary Analysis and 

Optimization; 2002. p. 1930-40. 

[7]  Sobieszczanski-Sobieski J, Kodiyalam S, Yang RY. Optimization of car body 

under constraints of noise, vibration, and harshness (NVH) and crash. Structural 

and Multidisciplinary Optimization. 2001; 22,(4):295–306. 

[8]  Kodiyalam S, Yang RJ, Gu L, Tho C-H. Multidisciplinary design optimization of 

a vehicle system in a scalable, high performance computing environment. 

Structural and Multidisciplinary Optimization. 2004;26:256-63. 

[9]  Duddeck F. Multidisciplinary optimization of car bodies. Structural and 

Multidisciplinary Optimization. 2008;35:375-89. 

[10]  Rakowska J, Chator A, Barthelemy B, Lee M, Morgans S, Laya J, et al. An 

iterative application of multi-disciplinary optimization for vehicle body weight 

reduction based on 2015 Mustang product development. SAE International 

Journal of Materials and Manufacturing. 2015;8:685-92. 

[11]  Sheldon A, Helwig E, Cho Y-B. Investigation and application of multi-

disciplinary optimization for automotive body-in-white development.  8th 

European LS-DYNA Users Conference; 2011. 

[12]  Kang N, Kokkolaras M, Papalambros PY, Yoo S, Na W, Park J, et al. Optimal 

design of commercial vehicle systems using analytical target cascading. Structural 

and Multidisciplinary Optimization. 2014;50:1103-14. 

[13]  Xue Z, Elango A, Fang J. Multidisciplinary design optimization of vehicle weight 

reduction. SAE International Journal of Materials and Manufacturing. 

2016;9:393-9. 

[14]  Sobieszczanski-Sobieski J, Haftka RT. Multidisciplinary aerospace design 

optimization: survey of recent developments. Structural Optimization. 1997;14:1-

23. 



 

MDO methods for automotive structures 

4066 

[15]  Balesdent M, Bérend N, Dépincé P, Chriette A. A survey of multidisciplinary 

design optimization methods in launch vehicle design. Structural and 

Multidisciplinary Optimization. 2012;45:619-42. 

[16]  Martins JRRA, Lambe AB. Multidisciplinary design optimization: a survey of 

architectures. AIAA Journal. 2013;51:2049-75. 

[17]  Cramer EJ, Dennis J, John E, Frank PD, Lewis RM, Shubin GR. Problem 

formulation for multidisciplinary optimization. SIAM Journal on Optimization. 

1994;4:754-76. 

[18]  Sobieszczanski-Sobieski J, Haftka RT. Interdisciplinary and multilevel optimum 

design.  Computer aided optimal design: Structural and mechanical systems: 

Springer; 1987. p. 655-701. 

[19]  Balling RJ, Sobieszczanski-Sobieski J. Optimization of coupled systems- A 

critical overview of approaches, AIAA paper 94-4330.  5th  

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and 

Optimization; 1994. p. 753-73. 

[20]  Kroo I, Altus S, Braun R, Gage P, Sobieski I. Multidisciplinary optimization 

methods for aircraft preliminary design, AIAA paper 94-4325.  5th  

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and 

Optimization; 1994. p. 697-707. 

[21]  Braun RD. Collaborative optimization: an architecture for large-scale distributed 

design: Stanford University; 1996. 

[22]  DeMiguel A-V, Murray W. An analysis of collaborative optimization methods, 

AIAA paper 2000-4720.  8th AIAA/USAF/NASA/ISSMO Symposium on 

Multidisciplinary Analysis and Optimization; 2000. 

[23]  Alexandrov NM, Lewis RM. Analytical and computational aspects of 

collaborative optimization for multidisciplinary design. AIAA Journal. 

2002;40:301-9. 

[24]  Braun R, Gage P, Kroo I, Sobieski I. Implementation and performance issues in 

collaborative optimization, AIAA paper 96-4017. 6th NASA/ISSMO Symposium 

on Multidisciplinary Analysis and Optimization; 1996. p.  295-305. 

[25]  Sobieski IP, Kroo IM. Collaborative optimization using response surface 

estimation. AIAA Journal. 2000;38:1931-8. 

[26]  Zadeh PM, Toropov VV, Wood AS. Metamodel-based collaborative optimization 

framework. Structural and Multidisciplinary Optimization. 2009;38:103-15. 

[27]  Roth BD. Aircraft family design using enhanced collaborative optimization: 

Stanford University; 2008. 

[28]  Braun RD, Moore AA, Kroo IM. Collaborative approach to launch vehicle design. 

Journal of Spacecraft and Rockets. 1997;34:478-86. 

[29]  Kim HM. Target cascading in optimal system design: University of Michigan ; 

2001. 

[30]  Kim HM, Michelena NF, Papalambros PY, Jiang T. Target cascading in optimal 

system design. Journal of Mechanical Design. 2003;125:474-80. 

[31]  Michalek JJ, Papalambros PY. Weights, norms, and notation in analytical target 

cascading. Journal of Mechanical Design. 2005;127:499-501. 

[32]  Tosserams S, Etman L, Papalambros P, Rooda J. An augmented Lagrangian 

relaxation for analytical target cascading using the alternating direction method 

of multipliers. Structural and Multidisciplinary Optimization. 2006;31:176-89. 

[33]  Michelena N, Park H, Papalambros PY. Convergence properties of analytical 

target cascading. AIAA journal. 2003;41:897-905. 



 

Bäckryd et al. / International Journal of Automotive and Mechanical Engineering 14(1) 2017 4050-4067 

4067 

[34]  Michalek JJ, Papalambros PY. An efficient weighting update method to achieve 

acceptable consistency deviation in analytical target cascading. Journal of 

Mechanical Design. 2005;127:206-14. 

[35]  Kim HM, Rideout DG, Papalambros PY, Stein JL. Analytical target cascading in 

automotive vehicle design. Journal of Mechanical Design. 2003;125:481-9. 

[36]  Kim HM, Kokkolaras M, Louca LS, Delagrammatikas GJ, Michelena NF, Filipi 

ZS, et al. Target cascading in vehicle redesign: a class VI truck study. 

International Journal of Vehicle Design. 2002;29:199-225. 

[37]  Han J, Papalambros PY. Optimal design of hybrid electric fuel cell vehicles under 

uncertainty and enterprise considerations. Journal of Fuel Cell Science and 

Technology. 2010;7:021020-1-9. 

[38]  Tosserams S, Kokkolaras M, Etman L, Rooda J. A nonhierarchical formulation of 

analytical target cascading. Journal of Mechanical Design. 2010;132:051002-1-

13. 

[39]  Sobieszczanski-Sobieski J. Optimization by decomposition: a step from 

hierarchic to non-hierarchic systems. Second NASA/Air Force Symposium on 

Recent Advances in Multidisciplinary Analysis and Optimization; 1988. p. 51-78. 

[40]  Renaud J, Gabriele G. Sequential global approximation in non-hierarchic system 

decomposition and optimization. Advances in Design Automation, 17th Design 

Automation Conference; 1991. p. 191-200. 

[41]  Renaud J, Gabriele G. Improved coordination in nonhierarchic system 

optimization. AIAA Journal. 1993;31:2367-73. 

[42]  Renaud J, Gabriele G. Approximation in nonhierarchic system optimization. 

AIAA Journal. 1994;32:198-205. 

[43]  Sobieszczanski-Sobieski J, Agte JS, Sandusky Jr RR. Bi-level integrated system 

synthesis (BLISS). 7th  AIAA/USAF/NASA/ISSMO Symposium on 

Multidisciplinary Analysis and Optimization; 1998. p. 1543-57 

[44]  Sobieszczanski-Sobieski J, Altus TD, Phillips M, Sandusky R. Bilevel integrated 

system synthesis for concurrent and distributed processing. AIAA Journal. 

2003;41:1996-2003. 

[45]  Kim H, Ragon S, Soremekun G, Malone B, Sobieszczanski-Sobieski J. Flexible 

approximation model approach for bi-level integrated system synthesis, AIAA 

paper 2004-4545.  10th AIAA/ISSMO Multidisciplinary Analysis and 

Optimization Conference; 2004. 

[46]  Ryberg A-B, Bäckryd RD, Nilsson L. A metamodel-based multidisciplinary 

design optimization process for automotive structures. Engineering with 

Computers. 2015;31:711-28. 

 


